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Abstract

This paper develops a simple diagnostic for the selection on observables
assumption in the case of a binary treatment variable. I show that, under
common assumptions, when selection on observables does not hold, designs
based on selection on observables will estimate treatment effects approaching
infinity or negative infinity among observations with propensity scores close to
0 or 1. Researchers can check for violations of selection on observables either
informally by looking for a “smile” shape in a binned scatterplot, or with a
simple formal test. When selection on observables fails, the researcher can
detect the sign of the resulting bias.

1 Introduction

When studying the effect of a treatment on an outcome of interest, researchers often
use estimators which require that treatment status is as good as randomly assigned
conditional on a set of covariates. This assumption is known variously as selection

on observables, unconfoundedness, or the conditional independence assumption. Or-
dinary least squares (OLS) regression and propensity score matching are examples
of estimators which can be used to measure causal effects under selection on observ-
ables.

Estimators based on selection on observables can be attractive due to ease of im-
plementation and because they often give more precise estimates than alternatives
(see e.g. Young 2020). However, these advantages can be overshadowed by the dif-
ficulty of knowing whether selection on observables actually holds in any particular
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context. This paper introduces a simple plausibility check for selection on observables
in the case of a binary treatment.

Consider the following simple model. Suppose we observe an outcome Y , binary
treatment D, and vector of covariates X. We are interested in the causal effect of D
on Y . Suppose the structural equations for D and Y are as follows:

D = 1{h(X) + U > 0}

Y = ξ +X ′β + δD + γU + V,

where h is some function, U and V are unobserved variables, U is independent of
X, and E(V |D,X,U) = 0. If γ = 0, then there is no confounding and the effect of
D on Y can be recovered by regressing Y on D controlling for X. If γ is positive
(negative), then this regression suffers from positive (negative) omitted variable bias.

We are interested in whether selection on observables (γ = 0) holds in the above
model. The key intuition which allows us to assess this assumption is as follows.
Among observations with propensity scores close to 1 (0), untreated (treated) obser-
vations are quite unusual; to have their treatment status, they must have an outlier
value of the unobserved variables determining treatment (in the model above, U).
The closer the propensity score is to 1 (0), the more extreme these outliers must
be. Therefore, the difference in the unobservables between treated and untreated
observations becomes very large at extreme propensity scores. It follows that, if the
unobservables enter into the outcome equation (i.e., γ 6= 0), the resulting omitted
variables bias becomes large in populations with extreme propensity scores.

In Section 2, I show that the implication of this increasingly large bias is that,
when there is positive (negative) omitted variables bias, the implied treatment effect
as a function of propensity score asymptotes to infinity (negative infinity) as the
propensity score approaches both 0 and 1. The presence of asymptotes can be checked
informally with a binned scatterplot. Additionally, I construct a simple formal test
that can be run in a few seconds using existing commands in standard statistical
software. Section 5 demonstrates that this approach has reasonable finite sample
performance using simulations, while Section 6 contains an empirical example related
to the effect of incumbency in United States House of Representatives elections.

It is important to note that the test comes with caveats, due to the fact that the
structural model described above will not always apply. Practitioners should be sure
to read Section 3 and review the list of situations generating false positives and false
negatives in Section 4. Practitioners will generally have priors about whether the
conditions described in these sections hold or not, but not full knowledge. Because of
this, the test is properly understood as informative rather than decisive, i.e. it allows
a practitioner to Bayesian update about the probability that selection on observables
holds but will not lead to certainty of belief even in infinite samples. While it is nicer
for a test to be decisive, informative tests with well-understood blind spots are useful
enough to be ubiquitous in the applied literature – for instance, overidentification
tests used to study the validity of instrumental variables (e.g. Sargan 1958, Hansen
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1982), or the standard practice of inspecting for common pre-trends in difference-in-
differences designs.

Some tests of the selection on observables assumption exist in the literature. One
line of research offers tests of selection on observables when an instrument is available
(e.g., Hausman 1978, Blundell and Horowitz 2007). There are also instrument-based
tests of the conditional mean independence assumption (Donald, Hsu, and Lieli 2014,
Chen et al. 2018), which is sufficiently closely related to selection on observables that
the simple model above does not allow for any distinction between these cases. An-
other recent line tests selection on observables by exploiting bunching (Caetano 2015,
Khalil and Yildiz 2017). Finally, there are tests based on distributional assumptions
and functional form (e.g., Heckman 1979, Rivers and Vuong 1988).

It has also previously been noted that, when the error term in the treatment
equation is normally distributed, bias in selection on observables designs with omitted
variables is minimized at a propensity score of .5 (Black and Smith 2004). However, I
am not aware of any prior work demonstrating the presence of asymptotes at extreme
propensity scores, or applying this to construct a test of selection on observables.

Section 2 develops the key implication of the model. Section 3 discusses the
sensitivity of the model’s implications to its assumptions. Section 4 describes how
to test selection on observables based on the model’s implications. Section 5 shows
simulation results for the formal test. Section 6 shows performance in an application.
Section 7 concludes.

2 Model results

Assume that the structural model is as above. Let P (X) := Pr(D = 1 | X). P (X) is
commonly referred to as the propensity score. Additionally, let ∆(p) be the difference
in the mean of Y between treated and untreated observations at propensity score p.
That is, let

∆(p) := E(Y |D = 1, P (X) = p)− E(Y |D = 0, P (X) = p).

Note that, if selection on observables holds, then ∆(p) is the average treatment effect
for observations with P (X) = p (Rosenbaum and Rubin 1983).

Let ∆U(p) be the difference in the mean of U between treated and untreated
observations at propensity score p:

∆U(p) := E(U |D = 1, P (X) = p)− E(U |D = 0, P (X) = p).

The following lemma states that, as the propensity score approaches 0 or 1, then
∆U(p) asymptotes.

Lemma 1. Suppose U and h(X) have full support and U has a finite first moment.

Then lim
p→1

∆U(p) = lim
p→0

∆U(p) = ∞.
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Proof. See Appendix A.1.

A brief summary of the proof is that limp→1E(U |D = 1, P (X) = p) is bounded
below by E(U) while limp→1E(U |D = 0, P (X) = p) = −∞. This proves the
lemma for p approaching 1. Similarly, limp→0E(U |D = 1, P (X) = p) = ∞ while
limp→0E(U |D = 0, P (X) = p) is bounded above, which proves the lemma for p
approaching 0.

That is, the infinite divergence between average values of U arises because the
“weird” observations – untreated observations with high propensity scores and treated
observations with low propensity scores – move to increasingly extreme values of the
unobservables.

Now, simple math (see Appendix A.2 for proof) gives that

∆(p) = δ + γ∆U(p).

That is, the difference in mean outcomes at propensity score p equals the treatment
effect δ plus an omitted variables bias term γ∆U(p). Lemma 1 shows that ∆U(p)
asymptotes to infinity at extreme propensity scores, so it follows that ∆(p) asymp-
totes as well whenever γ 6= 0. In particular, if γ is positive, the asymptotes are to
positive infinity, while if γ is negative, the asymptotes are to negative infinity.

Theorem 1. Suppose U and h(X) have full support and U has a finite first moment.

• If γ > 0, then lim
p→1

∆(p) = lim
p→0

∆(p) = ∞.

• If γ < 0, then lim
p→1

∆(p) = lim
p→0

∆(p) = −∞.

• If γ = 0, then lim
p→1

∆(p) = lim
p→0

∆(p) = δ.

Proof. See Appendix A.2.

Theorem 1 gives a potentially testable implication of selection on observables: If
selection on observables does not hold, implied treatment effects explode to infinite
values at extreme propensity scores. In particular, if selection on observables does
not hold, then the sign of the infinity is equal to the sign of the omitted variables bias.
Otherwise, implied treatment effects remain constant at the true effect of treatment.

2.1 Illustration

To illustrate the implications of the model, I simulate data and illustrate the im-
plied treatment effects. I first simulate the data using the following data generating
process:

D = 1{−3 + .3X + U > 0}

Y = 4X + 2D + 3U + V,
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Figure 1: Binned scatterplot with a smile

Simulation results: Plot of the estimated difference in means ∆(p)
against the estimated propensity score across the 20 points of support
of propensity score when γ = 3.

where X is a random integer between 1 and 20 drawn independently of U and V ,
and where [

U
V

]
∼ N

([
0
0

]
,

[
1 0
0 1

])
.

Using 1,000,000 observations, I bin by value of X and estimate both P (X) and
∆(p) using sample averages. Figure 1 shows a graph of the results, with each point
representing a value of X, and with the estimated ∆(p) on the vertical axis and
the estimated P (X) on the horizontal axis. Note the characteristic “smile” shape,
consistent with upwards omitted variable bias.

A second simulation, illustrated in Figure 2, uses the same data generating pro-
cess, but with the coefficient on U in the Y equation set to −3 instead of 3. Note
the characteristic “frown,” consistent with downwards omitted variables bias.

In each case, the implied treatment effect remains fairly stable across intermediate
values of P (X), but then accelerates rapidly at propensity scores beyond .1 or .9. The
exact location of the point of acceleration is of course dependent on the normality of
U , so this region of acceleration may not hold in all applications.
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Figure 2: Binned scatterplot with a frown

Simulation results: Plot of the estimated difference in means ∆(p)
against the estimated propensity score across the 20 points of support
of propensity score when γ = 3.

6



3 Sensitivity to alternate assumptions

The model used to produce the previous section’s results makes several restrictions
which a practitioner would not necessarily make in a selection on observables setting.
This section discusses relaxations of those assumptions, and how they would affect
the conclusions drawn from Theorem 1.

Heterogeneous treatment effects The model posits a single treatment effect δ
which is constant across propensity scores. Most researchers would interpret their
estimate of δ as a kind of average treatment effect, but would not assume that
this average is constant across all subpopulations. Hence, my model is making an
additional assumption.

A simple modification of the model would be to allow treatment effects to vary
with X. That is, we might instead write the Y equation as

Y = ξ +X ′β + g(X)D + γU + V,

where g(X), the treatment effect, is now some function of X. We might also define
δ(p) := E(g(X)|P (X) = p), the average treatment effect at propensity score p.

Lemma 1 still holds, and, following the proof of Theorem 1, ∆(p) = δ(p)+γ∆U(p).
If lim

p→1
δ(p) and lim

p→0
δ(p) are each finite, then Theorem 1 is unaffected, up to replacing

δ with some other finite numbers as the limits in the γ = 0 case.
A more tricky case is if treatment effects go to infinity at one or both propensity

score extremes. An infinite treatment effect added to a zero bias term will be infinite.
An infinite treatment effect added to an opposite-signed infinite omitted variable bias
can result in a sum which is either finite, the infinity of the treatment effect, or the
infinity of the bias term.

This can result in erroneous conclusions based on Theorem 1 under two circum-
stances, each of which requires δ(p) to have a smile or frown shape. First, if δ(p)
has a smile or frown shape and γ = 0, Theorem 1 would lead us to conclude that
selection on observables does not hold. Second, when γ 6= 0 and δ(p) has a smile
(frown) shape, it is possible to have a knife-edge case in which this cancels out the
oppositely-oriented frown (smile) that results from the bias term, resulting in finite
limits of ∆(p).

A final situation of interest is that infinite δ(p) can lead to data patterns which
are not predicted under any value of γ by Theorem 1. This might occur, for example,
if γ = 0, the D equation is a linear single index model, and the interaction of D and
X appears in the Y equation, resulting in a “smirk” shape, illustrated in Figure 3
using a simulation.1 The other ambiguous shape is an asymptote at one propensity
score extreme but a finite limit at the other. These shapes can be rationalized both

1The parameters of the simulation are the same as in Section 2, but with γ set to 0 and replacing
δ ∗D in the Y equation with δ ∗W ∗D, where W = −1 + .3X.
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Figure 3: Binned scatterplot with a smirk

Simulation results: Plot of the estimated difference in means ∆(p)
against the estimated propensity score across the 20 points of support of
propensity score when γ = 0 and treatment effects are increasing in X.

if selection on observables holds and if it doesn’t, so it is probably best to treat such
shapes as inconclusive.2

Assumptions on unobservables The model makes some important assumptions
about the unobservables, which are used to (a) produce Lemma 1, and (b) produce
Theorem 1 conditional on Lemma 1. The assumptions used for (a) are that U has
full support, a finite first moment, and is independent from X, while (b) involved
assuming that U enters linearly in the Y equation.

Violations of these assumptions would never result in a false rejection of selection
on observables based on Theorem 1. This is because, under selection on observables,
γ = 0 (a special case of U appearing linearly in the Y equation) and ∆U(p) does not
influence ∆(p) (hence Lemma 1 is irrelevant).

However, violations can sometimes lead to an incorrect failure to reject selection
on observables, i.e. it is possible that implied treatment effects remain finite at ex-

2The smirk shape in Figure 3 could be fit, for example, with γ > 0 and δ(p) rapidly approaching
−∞ as p goes to 0.
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treme propensity scores if selection on observables fails and these assumptions do
not hold. This can happen either if (a) or (b) fails.

The assumptions used to guarantee (a) are sufficient but not necessary for Lemma
1. For example, even if U is not independent of X, it is clear that Lemma 1 will still
hold so long as U has approximately the same distribution at extreme propensity
scores as at non-extreme ones. But situations of concern would be ones where U is
bounded, or where the distribution of U becomes very narrow at extreme propensity
scores.

Similarly, the assumption used for (b) is sufficient but not necessary for Theorem
1, conditional on Lemma 1. Any scenario in which, at extreme propensity scores,
sending U to ∞ sends Y to ∞ (or −∞), and sending U to −∞ sends Y to −∞ (or
∞), would suffice to make violations of selection on observables detectable.

The following are two situations which might make (b) fail.
First, certain forms of non-linearity of U in the Y equation can cause trouble.

One possibility is if the effect of U on Y is bounded, e.g. if we replaced γU with
γ eU

1+eU
. In this case, infinite differences in unobservables between treated and un-

treated observations do not translate to infinite differences in Y . Non-monotonicity
can also produce inconclusive results, e.g. we get a smirk shape if U2 enters into the
Y equation instead of U .3

Note that, if Y is bounded (e.g., due to top-coding), then the effect of U on Y
is necessarily bounded. In this case, implied treatment effects cannot possibly go to
infinity. Nonetheless, provided that the boundedness is not so extreme as to censor
a large fraction of observations, we would expect to see a spike in ∆(p) for p close to
0 and 1.

Second, translating Lemma 1 into Theorem 1 requires that U affects Y specifically
at extreme propensity scores. Therefore, it is important to ask if the effect of U on
Y might vary with X. Consider capturing this by replacing γ in the Y equation with
γ(X). Theorem 1 fails if γ(X) is not always 0, but as P (X) goes to 0 or 1, γ(X)
goes to zero sufficiently quickly that the bias term γ(X)∆U(p) does not explode even
though ∆U(p) is going to infinity.4 Note also that, if γ(X) has opposite signs at one
propensity score extreme as the other, then we will observe an inconclusive smirk
shape.5

3Explanation: The lower bound of U to produce D = 1 is going to infinity as p approaches 0,
so the lower bound of U2 is also going to infinity, and therefore E(U2|D = 1, P = p)− E(U2|D =
0, P = p) goes to infinity as p goes to 0. Meanwhile, the upper bound of U to produce D = 0 is
going to negative infinity as p goes to 1, so E(U2|D = 0, P = p) is going to infinity, so E(U2|D =
1, P = p) − E(U2|D = 0, P = p) is going to negative infinity. This means that ∆(p) will go to
opposite-signed infinities at the two extremes of propensity scores.

4This is because ∆(p) = δ + γ(X)∆U (p) (see Appendix A.2) and Lemma 1 still holds.
5An example of a modified set of assumptions which preserves Theorem 1 is as follows. Suppose

that γ(X) > 0 for all X and γ(X) does not go to zero as P (X) goes to 0 or 1. Then lim
p→1

∆(p) =

lim
p→0

∆(p) = ∞. Similarly, if γ(X) < 0 for all X and γ(X) does not go to zero as P (X) goes to 0

or 1, then lim
p→1

∆(p) = lim
p→0

∆(p) = −∞.
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A final important consideration is that U might actually be a vector of unobserv-
ables, and we may fail to detect violations of selection on observables if, even though
the assumptions above hold for some unobservables, they do not hold for those unob-
servables which cause trouble. Suppose some unobservables have full support while
others are bounded, and only the bounded unobservables enter into the Y equation.
In this scenario, Lemma 1 applies only to the unproblematic unobservables, and
therefore, while bias in the effect estimates might increase at extreme propensity
scores, it would not explode to infinite values.

Summarizing, misleading results can happen when selection on observables fails
when (i) the key unobservables causing endogeneity are bounded, (ii) the effect of
those key unobservables on Y is bounded, or (iii) unobservables have a vanishing
effect on Y at extreme propensity scores. An important intuitive question to ask to
assess (i) and (iii) is whether the same sort of unobservables are likely to matter at
extreme propensity scores as at other propensity scores.

Obviously, practitioners who do not know whether selection on observables holds
are unlikely to have a completely confident answer to whether any of these is the
case or not. However, to the extent that practitioners have some prior about whether
these statements would be true conditional on selection on observables failing (e.g.
because it clear what potential sources of confounding would be), and to the extent
that this prior is separate from their prior about whether selection on observables is
true, the practitioner may still find the exercise informative.

Simultaneity The model excludes Y from the D equation and therefore frames
omitted variables bias as the key concern about selection on observables. However, it
is not without loss of generality of the model that Y was excluded, and in fact simul-
taneity is a common reason for concern about selection on observables. Nonetheless,
it is easy to see that the same intuition holds for the case of simultaneity: The
differences between treated and untreated observations in whatever factors besides
X explain D grow large at extreme propensity scores, so if Y itself is one of those
factors, then differences in Y would be expected to grow large at extreme propensity
scores, i.e. Theorem 1 will hold. This conclusion is, of course, subject to analogous
restrictions to the ones mentioned above, simply substituting the combination of U
and Y where the previous discussion mentions U alone.

4 Implementation

This section describes informal and formal diagnostics for selection on observables
based on the implication derived in Section 2.
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4.1 Informal visual test

A simple informal method is to simply plot implied treatment effects against propen-
sity scores, and inspect for a smile or frown pattern. The steps are as follows:

1. Estimate the function P (X).

2. Group observations into K bins on the basis of their propensity score.

3. Estimate the regression of interest. Let β̂ denote the estimated coefficient
vector on the controls X.

4. Calculate the fraction of treated observations for each bin k and denote this as
p̂k. Calculate the difference in the average of Y adj := Y −X ′β̂ between treated
and untreated observations for each bin k and denote this ∆̂k.

5. Plot ∆̂k against p̂k.

6. Check for a smile shape, in which ∆̂k veers upwards as p̂k approaches 0 and 1.
This indicates γ > 0, which means omitted variable bias is positive.

7. Check for a frown shape, in which ∆̂k veers downwards as p̂k approaches 0 and
1. This indicates γ < 0, which means omitted variable bias is negative.

Note that this procedure estimates ∆(p) using a version of the outcome Y that
contains some adjustment for the covariates. This is because, unless propensity score
bins are extremely narrow, there will generally be some discrepancy in X between
treated and untreated observations which would be eliminated if we had conditioned
on an exact propensity score rather than a bin of propensity scores. We are interested
in observing patterns of model-implied treatment effect heterogeneity, rather than
picking up differences in the quality of covariate balance within propensity score bins.

4.2 Formal test

It is also possible to construct a formal test.
While the key implication from Section 2 is of vertical asymptotes in a conditional

expectation function, in practice it is hard to directly test this by taking a limit.
For one, effective sample sizes are likely to be small and vanishing in the limit,
precisely because treated (untreated) observations with propensity scores close to
0 (1) are outliers. For another, taking a limit as propensity scores go to 0 or 1
requires the econometrician e.g. to confidently distinguish between observations with
propensities of .02 and .01. This inevitably creates an important, non-transparent
role for modeling assumptions; without strong modeling assumptions, sampling error
makes it hard for a researcher to make such fine distinctions about propensity scores.
Sample sizes for estimating treatment effects are already typically small at extreme
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propensity scores, precisely because treated (untreated) observations with propensity
scores close to 0 (1) are outliers.

The following test accommodates the need for adequate sample size while also
not relying too heavily on exact modeling of the propensity score. Suppose we are
using regression to estimate the parameters of

Yi = α0 +X ′

iα1 + α2Di + ǫi,

and we would like to test the selection on observables assumption in this regression.
The results of Section 2 imply that, due to the role of unobservables, the residual ǫi
will take large positive (negative) values for treated observations with low propensity
scores, and large negative (positive) values for untreated observations with high
propensity scores, in the presence of positive (negative) omitted variables bias.

The following procedure allows for a formal test:

1. Estimate propensity scores, e.g. with a logit or probit model.

2. Let P̂i denote the estimated propensity score for individual i. Construct

Wi =





1 if Di = 1 and P̂i < .1

−1 if Di = 0 and P̂i > .9

0 otherwise

3. Regress Y on D, X, and W , i.e. estimate

Yi = β0 +X ′

iβ1 + β2Di + β3Wi + νi.

4. Implement a standard t-test for whether β3, the coefficient on W , is equal to
0. Reject selection on observables if and only if we reject that β3 is 0.

Intuitively, this test proceeds by noting that some observations seem “weird.”
Observations with W = 1 have weirdly high unobservables U , while observations
with W = −1 have weirdly low U . Therefore, W winds up being a proxy for U . The
choice of cutoffs (.1 and .9) is a simple rule of thumb motivated by the fact that,
in simulations across a variety of distributions for the error term in the D equation,
large omitted variable bias effects seem to kick in for observations past this cutoff.

An alternative would to rely more heavily on a formal model of propensity scores,
including something like an inverse Mills ratio instead of W .6 If the model of propen-
sity scores is correct, this alternate approach would have more power. However, there
are two main advantages to the simpler construction of W above. First, the assump-
tions in Section 2 are weaker than the assumptions required for such an approach,

6This follows the tradition of “identification by functional form” as seen e.g. in Heckman (1979).
For example, Olsen (1980) establishes identification in the case of a normally-distributed unobserv-
able in the D equation without a distributional assumption for the error term in the Y equation.
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and the key implication from Section 2 is only related to implied treatment effect
heterogeneity at extreme propensity scores. Using an inverse Mills ratio instead
would lead the test to focus a substantial part of its attention on observations with
intermediate propensity scores, where we might feel that implied treatment effect
heterogeneity speaks less persuasively to the plausibility of selection on observables.

The second main advantage relative to such an approach is the interpretability
of the result. It is possible that β3 6= 0 even though selection on observables holds,
simply due to treatment effect heterogeneity. The test above delivers an estimate
of the amount of treatment effect heterogeneity (e.g. if β̂3 = .6, then “treatment
effects are estimated to be .6 larger at extreme propensity scores”). Practitioners
can decide for themselves based on the details of the application whether this de-
gree of heterogeneity is likely or not, and update their priors accordingly about the
plausibility of selection on observables. By contrast, the coefficient on an inverse
Mills ratio is not as easily interpretable, and therefore does not allow practitioners
to cleanly map their priors about treatment effect heterogeneity into posterior beliefs
about selection on observables.

Finally, this test can be implemented quickly by most researchers without any
additional software or commands.

4.3 Summary of conditions yielding false negatives and false

positives

The test above is based on Theorem 1. As discussed in Section 3, these assumptions
may not always hold, and their violation may sometimes lead Theorem 1 not to hold.

Having now developed a formal test, I will briefly summarize the conditions which
will lead the test to reject or fail to reject selection on observables.

Rejection A rejection of selection on observables can occur in three ways:

1. Correct rejection.

2. Selection on observables holds, rejection due to sampling error. Sim-
ulations in Section 5 find that the test has appropriate size when the primary
model assumptions hold.

3. Selection on observables holds, rejection due to heterogeneous treat-

ment effects. In Section 3, we saw that treatment effect heterogeneity can
disrupt Theorem 1. The estimated coefficient on W tells both the sign and
magnitude of treatment effect heterogeneity that we must be forced to accept
in order to believe in selection on observables.

In practice, therefore, researchers who wish to argue against a rejection of selec-
tion on observables must argue in favor of treatment effect heterogeneity.
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Fail to reject Failure to reject selection on observables can occur three ways:

1. Correct failure to reject.

2. Selection on observables does not hold, failure to reject due to sam-

pling error. Across various simulations and the example, I find that the
coefficient on W is generally on the order of one-half or one-third of the omit-
ted variables bias in the estimate of δ. While this ratio obviously will vary
across applications depending on factors like the distributions of U and X, it
is at least probably imprudent to draw strong conclusions on the basis of the
smile test alone that omitted variables bias is smaller than k if it is not possible
to reject that β3 could be as large as k/3.7

3. Selection on observables does not hold, failure to reject due to in-

correct assumptions about unobservables. As discussed in Section 3, an
incorrect failure to reject can occur when (i) the unobservables of concern are
bounded, (ii) their effect on Y is bounded, or (iii) the effect of unobservables
on Y disappears at extreme propensity scores. To the extent that practitioners
have a sense of what sort of unobservables might threaten their research design,
practitioners are likely to have some prior about these possibilities.

4. Selection on observables does not hold, failure to reject due to knife-

edge case. As discussed in Section 3, it is possible that treatment effects are
heterogeneous in a way that exactly cancels out the pattern of implied treat-
ment effect heterogeneity that results from omitted variables bias. Similarly,
the “smirk” data patterns that are labelled as inconclusive in Section 3 can lead
to failures to reject in the test if a positive coefficient on W at one extreme
is cancelled out by a negative coefficient at the other – though this possibility
can be detected with a simple graph. Exact canceling would require quite a
coincidence, but approximate canceling to the point where the test does not
have power to detect the violation might be realistic in some applications.

5 Simulation Results

I next perform simulations to explore the performance of the formal test in finite
samples.

The data-generating process follows the model from Section 1. I use a single
control variable X ∼ N(0, 1). The function h(X) is set to .3X. The coefficients in
the Y equation are ξ = 0, δ = 3, β = −4, and I draw V at random from a standard
normal as well. I set γ variously equal to 0, .1, and .2 to simulate no omitted variables
bias, smaller omitted variables bias, and larger omitted variables bias, respectively.

7W will have a very small coefficient relative to the degree of omitted variables bias, for example,
if all observations lie, say, at propensity scores extremely close to .1 or .9. In this scenario, even
the rule of thumb described above would be insufficiently prudent.

14



In one version of the simulation, I set U to be normally distributed with mean
of 0 and standard deviation of 1. Propensity scores are estimated using a probit. In
a second version, to simulate misspecification of the propensity score, I generate U
as a mixture of three distributions: two t-distributions with 10 degrees of freedom,
one centered on −1.5 and the other on 1.5, each receiving weight of .45 in the
mixture, and a χ2-distribution with 4 degrees of freedom, receiving a .1 weight. For
comparability to the normal U case, I then normalize this distribution to have a
mean of 0 and standard deviation of 1. This creates a bimodal and skewed omitted
variable with a distribution that looks quite different from normal; see Figure 4.
Then I estimate propensity scores using a probit, such that the propensity score
estimates are misspecified.

I use three sample sizes: 2,000, 10,000, and 50,000 observations. These are un-
conventionally large sample sizes for a simulation, but they reflect that the method
is unlikely to be appropriate for very small samples because the number of observa-
tions with W 6= 0 will inevitably be less than 10% of the sample (since less than 10%
of observations with extreme propensity scores will have the unexpected treatment
status), and generally less than that. For normal U , the settings in this simulation
produce 29% of observations which a probit estimates to have extreme propensity
scores, and 1.3% of all observations with W 6= 0. For non-normal U , these num-
bers are 26% and .8%. Therefore, at the smallest simulation sample size, there are
typically only around 20 observations with W 6= 0 in a simulation.

I run 10,000 simulations at each combination of sample size and value of γ. The
rejection frequencies at each p-value are listed in Table 1. I also report the average
coefficient on D when Y is regressed on D and X, and the average coefficient on
W when Y is regressed on D, X, and W , where these averages are taken across all
simulations with a fixed value of γ.

Unsurprisingly, the test has appropriate size – since, when γ = 0, this is simply
a conventional significance test of a variable with a true 0 coefficient. Also unsur-
prisingly, the power of the test is substantially better with larger samples or more
endogeneity to detect. Misspecification of the propensity score does not affect size
but reduces power.

6 Application: Incumbency Effects

I demonstrate the formal test using an application from Lee (2008). Lee studies the
incumbency advantage in United States House of Representatives elections using a
regression discontinuity design, and finds that a Democratic candidate winning a
House election in election t leads to an approximately 15 percentage point increase
in the Democratic candidate’s margin relative to their Republican opponent in the
period t+ 1 election.

Using elections data from Caughey and Sekhon (2011), I implement an OLS spec-
ification with a rich set of covariates, but which nonetheless produces a substantially

15



Figure 4: Distribution of non-normal U

Distribution of U in the second simulation, as estimated with a kernel density
plot (Epanechnikov kernel, bandwidth of .0358) using 10, 000, 000 simulated
observations.

Table 1: Simulation results

U normal U non-normal
N Level γ = 0 γ = .1 γ = .2 γ = 0 γ = .1 γ = .2

2,000
p = .01 .011 .011 .019 .011 .011 .016
p = .05 .049 .058 .081 .048 .050 .060
p = .1 .096 .114 .139 .100 .100 .114

10,000
p = .01 .010 .026 .087 .009 .017 .034
p = .05 .053 .099 .225 .048 .066 .123
p = .1 .099 .171 .330 .098 .118 .203

50,000
p = .01 .009 .114 .542 .009 .051 .215
p = .05 .048 .267 .767 .050 .145 .432
p = .1 .099 .380 .852 .096 .231 .556

Average δ̂ 3.00 3.16 3.33 3.00 3.17 3.33

Average β̂3 .00 .06 .11 .00 .04 .09

Entries are fraction of simulations rejecting at the listed significance level in
10,000 simulations. The bottom two rows report the average coefficient on D

when regressing Y on D and X (labelled as δ̂), and the average coefficient on W

when regressing Y on D, X, and W (β̂3) across all simulations in that column.
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Table 2: Incumbency effects

DemMargint+1 DemMargint+1

DemWint 39.67∗∗∗ 34.83∗∗∗

(1.56) (2.43)

W 10.40∗∗∗

(3.26)

Controls Y Y
N 4,701 4,701

Robust standard errors in parentheses. *** indicates significance at the 0.001
level. Both columns are estimated using controls including Congressional Quar-
terly rating, incumbent’s DW-NOMINATE, Democratic vote shares in previous
Congressional and presidential elections, district demographics, party affiliation
of state officials, and party advantages in incumbency and candidate experience
in time t.

higher incumbency advantage estimate than a regression discontinuity design – ap-
proximately 40 points, instead of 15. Here, Y is the Democratic candidate’s margin
of victory in t + 1, D is a dummy for whether the Democratic candidate won in t,
and X is a vector of covariates including the Democrat’s margin in election t − 1,
the recent history of presidential votes in the district, incumbent ideology, voter de-
mographics, party affiliation of state officials, and characteristics of Democratic and
Republican nominees in period t. Propensity scores are estimated using a probit
model.

I first implement the informal diagnostic. As illustrated in Figure 5, the results
show an upward smile, consistent with OLS estimates being biased upwards.

Next, I implement the formal test. Regression results with and without including
W are shown in Table 2. The coefficient on W is estimated to be 10.40, with
a standard error of 3.04. This produces a t-statistic of 3.42, and the test rejects
selection on observables with a p-value of 0.0006.

An empirical researcher who wished to defend selection on observables would
then be required to argue for a pattern of heterogeneity in treatment effects in which
incumbency effects are 10 points larger in districts which are very prone to voting
for one party.

A researcher who wished to argue for downwards omitted variables bias, such
that OLS underestimates the effect of incumbency, would need to argue for either
(a) greater treatment effect heterogeneity than described above, or (b) this degree
of treatment effect heterogeneity (in order to explain the apparent pattern of up-
wards omitted variables bias) plus disappearing omitted variables bias in extreme

17



Figure 5: Smile graph: Incumbency effect

Binned scatterplot of estimated difference in mean outcomes, adjusted for co-
variates, against estimated propensity score. Outcome variable is Democrat’s
margin of victory in election t + 1, treatment variable is Democratic candi-
date winning in period t election, and controls include Congressional Quarterly
rating, incumbent’s DW-NOMINATE, Democratic vote shares in previous Con-
gressional and presidential elections, district demographics, party affiliation of
state officials, and party advantages in incumbency and candidate experience
in time t.
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observations.

7 Conclusion

This paper introduces a simple diagnostic for the selection on observables assumption
in cases of a binary treatment variable and strong enough covariates to produce
propensity scores approaching 0 and/or 1. This diagnostic can be implemented in
a few seconds without new software. Simulations and an application support the
reliability and practicality of the method for empirical use.
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Appendix

A Proofs

A.1 Proof of Lemma 1

Since U is uncorrelated with X, then E(U) = E(U |P (X) = p). Furthermore,
E(U |P (X) = p) < E(U |D = 1, P (X) = p) for all p ∈ (0, 1). So

∆U(p) = E(U |D = 1, P (X) = p)− E(U |D = 0, P (X) = p)

> E(U)− E(U |D = 0, P (X) = p).
(1)

Note that P (X) = Pr(h(X)+U > 0|X) = Pr(U > −h(X)|X) = 1−FU(−h(X)),
where FU is the cumulative distribution function of U . For untreated observations
with propensity score P (X), U must be no greater than −h(X), and therefore
E(U |D = 0, P (X) = p) must be less than −h(X). Since X and U have full support,
then as p goes to 1, −h(X) goes to −∞. This yields that limp→1E(U |D = 0, P (X) =
p) = −∞.

Combining previous steps, we have

lim
p→1

∆U(p) > E(U)− E(U |D = 0, P (X) = p) = ∞,

since E(U) is finite. Therefore

lim
p→1

∆U(p) = ∞.

The proof that limp→0 ∆U(p) = ∞ follows analogously from the facts that E(U |D =
0, P (X) = p) is bounded above by E(U) and E(U |D = 1, P (X) = p) goes to infinity
as p goes to 0.

A.2 Proof of Theorem 1

The following equalities hold, respectively, by the definition of ∆(p), the structural
equation for Y , the propensity score theorem (Rosenbaum and Rubin 1983), which
states that the distribution of X is independent of D conditional on P (X), and by
the definition of ∆U(p)

∆(p) =E(Y | D = 1, P (X) = p)− E(Y | D = 0, P (X) = p)

=E(ξ +X ′β + δD + γU + V | D = 1, P (X) = p)

− E(ξ +X ′β + δD + γU + V | D = 0, P (X) = p)

=δ + γ [E(U | D = 1, P (X) = p)− E(U | D = 0, P (X) = p)]

=δ + γ∆U(p).

21



Then
lim
p→1

∆(p) = δ + γ lim
p→1

∆U(p),

and
lim
p→0

∆(p) = δ + γ lim
p→0

∆U(p).

The conclusion follows from Lemma 1.
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