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1 Summary 

 

Eicosanoids are important lipid mediators primarily generated from arachidonic acid (AA) which 

is liberated out of membrane phospholipids by phospholipase A2 (PLA2). AA is metabolized by 

cyclooxygenase (COX) and lipoxygenase (LOX) pathways to a number of different metabolites 

such as thromboxanes, prostaglandins, hydroxyeicosatetraenoic acids (HETE) or leukotrienes. 

Several lines of evidence implicate an important role of eicosanoids in central processes of 

inflammation and due to their widespread synthesis in blood and vascular cells these 

metabolites may play a central role in atherogenesis. On account of this, the analysis of the AA 

metabolism in whole blood might provide a new marker of atherosclerotic burden and is 

predestinated as biomarker for diagnosis and prediction of coronary artery disease (CAD). 

In previous work, we developed an in vitro assay where whole blood from patients was 

stimulated with 1 µg/mL lipopolysaccharide (LPS) for 24 hours. Samples were centrifuged and 

AA metabolites such as AA, 5-HETE, 11-HETE, 12-HETE, prostaglandin F2α (PGF2α), 

prostaglandin E2 (PGE2) and thromboxane B2 (TxB2) were analyzed out of supernatant by liquid 

chromatography tandem mass spectrometry. Furthermore, messenger ribonucleic acid for 

quantitative gene expression analysis of COX-2 and prostaglandin E synthase (PGES) was 

isolated out of cellular components.  

In the current thesis, we improved the in vitro whole blood activation model and established 

additional quantitative real time polymerase chain reaction assays for PLA2,  

COX-1, thromboxane synthase (TXAS), prostaglandin F synthase (PGFS), 5-LOX, 5-LOX 

activating protein (FLAP) and 12-LOX gene expression analysis to cover major routes of AA 

metabolism and investigate the discriminatory potential of these eicosanoid pathways for 

inflammatory diseases. 

Furthermore, different stimuli (LPS, tumor necrosis factor alpha and oxidized low-density-

lipoprotein) for whole blood activation have been evaluated. Our data revealed most significant 

effects for LPS which were time- but not dose-dependent.  

Since we observed a rapid eicosanoid response upon stimulation we asked whether eicosanoid 

response on gene expression and metabolite level is preformed or underlies de novo synthesis. 

To this end, transcriptional and translational inhibition experiments were performed to 

characterize these regulatory mechanisms. Data suggested that the production of metabolites 

underlies de novo synthesis upon stimulation, which is controlled both, at the level of 

transcription and translation. 

We then applied the new in vitro whole blood assay to test the variability of the LPS-induced AA 

metabolism in healthy subjects. We showed major inter-individual differences for all investigated 
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target genes as well as metabolites, suggesting that varying eicosanoid response might be 

predisposing towards different susceptibility to inflammatory diseases.  

The predictive potential of the individual eicosanoid response for the presence of 

atherosclerosis was examined in 92 patients with or without CAD using the newly developed 

whole-blood assay. We found that the eicosanoid response on gene expression (COX-1,  

COX-2, PGES and FLAP) and metabolite level (AA, 5-, 11- and 12-HETE) was significantly 

(P<0.05) different in patients with or without CAD. These data allowed developing a score 

consisting of three biomarkers of AA metabolism with an area under the curve (AUC) of 83.6, 

which is superior to currently available scores of blood markers of CAD. 

Taken together, this work established an in vitro activation assay for the metabolites of AA 

metabolism, characterized its regulating mechanism and showed its potential for diagnostic 

testing of patients to the presence of CAD. 
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2 Zusammenfassung 

 

Eicosanoide sind bedeutende Lipidmediatoren, welche aus Arachidonsäure (AA) nach deren 

Freisetzung aus Membranphospholipiden durch die Phospholipase A2 (PLA2) gebildet werden 

können. AA wird anschließend über den Cyclooxygenase (COX-) und Lipoxygenase (LOX-) 

Stoffwechselweg metabolisiert, wobei eine Reihe von verschiedenen Metaboliten wie 

Thromboxane, Prostaglandine, Hydroxyeicosatetraensäuren (HETE) sowie Leukotriene 

entstehen. Eicosanoide haben Einfluss auf die zentralen Prozesse von Entzündungsreaktionen 

und aufgrund ihrer weit verbreiteten Bildung in Zellen des Blutes sowie des Gefäßsystems 

spielen diese Metabolite ebenfalls eine Rolle in der Entstehung der Atherosklerose. Die 

Untersuchung des AA Metabolismus in Vollblut könnte einen neuen Parameter für 

atherosklerotische Veränderungen darstellen und ist somit prädestiniert als Biomarker für die 

Diagnostik und Prädiktion einer Koronaren Herzerkrankung (KHK). 

In Vorarbeiten unserer Gruppe entwickelten wir einen in vitro Assay, bei dem Vollblut von 

Patienten mit 1 µg/ml Lipopolysaccharid (LPS) für 24 Stunden stimuliert wurde. Die Proben 

wurden anschließend zentrifugiert und die Metabolite des AA Metabolismus (AA, 5-HETE,  

11-HETE, 12-HETE, Prostaglandin F2α (PGF2α), Prostaglandin E2 (PGE2) und Thromboxan B2 

(TxB2)) in den Überständen mittels  Flüssigchromatografie und Tandem-Massenspektrometrie 

analysiert sowie quantifiziert. Des Weiteren wurde mRNA (messenger RNA) für quantitative 

Genexpressionsanalysen der COX-2 sowie Prostaglandin E-Synthase (PGES) aus den 

zellulären Bestandteilen des Ansatzes isoliert.  

Im Rahmen der vorliegenden Promotionsarbeit entwickelten wir das in vitro Vollblutmodel weiter 

und etablierten zusätzliche Assays für PLA2, COX-1, Prostaglandin F-Synthase (PGFS), 

Thromboxansynthase (TXAS), 5-LOX, 5-LOX aktivierendes Protein (FLAP) und 12-LOX 

Genexpressionsanalysen, um so alle Hauptwege des AA Metabolismus abzudecken und das 

diskriminierende Potential dieser Stoffwechselwege für entzündliche Erkrankungen zu 

untersuchen.  

Des Weiteren wurden verschiedene Stimulanzien (LPS, Tumornekrosefaktor Alpha und 

oxidiertes Low-Density-Lipoprotein) für die Vollblutaktivierung ausgetestet. Unsere Ergebnisse 

zeigten, dass die stärksten Effekte LPS-vermittelt waren und eine ausgeprägte Zeit- jedoch 

keine Dosisabhängigkeit aufwiesen.  

Da wir eine sehr schnelle Eicosanoidantwort auf den inflammatorischen Stimulus beobachten 

konnten, fragten wir uns, ob die Eicosanoidantwort auf Genexpressions- und Metabolitenebene 

bereits vorhanden ist oder einer de novo Synthese unterliegt. Um die regulatorischen 

Mechanismen besser zu charakterisieren, führten wir Experimente zur Transkriptions- und 

Translationshemmung durch. Die Daten suggerierten, dass die Produktion der Metabolite einer 
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de novo Synthese nach Stimulation unterliegen, welche sowohl auf der Ebene der Transkription 

als auch Translation kontrolliert wird. 

Wir verwendeten nun das neue in vitro Vollblutmodel an, um zu testen, wie hoch die Variabilität 

des LPS-abhängigen AA Metabolismus in gesunden Individuen ist. Wir konnten große 

interindividuelle Unterschiede für alle von uns untersuchten Zielgene sowie  

-metaboliten aufzeigen und nahmen an, dass diese variierende Eicosanoidantwort 

prädisponierend für die Suszeptibilität für entzündliche Erkrankungen sein könnte. 

Das prädiktive Potential der individuellen Eicosanoidantwort für das Vorhandensein von 

Atherosklerose wurde in 92 Probanden mit und ohne KHK mittels des neu entwickelten 

Vollblutassays geprüft. Wir fanden signifikante Unterschiede (P<0.05) in der Eicosanoidanwort 

sowohl auf Genexpressions- (COX-1, COX-2, PGES und FLAP) als auch auf Metabolitenebene 

(AA, 5-, 11- and 12-HETE) zwischen Patienten mit und ohne KHK. Diese Daten erlaubten die 

Entwicklung eine Scores, welcher aus 3 Biomarkern des AA Metabolismus besteht, eine AUC 

von 83.6 aufweist und bereits publizierten Scores mit Blutbiomarkern für die Prädiktion einer 

KHK überlegen ist. 

Zusammenfassend wurde in dieser Arbeit ein in vitro Aktivierungsassay für die Metabolite des 

Arachidonsäuremetabolismus entwickelt, es wurden die zugrundeliegenden regulatorischen 

Mechanismen charakterisiert sowie das Potential dieses Stoffwechselweges zur diagnostischen 

Testung von Patienten hinsichtlich dem Vorliegen einer KHK aufgezeigt. 
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3 Abbreviations 

 

AA  Arachidonic Acid 

ActD  Actinomycin D 

AST  Aspartate Aminotransferase 

AUC  Area Under the Curve 

BLT  Leukotriene Receptor 

CAD  Coronary Artery Disease 

CCL  Chemokin Ligand 

CCS  Coronary Calcium Score 

cDNA  complementary Deoxyribonucleic Acid 

CHOD-PAP Cholesterol Oxidase-Phenol-Aminophenazone 

CHX  Cycloheximide 

CLIA  Chemiluminescence Immunoassay 

CO2  Carbon Dioxid 

COX  Cyclooxygenase 

CMR  Cardiac Magnetic Resonance 

CT  Computed Tomography 

CuCl2  Copper (II) Chloride 

CYP  Cytochrome 

DEPC  Diethyl Pyrocarbonate 

DMSO  Dimethyl Sulfoxide 

DNase  Desoxyribonuclease  

dNTP  Deoxynucleotide Triphosphate 

ECG   Echocardiography 

EcoRI  Restriction Enzyme of an E. coli strain that carries the cloned EcoRI gene from 

E. coli RY13  

EDTA  Ethylenediaminetetraacetic Acid Disodium Salt Dihydrate 

EET  Epoxyeicosatrienoic Acid 

ELISA  Enzyme-Linked Immunosorbent Assay 

EP  PGE2 Receptor 

ESI  Electrospray Ionization 

FAM  Fluorescein Amidite 

FLAP  5-Lipoxygenase Activating Protein 

FSB  First Strand Buffer 

H2O  Dihydrogenmonoxid (Water) 
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HDL  High-Density-Lipoprotein 

HETE  Hydroxyeicosatetraenoic Acid 

HindIII Restriction Enzyme of an E. coli strain that carries the HindIII gene from 

Haemophilus influenzae 

HpETE  Hydroxyperoxyeicosatetraenoic Acid 

HPLC  High Performance Liquid Chromatography 

hsCRP  high sensitive C-reactive Protein 

ICA  Invasive Coronary Angiography 

IDL  Intermediate-Density-Lipoprotein 

IL  Interleukin 

IPTG  Isopropyl β-D-1-thiogalactopyranoside  

IQR  Interquartile Range 

IS  Internal Standard 

LB   Luria-Bertani 

LC-MS/MS Liquid Chromatography Tandem Mass Spectrometry 

LDL  Low-Density-Lipoprotein 

LOX  Lipoxygenase 

LMP  Low Melt Point 

LPS  Lipopolysaccharide 

LT  Leukotriene 

LX  Lipoxines 

MeOH  Methanol 

MgCl2  Magnesium Chloride 

MMP  Matrix Metalloproteinase 

MRM  Multiple Reactions Monitoring 

mRNA  messenger Ribonucleic Acid 

NaCl  Sodium Choride 

NF-κB  Nuclear Factor kappa-light-chain-enhancer of activated B-cells 

NIT  Non-Invasive Testing 

PBMC  Peripheral Blood Mononuclear Cell  

PBS  Phosphate Buffered Saline 

PGD2  Prostaglandin D2 

PGDS  Prostaglandin D Synthase 

PGE2  Prostaglandin E2 

PGES  Prostaglandin E Synthase 

PGF2α  Prostaglandin F2α 

PGFS  Prostaglandin F Synthase 
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PGH2  Prostaglandin H2 

PGI2  Prostacyclin 

PGIS  Prostacyclin Synthase 

PLA2  Phospholipase A2 

oxLDL  oxidized Low-Density-Lipoprotein 

qRT-PCR Quantitative Real Time Polymerase Chain Reaction 

RIA  Radioimmunoassay 

RNase  Ribonuclease 

RT  Reverse Transcription 

SEM  Standard Error of the Mean 

SMC  Smooth Muscle Cells  

SPE  Solid Phase Extraction  

SPECT  Single Photon Emission Computed Tomography 

TAE  TRIS-Acetate-EDTA 

TAMRA  Carboxytetramethylrhodamine 

TE  TRIS-EDTA 

TNFα  Tumor Necrosis Factor Alpha 

TRIS  Tris-(hydroxymethyl)-aminomethan 

TxA2  Thromboxane A2 

TxB2  Thromboxane B2 

TXAS  Thromboxane Synthase 

VLDL  Very-Low-Density-Lipoproteins 

X-Gal  5-Bromo-4-chloro-3-indolyl β-D-galactoside 

ZnSO4   Zinc Sulfate  
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4 Remarks on Gene Nomenclature  

 

All gene symbols are assigned and typeset following the guidelines established by the HUGO 

Gene Nomenclature Committee. According to these guidelines, the following specifications will 

be used:  

 

Human gene and mRNA symbols are written in capital letters and italic font (e.g. PGES)  

 

Protein symbols are written in capital letters and normal font (e.g. PGES)  

 

 

Database links  

HUGO Gene Nomenclature Committee: http://www.genenames.org/  
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5 Introduction 

 Arachidonic Acid Metabolism 

Phospholipids are an integral part of the lipid bilayer of the cell membranes, where arachidonic 

acid (AA) as an unsaturated fatty acid can be liberated by Phospholipase A2 (PLA2).1 Free AA is 

then processed enzymatically by cyclooxygenase (COX), lipoxygenases (LOX) and cytochrome 

P450 pathways or non-enzymatically by peroxidation to a number of different eicosanoids (e.g. 

prostanoids, hydroxyeicosatetraenoic acids (HETE), leukotrienes (LT), lipoxines (LX) or 

epoxides (epoxyeicosatrienoic acids) (Figure 1). Almost all cell types participate in eicosanoid 

synthesis, though metabolite level depends on local production and distribution of specific 

precursors as well as enzymes that are differentially regulated in variable cells.2,3  

 

Figure 1. Schematic Representation of Enzymatic Arachidonic Acid Metabolism. Enzymes (grayed 

boxes) and corresponding metabolites of arachidonic acid (AA) metabolism: Phospholipase A2 liberates AA out 

of membrane bound phospholipids, whiles subsequent metabolisation by cyclooxygenase, lipoxygenase or 

cytochrom P450 pathways reveals a broad spectrum of eicosanoids such as prostanoids, 

hydroxyeicosatetraenoic acids (HETE), leukotrienes, lipoxines and expoxides.2  

 
 

COX is the rate limiting enzyme for the biosynthesis of prostanoids by converting AA to  

Prostaglandin H2 (PGH2) followed by subsequent metabolism by thromboxane synthase 

(TXAS), prostaglandin (PG) synthases (PGFS, PGES and PGDS) or prostacyclin synthase 

(PGIS). Conversion leads to the formation of different metabolites such as thromboxane A2 

(TxA2) and the inactive metabolite TxB2, PGF2α, PGE2, PGD2 as well as prostacyclin (PGI2) 

(Figure 2).4,5 Macrophages are the main source of the mentioned prostanoids, however, other 
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cell types also synthesize specific COX-products: platelets TxA2, endothelial cells PGI2 and 

epithelial cells, fibroblasts as well as smooth muscle cells PGE2.6 

There are two main isoforms of the cyclooxygenase and most cells are able to express both 

isoenzymes. COX-1 is expressed in tissues serving for the basic metabolic rate of AA 

metabolism and inducible COX-2 can be activated by inflammatory stimuli, cytokines, hormones 

or growth factors and is mainly involved in the regulation of inflammation.6  

COX- derived eicosanoids play a central role in physiological and pathophysiological processes 

and exert their effects by binding to membrane receptors that trigger changes in cytosolic 

second messenger generation, activation of protein kinase or alteration of membrane potential.2  

They are regulators of vascular and respiratory smooth muscle tone (TxA2, PGE2 and PGF2α), 

platelet aggregation (TxA2 and PGI2) or vascular permeability (PGE2).7-9 Prostanoids are also 

modifiers of pain, fever (PGE2), mast cell maturation and eosinophil recruitment in allergy 

(PGD2). In inflammatory processes, TxA2 is considered to be a proinflammatory factor, while 

PGI2 and PGE2 are predominantly anti-inflammatory mediators.10,11 In consideration of their 

extraordinary effects, eicosanoids are also investigated as targets in renal function, cancer, 

gastrointestinal integrity, diseases of the brain and parturition.12  

 

Figure 2. Cyclooxygenase and Lipoxygenase Dependent Arachidonic Acid Metabolism. Enzymes 

(grayed boxes) and corresponding metabolites of cyclooxygenase (COX) and lipoxygenase (LOX) pathways: 

COX converts arachidonic acid to prostaglandin H2 (PGH2) followed by subsequent metabolisation by 

thromboxane synthase (TXAS), prostaglandin (PG) synthases (PGFS, PGES and PGDS) or prostacyclin 

synthase (PGIS) to  thromboxane A2 (TxA2) and the inactive metabolite TxB2, PGF2α, PGE2, PGD2 as well as 

prostacyclin (PGI2). 5-LOX catalyzes in conjunction with its cofactor five lipoxygenase activating protein (FLAP) 

the metabolisation of AA to 5-hydroxyperoxyeicosatetraenoic acid (HpETE) and subsequently to leukotriene A4 

(LTA4) and 5-hydroxyeicosatetraenoic acid (5-HETE). 12-LOX mediates the conversion of AA to 12-HETE.13 
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In addition to COX-derived prostaglandins, leukotrienes and related hydroxyeicosatetraenoic 

acids (HETEs) are formed by 5-, 12-, as well as 15-LOX pathways.14 The main metabolic 

pathway is represented by 5-LOX that catalyses in conjunction with its cofactor 5- lipoxygenase 

activating protein (FLAP) the metabolism of AA to 5- hydroxyperoxyeicosatetraenoic acid 

(HpETE) and subsequently to leukotriene A4 (LTA4) and 5-HETE.15,16 Another LOX-pathway is 

represented by 12-LOX that mediates the conversion of AA to 12-HETE. Lipoxygenized AA 

metabolites exert their biological effects by G protein-coupled receptors and reveal chemotactic 

properties, mediate vascular permeability as well as contractility and are proinflammatory lipid 

mediators primarily produced by inflammatory cells like leukocytes and macrophages.13,17-19 

Leukotrienes are also considered to be central modulators of allergic rhinitis and 

bronchoconstriction in asthma where therapeutic treatment includes 5-LOX inhibitors and 

leukotriene receptor antagonists.20,21 12-HETE as LOX-metabolite seems to be relevant in 

several pathological disorders like atherosclerosis, hypertension, hyperglycaemia and prostate 

cancer, but findings are discussed controversial.22  

 

In summary, metabolites of AA metabolism reveal central physiological and pathophysiological 

effects. Due to their superordinate function on almost all processes in the human body, further 

investigation and analysis of eicosanoids in health and disease might be of great interest. 
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 LPS in vitro Whole Blood Model 

Different phenotypes of AA metabolism and its diagnostic potential have been poorly 

investigated so far because of the chemical and biological complexity as well as the analytical 

difficulties of these metabolites. 

Eicosanoids are known as local mediators that act near their site of synthesis and have a short 

half-life due to metabolite instability and rapid metabolism.16,23 Exemplarily, the intermediate 

TxA2 revealed a half-life of approximately 32 seconds when prostaglandin G2 is converted into 

TxB2 in platelets, while the metabolism of PGE2 occurred within 15 seconds and half-life of the 

corresponding stable metabolite is about 8 minutes.24,25 On account of this, plasma 

concentration of eicosanoids beside inflammatory processes are reported to be very low.26,27 

Therefore, immunoassays such as radioimmunoassays (RIAs), enzyme-linked immunosorbent 

assays (ELISAs) or chemiluminescence immunoassays (CLIAs) have been developed for 

quantifying eicosanoid concentration with lower limits of quantification in the picogram 

range.28,29 However, limitations of these methods like low sample throughput and cross 

reactions of antibodies due to isomeric similarity between eicosanoids with the same molecular 

weight but different structural configuration have been reported.30,31  

To overcome those limitations, our group has developed a high performance liquid 

chromatography (HPLC) method combined with tandem mass spectrometry (MS/MS) for 

increased sensitivity and specificity as well as facilitated high throughput of samples. Using a 

multiparametric approach, the method allowed the simultaneous identification and quantification 

of AA metabolites.32 Furthermore, we have developed an in vitro whole blood activation model 

using lipopolysaccharide (LPS) that was already described as potent activator of COX- and LOX 

dependent AA metabolism (Figure 3).6,33 Due to this standardized inflammatory stimulus, the 

release of eicosanoids was excited and consequently the concentration of AA metabolites was 

increased. For the in vitro model, whole blood from study subjects was mixed with cell culture 

medium containing 1 µg/mL LPS and incubated at 37 °C and 5 % CO2 for 24 hours. Then, the 

samples were centrifuged and metabolites were analyzed out of supernatant where LC-MS/MS 

method allowed quantification of AA, 5-HETE, 11-HETE, 12-HETE, PGF2α, PGE2 and TxB2. 

Beside the analysis of eicosanoid profiles on mediator level, the investigation of corresponding 

gene expression level of AA-metabolizing enzymes might provide further insights on the activity 

of these pathways. Therefore we improved the whole blood activation assay and isolated 

messenger ribonucleic acid (mRNA) for gene expression analyses by quantitative real time 

polymerase chain reaction (qRT-PCR) out of cellular components and established RT-PCR 

assays for analysis of COX-2 and PGES expression.34 
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In a first clinical application using the whole blood activation model, it was found that the 

determination of the eicosanoid response on mediator and gene expression level could be used 

as diagnostic as well as prognostic marker for inflammatory diseases. Here septic patients 

revealed significant reduced concentrations of AA, 11-HETE, PGE2 and TxB2 after 24 hours LPS 

activation compared to healthy controls and this suppression of the eicosanoid response was 

associated with severity of sepsis and worse clinical outcome. To further elucidate the sepsis-

associated effects on release of COX-dependent metabolites, comparative analyses of 

corresponding target genes were performed in a second independent study cohort, where we 

found a reduced inducibility of COX-2 and an upregulated PGES on gene expression level of 

septic patients compared to healthy controls.34 

 

 

Figure 3. In vitro Whole Blood Activation Assay. Human whole blood (lithium heparin) was mixed with cell 

culture medium containing 1 µg/mL lipopolysaccharide (LPS) and incubated at 37 °C and 5 % CO2 for  

24 hours. Samples were centrifuged, metabolites were analyzed out of supernatant by liquid chromatography 

tandem mass spectrometry (LC-MS/MS) and messenger ribonucleic acid (mRNA) for quantitative gene 

expression analysis by reverse transcription polymerase chain reaction (RT-PCR) was isolated out of cellular 

components.  
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 Arachidonic Acid Metabolism and Atherosclerosis 

5.3.1 Pathogenesis of Atherosclerosis 

Atherosclerosis is a chronic inflammatory disease that is regulated by diverse molecular 

mechanisms. It is initiated by endothelial dysfunction that causes increased vascular 

permeability. Chronic exposure to cardiovascular risk factors (e.g. hypertension, smoking, 

hyperlipidemia and hyperglycemia) promotes the development of endothelial cell changes and 

the progression of atherosclerosis due to lipid accumulation in the vessel wall.35 Low-density-

lipoprotein (LDL) particles infiltrate the subendothelial space and become oxidized, thereby 

provoking an inflammatory response that promotes adhesion as well as migration of leukocytes. 

Migrated monocytes convert into activated macrophages that take up modified lipoprotein 

particles through their scavenger receptors and transform into foam cells. Accumulation of foam 

cells as well as subsequent foam cell death lead to the deposit of extracellular lipids and the 

formation of fatty streaks. Furthermore, activated macrophages release proinflammatory 

mediators, creating an inflammatory environment that consequently promotes T-lymphocyte 

activation and migration of smooth muscle cells (SMCs). Thus, a developing atherosclerotic 

plaque is characterized by a lipid rich necrotic core and a fibrous cap out of SMC surrounded by 

collagen and elastic fibers (Figure 4).36,37  

 

Figure 4. Pathogenesis of Atherosclerosis. The different stages of atherogenesis are shown. A Endothelial 

dysfunction causes lipid accumulation in the intima, where inflammatory response induces monocyte migration. 

B Monocytes convert into activated macrophages that take up oxidized low-density-lipoprotein and transform 

into foam cells. C Proinflammatory mediators promote T-lymphocyte activation and smooth muscle cell 

migration. D Atherosclerotic plaque is characterized by a lipid rich necrotic core and a fibrous cap out of 

smooth muscle cells, collagen and elastic fibers. 
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Apoptosis of vascular smooth muscle cells as well as increased activity of matrix-degrading 

enzymes (e.g. Matrix Metallopeptidase 9 (MMP-9)) may ultimately provoke rupture or erosion of 

the atherosclerotic plaque followed by platelet aggregation and thrombosis. While protrusion of 

the atheroma into the blood vessel lumen leads to stenosis, plaque rupture might determine 

specific endpoints of this disease such as myocardial infarction or stroke.38  

 

5.3.2 Arachidonic Acid Metabolism as Modulator of Atherogenesis 

Inflammatory processes influence all phases of atherogenesis and get modulated by several 

cellular components including monocytes, B- and T-lymphocytes, platelets as well as various 

pro- and anti-inflammatory mediators  (e.g. tumor necrosis factor alpha (TNFα), interleukin-1 (IL-

1), IL-6, chemokine ligand 2 (CCL-2)).39-41 Eicosanoids as metabolites of AA metabolism are 

known as modulators of inflammatory diseases and due to their widespread synthesis in blood 

and vascular cells, they can be considered as central factors in the complex interplay between 

blood components and cells of the arterial wall (Figure 5).42  

 

Figure 5. Arachidonic Acid Metabolites as Modulators of Pathophysiological Proceses of 

Atherogenesis. Image is modified from Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med. 

1999; 340:115-126.43 

 

 

COX-derived eicosanoids such as TxA2, PGF2α and PGI2 were identified as chemo-attractants, 

platelet aggregation factors during thrombus formation and modifiers of SMC proliferation that 

represent central pathophysiologic processes in atherosclerosis.13,44-47 Furthermore, previous 

studies showed that symptomatic plaques revealed higher expression of COX-2, where 

functionally coupled COX-2/mPGES-1 promoted PGE2 dependent MMP-9 production by 
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macrophages that led to increased plaque instability.48 In accordance with this, TXAS mRNA 

levels and functional TxA2 synthesis were increased in atherosclerotic lesions. It was suggested 

that enhanced intraplaque TxA2 generation contributed to atherogenesis and thrombus 

formation in symptomatic patients.49 In contrast, asymptomatic plaques revealed increased 

expression of PGDS and subsequent inhibition of MMP-9 biosynthesis by PGD2. Results 

indicated that selective expression of eicosanoid pathways promoted either pro- or anti-

atherogenic molecular pathways.50 In addition to COX-dependent prostaglandins, eicosanoids 

generated by the LOX-pathways seem to be relevant in atherosclerosis. Lipoxygenized AA 

metabolites revealed chemotactic properties and Bäck and colleagues showed that human 

vascular smooth muscle cells expressed BLT1 receptors and found that LTB4 induced 

chemotaxis and proliferation of those cells.13,51 Furthermore, present studies suggested that 

metabolites of the 12-LOX pathway induced the interaction of monocytes and endothelial cells 

followed by migration and differentiation into macrophages.52,53 Investigation of atherosclerotic 

plaques in different vascular beds revealed expression of 5-LOX pathway mainly by 

macrophages, dendritic cells, foam cells, mast cells as well as neutrophilic granulocytes. 

Furthermore, the presence of 5-lipoxygenase expressing cells increased the progression of the 

disease.54 Qiu and colleagues also showed significantly increased 5-LOX expression in 

macrophages of human atherosclerotic plaques, whereas tissue incubated with arachidonic acid 

generated significant amounts of LTB4.55 Moreover, increased 5-LOX expression and LTB4 

generation was associated with enhanced MMP-2 and MMP-9 expression in symptomatic 

plaques proposing that this pathway contributed to plaque rupture.56 

 

Beside several studies that investigated the AA metabolism in plaques, further data indicated 

also an activation of those pathways in blood cells. Gómez-Hernández and colleagues showed 

that patients with carotid atherosclerosis revealed an overexpression of COX-2, mPGES-1 and 

EPs (PGE2 receptors) in plaques as well as in peripheral blood mononuclear cells (PBMC). 

They thus suggested that nuclear factor kappa B (NF-κB) inhibitors or EP antagonists may 

represent a promising therapeutic approach to treat plaque instability and rupture. Furthermore, 

study subjects revealed increased PGE2 plasma levels that corresponded to findings of Jouve 

and colleagues that showed increased TxB2 and PGE2 levels in patients with atherosclerosis 

obliterans.57,58 In line with this, Beloqui et al found that PGE2 release of LPS stimulated 

monocytes was significant associated with carotid intima media thickness and correlated with 

cardiovascular risk factors in subjects free of clinically overt cardiovascular disease.33  

 

In summary, these data suggest that analysis of the AA metabolism in whole blood on 

metabolite and gene expression level might provide a new marker of atherosclerotic burden and 

is predestinated as biomarkers for diagnosis and prediction of coronary artery disease. 
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 Coronary Artery Disease and Prediction Strategies 

Atherosclerosis is the most common cause of coronary artery disease (CAD), leading to 

progressive narrowing of the coronary arteries and chest pain as typical clinical sign.59,60 

Depending on clinical presentation, primarily an acute coronary syndrome with myocardial 

ischemia and/or myocardial infarction should be excluded. Rule-out strategies include clinical 

assessment, 12-lead electrocardiogram (ECG) and cardiac troponin as biomarker for 

myocardial cellular damage.61,62 In remaining patients, presence of coronary heart disease will 

be subsequently suspended as the cause of clinical symptoms.63 Following the guidelines, 

determination of pre-test probability that classified patients into subgroups of low, intermediate 

and high risk likelihood for CAD is recommended. Patients with low pre-test probability are 

assumed to have no obstructive CAD, in which other causes of chest pain should be excluded. 

Patients with intermediate likelihood should undergo non-invasive testing (NIT, e.g. stress 

echocardiography (ECG), single photon emission computed tomographic (SPECT) myocardial 

perfusion imaging, cardiac magnetic resonance (CMR) or coronary computed tomography (CT) 

angiography), while transfer to invasive coronary angiography (ICA) for patients with high pre-

test probability or high-risk findings on NIT is acclaimed (Figure 6).64  

 

Figure 6. Diagnostic Management of Patients with Suspected Coronary Heart Disease. Electrocardiogram 

(ECG); high sensitivity Troponin (hsTroponin); Coronary Computed Tomography Angiography (CT); Single 

Photon Emission Computed Tomographic Myocardial Perfusion Imaging (SPECT); Cardiac Magnetic 

Resonance (CMR); Invasive Coronary Angiography (ICA). Image is modified from the 2013 ESC guidelines on 

the management of stable coronary artery disease: the Task Force on the management of stable coronary 

artery disease of the European Society of Cardiology.64 
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ICA is the gold standard to establish the diagnosis and guide treatment of CAD,65 however 

previous studies have shown, that only 41 to 43 % of patients that underwent ICA due to 

suspected CAD had wall irregularities that corresponded to their clinical symptoms.66 On the 

contrary, patients with a positive non-invasive pre-test revealed higher rate of obstructive CAD 

than patient without any non-invasive testing before angiography.67  

 

The Diamond and Forrester score is one of the currently recommended pre-tests and considers 

age, sex and symptoms for the prediction of significant CAD. However, the score does not 

account for known cardiovascular risk factors associated with the presence of atherosclerosis. 

Therefore, Pryor and colleagues developed the Duke Clinical Score that additionally consider 

history of myocardial infarction, diabetes, dyslipidemia, smoking and electrocardiographically 

findings (Table 1).68 A study with 633 patients, that underwent ICA due to suspected CAD, 

revealed an area under the curve of 0.642 for the Diamond and Forrester Score, in which the 

improved Duke Clinical Score showed an significantly increased AUC of 0.718 (P< 0.001).69 

 

 
Diamond and 

Forrester Score 
Duke Clinical 

Score 

Age ✓ ✓ 

Sex ✓ ✓ 

Chest Pain ✓ ✓ 

History of Myocardial Infarction  ✓ 

Diabetes  ✓ 

Dyslipidemia  ✓ 

Smoking  ✓ 

Electrocardiography Findings  ✓ 

C Statistic 0.64 0.72 

Table 1. The Models of Diamond and Forrester Score and Duke Clinical Score. 

 
 

Nevertheless, Genders and colleagues showed that the Duke Clinical Score overestimated the 

probability of coronary artery disease (C statistic 0.78). Thus, the Consortium [CAD Prediction] 

Score was developed with a basic, clinical and extended model (Table 2). The basic model uses 

information on age, gender and chest pain, the clinical score considers information on diabetes, 

dyslipidemia, smoking as well as hypertension. Compared with the basic score, the clinical 

model improved the c statistic from 0.77 to 0.79. The addition of the coronary calcium score as 

non-invasive diagnostic imaging procedure (extended model) increased the c-statistic up to 

0.88.70 
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Basic Model Clinical Model Clinical Model + 

CCS 

Age ✓ ✓ ✓ 

Sex ✓ ✓ ✓ 

Chest Pain ✓ ✓ ✓ 

Diabetes  ✓ ✓ 

Dyslipidemia  ✓ ✓ 

Smoking  ✓ ✓ 

Hypertension  ✓ ✓ 

Coronary Calcium Score (CCS)   ✓ 

C Statistic 0.77 0.79 0.88 

Table 2. Consortium [CAD Prediction] Score and C-Statistics for the Basic, Clinical and Extended 

Model by Genders et al. 70  

 
 

However, availability and costs for cardiac CT for calcium scoring are hampering the 

widespread application71 and alternatively, blood biomarkers have been evaluated regarding 

their impact on pre-test probability for CAD. The European Evaluation of Integrated Cardiac 

Imaging (EVINCI) study with 527 patients approved just a low accuracy for predicting 

functionally significant CAD (AUC 0.58) when using Gender´s Clinical Score. Though, the 

addition of High-Density-Lipoprotein (HDL) cholesterol, aspartate aminotransferase (AST) and 

high sensitive C-reactive Protein (hsCRP) improved the prediction of presence of CAD (EVINCI 

Score; AUC 0.70) (Table 3).72  

 

 Clinical Score EVINCI Score 

Age ✓ ✓ 

Sex ✓ ✓ 

Chest Pain ✓ ✓ 

Diabetes ✓ ✓ 

Dyslipidemia ✓ ✓ 

Smoking ✓ ✓ 

Hypertension ✓ ✓ 

HDL-Cholesterol  ✓ 

AST  ✓ 

hs-CRP  ✓ 

C statistic 0.58 0.70 

Table 3. EVINCI Score. The addition of HDL cholesterol, aspartate 

aminotransferase (AST) and high sensitive C-reactive Protein (hsCRP) improved the 

prediction of Gender´s Clinical Score. C-statistics for Clinical and EVINCI Score are 

shown.72  
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The data of the EVINCI study are in line with other studies that confirmed that lipid and 

inflammatory markers could be used for CAD prediction. For instance, Bogavac-Stanojevic et al. 

showed that a score combining non-HDL cholesterol, hsCRP, HDL cholesterol and lipoprotein a 

revealed an AUC of 0.80 while Haidari and colleagues showed that CRP, diabetes, total 

cholesterol, HDL cholesterol and total cholesterol/ HDL cholesterol ratio led to an accuracy of  

78 % for the classification of suspected individuals.73,74  

 

Nevertheless, further biomarkers detecting patients at risk are lacking and improvement of 

strategies to predict pre-test probability under inclusion of biochemical blood biomarkers would 

be of great interest. 
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 Aims and Work Program 

Eicosanoids are known as modulator of inflammatory diseases and due to their widespread 

synthesis in blood and vascular cells these metabolites play a central role in atherogenesis. It 

was thus the aim of the current thesis to investigate whether the analysis of the AA metabolism 

in whole blood might provide a new marker of atherosclerotic burden and could be used as 

biomarker for diagnosis and prediction of coronary artery disease.  

In previous work, we developed an analytical test suited for the application in a clinical setting 

that enabled the simultaneous and highly standardized analysis of COX- and LOX-dependent 

eicosanoid response both on metabolite and gene expression level. LC-MS/MS method allowed 

quantification of AA, 5-HETE, 11-HETE, 12-HETE, PGF2α, PGE2 and TxB2, while RT-PCR 

assays for analysis of COX-2 and PGES expression have been established.34 

 

Aim 1 - Improvement of the Established Whole-Blood Activation Assay  

For a complete investigation of the major pathways of AA metabolism additional gene 

expression assays will be established. Furthermore, different stimuli (LPS, TNFα and oxLDL) for 

whole blood activation and the time- and dose-dependency of eicosanoid response will be 

evaluated. In addition, functional studies will be performed to better characterize the molecular 

mechanism of eicosanoid release in whole blood.  

 

Aim 2 - Determination of Eicosanoid Response of Healthy Subjects 

The established assay will then be used to test the variability of the LPS-induced AA 

metabolism in healthy individuals, with the aim to characterize general eicosanoid profiles. 

 

Aim 3 - Investigation of the Eicosanoid Response in Patients with or without Coronary 

Artery Disease (Leipzig Heart Study) 

Suggesting that the individual regulated eicosanoid response might determine the risk for 

atherosclerosis, we aimed to investigate target genes and metabolites of AA metabolism as 

novel biomarkers for atherosclerotic burden. The predictive role of eicosanoid response will be 

investigated in patients with or without coronary artery disease using the standardized and 

improved whole-blood assay. 
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6 Materials 

 Laboratory Equipment 

Roche Modular Analysis System  Roche Diagnostics 

Sysmex XE-2100 Hematology Analyzer Sysmex 

Optima LE-80K Ultracentrifuge Beckman Coulter  

Spectrafluor Microplate Reader Tecan 

QTRAP 4000 LC-MS/MS System Sciex 

NanoDrop 2000 Spectrophotometer Thermo Fisher Scientific 

GeneAmp PCR System 9700 Applied Biosystems 

Gel System & Power Supply peqlab (VWR) 

Gel Documentation Instrument peqlab (VWR) 

Thermomixer comfort Eppendorf 

ViiA 7 Real-Time PCR-System Thermo Fisher Scientific 

Vortex Genie 2 Bender & Hobein AG 

Centrifuges Eppendorf 

Pipettes Eppendorf 

 Chemicals and Consumables 

Specimen Collection  

Safety-Multifly, 21G, tube 200mm Sarstedt  

Lithium Heparin Tubes, 9 mL Sarstedt 

 

In vitro Whole-Blood Model 

Cell Culture Dish 35 mm x 10 mm Sigma-Aldrich (Merck) 

RPMI 1640 Liquid Medium (FG 1383) Biochrom (Merck) 

Penicillin-Streptomycin (10.000 U/mL) Gibco by Life Technologies  

 (Thermo Fisher Scientific) 

Lipopolysaccharides (LPS) from Escherichia coli O55:B5  Sigma-Aldrich (Merck) 

Recombinant Human TNF-alpha Protein R&D Systems 

15 mL Tube, PP (polypropylene) Sarstedt 

1.5 mL Micro Tubes, PP (polypropylene) Sarstedt 

 

 



23 
 

Preparation and Oxidation of LDL 

Sodium Chloride (NaCl)  Sigma-Aldrich (Merck) 

Ethylenediaminetetraacetic acid disodium salt dihydrate  Sigma-Aldrich (Merck) 

(EDTA-Na2)  

OptiSeal Tube, Polypropylene, 32.4 mL, 26 x 77 mm  Beckman 

Water LiChrosolv Merck 

Servapor Dialysis Tubing, 16 mm Serva 

Tris-(hydroxymethyl)-aminomethan (TRIS)  Roth 

Minisart NML Syringe Filter, 0.45 µm Sartorius 

Econo-Pac Chromatography Columns Bio-Rad 

Phosphate Buffered Saline (PBS) Dulbecco Merck 

Cholesterol CHOD-PAP Roche 

Calibrator for automated systems Roche 

HAM´s F-10 Nutrient Mix Thermo Fisher Scientific 

Copper(II) chloride (CuCl2) Sigma-Aldrich (Merck) 

Folin & Ciocalteu’s Phenol Reagent  Sigma-Aldrich (Merck) 

 

Transcriptional and Translational Inhibitors 

Actinomycin D Sigma-Aldrich (Merck) 

Dimethyl Sulfoxide (DMSO) Sigma-Aldrich (Merck) 

Cycloheximide Sigma-Aldrich (Merck) 

Ethanol Merck 

 

LC-MS/MS Analysis 

Thromboxane B2-d4 Cayman Chemical 

Prostaglandin F2α-d4 Cayman Chemical 

Prostaglandin E2-d4 Cayman Chemical 

5(S)-HETE-d8 Cayman Chemical 

Arachidonic Acid (AA)-d8  Cayman Chemical 

Methanol Biosolve 

Zinc sulfate (ZnSO4 ) Sigma-Aldrich (Merck)  

Water Thermo Fisher Scientific 

Acetic acid (glacial) Merck 

Strata-x 33 µm polymeric sorbent 60 mg/3 mL Phenomenex 

Acetonitrile J.T.Baker (Thermo Fisher 

Scientific) 
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Formic Acid Biosolve 

Autosampler (Glass) Vials Waters 

 

RNA Isolation 

QIAamp RNA Blood Mini Kit Qiagen 

   Contents:  

   QIAamp Spin Columns 

   QIAshredder Spin Columns 

   Collection Tubes  

   Buffer EL 

   Buffer RLT 

   Buffer RW1 

   Buffer RPE 

   RNase-free Water 

2-Mercaptoethanol Sigma-Aldrich (Merck) 

Ribonuclease (RNase)-Free Desoxyribonuclease (DNase)  Qiagen 

   Contents:  

   RNase-Free DNase I (1500 kU) 

   Buffer RDD 

   RNase-Free Water 

 

Reverse Transcription 

SuperScript II Reverse Transcriptase Invitrogen (Thermo Fisher 

   Contents:  Scientific) 

   SuperScript II Reverse Transcriptase (200 U/µL)   

   5X First Strand Buffer (FSB) 

   DTT (100 mM) 

Primer Random p(dN)6 Roche 

Deoxynucleotide Triphosphate (dNTP) Mix  Promega 

Recombinant RNasin Ribonuclease Inhibitor Promega 

TRIS-EDTA (TE) Buffer [10X] G-Biosciences 

 

Quantitative RT-PCR 

Primer Eurofins Genomics 

Probes Eurofins Genomics 
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AmpliTaq Gold DNA Polymerase with Buffer II and MgCl2 Applied Biosystems 

   Contents:   

   AmpliTaq Gold DNA Polymerase (5 U/µL) 

   MgCl2 Solution 25 mM 

   10X PCR Buffer II 

Diethyl pyrocarbonate (DEPC) Sigma-Aldrich (Merck) 

 

Gel Electrophoresis 

peqGold Low Melt Point (LMP) Agarose peqlab (VWR) 

TAE Buffer (Tris-acetate-EDTA) Thermo Fisher Scientific 

Molecular-Weight Size Marker X  Roche 

Ethidium bromide aqueous solution 1 % w/v Serva 

 

Plasmid Standard Preparation 

TOPO TA Cloning Kit Dual Promoter Invitrogen (Thermo Fisher 

   Contents:  Scientific) 

   pCR II-TOPO vector   

   Salt Solution  

   S.O.C. Medium  

   TOP10F´ competent cells 

Cell Culture Dish, 100 mm x 20 mm Corning 

Ampicillin Thermo Fisher Scientific 

Isopropyl β-D-1-thiogalactopyranoside (IPTG) Sigma-Aldrich (Merck) 

5-Bromo-4-chloro-3-indolyl β-D-galactoside (X-Gal) Sigma-Aldrich (Merck) 

Bacto Tryptone  BD Biosciences 

Bacto Yeast Extract  BD Biosciences 

Bacto Agar  BD Biosciences 

FastPlasmid Mini-Prep Kit  5Prime 

   Contents: 

   Lysis Solution 

   RNase Solution 

   Lysozyme 

   Spin Column Assembly 

   Wash Buffer 

   Elution Buffer 

2-Propanol Merck 
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EcoRI  New England Biolabs 

   Contents: 

   EcoRI (20.000 U/mL)  

   NEBuffer EcoRI  

BigDye Direct Cycle Sequencing Kit Applied Biosystems by Life  

   Contents:  Technology (Thermo Fisher 

   BigDye Direct PCR Master Mix  Scientific)  

   BigDye Direct M13 Fwd Primer   

   BigDye Direct M13 Rev Primer 

Sodium Acetate   Merck 

HindIII  New England Biolabs 

   Contents:  

   HIND III (20.000 U/mL) 

   NEBuffer 2.1 
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7 Methods 

 Study Population and Specimen Collection 

Whole Blood for LDL-cholesterol preparation and the evaluation of the whole-blood activation 

assay was obtained from blood donors of the Institut für Transfusionsmedizin of the University 

Hospital Leipzig. Samples from 10 healthy blood donors (5 male, 5 female) were collected for 

investigation of differential eicosanoid response on gene expression and mediator level. 

Investigations were approved by the Ethics Committee of the Medical Faculty of the University 

Leipzig, Germany (Reg. No 178-2009).  

Blood from 92 patients of the Leipzig Heart Study was collected to study eicosanoid response 

on gene expression and mediator level in patients with varying CAD severity. The study was 

approved by the Ethics Committee of the Medical Faculty of the University Leipzig, Germany 

(Reg. No 276-2005) and is registered with ClinicalTrials.gov (NCT00497887).66 

Principally, whole blood was collected by peripheral venous blood puncture into 9 mL lithium 

heparin tubes. After blood collection, samples were stored at 4-7 °C for a maximum of 4 hours 

until activation experiments. A Sysmex XE-2100 hematology analyzer was used for analysis of 

blood count and an automated Roche Modular analysis system was used for analysis of clinical 

chemistry. 

 In vitro Whole Blood Model 

7.2.1 Inflammatory Stimuli 

Different stimuli were used for whole blood activation. LPS and TNFα were provide as 

lyophilized powders and were diluted into H2O to final stock solution of 100 µg/mL. Preparation 

and oxidation of LDL-Cholesterol was performed as described below. 

 

7.2.1.1 Preparation of LDL-Cholesterol from Plasma 

Lipoproteins were isolated by ultracentrifugation from 250 mL plasma of healthy blood donors at 

densities (d) = 1.060 g/mL for separation of HDL-Cholesterol and (d) = 1.019 g/mL for 

separation of LDL-Cholesterol. Plasma was mixed with NaCl for a final density of 1.060 g/mL as 

well as 250 mg EDTA and transferred into OptiSeal Centrifuge Tubes, followed by a 

centrifugation step for 24 hours and 150.000 x g at 10 °C.  
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Amount of NaCl was calculated as follows: 

 

𝐴𝑚𝑜𝑢𝑛𝑡 (𝑔)𝑁𝑎𝐶𝑙 𝑝𝑒𝑟 1 𝑚𝐿 𝑝𝑙𝑎𝑠𝑚𝑎 =
1.060 

𝑔
𝑚𝐿

− [𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑝𝑙𝑎𝑠𝑚𝑎]

(1 − 0.3175)
 

 

The supernatant contained Very-Low-Density-Lipoproteins (VLDL) as well as LDL and was 

separated from the lower sample phase that contained HDL. Supernatant was mixed with H2O 

to yield a final density of 1.019 g/mL and centrifuged for 24 hours at 150.000 x g at 10 °C. 

Upper Phase and lower phase were separated again, in which the lower phase contained LDL-

Cholesterol and upper phase with VLDL and Intermediate-Density-Lipoproteins (IDL) was 

discarded.  

Lower phase was mixed with NaCl to yield a final density of 1.060 g/mL and was centrifuged for 

24 hours at 150.000 x g at 10 °C. Upper phase was separated, filled into a Serva Dialysis 

Tubing and dialyzed for 20 hours at 4 °C into 5 L 1X TRIS Buffer (Table 4). Then, obtained LDL 

was filtrated (Minisart NML Syringe Filter, 0.45 µm) and stored at 4 °C until the oxidation step. 

 

Table 4. TRIS Buffer (10X) 

60.5 g Trishydroxymethylaminomethan (50 mM) 

900 g NaCl (0,9 %) 

9.3 g EDTA 

ad 10 L H2O 

10 L (adjust to pH 7,4) 

 

7.2.1.2 Oxidation of LDL-Cholesterol 

For removal of excessed salt, a column chromatography (Econo-Pac Chromatography 

Columns) was performed. The column was primed with 4 mL PBS three times; LDL solution 

was applied and rinsed thoroughly with 2 mL PBS.  

Cholesterol concentrations of LDL was determined with an enzymatic colorimetric assay 

(cholesterol oxidase-phenol-aminophenazone: CHOD-PAP).75 To this end 10 μL of samples or 

standard solution (100, 200, 400 mg/dL) were mixed with 200 μL cholesterol reagent and 

incubated for 10 minutes at room temperature on an orbital shaker. Measurements were 

performed with a fluorescence and absorbance reader (Tecan) at 500 nm and LDL cholesterol 

concentrations were determined using the standard curve. Then, LDL fractions were diluted with 

HAMs F10 to yield a final concentration of 100 mg/dL. For oxidation of LDL, the diluted solution 
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was incubated with CuCl2 in a final concentration of 5 µM for 24 hours at 37 °C and 5 % CO2 

(Table 5). 

 

Table 5. CuCl2 Stock Solution (0,5 M) 

170 mg CuCl2 

ad 2 mL HAMs F10 

2 mL  

 

Oxidation was stopped by addition of Na2EDTA in a final concentration of 2 mg/mL and oxLDL 

was immediately transferred on ice. Thereafter, a second column chromatography was 

performed as described before, protein concentrations were determined76 and oxLDL was used 

as stimuli for whole blood activation in a final concentration of 100 µg/mL. 

 

7.2.2 Transcriptional and Translational Inhibitors 

Actinomyin D (ActD) as an inhibitor of transcription and cycloheximide (CHX) as a translational 

inhibitor were used to identify if eicosanoid response underlay preformed release or de novo 

synthesis. ActD and CHX were provided as lyophilized powders. ActD was diluted into DMSO to 

a final stock solution of 1000 µg/mL. CHX was diluted into ethanol to final stock solution of 

100 mg/mL. 

 

7.2.3 Experimental Procedure 

Whole blood activation experiments were performed according to the protocol by Bruegel et al.34 

1 mL of whole blood was mixed with 500 µL medium spiked with or without different stimuli. 

Mixtures were incubated for 1, 4 and 24 hours at 37 °C and 5 % CO2. Sample aliquots 

containing whole blood medium mix without stimuli were immediately processed without further 

incubation, serving as baseline. Samples were centrifuged for 10 min at 3220 x g; supernatants 

were transferred into 1.5 mL microtubes, covered with nitrogen and stored at -80 °C until  

LC-MS/MS Analysis of eicosanoid metabolites. Cellular components were used for RNA 

isolation and gene expression analysis. 

 

Investigation of regulatory mechanism of AA metabolism was performed by transcriptional and 

translational inhibition experiments with ActD and CHX. Samples were preincubated for 1 hour 

with ActD or CHX and then activated with LPS for 1, 4 and 24 hours. Furthermore, samples with 

ActD or CHX without LPS activation were saved as baseline controls. 
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7.2.4 LC-MS/MS Analysis for Eicosanoid Metabolites  

On mediator level, AA as general precursor of eicosanoids, 11-HETE, TxB2, PGE2 and PGF2α 

as major representatives of COX pathway and 12-HETE and 5-HETE as representatives of  

12-LOX and 5-LOX pathway, were determined in supernatants according to the protocol from 

Bruegel et al.34 A protein precipitation and solid phase extraction (SPE) was used for extraction 

and concentration of eicosanoids from supernatants of the whole blood activation model. 

Thereafter quantification of metabolites was performed by liquid chromatography tandem mass 

spectrometry (LC-MS/MS) using corresponding internal standards (IS).  

 

7.2.5 Protein Precipitation and Solid Phase Extraction 

The protein precipitation was performed after the addition of internal standards for metabolite 

quantification to each sample. Internal standard solution consists out of deuterium labeled 

eicosanoids TxB2-d4, PGF2α-d4, PGE2-d4, 5-(S)-HETE-d8 (20 ng/mL each) and AA-d8 

(200 ng/mL) that has been diluted in methanol (MeOH). MeOH/ZnSO4 precipitation solution was 

compounded out of 89 g/L ZnSO4 in H2O and MeOH 4/1 (v/v). 100 µL supernatant was mixed 

with 50 µL internal standard and 200 µL MeOH/ZnSO4 precipitation solution and was 

centrifuged for 10 minutes at 10.000 x g at room temperature. 300 µL supernatant was 

transferred into a glass vial and diluted by addition of 800 µL H2O and 100 µL glacial acetic 

acid. SPE was performed using Strata-x 33 µm polymeric sorbent 60 mg/3 mL tubes. SPE 

Tubes were conditioned with 2 mL MeOH and centrifugation for 1 minute at 160 x g at room 

temperature, followed by equilibration with 2 mL H2O and centrifugation for 1 minute at 160 x g 

at room temperature. Diluted samples were loaded and SPE cartridges were centrifuged for 

1 minute at 270 x g at room temperature followed by a wash step with 2 mL MeOH 10/90 (v/v) 

and centrifugation for 2 minutes at 270 x g and 5 minutes at 3320 x g at room temperature. 

Samples were eluted in 1 mL MeOH by centrifugation for 1 minute at 270 x g and 5 minutes at 

3320 x g at room temperature. After protein precipitation and SPE samples were dried and 

concentrated by vacuum centrifugation at 37 °C. Then, samples were covered with nitrogen and 

stored at -80 °C until analysis. 

 

7.2.6 Liquid Chromatography and Tandem Mass Spectrometry 

For analysis by LC-MS/MS stored samples were solved in 100 µL acetonitrile/water 50/50 (v/v) 

+ 0.02 % formic acid, centrifuged for 10 minutes at 15.000 rpm and 80 µL supernatant was 

transferred into an autosampler vial. A triple quadrupole mass spectrometer with an 

electrospray ionization (ESI) source was used in negative ion mode. Eicosanoids were analyzed  
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by multiple reactions monitoring (MRM; Figure 7) of defined mass transitions and retention 

times given in Table 6.  

 

Figure 7. Chromatogram of Multiparametric LC-MS/MS Analysis. 

 

 

 

Metabolite quantification was performed via corresponding internal deuterated standards using 

the Analyst 1.5 software and following calculation: 

 

𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 =
𝐴𝑛𝑎𝑙𝑦𝑡𝑒 𝑃𝑒𝑎𝑘 𝐴𝑟𝑒𝑎 𝑥 𝐼𝑆 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛

𝐼𝑆 𝑃𝑒𝑎𝑘 𝐴𝑟𝑒𝑎 𝑥 2
 

Table 6. Mass Transitions and Chromatographic Retention Times of AA Metabolites 

Parameter MRM (m/z) Retention time (min) 

TxB2 369/ 169 1.07 

TxB2-d4 373/ 173 1.07 

PGE2 351/ 271 1.46 

PGE2-d4 355/ 275 1.46 

PGF2α 353/ 193 2.51 

PGF2α-d4 357/ 197 2.51 

11-HETE 319/ 167 4.81 

12-HETE 319/ 179 4.89 

5-HETE 319/ 115 5.09 

5-HETE-d8 327/ 116 5.09 

AA 303/ 259 6.57 

AA-d8 311/ 267 6.57 
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 Quantitative PCR Analysis of Eicosanoid Metabolizing Enzymes 

Gene expression of AA metabolizing enzymes was determined by quantitative fluorogenic  

RT-PCR using cDNA plasmid standard curves for quantification of absolute mRNA copies. 

Assays for PLA2 as superordinate target gene, COX-1, COX-2, TXAS, PGES and PGFS as 

corresponding target genes of COX pathway and 12-LOX, 5-LOX and FLAP as corresponding 

target genes of LOX pathway were established using gene-specific primers and probes 

spanning 2 exons in order to avoid amplification of genomic DNA (Table 13). 

 

7.3.1 RNA Isolation  

RNA was isolated using the QIAamp RNA Blood Mini Kit according to the manufacturer´s 

instructions including additional DNA digestion with Ribonuclease (RNase)-Free 

Desoxyribonuclease (DNase). To this end, cellular components of whole blood activation assay 

were transferred into a 15 mL Tube, mixed with 5.6 mL Lysis Buffer and incubated on ice for 

10 minutes. During incubation, samples were mixed two times and centrifuged at 400 x g for 

10 minutes at 4 °C. Supernatants were completely removed and discarded. Then, 2 mL Lysis 

Buffer was added and samples were centrifuged for 10 minutes at 400 x g and 4 °C. 

Supernatants were discarded and 600 µL RLT Buffer was added to pelleted leukocytes. Lysates 

were pipetted directly into a QIAshredder spin column and centrifuged for 2 minutes at 

maximum speed. 600 μL of 70 % ethanol was added to the homogenized lysates and samples 

were transferred to a QIAamp spin column and centrifuged for 15 seconds at 8000 x g at room 

temperature. QIAamp spin columns were transferred into a new 2 mL collection tube and 

350 μL Buffer RW1 was applied and approach was centrifuged for 15 sec at 8000 x g for 

washing, followed by DNA digestion with RNase-free DNase. Therefore, 80 µL of RNase-free 

DNase Mix (Table 7) was added to the columns and incubated for 15 minutes at room 

temperature. 

 

Table 7. Mastermix for DNA Digestion using RNase-free DNase 

10 µL RNase-free DNase (1000 U/mL) 

70 µL Buffer RDD 

80 µL  

 

Then, a second wash step with 350 µL RW1 Buffer was performed. QIAamp spin columns were 

placed in a new 2 mL collection tube and 500 μL Buffer RPE was added and centrifuged for 

15 seconds at 8000 x g at room temperature. Another 500 μL Buffer RPE was added and 
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columns were centrifuged at full speed for 3 minutes. Then, the approach was centrifuged for 

1 min at full speed for drying and RNA was eluted into 30 µL RNase free water.  

 

Finally, purity and concentration of nucleic acids were determined at 260 and 280 nm with the 

NanoDrop 2000c spectrophotometer and samples were stored at -80 °C until reverse 

transcription into cDNA. 

 

7.3.2 Complementary DNA Synthesis by Reverse Transcription  

RNA was reversed transcribed into cDNA with Super Script-II enzyme. 10 µL RNA was mixed 

with 1 µL random hexamer primer and incubated for 10 minutes at 68 °C. Then, 9 µL master 

mix (Table 8) was added, followed by incubation for 1 hour at 42 °C. Samples with RNA 

concentrations > 100 ng/µL were diluted with diethyl pyrocarbonate (DEPC) H2O (Table 9) to 

yield a final concentration of 100 ng/µL.  

 

Table 8. Mastermix fo Reverse Transcription 

1 µL RNAsin (40 U/µL) 

1 µL dNTP (10 mM)  

2 µL DTT (0.1 M)  

4 µL 5 x First Strand Buffer  

1 µL Superscript II (200 U/µL) 

9 µL   

 

The samples were diluted 1:7.5 with 1X TE buffer (Table 10) and stored at -20 °C until 

quantitative RT-PCR.  

 

Table 9. DEPC Water 

1 mL DEPC  

999 mL H2O autoclaved 

1 L  

 

Table 10. 1X TE Buffer 

5 mL 10X TE Buffer (100 mM Tris, 10 mM EDTA, pH 8.0) 

45 mL H2O  

50 mL   
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7.3.3 Generation of Plasmid Standards 

Gene expression analyses were performed by qRT-PCR and absolute mRNA copies were 

determined using cDNA plasmid standard curves for each gene. Generation of plasmid 

standards was accomplished as described below. 

 

7.3.3.1 Polymerase Chain Reaction 

Amplification of specific cDNA sequences of target genes was performed with polymerase chain 

reaction (Table 11; Table 12).  

 

Table 11. Mastermix for PCR  
 

Table 12. Cycler Parameter 

5 µL cDNA  95 °C 10 min 

2.5 µL 10 x PCR Buffer  95 °C 15 sec 
40 Cycles 

5 µL MgCl2 (25 mM)  60 °C 1 min 

2 µL dNTP (125 µM)  72 °C 7 min 

0.5 µL Primer forward     

0.5 µL Primer reverse     

0.25 µL AmpliTaq Gold     

9.25 µL DEPC H2O     

25 µL      

 

Specific primers and probes were selected to span two exons in order to avoid amplification of 

genomic DNA and have been obtained from MWG Biotech (Table 13). 

 

Table 13. Primers and Probes used for Quantitative RT-PCR 

Gene 

NM Number 

Primer and Probes 

 

PLA2G4A  5’- primer 5’-CTGGATTGTGCTACCTACGTTG-3’ 

(PLA2) 3’- primer 5’-TTCTCTGGAAAATCAGGGTGA-3’ 

NM_024420.2 flourogenic probe 5’*-CTGGTCTTTCTGGCTCCACCTGGTATATGTC-#3’ 

   

PTGS1 5’- primer 5’-CACCCATGGGAACCAAAG-3’ 

(COX-1)  3’- primer 5’-TGGGGGTCAGGTATGAACTT-3’ 

NM_000962.2 flourogenic probe 5’*-AGTTGCCAGATGCCCAGCTCCTGGC-#3’ 
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PTGS2 5’- primer 5’-CTTCACGCATCAGTTTTTCAAG-3’ 

(COX-2) 3’- primer 5’-TCACCGTAAATATGATTTAAGTCCAC-3’ 

NM_000963.2 flourogenic probe 5’*-ATAAGCGAGGGCCAGCTTTCACCAACG-#3’ 

   

TBXAS1 5’- primer 5’-GGAGACCTTCAACCCTGAAA-3’ 

(TXAS) 3’- primer 5’-AAGGGCAGGTACGTGAAGG-3’ 

NM_001061.2 flourogenic probe 5’*-CTGAGGCCCGGCAGCAGCACC-#3’ 

   

PTGES 5’- primer 5’-CTGGGATGACAGGCATGAAT-3’ 

(PGES) 3’- primer 5’-GACTCACATGGGAGCCTTTT-3’ 

NM_004878.4 flourogenic probe 5’*-CACTGTGCTCAGCCACCATCTGGAGTT-#3’ 

   

AKR1C3 5’- primer 5’-CATTGGGGTGTCAAACTTCA-3’ 

(PGFS) 3’- primer 5’-CCGGTTGAAATACGGATGAC-3’ 

NM_3003739 flourogenic probe 5’*-CCGCAGGCAGCTGGAGATGATCCTC-#3’ 

   

ALOX12 5’- primer 5’-GCATCGAGAGAAGGAACTGAAAGAC-3’ 

(12-LOX) 3’- primer 5’-CGATGGTCAGGGGTAACCCTTC-3’ 

NM_000697 flourogenic probe 5’*-ACAGCAGATCTACTGCTGGGCCACCTGG-#3’ 

   

ALOX5 5’- primer 5’-TCTGGTGTCTGAGGTTTTTGG-3’ 

(5-LOX) 3’- primer 5’-TCTCACGTGTGCCACCAG-3’ 

NM_000698.2 flourogenic probe 5’*-ATTGCAATGTACCGCCAGCTGCCTGC-#3’ 

   

ALOX5AP 5’- primer 5’-CATCAGCGTGGTCCAGAAT-3’ 

(FLAP) 3’- primer 5’-CAAGTGTTCCGGTCCTCTG-3’ 

NM_001629.2 flourogenic probe 5’*-CCATAAAGTGGAGCACGAAAGCAGGACCC-#3’ 

*   6-FAM 

#   TAMRA 

 

7.3.3.2 Agarose Gel Electrophoresis 

An agarose gel electrophoresis was performed for product check of PCR reactions. Expected 

fragment size was analyzed using the molecular-weight size marker X. DNA fragments were 

separated using 3 % LMP agarose gels and TAE-buffer containing 2 M TRIS acetate and 5 mM 

Na2ETDA (pH 8). Electrophoresis ran for 45 minutes at 120 volt and gel was stained with 

ethidium bromide (1 ng/mL). Photography of gels was performed using an UV transluminator 

(Figure 8).  
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Figure 8. Gel Electrophoresis of AKR1C3. The expected fragment size is 112 bp and no PCR product for 

DNA and negative controls (H2O). 

 

 

7.3.3.3 Subcloning of PCR Fragments into PCR II-TOPO Vector 

The cloning reaction was performed for the insertion of PCR products into a 3973 bp pCR II-

TOPO plasmid vector and following transformation into Escherichia coli cells using the TOPO 

TA Cloning Kit according to the manufacturer´s instructions (Figure 9). 

 

Figure 9. pCR II-TOPO Plasmid Vector 
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PCR products were mixed with 1 µL salt solution and water was added to a final volume of 5 µL. 

0.5 µL TOPO cloning vector was given to the reaction and approach was incubated for 

5 minutes at room temperature. During incubation Escherichia coli were thawed on ice. 2 µL of 

TOPO cloning reaction was added and samples were incubated for 15 minutes on ice. Then, 

cells were heat-shocked for 30 seconds at 42 °C, immediately transferred on ice and 250 µL 

S.O.C. medium was added. Reaction was incubated for 1 hour at 37 °C and spread on a 

prewarmed LB (Luria-Bertani) medium agar plates (Table 14) containing Ampicillin, IPTG 

(Isopropyl β-D-1-thiogalactopyranoside) and x-Gal (5-Brom-4-Chlor-3-indolyl-ß-D-galactosid). 

Successful transformation of PCR product leads to ampicillin resistance and loss of ß-

galactosidase enzyme of Escherichia coli. Present x-Gal cannot be reduced to 5-Brom-4-Chlor-

indogo and transformed colonies appear white. Therefore, white colonies were selected and 

cultured in 2 mL LB medium (Table 15) over night. 

 

Table 14. LB (Luria-Bertani) Agar Plates (Ø 10 cm) 

5 g Tryptone  

2.5 g Yeast Extract 
 

5 g NaCl 

7,5 g Bacto Agar  

ad 500 mL H2O autoclaved 

+ 1 mL Ampicillin (25 mg/mL)  

+ 1 mL IPTG (100 mM)  

+ 1 mL X-Gal (2 % in dimethylformamide) 

 

Table 15. LB (Luria-Bertani) Medium 

5 g Tryptone  

2.5 g Yeast Extract 
 

5 g NaCl 

ad 500 mL H2O autoclaved  

+ 1 mL Ampicillin (25 mg/mL) 

 

7.3.3.4 Preparation of Plasmid DNA 

Preparation of plasmid DNA was performed using the Fast Plasmid Mini Kit according to the 

manufacturer´s instructions. 1.5 mL fresh Escherichia coli medium mixture was transferred into 

an Eppendorf tube and centrifuged for 1 minute at full speed. Supernatant was completely 

removed and 400 µL ice cold Complete Lysis Solution was added to the cells, mixed and 
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incubated at room temperature for 3 minutes. Lysates were given into a spin column assembly 

and centrifuged for 1 minute at full speed. The Columns were washed with 400 µL Diluted Wash 

Buffer (centrifugation 1 minute, full speed), waste was discarded and spin columns were 

centrifuged for another minute at maximum speed. Plasmid DNA was eluted into 50 µL Elution 

Buffer and EcoRI restriction analysis was performed. Reactions were prepared as described 

below (Table 16) and incubated for 1 hour at 37 °C. Fragment analysis was done by gel 

electrophoresis.  

 

Table 16. Restriction Analysis with EcoRI Enzyme 

4 µL Plasmid DNA preparation 

1 µL NEBuffer EcoRI  

1 µL EcoRI (20.000 U/mL) 

4 µL H2O  

10 µL   

 

7.3.3.5 DNA Sequencing 

DNA-Sequencing was done for confirming the accuracy of the PCR fragment that was cloned 

into the pCR II-TOPO vector. Components were prepared and reaction was ran as described 

below (Table 17; Table 18).  

 

Table 17. DNA Sequencing Reaction 
 

Table 18. Cycling Conditions 

 1 µL Plasmid DNA  96 °C 1 min  

1 µL M13 Primer (forward or reverse)  96 °C 10 sec 
25 cycles 

2 µL BigDye Direct PCR Master Mix  50 °C 5 sec 

6 µL H2O  60 °C 2 min  

10 µL      

 

Sequencing products were purified by ethanolic precipitation. Therefore, 10 µL H2O, 2 µL 3 M 

sodium acetate and 55 µL 100 % ethanol were added to the sequencing reaction and 

centrifuged for 20 minutes at full speed. Supernatant was discarded and 180 µL 70 % ethanol 

was added, following by centrifugation for another 20 minutes at full speed. Supernatant was 

removed, pellet was dried at 68 °C for 10 minutes and subsequent Sanger sequencing was 

performed by MWG Eurofins. Received sequences were compared to the expected fragments 

using the Basic Local Alignment Search Tool (http://blast.ncbi.nlm.nih.gov/Blast.cgi) 
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7.3.3.6 Preparation of Standard Curves 

Plasmid DNA was linearized using HindIII as restriction endonuclease that cuts the plasmid 

vector at a single restriction site avoiding cutting sites at the inserted PCR fragment. 34 µL 

Plasmid solution, 4 µL NEB-2 Buffer and 2 µL HindIII (20.000 U/mL) was mixed briefly and 

incubated at 37 °C over night. Additionally, restriction enzyme was inactivated for 20 minutes at  

65 °C. Thereafter, concentration of samples was determined at the NanoDrop 2000c 

spectrophotometer and fragment analysis was performed by gel electrophoresis (Figure 10).  

 

 

Figure 10. Gel Electrophoresis of Plasmid DNA and Linearized Plasmid DNA. Linearization leads to a 

mobility shift that can be used for discrimination and verification of effective HINDIII digestion.  

 

 

Standard solution was prepared by diluting plasmid DNA to 109 single-strand molecules/ µL with 

1 x TE Buffer. cDNA plasmid standard curves for each gene ranging from 102 to 106 copies were 

prepared using 109 standard and following dilution steps with 1 X TE containing 0.06 % 5 x First 

Strand Buffer (FSB) (Table 19). 
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Table 19. Dilution of Plasmid Standard Curves 

Volume  Stock Solution 
Volume (µL)    
1 x TE + FSB 

Single-Strand  
Molecules/ µL 

2,5 µL/ Reaction 

  5 µL 109 245  2 x 107  

40 µL 107 160  4 x 106  

20 µL 106 180  4 x 105 106 

20 µL 105 180  4 x 104 105 

20 µL 104 180  4 x 103 104 

20 µL 103 180  4 x 102 103 

20 µL 102 180  4 x 101 102 

 

7.3.4 Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) 

Quantitative Real-Time Polymerase-Chain-Reaction was performed for determination of 

expression level of target genes of AA metabolism. Specific primers and probes for qRT-PCR 

are given in Table 13. The TaqMan probes were labeled with a fluorescent reporter dye at the 5’ 

end that is suppressed by the quencher dye at the 3’ end of the probe as long as the probe is 

intact. During PCR the probe anneals between the forward and reverse primer sides. The 5’ 

nuclease activity of the AmpliTaq Gold DNA Polymerase cleaves the probe, which Increased 

the distance of reporter and quencher dye and leads to an increase of reporter´s fluorescence 

that is proportional to originated PCR-products (Figure 11).  

 

Figure 11. Quantification of PCR-products using Fluorogenic Probes.  
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Quantification of expression of target genes of AA metabolism was performed on a ViiA 7 Real-

Time PCR-System. Absolute mRNA copies were determined using cDNA plasmid standard 

curves for each gene, ranging from 102 to 106 copies (Figure 12). Gene expression analysis was 

performed in quadruplicates; results were normalized to µg RNA. 

 

Figure 12. cDNA Plasmid Standard Curve of PGES ranging from 102 to 106 Copies. 

 

 

The following protocol (Table 20; Table 21) was used for all qRT PCRs:  

 

Table 20. Mastermix and qRT-PCR Reaction 
 

Table 21. Cycling Conditions 

4.5625 µL H2O  50 °C   2 min  

2.5 µL MgCl2 (25 mM Stock)  95 °C 10 min  

1.25 µL 10 x PCR Buffer  95 °C 15 sec 
45 cycles 

1.0 µL dNTP  60 °C   1 min 

0.1875 µL Primer forward 300 nM 

0.1875 µL Primer reverse 300 nM 

0.25 µL Probe (10 µM Stock) 

0.0625 µL AmpliTaq Gold 

10 µL  

  

Reaction Volume 

2.5 µL cDNA/Standard 

10 µL Master Mix 

12.5 µL  
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 Statistics 

Eicosanoid metabolites and corresponding gene expression levels were quantified at baseline, 

after 1, 4 and 24 hours with and without inflammatory activation, respectively. Gene expression 

was normalized to µg RNA and both gene expression and metabolite release was given relative 

to medium control at 1, 4 and 24 hours to evaluate the kinetics of reactions. Data are presented 

as median, interquartile range (IQR) as well as range, analyses performed as duplicates are 

shown as mean. Significance of activation with different stimuli and differential eicosanoid 

response on gene expression and metabolite level of healthy subjects was calculated with the 

Wilcoxon-Mann-Whitney test.  

Descriptive statistics was used for the investigation of dose-dependency of LPS activation and 

study of regulatory mechanism of AA metabolism since analyses were performed as duplicates. 

Significance of relative changes against control values of patients with or without CAD was 

determined with the signed rank test. To evaluate associations with CAD status, first, patients 

without CAD were compared to all patients with CAD. If significantly different (P < 0.05), 

separate P-values were calculated for patients without CAD versus patients with CAD < 50 % 

stenosis, and patients with CAD ≥ 50 % stenosis. The χ²-test was used for categorized variables 

and the Wilcoxon-Mann-Whitney test in case of continuous variables. Age and sex adjusted  

p-values were derived from logistic regression analysis. Absolute values entered logistic 

regression as base 2 logarithms, relative values entered without transformation, and age was 

categorized as ≥ 65 versus < 65 years. In addition, a logistic regression model for the combined 

influence of eicosanoid values on CAD status was developed. Since data were highly 

correlated, a bootstrap variable selection method was used. All variables with age and sex 

adjusted p-values < 0.1 entered logistic regression analyses in 500 bootstrap samples using 

stepwise variable selection. Among those variables with at least 150 selections the most 

important ones where chosen using a strategy proposed by Sauerbrei and Schumacher.77 A 

score to estimate the probability of CAD was calculated from the final model and illustrated by 

Receiver-Operator Characteristics (ROC) curves and boxplots in the three CAD groups. All 

analyses were performed using SAS (Version 9.3, SAS Institute Inc., Cary, NC, USA) and 

GraphPad Prism 6 (Version 6.07, GraphPad Software, La Jolla, CA, USA). 
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8 Results 

 Differential Eicosanoid Response in Whole Blood upon Activation with LPS, 

oxLDL and TNFα  

The previously established whole-blood activation model required 1 mL lithium heparin whole 

blood which was incubated with 1 µg/mL lipopolysaccharide (LPS) and incubated at 37 °C and  

5 % CO2 for 24 hours. Particularly in regard to the investigation of patients with atherosclerosis, 

we aimed to further evaluate stimuli that have been described in the context with this chronic 

inflammatory disease. Furthermore, we aimed to study different time points of whole blood 

activation to characterize the time response of gene expression and metabolite release of AA 

metabolism in greater detail. Therefore, whole blood of 3 healthy blood donors was activated 

with LPS (1 µg/mL), oxidized low-density-lipoprotein (oxLDL; 100 µg/mL) or tumor necrosis 

factor alpha (TNFα; 10 ng/mL) and incubated for 1, 4 and 24 hours. Cell culture studies were 

performed in duplicates, experiments without stimuli serving as baselines were performed as 

quadruplicate (Figure 13). Gene expression analyses were performed in quadruplicates. 

 

 

Figure 13. Investigation of the Eicosanoid Response due to Different Inflammatory Stimuli (n=3). 1 mL 

whole blood was mixed with 500 µL medium spiked with or without LPS, oxLDL and TNFα. Mixtures were 

incubated for 1, 4 and 24 hours at 37 °C and 5 % CO2. Cell culture studies were performed in duplicates, 

experiments without stimuli serving as baselines were performed as quadruplicates. 

 

 

We determined the gene expression of COX-1, COX-2, PGFS and TXAS as representatives of 

COX pathway and gene expression of 5-LOX from the LOX pathway. Gene expression was 

normalized to µg RNA and relative to medium control at 1, 4 and 24 hours to evaluate the 

kinetics of gene expression. Corresponding metabolites 11-HETE, PGF2α, TxB2 and 5-HETE 

were analysed in supernatants. Data are given as absolute values and relative to medium 

control at 1, 4, and 24 hours. 
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Figure 14. Eicosanoid Response after Activation with LPS, oxLDL or TNFα. Whole blood from study 

subjects (n=3) was activated with LPS (1 µg/mL), oxLDL (100 µg/mL) or TNFα (10 ng/mL) for 1, 4 and 24 

hours. Cell culture studies were performed in duplicates, experiments without stimuli serving as baselines were 

performed as quadruplicates. Gene expression analyses were performed in quadruplicates. mRNA expression 

of COX-1 (A), COX-2 (B), PGFS (C), TXAS (D) and 5-LOX (E) and corresponding metabolites 11-HETE (F), 

PGF2α (G), TxB2 (H) and 5-HETE (I) are shown. Data are given relative to medium control at 1, 4 and 24 hours 

(Median ± Range). Significances are given in Supplemental Table I. 

 

 

COX-1 expression was not affected by stimulation with LPS and oxLDL, while incubation of 

whole blood with TNFα revealed a significant increase after 24 hours when normalized to 

medium control (P<0.05) (Figure 14 A; Supplemental Table I). Absolute COX-1 expression 

levels showed no consistent trend after incubation with or without different stimuli for 1 or 



45 
 

4 hours, but significantly decreased after 24 hours incubation (Medium and TNFα: P<0.05; LPS: 

P<0.001; oxLDL: P<0.01) (Supplemental Table II). COX-2 expression was significant 

upregulated (P<0.05) in cellular blood components after activation with LPS, oxLDL and TNFα 

for 1 hour, while only LPS revealed a significant increase at 4 as well as at 24 hours both for 

absolute as well as relative values (P<0.05). In contrast, incubation with oxLDL or TNFα tended 

to result in a downregulation of this pathway after 4 (TNFα) and 24 hours (oxLDL and TNFα) 

when normalized to medium control. Data were in line with absolute COX-2 expression levels 

that significantly increased after 1 hour (P<0.05) and decreased after 24 hours (P<0.01) 

incubation with this stimuli (Figure 14 B; Supplemental Table I; Supplemental Table II). 

TXAS and 5-LOX expression was downregulated after 4 and 24 hours LPS activation (P<0.05; 

P<0.01), however oxLDL and TNFα showed no significant effects when data were normalized to 

medium control (Figure 14 D-E; Supplemental Table I). Absolute TXAS expression levels were 

downregulated with significant effects for 4 hours (P<0.01) and 24 hours (P<0.05) LPS 

incubation and 1 hour stimulation with oxLDL (P<0.05). 5-LOX expression was downregulated 

after 1 hour for all investigated stimuli (LPS: P<0.01; oxLDL and TNFα: P<0.05), while LPS and 

oxLDL showed also significant effects after 24 hours (LPS: P<0.001; oxLDL: P<0.05) 

(Supplemental Table II). 

PGFS expression revealed no significant effects for oxLDL and TNFα both for relative and 

absolute data. After activation of this pathway with LPS no consistent trend of time response 

could be observed, in which incubation showed a significant increase after 4 hours relative to 

medium control (P<0.05). (Figure 14 C; Supplemental Table I) Absolute PGFS expression 

levels tended to be downregulated with significant effects for LPS after 1 hour (P<0.01) and 

24 hours (P<0.05) (Supplemental Table II).  

 

On metabolite level, absolute and relative values of 11-HETE were significant upregulated after 

incubation with oxLDL for all investigated time points and LPS after 4 as well as 24 hours 

(P<0.05). Activation with TNFα revealed no consistent trend, in which a significant induction 

could be observed after 24 hours both for absolute and relative data (P<0.05) (Figure 14 F; 

Supplemental Table III; Supplemental Table IV). PGF2α was significantly upregulated after 

treatment with oxLDL for all time points (1 and 4 hours: P<0.05; 24 hours: P<0.01) and TNFα as 

well as LPS revealed some opposing trends with significant increases after 4 (TNFα) and 

24 hours (LPS) when normalized to medium control (P<0.05) (Figure 14 G; Supplemental Table 

III). Absolute PGF2α release was upregulated after oxLDL stimulation for all investigated time 

points (1 hour: P<0.05; 4 and 24 hours: P<0.01), while activation with LPS and TNFα showed 

an initial decrease (P<0.05) followed by an increase after 4 hours (P<0.05) and 24 hours 

(P<0.01) (Supplemental Table IV). TxB2 was upregulated for all investigated stimuli with 

significant effects for oxLDL after 4 and 24 hours when normalized to medium control (P<0.05). 
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Absolute TxB2 release tended to be upregulated with significant effect after 1 hour (P<0.05) and 

4 hours (P<0.01) oxLDL incubation (Figure 14 H; Supplemental Table III; Supplemental Table 

IV). LOX-dependent 5-HETE showed no consistent trend after activation with LPS with a 

significant increase after 4 hours and a decreased metabolite release after 24 hours. Activation 

of whole blood with oxLDL revealed significant increased 5-HETE levels for all investigated time 

points and no significant effect for stimulation with TNFα (Figure 14 I; Supplemental Table III). 

Absolute 5-HETE levels seemed to be increased with significant effects for 1 and 24 hours for 

all stimuli, while oxLDL also revealed significant effects for 4 hours incubation (P<0.05) 

(Supplemental Table IV).  

 

In summary, whole blood activation with different stimuli revealed variable effects on gene 

expression and mediator level with a distinctive time-dependency of those reactions. In 

principal, COX-2 and PGFS expression was upregulated, TXAS and 5-LOX expression was 

downregulated while gene expression levels of COX-1 were not altered. Furthermore, 

corresponding metabolites for both COX- and LOX-pathways showed mostly an upregulation, 

while stimulation with LPS revealed a significant downregulation of 5-HETE after 24 hours.  

 

Together, we observed a minor response of whole blood arachidonic acid metabolism followed 

by activation with TNFα. Although oxLDL revealed a quantitative significant stimulation, the 

preparation and oxidation of LDL from plasma is not possible to allow its application in clinical 

routine settings due to high variability between the preparations and prolonged preparation time 

(estimated preparation time: 120 hours). Therefore, further experiments were performed with 

LPS as stimulant at three different time points (1, 4 and 24 hours). 
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 Dose-Dependency of Eicosanoid Response on Gene Expression and Mediator 

Level 

For the investigation of dose-dependency of LPS mediated eicosanoid response, whole blood 

was activated with different concentrations of LPS (100 ng/mL, 300 ng/mL or 1 µg/mL). The 

rational for these conditions was based on LPS concentrations that have been used for the 

stimulation of cytokine release in human whole blood.78,79 The samples (n=3; pool) were 

incubated for 1, 4 and 24 hours. Cell culture studies were performed in duplicates, experiments 

without LPS serving as baselines were performed as quadruplicates (Figure 15). Gene 

expression analyses were performed in quadruplicates. 

 

 

Figure 15. Investigation of Dose-Dependency of Eicosanoid Response. 1 mL whole blood (n=3, pool) was 

mixed with 500 µL medium spiked with or without LPS (100 ng/mL, 300 ng/mL or 1 µg/mL). Mixtures were 

incubated for 1, 4 and 24 hours at 37 °C and 5 % CO2. Cell culture studies were performed in duplicates, 

experiments without LPS serving as baselines were performed as quadruplicates. 

 

 

Eicosanoid response on gene expression (COX-1, COX-2, PGFS and TXAS) as well as 

metabolite (11-HETE, PGF2α, TxB2 and 5-HETE) level was analysed. Gene expression was 

normalized to µg RNA and both, gene expression and metabolite release, are given relative to 

medium control at 1, 4 and 24 hours.  

 

COX-1 expression revealed a minor 1.26 to 1.63 fold upregulation after 1 hour LPS activation, 

while expression level was not affected or tended to be downregulated after 4 and 24 hours 

when normalized to medium control. Absolute COX-1 expression levels showed also no 

consistent trend after incubation with LPS, whereas expression seemed to be upregulated after 

1 hour followed by a downregulation after 4 and 24 hours (Figure 16 A; Supplemental Table V). 

COX-2 expression showed a 3.27 to 24.44 fold upregulation in cellular blood components after 

activation with LPS, while also absolute values were highly upregulated with gene expression 

levels between 8633.56 and 29424.23 x103 copies/ µg RNA (Figure 16 B; Supplemental Table 
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V). Furthermore, relative as well as absolute PGFS expression revealed no LPS mediated 

effects (Figure 16 C; Supplemental Table V). TXAS and 5-LOX expression was downregulated 

after 4 and 24 hours (Figure 16 D-E; Supplemental Table V). With respect to the different 

concentration of LPS no differences for all investigated target genes as well as for all studied 

time points were observed.  

 

Figure 16. Eicosanoid Response after Incubation with Different Concentrations of LPS. Whole blood 

(n=3, pool) was activated with different concentrations of LPS (100 ng/mL, 300 ng/mL or 1 µg/mL). Cell culture 

studies were performed in duplicates, experiments without stimuli serving as baselines were performed as 

quadruplicates. Gene expression analyses were performed in quadruplicates. mRNA expression of COX-1 (A), 

COX-2 (B), PGFS (C), TXAS (D) and 5-LOX (E) and corresponding metabolites 11-HETE (F), PGF2α (G), TxB2 

(H) and 5-HETE (I) are shown. Data are given relative to medium control at 1, 4 and 24 hours (Mean ± SEM).  
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Analysis of corresponding metabolites revealed an upregulation of 11-HETE, PGF2α and TxB2 

while 5-HETE showed a downregulation after 24 hours LPS incubation (Figure 16 F-I; 

Supplemental Table VI). Eicosanoid response on metabolite level also indicated no differences 

for several LPS concentrations. 

 

Summing, the time-dependent eicosanoid response on gene expression and metabolite level 

was confirmed and no dose-dependency for the investigated time-points was detected. Thus, 

further experiments were performed with a final concentration of 100 ng/mL LPS. 
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 Investigation of Regulatory Mechanism of AA Metabolism 

Since we observed a rapid response of AA metabolism on mRNA expression and metabolite 

level, functional studies were performed to better characterize the regulation of AA metabolism 

on the transcriptional and translational level. To this end, actinomyin D (ActD) as an inhibitor of 

transcription and cycloheximide (CHX) as a translational inhibitor were used to investigate, if the 

eicosanoid response was controlled through transcriptional or translational changes. 

Whole blood was activated with LPS (100 ng/mL) for 1, 4 and 24 hours after pre-incubation with 

5 µg/mL ActD or 10 µg/mL CHX for 1 hour. Cell culture studies were performed in duplicates, 

experiments without LPS, ActD or CHX serving as baselines were performed as triplicates 

(Figure 17; Figure 18). Gene expression analyses were performed in quadruplicates. 

 

Eicosanoid response on gene expression (COX-1, COX-2, PGFS and TXAS) as well as 

metabolite (11-HETE, PGF2α, TxB2 and 5-HETE) level was analysed. Gene expression was 

normalized to µg RNA and results are given relative to medium control, while results after 

treatment with ActD are given relative to the ActD control at 1, 4 and 24 hours. 

 

 

Figure 17. Transcriptional Inhibition Experiments with Actinomycin D (ActD). 1 mL whole blood (n=3, 

pool) was mixed with 500 µL medium spiked with or without LPS (100 ng/mL). For transcriptional inhibition, 

whole blood was pre-incubated with ActD for 1 hour. Mixtures were incubated for 1, 4 and 24 hours at 37 °C 

and 5 % CO2. Cell culture studies were performed in duplicates, experiments without LPS or ActD serving as 

baselines were performed as triplicates. 
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Figure 18. Translational Inhibition Experiments with Cycloheximide (CHX). 1 mL whole blood (n=3, pool) 

was mixed with 500 µL medium spiked with or without LPS (100 ng/mL). For translational inhibition, whole 

blood was pre-incubated with CHX for 1 hour. Mixtures were incubated for 1, 4 and 24 hours at 37 °C and 5 % 

CO2. Cell culture studies were performed in duplicates, experiments without LPS or CHX serving as baselines 

were performed as triplicates. 

 

 

Activation of whole blood with LPS revealed similar effects on gene expression and mediator 

level as described in previously performed experiments. We found a transcriptional inhibition of 

COX-1, COX-2, PGFS and consolidated downregulation of TXAS as well as 5-LOX gene 

expression when results were normalized to medium control. Absolute gene expression levels 

showed a transcriptional inhibition of COX-2, PGFS, TXAS and 5-LOX after 24 hours, while 

solely COX-1 expression was not affected suggesting a prolonged half life time of mRNA. On 

metabolite level 11-HETE and TxB2 release was inhibited after incubation with ActD, in which 

PGF2α and 5-HETE revealed a slight increase after 1 hour (Figure 19; Table 22; Supplemental 

Table VII; Supplemental Table VIII). Translational inhibition with CHX induced a general 

inhibition of LPS induced 11-HETE, PGF2α, TxB2 and 5-HETE release (Figure 20; Table 22; 

Supplemental Table IX) with minor increases of PGF2α after 1 hour, 5-HETE after 4 hours as 

well as TxB2 after 24 hours incubation. 
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Figure 19. Transcriptional Inhibition of the Arachidonic Acid Metabolism with Actinomycin D (ActD). 

COX- and LOX- dependent eicosanoid response on gene expression and metabolite level after incubation with 

LPS (positive control) and transcriptional inhibition with actinomycin D (ActD) are shown. Cell culture studies 

were performed in duplicates, experiments without stimuli serving as baselines were performed as triplicates. 

Gene expression analyses were performed in quadruplicates. Data are given relative to medium or ActD 

control at 1, 4 and 24 hours (Mean ± SEM). 
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Figure 20. Translational Inhibition of the Arachidonic Acid Metabolism with Cycloheximide (CHX). 

Metabolite release of 11-HETE (A), PGF2α (B), TxB2 (C) and 5-HETE (D) after incubation with LPS (Positive 

Control) and translational inhibition with cycloheximide (CHX) are shown. Cell culture studies were performed 

in duplicates, experiments without stimuli serving as baselines were performed as triplicates. Gene expression 

analyses were performed in quadruplicates. Data are given relative to medium control or CHX at 1, 4 and 

24 hours (Mean ± SEM). 

 

 

Table 22. LPS induced Eicosanoid Response after Transcriptional and Translational Inhibition. 

Target Gene/ 
Metabolite 

Time  
(h) 

Positive 
 Control 

Transcriptional 
Inhibition 

Translational 
Inhibition 

COX-1 

1 = ()  

4 ()   

24    

COX-2 

1  ()  

4  ()  

24    

11-HETE 

1 = = = 

4  = = 

24  = = 

PGFS 

1 () ()  

4    

24    

PGF2α 

1 ()   

4  = = 

24  = = 
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TXAS 

1 () ()  

4    

24    

TxB2 

1 () = = 

4  = = 

24  = () 

5-LOX 

1 =   

4  ()  

24  ()  

5-HETE 

1   = 

4 = ()  

24  () () 

 

 

Data suggested that production of 11-HETE and PGF2α due to the inflammatory stimuli LPS 

underlie de novo synthesis and seemed to be coupled to induced COX-2 and PGFS mRNA 

synthesis. In contrast, the strong involvement of the translational level was assumed since we 

found increased TxB2 and 5-HETE metabolite release while TXAS and 5-LOX gene expression 

decreased 

  

In summary, eicosanoid response seemed to be regulated on transcriptional as well as 

translational levels, thus further experiments should consider both, data of gene expression and 

mediator release, equally. 
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 Differential Eicosanoid Response of Healthy Subjects 

In previous work, we developed an analytical test for the application in a clinical setting that 

enabled the simultaneous and standardized analysis of COX- and LOX-dependent eicosanoid 

response both on metabolite and gene expression level. LC-MS/MS method allowed 

quantification of AA, 5-HETE, 11-HETE, 12-HETE, PGF2α, PGE2 and TxB2, while RT-PCR 

assays for analysis of COX-2 and PGES expression have been established.  

For a more comprehensive profiling of the main metabolizing pathways of AA metabolism, 

further gene expression assays were needed. Therefore, additional RT-PCRs for PLA2, COX-1, 

TXAS, PGFS, 5-LOX, FLAP and 12-LOX have been established using gene-specific primers 

and probes (Figure 21).  

 

Figure 21. Improvement of the Analysis of Arachidonic Acid (AA) Metabolism. AA metabolism was 

analyzed on gene expression and metabolite level. Target genes (boxes colored light gray) and metabolites 

(framed boxes) of the previously developed in vitro whole-blood assay are shown. Additional established gene 

expression assays (PLA2, COX-1, TXAS, PGFS, 5-LOX, FLAP, 12-LOX) are colored dark gray. 

 

 

Using the newly developed in vitro whole blood assay, AA metabolism of 10 healthy subjects 

was investigated for the characterization of general eicosanoid profiles and a better 

understanding of the inter-individual variability of the eicosanoid response. 

 

Whole blood of 5 men and 5 women was incubated with LPS (100 ng/mL) for 1, 4 and 24 hours. 

Analysis was performed in triplicates (Figure 22). Eicosanoid response on gene expression 
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(PLA2, COX-1, COX-2, PGES, PGFS, TXAS, 5-LOX, FLAP, 12-LOX) and metabolite (AA, 11-

HETE, PGE2, PGF2α, TxB2, 5-HETE and 12-HETE) level was analysed. Gene expression was 

normalized to µg RNA and both, gene expression and metabolite release, are given relative to 

medium control at 1, 4 and 24 hours. 

 

 

Figure 22. Investigation of the Eicosanoid Response of Healthy Subjects (n=10). 1 mL whole blood was 

mixed with 500 µL medium spiked with or without LPS (100 ng/mL). Mixtures were incubated for 1, 4 and 

24 hours at 37 °C and 5 % CO2. Cell culture studies were performed in triplicates. 

 

 

Gene expression analysis over all healthy subjects revealed an upregulation for four 

investigated target genes (COX-2, PGES, PGFS, FLAP), a downregulation for two investigated 

pathways (TXAS, 5-LOX) and no consistent trend for PLA2, COX-1 and 12-LOX.  

In detail, COX-2 (P<0.01), PGES  (P<0.01) and PGFS (P<0.05) showed significant effects for 1, 

4 and 24 hours, while FLAP was merely upregulated for 1 and 4 hours when normalized to 

medium control (P<0.01). Absolute gene expression levels for COX-2, PGES and FLAP showed 

an increase after incubation with LPS for 1, 4 and 24 hours, whereas PGES at 4 and 24 hours 

as well as FLAP at 24 hours showed also upregulated expression levels without LPS 

stimulation. Absolute mRNA level of PGFS mainly decreased. Normalized gene expression of 

TXAS and 5-LOX showed significant downregulation for 1 and 24 hours (P<0.01), in which 

TXAS revealed also a significant effect for 4 hours (P<0.01). Absolute levels where in line with 

relative data and showed a decrease after 4 and 24 hours LPS incubation for both target genes 

and after 1 hour for 5-LOX gene expression. PLA2, COX-1 and 12-LOX were significant 

(P<0.01) upregulated after 1 hour and declined after 4 or 24 hours LPS activation when 

normalized to medium control. Absolute gene expression level of PLA2 significantly increased 

after 4 hours LPS incubation while COX-1 and 12-LOX expression decreased over time (Figure 

23; Supplemental Table X).  
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Figure 23. Differential Eicosanoid Response on Gene Expression Level in Healthy Subjects (n=10). 

Whole blood from female (n=5, left) and male (n=5, right) study subjects was activated with or without LPS 

(100 ng/mL) for 1, 4 and 24 hours. mRNA expression of PLA2 (A), COX-1 (B), COX-2 (C), PGES (D), PGFS 

(E), TXAS (F), 5-LOX (G), FLAP (H) and 12-LOX (I) are shown. Statistical significances are given in 

Supplemental Table X and Supplemental Table XI. Cell culture studies were performed in triplicates. 

 

 

Differential gene expression levels between males and females could be found for PGFS after 

4 hours for absolute and relative values and TXAS after 24 hours LPS activation when 

normalized to medium control (P<0.05). The other investigated pathways revealed no significant 

gender effects (Supplemental Table XI). In regard to the analysis of every single subject major 

inter-individual differences could be found for all investigated target genes both for COX- and 

LOX dependent pathways. For instance, activation of whole blood with LPS results in a 10 to 

80-fold induction of COX-2 gene expression, while downregulation of 5-LOX ranged from 12 to 
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74 percent relative to medium control after 24 hours (Supplemental Table XI). The coefficients 

of variation (CV) ranged between 15.06 % for PGFS up to 100.04 % for PGES expression 

(Supplemental Table XII). Furthermore, some observed subjects revealed oppositional effects 

compared to the whole group, which could be shown for PLA2, COX-1, TXAS, PGFS, 12-LOX, 

5-LOX and FLAP for several time points after LPS stimulation (Figure 23; Supplemental Table 

X; Supplemental Table XI). 

 

On metabolite level AA was significant downregulated after 1 and 24 hours LPS activation when 

normalized to medium control (P<0.01). In contrast, absolute AA release significantly increased 

over time (P<0.01). The major COX metabolites 11-HETE, TxB2, PGE2 and PGF2α were 

significantly upregulated for all investigated time points (P<0.01), solely PGF2α revealed a 

significant downregulation after 1 hour LPS incubation normalized to medium control (P<0.01). 

Absolute metabolite release revealed an increase for these metabolites after 4 and 24 hours, 

whereas 11-HETE, TxB2 and PGE2 release was also increased after 1 hour LPS stimulation 

(P<0.05). LOX dependent metabolites showed no consistent trend after whole blood activation 

normalized to medium control, in which 5-HETE was significant upregulated after 1 and 4 hours 

followed by a significant downregulation after 24 hours (P<0.01). 12-HETE revealed an initially 

significant downregulation continued by a significant upregulation after 24 hours (P<0.01). 

Absolute 5-HETE and 12-HETE levels were significant upregulated for all investigated time 

points (P<0.05) (Supplemental Table XIII). 

 

Analyzing potential gender effects on metabolite level, we found significant differences of TxB2 

release after 24 hours between male and female subjects (P<0.05). No differential eicosanoid 

response could be shown for the further investigated AA metabolites when results were 

normalized to medium control. Absolute data revealed higher levels of 5-HETE (baseline and 

4 hours without LPS), 11-HETE (1 hour with and 4 hours without LPS) and 12-HETE (baseline 

and 1 hour as well as 4 hours incubation with or without LPS) for female subjects when 

compared to males. Contrary, TxB2 release was significantly lower in females compared to 

males for all investigated conditions except of 24 hours LPS activation (Supplemental Table 

XIV).  

 

In line with the results of the analysis of target genes, inter-individual differences of metabolite 

release could be found with a coefficient of variation from 8.23 % (AA) up to 110.63 % (TxB2) 

(Supplemental Table XV). 24 hours LPS activation of whole blood lead to major variabilities of 

COX-dependent metabolite release, whereat 11-HETE showed an 4- to 13-fold, PGE2 an 12- to 

81-fold, PGF2α an 3- to 8-fold and TxB2 an 2- to 16-fold increase. Also LOX pathways showed 

differences for every single subject, in which exemplarily 5-HETE ranged between a 1- to 3-fold 
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induction after 4 hours LPS activation. Similarly to investigated target genes, analysis of 

metabolite level revealed single subjects that showed oppositional effects compared to the 

whole group. Diverging eicosanoid release could be found for AA, 11-HETE, TxB2, PGE2, PGF2α 

and 12-HETE (Figure 24; Supplemental Table XIII; Supplemental Table XIV). 

 

 

Figure 24. Differential Eicosanoid Response on Mediator Level in Healthy Subjects (n=10). Whole blood 

from female (n=5, left) and male (n=5, right) study subjects was activated with or without LPS (100 ng/mL) for 

1, 4 and 24 hours. Metabolite release of AA (A), 11-HETE (B), PGE2 (C), PGF2α (D), TxB2(E), 5-HETE (F) and 

12-HETE (G) are shown. Statistical significances are given in Supplemental Table XIII and Supplemental Table 

XIV. Cell culture studies were performed in triplicates. 

 

 

Summing up, investigation of 10 healthy subjects revealed characteristic eicosanoid profiles of 

COX and LOX-dependent target genes and corresponding metabolites due to an inflammatory 

stimulus. In general gene expression analysis over all healthy subjects revealed an upregulation 

for COX-2, PGES, PGFS, FLAP, a downregulation for TXAS as well as 5-LOX and no 

consistent trend for PLA2, COX-1 and 12-LOX. On metabolite level AA seemed to be 
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downregulated, COX-dependent metabolites were upregulated and 5-HETE as well as  

12-HETE revealed no consistent trend (Figure 25). 

 

 

Figure 25. Eicosanoid Response on Gene Expression and Metabolite Level followed by LPS Incubation 

for 1, 4 and 24 Hours. Investigated enzymes on gene expression level (dark gray) and metabolites (framed) 

revealed significant upregulation (), downregulation () or no LPS mediated effect (=). 

 

 

Furthermore, we confirmed the previously described time dependency for all investigated 

pathways both on gene expression and mediator level. Since eicosanoid profiling after 1 hour 

LPS activation required a strict time management further clinical studies might consider solely 

LPS incubation for 4 and 24 hours.  

 

In addition, strong inter-individual variabilities of target gene expression and mediator release 

could be found. Data suggested that those differences might also affect the susceptibility to 

inflammatory diseases. Therefore further studies will illuminate the eicosanoid response of 

patients with or without atherosclerosis as a chronic inflammatory disease.  
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 Differential Eicosanoid Response in Patients with or without Coronary Artery 

Disease 

Suggesting that individual regulated eicosanoid profiles determine the risk for atherosclerosis, 

we aimed to investigate target genes and metabolites of AA metabolism as novel biomarkers for 

atherosclerotic burden. The predictive role of eicosanoid response was investigated in patients 

with or without CAD. Standardized in vitro activation assays were performed using whole blood 

from 92 patients from the Leipzig LIFE Heart Study, which is a cross-sectional study of patients 

undergoing first diagnostic coronary angiography for suspected CAD.66 In brief, whole blood 

was activated with LPS (100 ng/mL) and incubated for 4 and 24 hours. Analysis was performed 

in triplicates (Figure 26). Using quantitative PCRs, we investigated the expression of PLA2, 

COX-1, COX-2, TXAS, PGES, PGFS, 12-LOX, 5-LOX and FLAP. Analyses were performed in 

quadruplicates and data were normalized to µg RNA as well as relative to medium control at 4 

and 24 hours to evaluate the kinetics of gene expression. We further investigated the release of 

AA, 4 metabolites of the COX-pathway (11-HETE, TxB2, PGE2, PGF2) and LOX-derived 12-

HETE and 5-HETE using LC-MS/MS. We evaluated absolute concentrations (ng/mL) and 

relative changes normalized to medium control. 

 

 

Figure 26. Investigation of Eicosanoid Response in Patients with or without CAD (n=92). 1 mL whole 

blood was mixed with 500 µL medium spiked with or without LPS (100 ng/mL). Mixtures were incubated for 4 

and 24 hours at 37 °C and 5 % CO2. Cell culture studies were performed in triplicates. 

 

 

8.5.1 Characteristics of Study Patients 

Standardized in vitro activation assays were performed using whole blood from 92 patients. Out 

of these, 40 patients did not reveal CAD, 20 patients showed wall irregularities with a luminal 

reduction < 50 % and 32 patients revealed angiographic confirmed stenosis ≥ 50 % in at least 

one major coronary artery. Patients without CAD were significantly younger than patients with 

CAD (P<0.05), showed a significantly lower intima media thickness (P<0.01) and higher HDL-

cholesterol levels (P<0.05). No significant differences for gender, smoking, body mass index, 

waist hip ratio, for further lipid parameters such as cholesterol, LDL-cholesterol, Lipoprotein (a), 
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for C-reactive protein (CRP) and Troponin T were detected between the different study groups 

(Table 23). 

 

Table 23. Characteristics of Study Population 

Parameter no CAD* with CAD with CAD 

   CAD < 50 %† CAD ≥ 50 %‡ 

Subjects, n 40 52 20 32 

Age (years)§  
61.5 

(40.0 - 80.0) 
68.0‖ 

(46.0 - 80.0) 
68.0  67.5  

Men, n (%) 25 (62.5) 40 (76.9) 15 25 

Smoking, n (%) 3 (7.5) 10 (19.2) 4 (20.0) 6 (18.8) 

Diabetes, n (%) 8 (20.0) 17 (32.7) 9 (45.0) 8 (25.0) 

Body mass index (kg/m2)§  
29.3 

(21.3 - 46.9) 
29.5 

(23.3 - 49.4) 
30.3  28.6  

Waste hip ratio§  
0.9 

(0.7 - 1.1) 
1.0 

(0.8 - 1.1) 
1.0  1.0  

Intima media thickness§ 
0.7 

(0.6 - 1.2) 
0.8# 

(0.6 - 1.3) 
0.8‖  0.9‖  

Lp(a) (mmol/L)§ 
0.2 

(0.1 - 1.4) 
0.2 

(0.1 - 1.9) 
0.1 

 
0.2 

 

Cholesterol (mmol/L)§ 
5.9 

(3.8 - 8.0) 
5.7 

(3.6 - 10.2) 
5.4  5.9  

LDL Cholesterol (mmol/L)§ 
3.6 

(1.7 - 5.3) 
3.4 

(1.5 - 7.7) 
3.3  3.5  

HDL Cholesterol (mmol/L)§ 
1.4 

(0.5 - 2.3) 
1.2‖ 

(0.6 - 2.2) 
1.2  1.2  

Triglycerides (mmol/L)§ 
1.7 

(0.8 - 12.3) 
1.7 

(0.7 - 8.9) 
1.6  1.8  

hsC-reactive Protein (mg/L)§ 
2.1 

(0.2 - 21.7) 
2.0 

(0.2 - 41.2) 
2.4 

 
1.9 

 

hsTroponin T (pg/mL)§ 
5.0 

(5.0 - 36.7) 
6.3 

(5.0 - 70.9) 
5.0 

 
7.6‖ 

 

*  Subjects with catheter based exclusion of coronary artery disease (CAD) 

†  Subjects with angiographic coronary wall irregularities < 50 % luminal reduction 

‡  Subjects with angiographic stenosis ≥ 50 % luminal reduction in at least one major coronary artery 

§  Data are given as median (range) 

‖  P<0.05 when compared with subjects w/o CAD 

#  P<0.01 when compared with subjects w/o CAD 
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8.5.2 Regulatory Genes of AA Metabolism are Differentially Expressed in Whole Blood 

from Patients with or without Coronary Artery Disease 

We found that 3 genes (COX-1 (Figure 27 A), TXAS, 5-LOX) were downregulated and 3 genes 

(COX-2, PGES, FLAP (Figure 27 B-D)) were upregulated in cellular blood components after  

4 and 24 hours activation with LPS when normalized to medium control. For PLA2, PGFS and 

12-LOX, no consistent trend after LPS activation was observed (Supplemental Table XVI).  

Comparing patients with or without CAD, we did not detect expression differences at baseline 

(Supplemental Table XVII). On the contrary, significantly 0.78- up to 0.80-fold lower mRNA 

expression levels were observed for COX-2 and PGES after 24 hours in patients with CAD 

(P<0.05) (Figure 27 B-C; Supplemental Table XVII). For COX-2, this finding was also 

statistically significant after 4 hours with LPS activation (P<0.05) (Figure 27 B-C; Supplemental 

Table XVII), indicating a reduced inducibility of these eicosanoid pathways in patients with CAD. 

For COX-1 and FLAP, we observed significant upregulated relative expression levels after 

24 hours of LPS activation (P<0.05), in contrast absolute expression levels tended to be lower 

at 24 hours in patients with CAD (Figure 27 A; Figure 27 D; Supplemental Table XVII).  

Comparing patients with different extent of stenosis (< or ≥ 50 %) separately to controls, a 

differential gene expression of COX-1 could be shown for patients with < 50 % as well as with 

≥ 50 % stenosis. Only patients with a < 50 % stenosis showed a significantly lower gene 

expression of COX-2 and PGES in relation to controls, whereas FLAP gene expression was 

significantly higher in patients with ≥ 50 % stenosis.  

Together, this indicated that AA-metabolizing regulatory genes, both of the COX- and LOX-

pathway, were expressed at lower levels upon activation of whole blood from patients with CAD. 
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Figure 27. Differential Eicosanoid Response on Gene Expression Level in Patients with or without CAD. 

Whole blood from patients without CAD (n=40, light grey), with CAD < 50 % stenosis (n=20, dark grey) and 

with CAD ≥ 50 % stenosis (n=32, black) was activated with or without LPS (100 ng/mL) for 4 and 24 hours. 

mRNA expression of COX-1 (A), COX-2 (B), PGES (C) and FLAP (D) as differentially regulated target genes 

are shown. Data are shown as absolute values normalized to µg RNA (left) and as relative values normalized 

to medium control (right). Statistical significance for patients without CAD compared to patients with CAD is 

shown with grayed lines and subsequent analysis of all groups is shown with black brackets (* P<0.05, 

** P<0.01). Cell culture studies were performed in triplicates, gene expression analyses were performed in 

quadruplicates.  
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8.5.3 Differential Release of AA and AA-derived Metabolites in Whole Blood from 

Patients with or without Coronary Artery Disease 

We next investigated the release of corresponding metabolites of AA metabolism (AA,  

11-HETE, TxB2, PGE2, PGF2, 12-HETE, 5-HETE) using LC-MS/MS, which were recently shown 

to be differentially secreted in inflammatory disease.34  

As a major finding, we detected that AA concentrations were significantly 0.74- up to 0.78-fold 

lower already at baseline in patients with CAD (P<0.05) (Figure 28 A). For all other investigated 

metabolites, no significant difference was observed between patients with or without CAD at this 

time point (Supplemental Table XIX). LPS activation led to a principal induction of AA and AA-

metabolite release (Supplemental Table XVIII), but significantly lower levels of AA, 11-HETE, 

12-HETE and 5-HETE were detected in whole blood supernatants of patients with CAD 

compared to controls (Figure 28 A-D; Supplemental Table XIX). For 5-HETE, this effect was 

more pronounced when evaluating the relative changes at 24 hours (Figure 28 D; Supplemental 

Table XIX). Comparing metabolite release of patients with < or ≥ 50 % stenosis separately to 

controls, the reduced release of AA was pronounced especially in patients with ≥ 50 % stenosis 

(Figure 28 A).  

 

Together, this indicated a reduced release of AA as central precursor of eicosanoids and 

implied a reduced release of COX- and LOX-derived metabolites in patients with CAD, which 

was in accordance with results from gene expression analyses. 
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Figure 28. Differential Eicosanoid Response on Mediator Level in Patients with or without CAD. Whole 

blood from patients without CAD (n=40, light grey), with CAD < 50 % stenosis (n=20, dark grey) and with CAD 

≥ 50 % stenosis (n=32, black) was activated with or without LPS (100 ng/mL) for 4 and 24 hours. Eicosanoid 

release of AA (A), 11-HETE (B), 12-HETE (C) and 5-HETE (D) as differentially regulated eicosanoids are 

shown. Data are shown as absolute values in µg/L (left) and as relative values normalized to medium control 

(right). Statistical significance for patients without CAD compared to patients with CAD is shown with grayed 

lines and subsequent analysis of all groups is shown with black brackets (*P<0.05, **<0.01). Cell culture 

studies were performed in triplicates. 
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8.5.4 Eicosanoids as Blood Biomarkers as Predictors of Coronary Artery Disease 

We first evaluated the power of classical CAD risk factors, such as age and sex, and of IMT as 

non-invasive diagnostic imaging procedure in the discrimination of patients with or without CAD. 

In accordance with recent studies, AUCs of 67.5 for age combined with sex (Table 24) and 67.7 

for IMT could be shown. As the CAD consortium scores were recently recommended by the 

European Society of Cardiology for evaluating pre-test probability of obstructive CAD,80 we 

further investigated the discriminatory power of the CAD2 score, based on age, sex, type of 

chest pain, diabetes, hypertension, dyslipidaemia, and smoking, between patients with or 

without CAD, resulting in an AUC of 71.1 (Figure 30 B). 

 

We subsequently investigated, if laboratory parameters, which are associated with mechanisms 

underlying CAD, including vascular inflammation or aberrant lipid regulation, discriminated 

between patients with and without CAD. As summarized in Figure 29 serum cholesterol, LDL-

cholesterol, and triglyceride levels, as well as hsCRP or high sensitive Troponin T (TnT-hs) 

revealed limited significance in the prediction of CAD, with AUCs in the range of 50.0 to 61.0. 

For HDL-cholesterol, which was significantly different between cases and controls (Table 23), 

an AUC of 62.6 was calculated.  

 

 

Figure 29. ROC-Analysis of Laboratory Parameters. ROC-analysis and AUCs of Cholesterol, HDL-

Cholesterol, LDL-Cholesterol, Triglycerides, hs-Troponin and hs-CRP are shown. 
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Since mRNA expression of regulatory AA genes (COX-1, COX-2, PGES and FLAP) and AA 

metabolite release (AA, 5-, 11- and 12-HETE) was significantly different between patients with 

or without CAD, we tested their potential as biomarkers to predict the presence of CAD. Using a 

bootstrap analysis, we identified relative COX-1 mRNA expression at 24 hours, absolute COX-2 

mRNA expression levels at 4 hours LPS activation and AA release at baseline (0 hours) as 

most relevant phenotypes of AA metabolism to differentiate between patients with or without 

CAD. These blood phenotypes were included into a logistic regression analysis and revealed an 

AUC of 79.8 (Table 24 Model 2). Addition of age and gender further improved the AUC to 83.6 

(Table 24 Model 3; Figure 30 A). Combining AA blood phenotypes with the CAD2 score resulted 

in an AUC of 81.9 (Figure 30 C). No major differences between the calculated score for patients 

with < 50 % stenosis (AUC 83.7) and ≥ 50 % stenosis (AUC 83.5) compared to controls could 

be shown.  

 

Table 24. Logistic Regression Models 

Variable Odds Ratio* 95 % CI P-Value AUC 

Model 1† 67.5 

Age 
(≥ 65 vs. < 65 years) 

3.45 1.4  - 8.51 0.007  

Sex 
(male vs. female) 

2.61 0.98 - 7.00 0.056  

Model 2‡ 79.8 

AA 
(0h log2) 

0.27 0.12 - 0.58 0.001  

COX-1 
(24 h % ctr.) 

1.04 1.01 - 1.07 0.005  

COX-2 
(4 h % ctr.) 

0.99 0.99 - 1.00 0.055  

Model 3§ 83.6 

Age 
(≥ 65 vs. < 65 years) 

4.62 1.52  - 14.07 0.007  

Sex 
(male vs. female) 

2.41 0.72  - 8.09 0.156  

AA 
(0h log2) 

0.32 0.15 - 0.72 0.006  

COX-1 
(24h % ctr.) 

1.05 1.02  - 1.09 0.002  

COX-2 
(4h % ctr.) 

0.99 0.99 - 1.00 0.048  

*    Odds ratios are presented per 1-unit difference 

†    Logistic Regression Model calculated with age and sex only, variable-specific AUC  

‡    Logistic Regression Model calculated without age and sex, variable-specific AUC 

§    Logistic Regression Model combining  Logistic Regression Model 1 and 2 
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Figure 30. Receiver-Operator Characteristic (ROC) Curves for Patients without CAD Compared to all 

Patients with Angiographically Confirmed CAD. (A) Score calculated by logistic regression model. (B) Score 

calculated by CADII (C) ROC curve analysis for combined logistic regression model and CADII score. 

 

 

Together, combining 3 whole blood biomarkers of AA metabolism with age and sex into our 

developed probability score allowed to predict presence of CAD with a specificity of 71.8 % and 

a sensitivity of 80.4 %.  
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9 Discussion 

 

In the current thesis, we improved an in vitro whole blood activation model for the investigation 

of the eicosanoid response on gene expression and metabolite level using an inflammatory 

stimulus. Comparison of LPS, TNFα and oxLDL as activators of whole blood AA metabolism 

revealed most significant effects for LPS which was time- but not dose-dependent. 

Transcriptional and translational inhibition experiments were performed to illuminate the central 

molecular mechanisms of the eicosanoid pathways. Data suggested that the production of 

metabolites underlies de novo synthesis upon stimulation, which is controlled both, at the level 

of transcription and translation. Investigation of the eicosanoid response in healthy subjects 

revealed major inter-individual differences for all investigated target genes and metabolites. 

Results let us hypothesize that varying eicosanoid response might be predisposing towards a 

different susceptibility to inflammatory diseases. The predictive role of the individual eicosanoid 

response for the presence of atherosclerosis was examined in patients with or without coronary 

artery disease using the novel developed whole-blood assay. Overall, we found that the 

eicosanoid response on gene expression (COX-1, COX-2, PGES and FLAP) and metabolite 

level (AA, 5-, 11- and 12-HETE) was significantly different in patients with or without CAD. This 

allowed the development of a score consisting of three biomarkers of AA metabolism with an 

AUC of 83.6, which is superior to currently available scores of blood markers of CAD. 

 

Eicosanoids are signaling molecules that exhibit major physiological as well as 

pathophysiological effects and play a central role in acute and chronic inflammatory 

diseases.81,82 Nevertheless, studies investigating the different phenotypes of AA metabolism 

and their diagnostic potential as biomarkers for atherosclerosis are rare due to analytical 

difficulties of these metabolites. Immunoassays offer an opportunity to quantify the eicosanoid 

concentration in several body fluids e.g. plasma, serum and urine but struggled with limitations 

such as low sample throughput, single parametric metabolite analysis and potential cross 

reactions of antibodies.28,29,31,83,84 Furthermore, studies investigating eicosanoid profiles based 

on gene expression and metabolite level including both COX- and LOX-dependent pathways, 

are rare since most studies concern metabolites only or examine parts of the eicosanoid 

networks.85-88  

To overcome these limitations we have established a standardized whole blood activation assay 

using LPS as inflammatory stimulus that increases concentration of AA metabolites and 

facilitate its measurement by LC-MS/MS.34 A previously developed method from our laboratory 

allowed simultaneous quantification of AA, 5-HETE, 11-HETE, 12-HETE, PGF2α, PGE2 and 

TxB2 as central mediators of AA metabolism. Beside the analysis of eicosanoid profiles on the 
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mediator level, this assay allowed the determination of gene expression of corresponding AA 

metabolizing enzymes. To this end, mRNA was isolated out of blood cells and RT-PCRs for the 

quantification of COX-2 and PGES gene expression levels were established. The assay which 

was developed in this thesis additionally comprised RT-PCRs for the analysis of PLA2, COX-1, 

TXAS, PGFS, 5-LOX, FLAP and 12-LOX gene expression to cover all major routes of AA 

metabolism and investigate the discriminatory potential of these eicosanoid pathways for 

inflammatory diseases.  

 

LPS is already known as a potent inflammatory stimulus of the AA metabolism and acts by a 

toll-like receptor 4 (TLR4) associated nuclear factor kappa-light-chain-enhancer of activated B-

cells (NF-κB) pathway.89 However, oxLDL and TNFα are well described in the 

pathophysiological mechanism of atherosclerosis and might be alternatively activators for the 

established whole blood assay.90,91 Therefore we examined and compared the eicosanoid 

response in whole blood after activation with LPS, oxLDL and TNFα. The rational for used 

concentrations of the stimuli was based on concentrations that have been applied to previously 

published cell culture experiments.78,79,92-95 Furthermore, clinical observations on neutropenic 

patients with suspected gram-negative sepsis revealed, that endotoxin plasma concentration of 

these patients ranged from 0 to 7.7 x 109 pg/mL.96 Due to the previously reported time 

dependency of the TxB2, PGE1 and PGE2 release from human monocytes treated with LPS, we 

also investigated the eicosanoid response at different time points after stimulation, e.g. 1, 4 and 

24 hours.97  

 

As a major result we found that whole blood activation with different stimuli revealed 

characteristic effects on gene expression and metabolite level with a distinctive time- but no 

dose-dependency. In principal, COX-2 and PGFS expression was upregulated, TXAS and  

5-LOX expression was downregulated while gene expression levels of COX-1 were not altered. 

Furthermore, corresponding metabolites for both COX- and LOX-pathways showed mostly an 

upregulation, except for 5-HETE release after 24 hours LPS activation. The obvious effects of 

LPS on gene expression and metabolite levels of AA metabolism were comparable with 

previous studies that showed an increase of PGE2, TxB2 and LTB4 release as well as COX-2 

expression after incubation of whole blood with LPS.11 In contrast, activation with TNFα 

revealed only a minor response of cellular AA metabolism where solely COX-2 expression, the 

corresponding metabolite 11-HETE as well as PGF2α were significantly increased. These results 

were in line with previous data showing that macrophages of the human term decidua activated 

with TNFα revealed increased PGF2α without alteration of any other prostaglandins.98 

Furthermore, activation of human umbilical vein endothelial cells (HUVEC) with TNFα was not 

associated with PGE2 and 15-HETE, but only PGI2 release, which is also consistent with the 
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minor effects on AA metabolism observed in our study.99 Whole blood activation with oxLDL 

revealed a significant stimulation especially of COX-2 mRNA expression and metabolite release 

of 11-HETE, PGF2α, TxB2 and 5-HETE. On gene expression level COX-2 mRNA expression 

was upregulated after 1 hour followed by a drop down after 4 and 24 hours of incubation. 

Findings are similar to observations of others which described that macrophages incubated with 

oxLDL revealed an inhibition of COX-2 protein and mRNA when co-stimulated with LPS for  

4 hours.100 With respect to the LOX pathway, Fair and colleagues investigated the effects of 

oxLDL on U937 cells as a model for mononuclear cells. They demonstrated that oxLDL 

increased the production of 15-HETE and 5-HETE on the metabolite level and raised FLAP 

transcript levels 10-fold compared to controls. 5-LOX mRNA was not affected which is 

comparable to our findings in the whole blood model.101  

All together our data confirmed the practicability of the whole blood activation assay for the 

investigation of the eicosanoid response on gene expression and metabolite level, whereas 

intensity of the effects depended upon the stimuli used. Because of deficient applicability of the 

standardized protocol for oxLDL preparation in clinical routine settings (estimated preparation 

time: 120 hours) and high batch variability as well as low effects of TNFα, LPS was used for the 

following experiments. Furthermore, analyses revealed a strong time- but no dose-dependent 

eicosanoid response on gene expression and mediator level after LPS activation for all 

investigated pathways. Therefore further experiments were performed with a final concentration 

of 100 ng/mL LPS resembling more physiological conditions at three different time points.  

 

The AA metabolism can be understood as a network of interacting pathways with distinct 

upstream and downstream enzymes that contribute to a broad spectrum of metabolites.102 The 

established whole blood assay allows illuminating central mechanism of the cyclooxygenase 

and lipoxygenase pathways on gene expression and metabolite level. Since we observed a 

rapid response upon stimulation we queried whether eicosanoid response on gene expression 

and metabolite level underlie de novo synthesis. To this end, actinomyin D (ActD) as an inhibitor 

of transcription and cycloheximide (CHX) as a translational inhibitor were used to perform 

functional studies to better characterize the molecular mechanism.103,104 

Data suggested that the eicosanoid response was regulated at the transcriptional as well as 

translational level. For instance, incubation of whole blood with ActD led to a transcriptional 

inhibition of COX-2 and PGFS that was not markedly overcomed by stimulation with LPS. 

Inhibition could be also shown for corresponding metabolites (11-HETE and PGF2α), suggesting 

that the eicosanoid release is dependent on de novo mRNA transcription of the respective 

enzymes, which is lightly controlled by inflammatory stimuli. In line with this, translational 

inhibition also revealed downregulation of eicosanoid metabolite release, indicating a short half-

life time of these enzymes. Data were in line with the results of Nüsing et al. that supposed 
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enhanced de novo synthesis of COX when human monocytes were incubated with LPS and 

calculated half-life of 3.2 h for COX-2 enzyme.105 

In contrast, the strong involvement of the translational level was assumed since we found 

increased TxB2 and 5-HETE metabolite release while TXAS and 5-LOX gene expression 

decreased. Results were in accordance to the experiments of Nüsing and colleagues that found 

no LPS effect on the biosynthesis of TXAS in human monocytes but determined a half-life of 28 

hours for cellular TXAS activity.105 In summary, eicosanoid response seemed to be regulated on 

all levels, thus further experiments should consider both, data of gene expression and mediator 

release, equally. 

 

Another finding of this study was the high inter-individual variability of eicosanoid response in 

healthy subjects, both on gene expression and metabolite level. In general, gene expression 

upon LPS activation for COX-2, PGES, PGFS and FLAP was upregulated, revealed a 

downregulation for TXAS as well as 5-LOX and showed no consistent trend for PLA2, COX-1 

and 12-LOX. On metabolite level, AA release was significant downregulated, COX metabolites 

were upregulated and LOX metabolites revealed no consistent trend.  

The coefficients of variation (CV) ranged between 15.06 % (PGFS) up to 100.04 % (PGES) for 

analyzed target genes. Differences of metabolite release could be found with a coefficient of 

variation from 8.23 % (AA) up to 110.63 % (TxB2). Data are consistent with results that 

described reproducible inter-individual variations of PGE2 release by endotoxin-stimulated 

human monocytes.106 Also methodical publications of other LC-MS/MS methods for the 

quantification of AA and related metabolites reported a wide range of eicosanoid concentrations 

found in plasma of healthy subjects.107,108 Yasumoto and colleagues postulated that variations of 

COX, LOX and CYP metabolites were caused by the platelet activation ability of each subject 

and inter-individual differences might be related to the stimulation of vascular endothelia cells 

and white blood cell in vivo.109 When analyzing the CV separately for male and female subjects, 

we found decreased CVs for COX-1, PGES and FLAP as well as 11-HETE, TxB2, PGF2α and 

12-HETE. In line with this, we found significant gender differences of PGFS and TXAS gene 

expression levels as well as TxB2, 5-HETE, 11-HETE and 12-HETE release between male and 

female subjects. Therefore analysis of these pathways should consider gender as cofunding. 

The other investigated pathways revealed no significant gender effects. Published data support 

these findings, e.g. Hennam and colleagues also found no different PGF2α plasma concentration 

between men and women, while Suzuki et al showed sex specific differences of urinary 12-

HETE levels.110,111 Further studies described increased serum TxB2 production in healthy males 

compared to females which is congruent to our results.112 

Based on the hypothesis that inter-individual regulated eicosanoid response on gene 

expression and mediator level may predispose to different susceptibility to inflammatory 
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diseases, we investigated, if the AA metabolism may be used for the prediction of stable CAD in 

patients of the Leipzig LIFE Heart Study.  

 

Our study indicated that patients with CAD were characterized by significant differences in their 

humoral eicosanoid response of COX-1, COX-2, PGES and FLAP expression and AA,  

11-HETE, 5-HETE and 12-HETE release when compared to patients without CAD. CAD 

patients showed a suppression of COX and LOX pathways both on gene expression and 

mediator level in our whole blood activation assay. Combining data from relative COX-1 mRNA 

expression at 24 hours, relative COX-2 mRNA expression levels at 4 hours LPS activation and 

AA release at baseline (0 hours) as well as classical CAD risk factors such as age and sex led 

to the development of a novel probability score with an AUC of 83.6. 

Pretest probability models such as the Diamond and Forrester or the Duke Clinical Score were 

recently described and combined age, sex and type of chest pain (Diamond and Forrester 

Score, AUC 0.64) as well as electrocardiographic findings and common atherosclerotic risk 

factor such as smoking, cholesterol and diabetes (Duke Clinical Score, AUC 0.72) for the 

prediction of CAD.68 Furthermore, Genders and colleagues developed the Consortium [CAD 

prediction] Scores with an extended model, where the inclusion of the coronary calcium score, 

that measures the amount of calcium in the walls of the arteries using a special computed 

tomography (CT) of the heart, increased the c statistic to 88.0.70 With respect to laboratory 

markers studies showed, that lipid and inflammatory parameters alone could be used for CAD 

prediction with an AUC up to 0.80.73 In line with this, the EVINCI study revealed that addition of 

high-density-lipoprotein (HDL) cholesterol, aminotransferase (AST) and high sensitive c-reactive 

protein (hsCRP) improved the prediction of Gender´s Clinical Score.72  

Overall, we found that the novelly developed score consisting of three biomarkers of AA 

metabolism determined using an in vitro whole blood activation model revealed the best 

performance in the prediction of CAD compared to all other studies. Data of the current study 

were raised from a deeply phenotyped study cohort using a highly standardized procedure for 

analysis. However, diagnostic value of this pretest score needs to be evaluated in larger, 

independent study of patients with atherosclerosis in different vascular beds. Furthermore, the 

current protocol of our in vitro model is technically challenging and time-intense, which limits the 

application in large clinical trials. Thus, the whole blood activation model is currently under 

modification for prospective widespread clinical application. 

 

In summary, this thesis contributes to a better understanding of the AA metabolism and its 

regulation on gene expression and metabolite level. Data indicated a high inter-individual 

eicosanoid response in healthy subjects and major differences in the humoral eicosanoid 

response of patients with or without CAD. Thus, the implementation of eicosanoids as 
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biomarkers for inflammatory diseases seems to be a promising approach for the prediction of 

CAD. 
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11 Supplement 

 

Supplemental Table I. Kinetic Expression of Target Genes after Activation of Whole Blood with 

LPS, oxLDL or TNFα (n=3) 

COX-1 Expression Relative to Medium Control (% Ctr) 

Time Stimuli Median Range P-Value 

1h 

LPS 

84.29 68.44 -  112.02 0.454 

4h 94.69 61.21 -  133.35 0.879 

24h 79.18 65.29 -  110.37 0.376 

1h 

oxLDL 

75.29 65.92 -  147.49 0.897 

4h 114.84 51.49 -  118.90 0.842 

24h 79.73 75.00 -  105.66 0.300 

1h 

TNFα 

63.24 58.76 -  99.66 0.181 

4h 119.86 65.67 -  122.44 0.899 

24h 126.18 119.31 -  135.82 < 0.05 

COX-2 Expression Relative to Medium Control (% Ctr) 

Time Stimuli Median Range P-Value 

1h 

LPS 

1811.50 996.40 -  2085.62 < 0.05 

4h 537.67 526.47 -  744.88 < 0.05 

24h 1278.70 1163.71 -  1972.87 < 0.05 

1h 

oxLDL 

2239.30 1306.66 -  2579.98 < 0.05 

4h 324.87 84.52 -  399.06 0.216 

24h 75.69 62.37 -  83.93 0.054 

1h 

TNFα 

842.76 790.05 -  1337.82 < 0.05 

4h 49.17 31.52 -  73.15 0.056 

24h 57.25 29.45 -  69.53 0.056 

PGFS Expression Relative to Medium Control (% Ctr) 

Time Stimuli Median Range P-Value 

1h 

LPS 

64.12 46.47 -  81.08 0.069 

4h 189.10 184.61 -  223.24 < 0.05 

24h 121.40 109.67 -  139.21 0.112 

1h 

oxLDL 

110.92 76.89 -  171.93 0.548 

4h 152.71 82.35 -  177.72 0.319 

24h 126.78 108.12 -  137.65 0.107 

1h 

TNFα 

130.19 63.50 -  135.93 0.712 

4h 183.25 91.53 -  223.39 0.233 

24h 128.73 112.58 -  130.78 0.053 

TXAS Expression Relative to Medium Control (% Ctr) 

Time Stimuli Median Range P-Value 

1h 

LPS 

106.31 48.59 -  152.19 0.944 

4h 32.37 27.93 -  73.80 0.063 

24h 29.60 17.82 -  53.38 < 0.05 

1h 

oxLDL 

95.79 72.55 -  137.13 0.932 

4h 51.70 17.24 -  79.68 0.108 

24h 71.11 32.91 -  78.25 0.108 
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TXAS Expression Relative to Medium Control (% Ctr) 

Time Stimuli Median Range P-Value 

1h 

TNFα 

87.47 42.90 -  142.57 0.784 

4h 52.52 16.66 -  81.37 0.117 

24h 65.47 32.48 -  67.19 0.058 

5-LOX  Expression Relative to Medium Control (% Ctr) 

Time Stimuli Median Range P-Value 

1h 

LPS 

53.75 48.97 -  93.60 0.135 

4h 55.49 48.35 -  66.07 < 0.05 

24h 25.25 19.23 -  34.81 < 0.01 

1h 

oxLDL 

129.19 106.44 -  150.39 0.152 

4h 119.96 42.78 -  133.42 0.968 

24h 94.08 83.33 -  109.16 0.611 

1h 

TNFα 

97.66 80.84 -  127.73 0.894 

4h 165.58 80.83 -  225.56 0.305 

24h 125.75 105.38 -  132.21 0.121 
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Supplemental Table II.Quantitative Target Gene Analysis of Whole Blood Activation with LPS, 

oxLDL or TNFα (n=3) 

COX-1 (x103 copies/µg RNA) 

Time Stimuli Median Range P-Value 

0h 

Medium 

2374.84 1713.84 -  3167.31 - 

1h 2915.24 2789.43 -  4741.62 0.062 

4h 2383.94 1066.88 -  3799.73 0.765 

24h 941.86 874.64 -  971.70 < 0.05 

1h 

LPS 

3265.71 1908.94 -  3996.68 0.080 

4h 2257.33 1422.71 -  2325.71 0.123 

24h 769.37 571.06 -  1039.54 < 0.001 

1h 

oxLDL 

3125.49 2100.25 -  4299.78 0.298 

4h 1956.34 1225.19 -  2834.40 0.468 

24h 728.75 697.33 -  995.14 < 0.01 

1h 

TNFα 

2905.41 1639.11 -  2998.66 0.687 

4h 2495.07 1278.74 -  2918.79 0.660 

24h 1159.34 1103.64 -  1279.25 < 0.05 

COX-2 (x103 copies/µg RNA) 

Time Stimuli Median Range P-Value 

0h 

Medium 

1390.14 977.88 -  1972.70 - 

1h 794.75 447.38 -  1353.48 < 0.05 

4h 1864.53 1381.77 -  2319.60 0.368 

24h 329.81 304.72 -  394.89 < 0.01 

1h 

LPS 

9330.69 7918.91 -  24518.17 0.052 

4h 10292.59 10025.10 -  12211.99 < 0.05 

24h 3896.40 3838.06 -  7790.70 < 0.05 

1h 

oxLDL 

11542.41 10384.74 -  30308.44 < 0.05 

4h 4488.93 1960.56 -  7440.69 0.290 

24h 249.63 246.28 -  255.76 < 0.01 

1h 

TNFα 

6278.96 5985.18 -  11406.56 < 0.05 

4h 916.71 731.13 -  1010.76 0.134 

24h 211.87 97.13 -  226.08 < 0.01 

PGFS (x103 copies/µg RNA) 

Time Stimuli Median Range P-Value 

0h 

Medium 

564.44 266.44 -  999.92 - 

1h 672.06 281.25 -  703.30 0.918 

4h 220.25 183.21 -  510.77 < 0.05 

24h 226.25 165.62 -  295.23 < 0.05 

1h 

LPS 

312.30 180.35 -  570.26 < 0.01 

4h 491.69 338.21 -  965.88 0.796 

24h 274.67 181.64 -  410.99 < 0.05 

1h 

oxLDL 

516.77 311.96 -  1209.17 0.397 

4h 336.33 325.60 -  420.61 0.406 

24h 244.63 227.99 -  374.29 0.099 

1h 

TNFα 

426.77 382.30 -  915.65 0.878 

4h 409.28 403.61 -  467.50 0.799 

24h 295.90 213.20 -  332.37 0.081 
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TXAS (x103 copies/µg RNA) 

Time Stimuli Median Range P-Value 

0h 

Medium 

685.32 221.19 -  925.47 - 

1h 428.39 114.00 -  520.51 < 0.05 

4h 318.52 308.65 -  787.44 0.755 

24h 295.10 231.00 -  1061.22 0.923 

1h 

LPS 

252.91 173.49 -  455.41 0.067 

4h 219.91 99.90 -  235.06 < 0.01 

24h 123.30 87.35 -  189.06 < 0.05 

1h 

oxLDL 

377.65 156.33 -  410.35 < 0.05 

4h 164.69 135.78 -  245.94 0.245 

24h 209.85 180.75 -  349.20 0.176 

1h 

TNFα 

223.27 162.53 -  374.73 0.055 

4h 167.28 131.20 -  251.14 0.259 

24h 193.21 155.21 -  344.65 0.140 

5-LOX (x103 copies/µg RNA) 

Time Stimuli Median Range P-Value 

0h 

Medium 

5596.75 3372.51 -  6352.43 - 

1h 3208.77 1695.42 -  4224.71 < 0.05 

4h 4336.56 3778.93 -  10122.48 0.564 

24h 2864.37 2853.72 -  3544.31 0.089 

1h 

LPS 

1724.74 1586.92 -  2069.01 < 0.01 

4h 2496.65 2096.81 -  5617.01 0.111 

24h 894.79 548.74 -  997.01 < 0.001 

1h 

oxLDL 

4496.80 2190.35 -  4825.62 < 0.05 

4h 4533.22 4330.46 -  5785.98 0.851 

24h 3126.65 2378.04 -  3334.57 < 0.05 

1h 

TNFα 

3133.70 2165.53 -  3415.12 < 0.05 

4h 8181.71 6256.99 -  9781.36 0.309 

24h 3601.92 3007.17 -  4685.91 0.144 
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Supplemental Table III. Kinetic Metabolite Release after Activation of Whole Blood with LPS, 

oxLDL or TNFα (n=3) 

11-HETE Release Relative to Medium Control (% Ctr) 

Time Stimuli Median Range P-Value 

1h 

LPS 

105.68 86.60 -  125.96 0.646 

4h 468.65 338.98 -  474.17 < 0.05 

24h 459.05 339.34 -  483.54 < 0.05 

1h 

oxLDL 

1791.11 1032.33 -  1932.22 < 0.05 

4h 1358.62 1190.84 -  1420.22 < 0.01 

24h 852.89 686.06 -  1301.03 < 0.05 

1h 

TNFα 

96.39 69.42 -  112.54 0.624 

4h 107.26 100.75 -  135.06 0.306 

24h 114.44 111.40 -  121.26 < 0.05 

PGF2α Release Relative to Medium Control (% Ctr) 

Time Stimuli Median Range P-Value 

1h 

LPS 

95.90 90.67 -  99.77 0.226 

4h 128.92 123.20 -  175.54 0.124 

24h 122.52 122.29 -  133.69 < 0.05 

1h 

oxLDL 

280.19 201.72 -  306.78 < 0.05 

4h 309.50 278.08 -  431.11 < 0.05 

24h 340.41 275.45 -  341.67 < 0.01 

1h 

TNFα 

96.43 89.50 -  103.01 0.444 

4h 140.18 131.12 -  160.23 < 0.05 

24h 109.54 100.64 -  115.24 0.184 

TxB2 Release Relative to Medium Control (% Ctr) 

Time Stimuli Median Range P-Value 

1h 

LPS 

134.81 114.52 -  147.35 0.078 

4h 1083.26 461.01 -  1781.35 0.118 

24h 690.17 308.53 -  847.38 0.084 

1h 

oxLDL 

194.69 142.75 -  297.99 0.134 

4h 206.19 187.13 -  260.92 < 0.05 

24h 270.23 217.08 -  318.95 < 0.05 

1h 

TNFα 

112.39 89.31 -  117.72 0.535 

4h 117.25 62.63 -  143.60 0.774 

24h 118.87 79.86 -  130.31 0.591 

5-HETE Release Relative to Medium Control (% Ctr) 

Time Stimuli Median Range P-Value 

1h 

LPS 

134.92 120.99 -  200.00 0.166 

4h 133.60 129.53 -  141.64 < 0.05 

24h 79.16 63.30 -  79.36 < 0.05 

1h 

oxLDL 

1091.95 818.33 -  1395.65 < 0.05 

4h 1573.09 920.52 -  1799.79 < 0.05 

24h 1024.90 614.44 -  1117.39 < 0.05 

1h 

TNFα 

119.46 110.51 -  153.45 0.167 

4h 108.16 81.16 -  121.99 0.783 

24h 85.46 84.47 -  103.14 0.277 
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Supplemental Table IV. Quantitative Metabolite Analysis after Whole Blood Activation with LPS, 

oxLDL or TNFα (n=3) 

11-HETE Release (ng/mL) 

Time Stimuli Median Range P-Value 

0h 

Medium 

0.67 0.55 -  0.70 - 

1h 0.60 0.57 -  1.06 0.552 

4h 1.07 0.93 -  1.16 < 0.01 

24h 3.03 2.66 -  3.48 < 0.05 

1h 

LPS 

0.75 0.60 -  0.92 0.363 

4h 5.01 3.15 -  5.49 < 0.05 

24h 12.85 10.27 -  15.98 < 0.01 

1h 

oxLDL 

10.94 10.68 -  10.98 < 0.01 

4h 13.78 12.63 -  15.18 < 0.01 

24h 25.80 23.88 -  34.58 < 0.05 

1h 

TNFα 

0.64 0.57 -  0.74 0.758 

4h 1.24 1.08 -  1.26 0.054 

24h 3.37 3.22 -  3.98 < 0.05 

PGF2α Release (ng/mL) 

Time Stimuli Median Range P-Value 

0h 

Medium 

2.02 1.96 -  2.03 - 

1h 1.83 1.77 -  2.04 0.219 

4h 1.78 1.44 -  1.96 0.171 

24h 2.10 2.10 -  2.35 0.131 

1h 

LPS 

1.83 1.70 -  1.85 < 0.05 

4h 2.41 2.29 -  2.52 < 0.05 

24h 2.81 2.57 -  2.88 < 0.01 

1h 

oxLDL 

5.13 4.11 -  5.43 < 0.05 

4h 5.50 5.44 -  6.20 < 0.01 

24h 7.14 6.48 -  7.18 < 0.01 

1h 

TNFα 

1.82 1.71 -  1.89 < 0.05 

4h 2.49 2.30 -  2.57 < 0.05 

24h 2.37 2.30 -  2.42 < 0.01 

TxB2 Release (ng/mL) 

Time Stimuli Median Range P-Value 

0h 

Medium 

0.79 0.59 -  1.23 - 

1h 1.13 0.52 -  1.64 0.320 

4h 1.18 0.72 -  1.74 < 0.05 

24h 0.69 0.60 -  0.90 0.648 

1h 

LPS 

1.67 0.60 -  2.21 0.186 

4h 12.75 8.01 -  12.75 0.089 

24h 4.16 2.14 -  7.59 0.157 

1h 

oxLDL 

2.20 1.56 -  2.34 < 0.05 

4h 2.20 1.87 -  3.58 < 0.01 

24h 1.92 1.87 -  1.95 0.106 

1h 

TNFα 

1.27 0.62 -  1.46 0.234 

4h 1.38 0.45 -  2.50 0.314 

24h 0.72 0.72 -  0.90 0.769 
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5-HETE Release (ng/mL) 

Time Stimuli Median Range P-Value 

0h 

Medium 

0.29 0.24 -  0.43 - 

1h 0.46 0.33 -  0.62 0.148 

4h 0.64 0.47 -  0.99 0.060 

24h 1.15 1.00 -  1.84 < 0.05 

1h 

LPS 

0.67 0.62 -  0.75 < 0.05 

4h 0.91 0.63 -  1.29 0.051 

24h 0.80 0.73 -  1.45 < 0.01 

1h 

oxLDL 

4.99 4.65 -  5.07 < 0.05 

4h 9.15 8.45 -  10.12 < 0.05 

24h 11.28 10.29 -  12.85 < 0.05 

1h 

TNFα 

0.51 0.50 -  0.74 < 0.05 

4h 0.70 0.57 -  0.81 0.059 

24h 1.04 0.98 -  1.55 < 0.01 
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Supplemental Table V. Dose-Dependency of Eicosanoid Response on Gene Expression Level 

(n=3, pool) 

COX-1 (x103 copies/µg RNA) 

Time Medium* LPS (100 ng/mL)* LPS (300 ng/mL)* LPS (1 µg/mL)* 

0h 1317.94 - - - 

1h 1560.65 1959.06 2541.74 1970.82 

4h 1110.78 910.99 641.17 1067.68 

24h 1315.50 413.01 506.12 377.77 

Gene Expression Level normalized to Medium Control (%) 

1h - 125.53 162.86 126.28 

4h - 82.01 57.72 96.12 

24h - 31.40 38.47 28.72 

COX-2 (x103 copies/µg RNA) 

Time Medium* LPS (100 ng/mL)* LPS (300 ng/mL)* LPS (1 µg/mL)* 

0h 11336.26 - - - 

1h 4421.39 36214.51 39424.23 33717.51 

4h 2637.93 10138.63 8633.56 10487.62 

24h 622.00 12477.74 15206.19 11923.34 

Gene Expression Level normalized to Medium Control (%) 

1h - 819.07 891.67 762.60 

4h - 384.34 327.29 397.57 

24h - 2006.08 2444.73 1916.94 

PGFS (x103 copies/µg RNA) 

Time Medium* LPS (100 ng/mL)* LPS (300 ng/mL)* LPS (1 µg/mL)* 

0h 220.44 - - - 

1h 387.03 356.00 353.66 370.68 

4h 375.10 340.58 248.58 349.79 

24h 261.82 205.46 324.02 250.05 

Gene Expression Level normalized to Medium Control (%) 

1h - 91.98 91.38 95.77 

4h - 90.80 66.27 93.25 

24h - 78.48 123.76 95.51 

TXAS (x103 copies/µg RNA) 

Time Medium* LPS (100 ng/mL)* LPS (300 ng/mL)* LPS (1 µg/mL)* 

0h 468.49 - - - 

1h 837.74 522.05 765.31 583.94 

4h 511.82 93.69 55.41 75.08 

24h 316.05 79.46 135.21 74.81 

Gene Expression Level normalized to Medium Control (%) 

1h - 62.32 91.35 69.70 

4h - 18.30 10.83 14.67 

24h - 25.14 42.78 23.67 
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5-LOX (x103 copies/µg RNA) 

Time Medium* LPS (100 ng/mL)* LPS (300 ng/mL)* LPS (1 µg/mL)* 

0h 9075.87 - - - 

1h 9147.79 6828.73 6364.68 6140.50 

4h 8049.21 2752.87 2156.47 3205.26 

24h 2881.42 902.45 1449.37 849.42 

Gene Expression Level normalized to Medium Control (%) 

1h - 74.65 69.58 67.13 

4h - 34.20 26.79 39.82 

24h - 31.32 50.30 29.48 

* Data are given as Mean 
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Supplemental Table VI. Dose-Dependency of Eicosanoid Response on Metabolite Level (n=3, pool) 

11-HETE (ng/mL) 

Time Medium* LPS (100 ng/mL)* LPS (300 ng/mL)* LPS (1 µg/mL)* 

0h 0.51 - - - 

1h 0.75 1.22 0.86 0.94 

4h 1.18 6.68 5.54 6.10 

24h 4.29 34.30 30.70 31.50 

Metabolite Release normalized to Medium Control (%) 

1h - 162.56 114.59 125.45 

4h - 568.09 471.06 519.15 

24h - 799.53 715.62 734.27 

PGF2α (ng/mL) 

Time Medium* LPS (100 ng/mL)* LPS (300 ng/mL)* LPS (1 µg/mL)* 

0h 0.34 - - - 

1h 0.38 0.45 0.26 0.47 

4h 0.28 0.64 0.49 0.39 

24h 0.26 2.26 1.72 1.63 

Metabolite Release normalized to Medium Control (%) 

1h - 116.41 68.88 122.27 

4h - 230.27 175.32 141.98 

24h - 862.60 656.49 622.14 

TxB2 (ng/mL) 

Time Medium* LPS (100 ng/mL)* LPS (300 ng/mL)* LPS (1 µg/mL)* 

0h 1.54 - - - 

1h 1.72 2.63 2.21 1.80 

4h 1.93 16.55 15.80 17.05 

24h 1.29 7.99 7.85 8.01 

Metabolite Release normalized to Medium Control (%) 

1h - 153.35 128.86 104.96 

4h - 857.51 818.65 883.42 

24h - 618.99 608.53 620.93 

5-HETE (ng/mL) 

Time Medium* LPS (100 ng/mL)* LPS (300 ng/mL)* LPS (1 µg/mL)* 

0h 0.50 - - - 

1h 0.58 1.34 0.96 0.88 

4h 0.80 1.46 0.97 0.89 

24h 1.45 1.12 0.91 0.96 

Metabolite Release normalized to Medium Control (%) 

1h - 231.37 166.55 152.43 

4h - 182.10 121.34 111.51 

24h - 77.54 62.77 66.33 

* Data are given as Mean 
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Supplemental Table VII. Eicosanoid Response on Gene Expression Level after Transcriptional 

Inhibition (n=3, pool) 

COX-1 (x103 copies/µg RNA) 

Time Medium* LPS* ActD* ActD + LPS* 

0h 2161.93 - - - 

1h 2017.10 2115.81 1798.04 2160.77 

4h 1286.41 1856.22 1033.60 898.21 

24h 383.33 301.26 811.45 547.02 

Gene Expression normalized to Medium or ActD Control (%) 

1h - 104.89 - 120.17 

4h - 144.29 - 86.90 

24h - 78.59 - 67.41 

COX-2 (x103 copies/µg RNA) 

Time Medium* LPS* ActD* ActD + LPS* 

0h 7246.62 - - - 

1h 3182.22 36131.97 2512.14 7916.03 

4h 375.94 4515.48 866.25 1427.98 

24h 81.96 4099.00 5.74 3.65 

Gene Expression normalized to Medium or ActD Control (%) 

1h - 1135.43 - 315.11 

4h - 1201.10 - 164.85 

24h - 5001.14 - 63.55 

PGFS (x103 copies/µg RNA) 

Time Medium* LPS* ActD* ActD + LPS* 

0h 549.18 - - - 

1h 511.48 633.21 207.75 261.76 

4h 316.34 618.91 55.24 60.14 

24h 159.59 288.04 1.80 1.49 

Gene Expression normalized to Medium or ActD Control (%) 

1h - 123.80 - 126.00 

4h - 195.65 - 108.86 

24h - 180.48 - 82.97 

TXAS (x103 copies/µg RNA) 

Time Medium* LPS* ActD* ActD + LPS* 

0h 509.48 - - - 

1h 606.12 704.95 292.33 390.83 

4h 240.59 124.57 53.46 42.87 

24h 214.49 44.13 2.68 1.46 

Gene Expression normalized to Medium or ActD Control (%) 

1h - 116.31 - 133.69 

4h - 51.78 - 80.20 

24h - 20.57 - 54.64 
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5-LOX (x103 copies/µg RNA) 

Time Medium* LPS* ActD* ActD + LPS* 

0h 13489.10 - - - 

1h 9400.01 8558.72 7912.81 10804.10 

4h 4455.34 6388.93 3022.26 2323.61 

24h 3677.47 1372.12 107.99 79.40 

Gene Expression normalized to Medium or ActD Control (%) 

1h - 91.05 - 136.54 

4h - 143.40 - 76.88 

24h - 37.31 - 73.53 

* Data are given as Mean 
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Supplemental Table VIII. Eicosanoid Response on Metabolite Level after Transcriptional Inhibition 

(n=3, pool) 

11-HETE  (ng/mL) 

Time Medium* LPS* ActD* ActD + LPS* 

0h 0.29 - - - 

1h 0.47 0.54 0.89 0.81 

4h 0.75 3.62 1.35 1.14 

24h 2.66 17.30 3.53 3.20 

Metabolite Release normalized to Medium or ActD Control (%) 

1h - 114.38 - 91.07 

4h - 481.04 - 84.63 

24h - 650.38 - 90.64 

PGF2α (ng/mL) 

Time Medium* LPS* ActD* ActD + LPS* 

0h 0.31 - - - 

1h 0.26 0.29 0.18 0.36 

4h 0.36 0.51 0.37 0.34 

24h 0.48 1.54 0.42 0.46 

Metabolite Release normalized to Medium or ActD Control (%) 

1h - 108.75 - 197.56 

4h - 141.34 - 91.20 

24h - 323.53 - 109.60 

TxB2 (ng/mL) 

Time Medium* LPS* ActD* ActD + LPS* 

0h 0.58 - - - 

1h 0.75 0.88 0.69 0.67 

4h 0.99 4.61 0.80 0.68 

24h 0.51 3.81 0.31 0.30 

Metabolite Release normalized to Medium or ActD Control (%) 

1h - 117.29 - 97.46 

4h - 464.02 - 85.00 

24h - 741.97 - 96.01 

5-HETE (ng/mL) 

Time Medium* LPS* ActD* ActD + LPS* 

0h 0.40 - - - 

1h 0.41 0.50 0.95 1.11 

4h 0.66 0.67 0.92 0.73 

24h 0.79 0.35 1.21 1.01 

Metabolite Release normalized to Medium or ActD Control (%) 

1h - 120.00 - 116.90 

4h - 100.38 - 80.14 

24h - 44.18 - 84.11 

* Data are given as Mean 

 

 

 



98 
 

Supplemental Table IX. Eicosanoid Response on Metabolite Level after Translational Inhibition 

(n=3, pool) 

11-HETE  (ng/mL) 

Time Medium* LPS* CHX* CHX + LPS* 

0h 0.29 - - - 

1h 0.47 0.54 0.58 0.51 

4h 0.75 3.62 0.88 0.84 

24h 2.66 17.30 4.07 2.27 

Metabolite Release normalized to Medium Control (%) 

1h - 114.38 - 87.92 

4h - 481.04 - 95.78 

24h - 650.38 - 55.77 

PGF2α (ng/mL) 

Time Medium* LPS* CHX* CHX + LPS* 

0h 0.31 - - - 

1h 0.26 0.29 0.24 0.37 

4h 0.36 0.51 0.31 0.34 

24h 0.48 1.54 0.51 0.42 

Metabolite Release normalized to Medium Control (%) 

1h - 108.75 - 155.51 

4h - 141.34 - 110.37 

24h - 323.53 - 82.87 

TxB2 (ng/mL) 

Time Medium* LPS* CHX* CHX + LPS* 

0h 0.58 - - - 

1h 0.75 0.88 0.80 0.72 

4h 0.99 4.61 0.81 0.60 

24h 0.51 3.81 0.28 0.34 

Metabolite Release normalized to Medium Control (%) 

1h - 117.29 - 89.81 

4h - 464.02 - 73.70 

24h - 741.97 - 122.64 

5-HETE (ng/mL) 

Time Medium* LPS* CHX* CHX + LPS* 

0h 0.40 - - - 

1h 0.41 0.50 0.83 0.88 

4h 0.66 0.67 0.66 0.81 

24h 0.79 0.35 0.93 0.66 

Metabolite Release normalized to Medium Control (%) 

1h - 120.00 - 105.22 

4h - 100.38 - 122.49 

24h - 44.18 - 70.48 

* Data are given as Mean 
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Supplemental Table X. Target Gene Analysis of Healthy Subjects (n=10) 

PLA2 (x103 copies/µg RNA) 

Time LPS Median IQR Range P-Value* P-Value† 

0h - 29.88 22.05 11.75 -  47.67 - - 

1h - 20.25 4.73 16.04 -  38.72 1.000 - 

 + 29.21 21.72 13.03 -  44.22 1.000 - 

4h - 38.06 12.97 21.13 -  58.79 0.160 - 

 + 65.79 37.14 21.52 -  107.33 < 0.01 - 

24h - 35.65 12.62 21.69 -  49.26 0.193 - 

 + 23.31 12.39 9.42 -  40.92 0.432 - 

1h % Ctr 138.43 96.78 64.95 -  229.29 - < 0.01 

4h % Ctr 214.93 148.62 56.00 -  396.72 - < 0.05 

24h % Ctr 52.36 54.65 29.47 -  188.65 - 0.131 

COX-1 (x103 copies/µg RNA) 

Time LPS Median IQR Range P-Value* P-Value† 

0h - 698.63 607.53 265.27 -  1957.96 - - 

1h - 769.55 426.30 305.84 -  1624.68 0.695 - 

 + 908.49 705.20 209.33 -  1513.79 0.695 - 

4h - 435.73 163.98 225.49 -  1551.45 < 0.01 - 

 + 441.74 291.82 109.57 -  1306.85 < 0.01 - 

24h - 189.64 80.79 143.03 -  625.08 < 0.01 - 

 + 139.50 106.31 59.97 -  509.94 < 0.01 - 

1h % Ctr 114.64 51.23 66.08 -  132.74 - < 0.01 

4h % Ctr 82.26 61.73 48.19 -  253.28 - 0.375 

24h % Ctr 69.55 44.79 33.89 -  107.10 - < 0.05 

COX- 2 (x103 copies/µg RNA) 

Time LPS Median IQR Range P-Value* P-Value† 

0h - 619.04 419.38 270.38 -  1884.13 - - 

1h - 505.94 329.01 221.62 -  799.76 0.232 - 

 + 16968.71 4397.23 10451.22 -  25120.51 < 0.01 - 

4h - 491.55 421.14 197.21 -  1018.49 0.275 - 

 + 5354.02 2166.59 2244.82 -  10253.36 < 0.01 - 

24h - 107.16 59.68 68.50 -  161.97 < 0.01 - 

 + 2650.94 2197.48 1039.68 -  7966.64 < 0.01 - 

1h % Ctr 3311.28 1662.89 2200.63 -  5043.49 - < 0.01 

4h % Ctr 1701.24 1519.28 378.55 -  2354.32 - < 0.01 

24h % Ctr 2939.86 1780.75 1255.85 -  7183.24 - < 0.01 

TXAS (x103 copies/µg RNA) 

Time LPS Median IQR Range P-Value* P-Value† 

0h - 92.47 46.87 49.94 -  129.62 - - 

1h - 88.92 30.68 57.46 -  184.95 0.131 - 

 + 98.46 28.24 40.46 -  156.11 0.131 - 

4h - 108.28 51.93 45.14 -  153.96 0.106 - 

 + 25.71 22.03 12.76 -  58.92 < 0.01 - 

24h - 116.00 46.47 56.17 -  141.99 < 0.01 - 

 + 29.90 23.42 8.80 -  58.15 < 0.01 - 
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TXAS (x103 copies/µg RNA) 

Time LPS Median IQR Range P-Value* P-Value† 

1h % Ctr 95.09 41.62 53.55 -  158.79 - < 0.01 

4h % Ctr 30.11 21.30 13.82 -  56.16 - < 0.01 

24h % Ctr 32.87 22.06 13.43 -  52.02 - < 0.01 

PGES (x103 copies/µg RNA) 

Time LPS Median IQR Range P-Value* P-Value† 

0h - 2.04 1.81 0.68 -  7.68 - - 

1h - 2.56 2.13 1.22 -  4.78 0.232 - 

 + 11.04 5.33 4.17 -  17.49 < 0.01 - 

4h - 5.61 3.92 2.44 -  31.36 < 0.01 - 

 + 88.86 71.21 56.15 -  211.36 < 0.01 - 

24h - 43.77 60.90 23.13 -  140.26 < 0.01 - 

 + 371.63 331.57 124.25 -  1394.64 < 0.01 - 

1h % Ctr 404.90 275.46 179.26 -  684.24 - < 0.01 

4h % Ctr 2277.19 1755.90 179.02 -  3011.33 - < 0.01 

24h % Ctr 762.31 530.07 282.52 -  2620.87 - < 0.01 

PGFS (x103 copies/µg RNA) 

Time LPS Median IQR Range P-Value* P-Value† 

0h - 277.51 86.54 130.21 -  326.69 - - 

1h - 250.72 120.13 151.35 -  365.26 0.846 - 

 + 270.29 56.26 157.49 -  353.27 0.432 - 

4h - 165.77 59.61 82.60 -  219.71 < 0.01 - 

 + 233.58 79.53 145.45 -  401.34 0.846 - 

24h - 145.98 27.24 88.33 -  190.03 < 0.01 - 

 + 184.54 56.43 112.42 -  282.12 < 0.01 - 

1h % Ctr 108.86 21.60 81.29 -  129.18 - < 0.01 

4h % Ctr 145.90 59.36 71.85 -  338.06 - < 0.05 

24h % Ctr 124.03 32.73 84.10 -  196.61 - < 0.05 

12-LOX (x103 copies/µg RNA) 

Time LPS Median IQR Range P-Value* P-Value† 

0h - 102.87 55.59 28.51 -  158.56 - - 

1h - 90.87 56.62 43.67 -  139.78 0.492 - 

 + 100.43 48.91 27.98 -  167.48 < 0.05 - 

4h - 44.40 36.47 20.44 -  81.81 < 0.01 - 

 + 49.80 43.15 18.00 -  103.15 < 0.01 - 

24h - 0.42 0.65 0.14 -  2.20 < 0.01 - 

 + 0.35 0.37 0.10 -  1.11 < 0.01 - 

1h % Ctr 106.55 40.81 63.34 -  144.87 - < 0.01 

4h % Ctr 99.21 40.31 74.20 -  274.73 - 0.695 

24h % Ctr 65.38 50.33 44.59 -  385.89 - 0.193 

5-LOX (x103 copies/µg RNA) 

Time LPS Median IQR Range P-Value* P-Value† 

0h - 3067.86 813.21 859.99 -  5362.00 - - 

1h - 2404.31 1086.09 1125.46 -  3995.10 0.432 - 

 + 2154.24 1408.42 693.23 -  4149.90 < 0.01 - 
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5-LOX (x103 copies/µg RNA) 

Time LPS Median IQR Range P-Value* P-Value† 

4h - 2282.21 1472.13 678.89 -  3102.32 0.106 - 

 + 1556.50 1189.55 486.730 -  2612.96 < 0.01 - 

24h - 1725.41 872.89 635.75 -  2346.03 < 0.01 - 

 + 422.24 276.83 116.99 -  819.89 < 0.01 - 

1h % Ctr 89.36 69.43 42.61 -  142.58 - < 0.01 

4h % Ctr 66.46 51.98 29.41 -  249.66 - 0.160 

24h % Ctr 22.55 33.84 11.98 -  73.78 - < 0.01 

FLAP (x103 copies/µg RNA) 

Time LPS Median IQR Range P-Value* P-Value† 

0h - 517.44 476.48 153.14 -  1777.86 - - 

1h - 540.94 519.41 314.19 -  1238.08 0.4922 - 

 + 946.64 1232.54 423.79 -  2805.52 < 0.01 - 

4h - 743.19 965.61 311.47 -  1830.15 0.160 - 

 + 2003.16 2095.80 831.32 -  6006.27 < 0.01 - 

24h - 1557.73 1710.55 734.98 -  4836.03 < 0.01 - 

 + 1539.30 1402.09 415.43 -  4409.45 < 0.01 - 

1h % Ctr 176.67 141.31 77.37 -  439.39 - < 0.01 

4h % Ctr 268.14 402.02 107.10 -  721.68 - < 0.01 

24h % Ctr 97.61 77.16 32.12 -  231.53 - 1.000 

*   Absolute values related to baseline gene expression 

†   Relative values normalized to medium control 
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Supplemental Table XI. Differential Gene Expression Levels between Female (n=5) and Male 

Subjects (n=5) 

PLA2 (x103 copies/µg RNA) 

Time LPS Median* Range* Median Range P-Value 

0h - 24.49 13.16 -  38.75 35.27 11.75 -  47.67 1.000 

1h - 20.53 16.04 -  38.72 19.96 28.49 -  26.04 1.000 

 + 25.15 15.00 -  36.62 36.72 60.54 -  44.22 0.676 

4h - 38.43 21.13 -  58.79 37.69 29.16 -  44.51 1.000 

 + 46.68 21.52 -  83.82 69.87 9.42 -  107.33 0.210 

24h - 43.78 21.69 -  49.26 31.98 17.33 -  41.53 0.296 

 + 24.69 16.08 -  40.92 18.43 13.03 -  28.47 0.144 

1h % Ctr 117.43 64.95 -  181.73 159.43 65.26  -  229.29 0.676 

4h % Ctr 98.46 56.00 -  396.72 217.35 152.43 -  247.08 0.676 

24h % Ctr 54.58 36.73 -  188.65 47.16 29.47 -  91.37 0.296 

COX-1 (x103 copies/µg RNA) 

Time LPS Median* Range* Median Range P-Value 

0h - 945.10 462.13 -  1230.25 634.00 265.27 -  1957.96 0.531 

1h - 878.21 570.30 -  1052.88 602.14 225.49 -  1624.68 0.676 

 + 1087.05 376.83 -  1244.32 729.92 109.57 -  1513.79 1.000 

4h - 438.46 361.82 -  976.23 433.00 143.03 -  1551.45 0.835 

 + 461.35 243.26 -  552.33 422.13 59.97 -  1306.85 0.835 

24h - 197.32 148.93 -  476.13 181.96 305.84 -  625.08 0.835 

 + 185.00 70.40 -  509.94 138.79 209.33 -  418.11 0.676 

1h % Ctr 118.18 66.08 -  132.74 111.09 68.44  -  130.76 1.000 

4h % Ctr 67.23 53.29 -  125.97 84.23 48.19 -  253.28 0.835 

24h % Ctr 72.21 35.68 -  107.10 66.89 33.89 -  97.03 0.531 

COX-2 (x103 copies/µg RNA) 

Time LPS Median* Range* Median Range P-Value 

0h - 814.33 318.36 -  1884.13 584.85 270.38 -  689.26 0.403 

1h - 366.93 221.62 -  799.76 523.19 465.47 -  795.75 0.531 

 + 15315.05 10451.22 -  18181.79 19712.28 15479.00 -  25120.51 0.095 

4h - 319.40 248.57 -  593.00 705.46 197.21 -  1018.49 0.144 

 + 5852.14 2244.82 -  7153.21 4819.65 4184.28 -  10253.36 0.676 

24h - 90.36 68.50 -  139.13 123.96 71.22 -  161.97 0.835 

 + 2980.47 1039.68 -  5543.64 2321.41 1901.25 -  7966.64 0.835 

1h % Ctr 3297.09 2200.63 -  5043.49 3325.48 2830.59  -  4493.47 1.000 

4h % Ctr 1873.11 378.55 -  2354.32 762.94 473.21 -  2258.89 0.403 

24h % Ctr 2945.99 1255.85 -  7183.24 2933.73 1433.22 -  6426.62 1.000 

TXAS (x103 copies/µg RNA) 

Time LPS Median* Range* Median Range P-Value 

0h - 96.07 49.94 -  105.84 88.88 57.70 -  129.62 0.835 

1h - 86.68 66.02 -  113.22 98.84 45.14 -  184.95 0.531 

 + 97.89 40.46 -  113.86 99.04 18.83 -  156.11 0.531 

4h - 99.65 56.05 -  128.98 123.26 64.60 -  153.96 0.403 

 + 26.08 12.76 -  54.18 25.35 8.80 -  58.92 0.835 

24h - 111.80 56.17 -  132.49 122.63 57.43 -  141.99 0.210 

 + 42.53 23.98 -  58.15 25.04 51.15 -  47.41 0.210 
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TXAS (x103 copies/µg RNA) 

Time LPS Median* Range* Median Range P-Value 

1h % Ctr 93.92 61.29 -  137.94 96.27 53.55  -  158.79 1.000 

4h % Ctr 26.38 15.10 -  54.37 38.27 13.82 -  56.16 0.835 

24h % Ctr 40.48 27.88 -  52.02 18.42 13.43 -  39.61 <0.05 

PGES (x103 copies/µg RNA) 

Time LPS Median* Range* Median Range P-Value 

0h - 2.96 0.68 -  7.68 1.91 0.73 -  3.23 0.531 

1h - 2.62 2.40 -  4.63 1.76 1.22 -  4.78 0.531 

 + 11.61 8.31 -  13.66 9.72 4.17 -  17.49 1.000 

4h - 6.04 4.36 -  31.36 4.49 2.44 -  8.28 0.296 

 + 75.89 56.15 -  134.10 102.70 59.64 -  211.36 0.531 

24h - 43.56 23.13 -  92.04 43.98 25.29 -  140.26 0.531 

 + 373.25 319.00 -  650.57 326.59 124.25 -  1394.64 0.835 

1h % Ctr 443.59 179.26 -  570.69 366.20 248.84  -  684.24 0.835 

4h % Ctr 1465.51 179.02 -  2335.93 2552.41 796.51 -  3011.33 0.060 

24h % Ctr 732.23 505.14 -  2620.87 792.39 282.52 -  1291.55 0.835 

PGFS (x103 copies/µg RNA) 

Time LPS Median* Range* Median Range P-Value 

0h - 277.85 130.21 -  326.69 277.17 173.85 -  304.82 1.000 

1h - 248.44 151.35 -  312.03 253.01 181.00 -  365.26 0.676 

 + 288.46 172.48 -  312.22 247.89 157.49 -  353.27 0.676 

4h - 195.16 148.42 -  215.33 142.82 82.60 -  219.71 0.296 

 + 183.33 145.45 -  240.63 262.86 216.92 -  401.34 <0.05 

24h - 162.94 108.09 -  190.03 143.49 88.33 -  146.95 0.095 

 + 182.09 112.42 -  217.30 186.98 122.57 -  282.12 0.835 

1h % Ctr 113.97 96.46 -  125.67 96.72 81.29  -  129.18 0.296 

4h % Ctr 123.30 71.85 -  141.21 182.66 150.60 -  338.06 <0.05 

24h % Ctr 106.04 84.10 -  133.36 138.77 108.75 -  196.61 0.060 

12-LOX (x103 copies/µg RNA) 

Time LPS Median* Range* Median Range P-Value 

0h - 83.80 28.51 -  141.35 112.10 49.18 -  158.56 0.403 

1h - 85.70 44.17 -  115.61 109.22 43.67 -  139.78 0.296 

 + 81.03 27.98 -  167.48 111.99 33.60 -  128.75 0.531 

4h - 36.72 20.99 -  59.74 59.47 20.44 -  81.81 0.676 

 + 38.62 18.00 -  71.53 63.92 19.54 -  103.15 0.210 

24h - 0.29 0.14 -  0.87 0.43 0.22 -  2.20 0.296 

 + 0.43 0.10 -  0.75 0.27 0.18 -  1.11 1.000 

1h % Ctr 114.31 63.34 -  144.87 106.52 68.05  -  117.74 0.531 

4h % Ctr 85.77 74.20 -  137.34 102.80 92.97 -  274.73 0.296 

24h % Ctr 93.82 50.07 -  385.89 60.61 44.59 -  100.69 0.210 

5-LOX (x103 copies/µg RNA) 

Time LPS Median* Range* Median Range P-Value 

0h - 3278.60 859.99 -  5362.00 2581.71 1949.40 -  3880.98 0.403 

1h - 1909.71 1125.46 -  2935.06 2670.40 1849.00 -  3995.10 0.296 

 + 1942.23 693.23 -  4149.90 2366.24 1208.71 -  2905.51 0.835 
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5-LOX (x103 copies/µg RNA) 

Time LPS Median* Range* Median Range P-Value 

4h - 2143.33 987.07 -  3102.32 2299.96 678.89 -  2965.16 1.000 

 + 1418.11 486.73 -  2612.96 1694.90 676.40 -  2085.55 1.000 

24h - 1953.94 635.75 -  2346.03 1706.68 1182.83 -  2055.72 0.835 

 + 469.03 116.99 -  819.89 305.06 225.82 -  819.68 0.835 

1h % Ctr 115.56 42.61 -  141.39 69.92 44.64  -  142.58 0.835 

4h % Ctr 67.62 41.80 -  107.93 65.30 29.41 -  249.66 0.676 

24h % Ctr 27.61 11.98 -  73.78 17.49 13.42 -  48.07 1.000 

FLAP (x103 copies/µg RNA) 

Time LPS Median* Range* Median Range P-Value 

0h - 663.29 153.14 -  1100.53 421.53 319.21 -  1777.86 0.676 

1h - 534.16 314.19 -  1238.08 547.72 342.63 -  1200.48 1.000 

 + 1380.51 563.10 -  1857.13 583.60 423.80 -  2805.52 0.296 

4h - 755.84 458.44 -  1830.15 560.02 311.47 -  1424.05 0.296 

 + 3017.96 906.96 -  4504.97 1758.51 831.32 -  6006.27 0.835 

24h - 1792.04 734.98 -  4836.03 1323.43 923.16 -  4093.53 1.000 

 + 2053.87 575.62 -  4409.45 1376.81 415.43 -  2608.74 0.210 

1h % Ctr 201.63 82.69 -  439.39 150.32 77.37  -  233.70 0.403 

4h % Ctr 204.24 107.10 -  658.31 314.01 194.00 -  721.68 0.531 

24h % Ctr 112.46 32.12 -  231.53 63.73 44.57 -  122.16 0.403 

* Female Subjects 
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Supplemental Table XII. Coefficient of Variation (%) of Gene Expression Data from Healthy 

Subjects (n=10) 

Time LPS PLA2 COX-1 COX-2 TXAS PGES PGFS 12-LOX 5-LOX FLAP 

0h - 44.74 56.07 68.13 30.19 82.70 24.72 41.55 39.62 70.72 

1h - 29.32 45.56 37.34 38.62 43.25 27.77 36.52 35.45 53.90 

 + 42.35 49.57 27.24 35.21 33.66 23.34 45.70 46.78 65.49 

4h - 29.06 72.71 52.10 33.83 100.04 26.21 49.01 40.04 59.62 

 + 38.75 66.77 37.67 51.00 47.62 29.85 53.12 47.23 63.45 

24h - 23.31 60.64 31.88 27.47 64.89 20.39 98.82 33.20 67.35 

 + 41.83 79.00 62.34 47.20 70.08 27.51 69.07 52.46 64.05 

1h % Ctr 45.25 25.47 28.60 32.58 38.24 15.06 25.60 43.87 59.06 

4h % Ctr 52.52 61.61 55.65 48.58 54.28 47.53 49.80 77.44 64.24 

24h % Ctr 67.86 38.01 62.36 44.80 66.51 24.23 98.51 66.80 64.13 

 Mean 41.50 55.54 46.33 38.95 60.13 26.66 56.77 48.29 63.20 

Male Subjects 

0h - 38.07 69.68 31.75 49.54 48.69 33.96 55.77 77.42 40.88 

1h - 23.89 52.57 25.05 37.30 35.32 19.37 58.11 30.91 39.03 

 + 47.21 24.83 21.33 63.75 57.48 33.17 41.00 17.72 35.68 

4h - 48.44 37.24 15.50 44.14 37.47 30.03 55.33 98.24 39.69 

 + 35.81 35.27 20.20 57.59 50.31 55.87 53.55 34.27 47.35 

24h - 52.25 32.63 19.65 46.86 76.93 29.49 75.44 55.34 29.18 

 + 86.56 58.90 24.88 54.99 58.75 36.25 61.54 32.90 35.47 

1h % Ctr 30.17 38.58 9.47 44.04 28.72 30.89 59.68 40.74 43.96 

4h % Ctr 41.63 45.13 27.93 39.31 27.60 49.05 79.13 68.46 81.95 

24h % Ctr 41.69 73.26 16.97 73.64 96.07 23.83 61.43 74.53 71.18 

 Mean 44.57 46.81 21.27 51.12 51.73 34.19 60.10 53.05 46.44 

Female Subjects 

0h - 76.70 33.25 19.52 25.54 37.02 29.38 88.37 49.06 51.56 

1h - 64.03 23.37 31.28 31.50 35.73 44.89 55.61 58.89 15.92 

 + 57.67 21.50 27.83 31.36 38.61 37.62 96.32 48.00 49.54 

4h - 93.09 44.65 34.65 40.68 55.72 36.77 62.87 49.64 17.49 

 + 79.26 43.29 24.57 40.24 48.13 51.13 80.32 54.65 26.44 

24h - 72.52 33.61 18.75 18.72 95.58 26.24 66.19 72.19 15.60 

 + 78.22 69.17 31.51 56.17 82.12 54.74 56.24 91.14 39.65 

1h % Ctr 23.54 19.03 18.79 47.89 22.52 37.95 46.90 39.18 49.49 

4h % Ctr 71.91 68.44 36.45 96.30 55.83 53.25 56.95 38.49 17.53 

24h % Ctr 36.69 58.18 23.04 64.26 34.32 49.46 46.66 46.61 48.78 

 Mean 65.36 41.45 26.64 45.27 50.56 42.14 65.64 54.78 33.20 
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Supplemental Table XIII. Metabolite Release of Healthy Subjects (n=10) 

AA (ng/mL) 

Time LPS Median IQR Range P-Value* P-Value† 

0h - 629.67 351.33 330.33 -  1176.67 - - 

1h - 651.83 304.00 375.667 -  1286.67 0.193 - 

 + 638.00 347.83 365.333 -  1113.33 0.232 - 

4h - 743.50 419.67 522.33 -  1580.00 < 0.01 - 

 + 772.50 399.67 549.67 -  1350.00 < 0.01 - 

24h - 2206.67 1006.67 1610.00 -  4010.00 < 0.01 - 

 + 1415.00 813.33 907.50 -  1996.67 < 0.01 - 

1h % Ctr 98.34 13.36 86.53 -  112.18 - < 0.01 

4h % Ctr 102.23 11.73 85.44 -  114.38 - 0.922 

24h % Ctr 61.32 12.12 44.95 -  86.59 - < 0.01 

11-HETE (ng/mL) 

Time LPS Median IQR Range P-Value* P-Value† 

0h - 0.24 0.09 0.14 -  0.60 - - 

1h - 0.379 0.102 0.165 -  0.82 < 0.01 - 

 + 0.351 0.081 0.218 -  0.68 < 0.01 - 

4h - 0.58 0.30 0.36 -  1.00 < 0.01 - 

 + 3.05 1.54 0.98 -  7.50 < 0.01 - 

24h - 1.91 0.80 1.67 -  3.76 < 0.01 - 

 + 20.15 10.55 7.76 -  39.47 < 0.01 - 

1h % Ctr 108.29 44.131 76.136 -  136.32 - < 0.01 

4h % Ctr 618.28 268.41 131.12 -  881.80 - < 0.01 

24h % Ctr 745.95 556.45 398.63 -  1266.31 - < 0.01 

TxB2 (ng/mL) 

Time LPS Median IQR Range P-Value* P-Value† 

0h - 1.73 3.05 0.15 -  3.91 - - 

1h - 1.87 3.32 0.274 -  3.66 < 0.05 - 

 + 2.00 3.33 0.241 -  3.79 < 0.01 - 

4h - 2.11 2.95 0.27 -  3.80 < 0.05 - 

 + 7.02 4.52 1.30 -  9.84 < 0.01 - 

24h - 1.46 1.69 0.23 -  2.20 0.921 - 

 + 5.47 2.88 3.29 -  7.53 < 0.01 - 

1h % Ctr 112.05 27.06 87.85 -  154.26 - < 0.01 

4h % Ctr 269.67 802.84 135.39 -  2537.13 - < 0.01 

24h % Ctr 604.30 913.90 178.40 -  1621.08 - < 0.01 

PGE2 (ng/mL) 

Time LPS Median IQR Range P-Value* P-Value† 

0h - 0.10 0.03 0.08 -  0.14 - - 

1h - 0.13 0.04 0.086 -  0.19 < 0.05 - 

 + 0.13 0.06 0.058 -  0.20 < 0.05 - 

4h - 0.10 0.03 0.04 -  0.21 0.557 - 

 + 0.31 0.12 0.17 -  0.64 < 0.01 - 

24h - 0.16 0.06 0.10 -  0.22 < 0.01 - 

 + 4.99 3.72 1.55 -  12.03 < 0.01 - 
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PGE2 (ng/mL) 

Time LPS Median IQR Range P-Value* P-Value† 

1h % Ctr 115.44 47.69 41.04 -  187.00 - < 0.01 

4h % Ctr 364.23 210.16 80.69 -  562.94 - < 0.01 

24h % Ctr 3615.49 4131.27 1232.11 -  8125.00 - < 0.01 

PGF2α (ng/mL) 

Time LPS Median IQR Range P-Value* P-Value† 

0h - 0.22 0.05 0.17 -  0.38 - - 

1h - 0.23 0.05 0.157 -  0.39 0.492 - 

 + 0.21 0.09 0.155 -  0.32 0.625 - 

4h - 0.22 0.09 0.17 -  0.30 0.106 - 

 + 0.42 0.17 0.27 -  0.68 < 0.01 - 

24h - 0.29 0.09 0.20 -  0.39 < 0.01 - 

 + 1.44 0.66 0.66 -  2.65 < 0.01 - 

1h  % Ctr 99.61 33.54 52.10 -  145.42 - < 0.01 

4h % Ctr 180.13 46.80 89.14 -  294.05 - < 0.01 

24h % Ctr 450.72 108.81 267.56 -  775.39 - < 0.01 

12-HETE (ng/mL) 

Time LPS Median IQR Range P-Value* P-Value† 

0h - 0.70 1.20 0.26 -  2.47 - - 

1h - 2.52 1.98 0.920 -  8.40 < 0.01 - 

 + 1.64 2.27 0.658 -  7.44 < 0.01 - 

4h - 3.89 3.60 1.42 -  11.87 < 0.01 - 

 + 4.22 2.62 2.14 -  11.12 < 0.01 - 

24h - 24.53 12.90 14.60 -  70.47 < 0.01 - 

 + 34.77 18.00 19.63 -  120.67 < 0.01 - 

1h % Ctr 87.21 23.50 53.85 -  111.47 - < 0.01 

4h % Ctr 108.56 72.08 84.30 -  219.14 - 0.275 

24h % Ctr 151.55 24.30 118.41 -  202.96 - < 0.01 

5-HETE (ng/mL) 

Time LPS Median IQR Range P-Value* P-Value† 

0h - 0.17 0.09 0.10 -  0.23 - - 

1h - 0.24 0.12 0.108 -  0.43 < 0.05 - 

 + 0.45 0.29 0.205 -  0.79 < 0.01 - 

4h - 0.34 0.14 0.24 -  0.48 < 0.01 - 

 + 0.52 0.35 0.27 -  0.94 < 0.01 - 

24h - 0.79 0.18 0.64 -  1.26 < 0.01 - 

 + 0.65 0.15 0.58 -  0.96 < 0.01 - 

1h % Ctr 204.61 81.24 128.66 -  372.22 - < 0.01 

4h % Ctr 142.04 83.73 107.34 -  295.88 - < 0.01 

24h % Ctr 86.78 25.63 67.71 -  98.26 - < 0.01 

*   Absolute values related to baseline release 

†   Relative values normalized to medium control 
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Supplemental Table XIV. Differential Eicosanoid Release between Female (n=5) and Male Subjects 

(n=5) 

AA (ng/mL) 

Time LPS Median* Range* Median Range P-Value 

0h - 712.00 411.67 -  1176.67 547.33 330.33 -  771.00 0.531 

1h - 719.00 444.67 -  1286.67 520.00 375.67 -  871.00 0.531 

 + 693.33 450.67 -  1113.33 582.67 365.33 -  798.50 0.40 

4h - 784.67 522.33 -  1580.00 702.33 590.67 -  1093.33 1.000 

 + 817.67 549.67 -  1350.00 727.33 561.33 -  1166.67 1.000 

24h - 2390.00 1610.00 -  4010.00 1980.00 1703.33 -  3190.00 0.403 

 + 1893.33 907.50 -  1996.67 1163.33 978.33 -  1896.67 0.296 

1h % Ctr 96.43 86.53 -  112.18 99.42 91.68  -  112.05 0.531 

4h % Ctr 100.89 85.44 -  105.23 103.56 93.48 -  114.38 0.676 

24h % Ctr 63.18 47.22 -  86.59 59.46 44.95 -  68.30 0.676 

11-HETE (ng/mL) 

Time LPS Median* Range* Median Range P-Value 

0h - 0.31 0.23 -  0.60 0.22 0.14 -  0.26 0.060 

1h - 0.38 0.31 -  0.82 0.32 0.17 -  0.44 0.403 

 + 0.42 0.34 -  0.68 0.34 0.22 -  0.36 0.022 

4h - 0.74 0.53 -  1.00 0.45 0.36 -  0.58 0.037 

 + 2.97 0.98 -  7.50 3.13 2.01 -  4.38 0.835 

24h - 1.88 1.78 -  3.76 1.95 1.67 -  2.58 0.531 

 + 23.25 10.22 -  39.47 15.77 7.76 -  20.93 0.095 

1h % Ctr 102.13 83.09 -  136.32 114.44 76.14  -  131.92 1.000 

4h % Ctr 563.09 131.12 -  876.80 671.65 448.99 -  881.80 0.531 

24h % Ctr 1179.44 559.49 -  1266.31 741.25 398.63 -  1251.00 0.676 

TxB2 (ng/mL) 

Time LPS Median* Range* Median Range P-Value 

0h - 0.20 0.15 -  0.32 3.25 3.15 -  3.91 0.012 

1h - 0.291 0.27 -  0.46 3.61 3.27 -  3.66 0.012 

 + 0.435 0.24 -  0.55 3.76 3.46 -  3.79 0.012 

4h - 0.48 0.27 -  0.96 3.43 3.27 -  3.80 0.012 

 + 3.66 1.30 -  7.21 8.19 6.01 -  9.84 0.037 

24h - 0.40 0.23 -  0.87 2.09 2.05 -  2.20 0.012 

 + 4.42 3.29 -  7.53 6.34 3.72 -  7.16 0.676 

1h % Ctr 126.15 87.85 -  154.26 104.62 94.96  -  115.75 0.144 

4h % Ctr 1033.19 135.39 -  2537.13 246.83 158.16 -  277.87 0.144 

24h % Ctr 1223.67 865.85 -  1621.08 309.77 178.40 -  342.74 0.012 

PGE2 (ng/mL) 

Time LPS Median* Range* Median Range P-Value 

0h - 0.09 0.08 -  0.11 0.10 0.08 -  0.14 0.210 

1h - 0.10 0.09 -  0.16 0.14 0.11 -  0.19 0.210 

 + 0.15 0.06 -  0.20 0.13 0.09 -  0.16 0.676 

4h - 0.09 0.04 -  0.21 0.11 0.10 -  0.17 0.296 

 + 0.27 0.17 -  0.52 0.34 0.26 -  0.64 0.403 

24h - 0.16 0.12 -  0.22 0.12 0.10 -  0.18 0.403 

 + 4.24 2.12 -  12.03 5.73 1.55 -  9.58 1.000 
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PGE2 (ng/mL) 

Time LPS Median* Range* Median Range P-Value 

1h % Ctr 124.04 41.04 -  187.00 83.33 61.03  -  119.48 0.144 

4h % Ctr 371.42 80.69 -  562.41 259.45 197.51 -  562.94 0.676 

24h % Ctr 3477.31 1232.11 -  7763.44 3753.68 1273.97 -  8125.00 0.676 

PGF2α (ng/mL) 

Time LPS Median* Range* Median Range P-Value 

0h - 0.24 0.19 -  0.38 0.18 0.17 -  0.24 0.095 

1h - 0.24 0.21 -  0.29 0.20 0.16 -  0.39 0.210 

 + 0.271 0.17 -  0.32 0.19 0.16 -  0.27 0.144 

4h - 0.27 0.21 -  0.30 0.22 0.17 -  0.29 0.144 

 + 0.41 0.27 -  0.68 0.43 0.34 -  0.53 0.835 

24h - 0.34 0.23 -  0.39 0.27 0.20 -  0.30 0.095 

 + 1.62 0.96 -  2.65 1.20 0.66 -  1.47 0.060 

1h % Ctr 106.97 80.90 -  115.62 92.24 52.10  -  145.42 0.835 

4h % Ctr 180.61 89.14 -  248.71 179.64 157.47 -  294.05 1.000 

24h % Ctr 462.42 422.40 -  775.39 439.02 267.56 -  733.33 0.531 

12-HETE (ng/mL) 

Time LPS Median* Range* Median Range P-Value 

0h - 1.59 0.88 -  2.47 0.38 0.26 -  0.52 0.012 

1h - 3.08 2.88 -  8.40 1.10 0.92 -  2.17 0.012 

 + 3.43 2.05 -  7.44 1.17 0.66 -  1.22 0.012 

4h - 5.24 4.14 -  11.87 1.64 1.42 -  3.63 0.012 

 + 5.59 4.45 -  11.12 2.97 2.14 -  3.98 0.012 

24h - 24.20 20.53 -  70.47 24.87 14.60 -  34.03 0.676 

 + 39.10 31.97 -  120.67 34.20 19.63 -  49.97 0.144 

1h % Ctr 85.77 71.18 -  111.47 93.897 53.85  -  109.273 1.000 

4h % Ctr 93.71 84.30 -  114.48 162.68 89.43 -  219.14 0.144 

24h % Ctr 161.57 147.43 -  202.96 137.53 118.41 -  161.83 0.060 

5-HETE (ng/mL) 

Time LPS Median* Range* Median Range P-Value 

0h - 0.22 0.17 -  0.23 0.13 0.10 -  0.16 0.012 

1h - 0.27 0.15 -  0.43 0.17 0.11 -  0.28 0.296 

 + 0.62 0.24 -  0.68 0.40 0.21 -  0.79 0.835 

4h - 0.41 0.33 -  0.48 0.26 0.24 -  0.35 0.022 

 + 0.56 0.39 -  0.75 0.49 0.27 -  0.94 1.000 

24h - 0.85 0.70 -  1.21 0.71 0.64 -  1.26 0.403 

 + 0.62 0.58 -  0.82 0.68 0.59 -  0.96 0.676 

1h % Ctr 177.05 157.15 -  240.40 229.72 128.66  -  372.22 0.531 

4h % Ctr 122.94 116.88 -  183.92 204.48 107.34 -  295.88 0.296 

24h % Ctr 69.92 67.71 -  98.26 91.56 76.09 -  95.67 0.296 

* Female Subjects 
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Supplemental Table XV. Coefficient of Variation (%) of Metabolite Release Data from Healthy 

Subjects (n=10) 

Time LPS AA 11-HETE TxB2 PGE2 PGF2α 12-HETE 5-HETE 

0h - 39.33 45.72 93.70 20.31 27.40 75.95 28.65 

1h - 41.15 45.17 87.46 26.10 27.56 80.67 39.30 

 + 35.26 32.59 83.76 33.82 25.16 84.91 40.21 

4h - 37.52 33.00 78.48 42.51 19.69 80.58 24.73 

 + 32.37 55.86 43.30 41.83 29.17 60.75 37.69 

24h - 31.01 31.03 69.98 23.58 20.15 54.75 25.83 

 + 29.44 46.19 29.10 59.76 38.77 67.77 17.60 

1h % Ctr 8.78 20.98 19.59 42.10 27.44 21.32 34.25 

4h % Ctr 8.23 36.92 110.63 45.06 28.78 36.83 38.85 

24h % Ctr 19.47 36.97 72.73 65.91 32.96 15.06 14.60 

 Mean 28.26 38.44 68.87 40.10 27.71 57.86 30.17 

Male Subjects 

0h - 42.52 11.24 37.71 28.72 28.23 16.43 42.04 

1h - 44.94 37.08 53.60 23.71 12.05 28.49 42.54 

 + 29.75 37.66 54.87 30.06 24.57 42.51 36.38 

4h - 25.29 13.86 51.16 52.79 16.13 61.42 45.27 

 + 66.21 24.22 43.44 56.68 37.28 46.28 36.08 

24h - 36.85 22.19 57.51 55.59 19.21 20.63 34.23 

 + 43.91 15.73 64.16 34.33 35.69 70.41 27.67 

1h % Ctr 20.64 20.57 16.55 21.61 15.12 44.15 10.35 

4h % Ctr 50.47 20.33 12.72 78.23 32.57 48.80 8.26 

24h % Ctr 34.23 18.09 12.81 23.42 27.94 73.13 22.88 

 Mean 39.48 22.10 40.45 40.52 24.88 45.22 30.57 

Female Subjects 

0h - 20.03 24.73 23.88 10.96 14.60 20.83 34.07 

1h - 35.72 37.18 38.93 4.61 40.29 22.69 37.92 

 + 17.86 46.88 24.34 3.82 20.88 21.82 33.33 

4h - 20.60 16.63 43.35 6.10 21.19 24.46 29.77 

 + 27.38 50.74 25.74 17.07 19.26 39.84 32.01 

24h - 18.79 31.72 29.45 2.77 15.22 26.83 26.10 

 + 34.59 20.86 32.39 26.42 29.39 55.06 28.12 

1h % Ctr 23.69 39.93 27.49 7.74 39.02 27.10 7.69 

4h % Ctr 25.12 39.97 34.68 19.74 27.59 45.28 8.65 

24h % Ctr 39.82 9.48 11.45 27.08 40.45 66.26 16.13 

 Mean 26.36 31.81 29.17 12.63 26.79 35.02 25.38 
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Supplemental Table XVI. Target Gene Analysis of AA Metabolism in Patients of the Leipzig Heart 

Study 

PLA2 (x103 copies/µg RNA) 

Time LPS Median IQR Range P-Value* P-Value† 

0h - 27.5 14.7 9.8 - 75.5 - - 

4h - 31.5 20.7 8.5 - 101.8 < 0.001 - 

 + 34.9 21.7 0.6 - 92.1 < 0.001 - 

24h - 40.9 25.5 15.3 - 118.8 < 0.001 - 

 + 12.3 7.7 3.3 - 36.0 < 0.001 - 

4h % ctr 127.1 79.9 52.7 - 374.6 - < 0.001 

24h % ctr 37.4 24.0 14.7 - 97.4 - < 0.001 

COX-1 (x103 copies/µg RNA) 

Time LPS Median IQR Range P-Value* P-Value† 

0h - 1205.2 661.3 367.2 - 3041.0 - - 

4h - 695.0 449.0 154.4 - 2726.3 < 0.001 - 

 + 643.4 458.2 137.7 - 1812.8 < 0.001 - 

24h - 347.6 175.7 130.8 - 701.3 < 0.001 - 

 + 242.5 155.8 106.8 - 684.0 < 0.001 - 

4h % ctr 88.4 21.2 47.9 - 132.5 - < 0.001 

24h % ctr 76.5 25.8 40.8 - 141.0 - < 0.001 

COX-2 (x103 copies/µg RNA) 

Time LPS Median IQR Range P-Value* P-Value† 

0h - 1287.4 1329.1 412.3 - 13122.7 - - 

4h - 713.2 433.0 212.9 - 2598.5 < 0.001 - 

 + 6699.7 4224.8 1839.5 - 19204.4 < 0.001 - 

24h - 159.8 97.8 47.3 - 901.0 < 0.001 - 

 + 1650.3 2595.5 457.5 - 10729.8 < 0.01 - 

4h % ctr 881.8 595.9 220.4 - 2514.0 - < 0.001 

24h % ctr 1079.8 1243.1 164.7 - 7674.7 - < 0.001 

TXAS (x103 copies/µg RNA) 

Time LPS Median IQR Range P-Value* P-Value† 

0h - 114.0 116.1 36.8 - 719.1 - - 

4h - 91.2 84.8 27.1 - 444.1 < 0.001 - 

 + 33.4 30.0 7.9 - 286.3 < 0.001 - 

24h - 142.4 108.6 25.1 - 770.8 < 0.001 - 

 + 38.9 31.9 11.5 - 235.5 < 0.001 - 

4h % ctr 34.9 15.3 10.2 - 173.0 - < 0.001 

24h % ctr 29.8 15.6 8.9 - 65.9 - < 0.001 

PGES (x103 copies/µg RNA) 

Time LPS Median IQR Range P-Value* P-Value† 

0h - 6.4 6.2 1.6 - 70.8 - - 

4h - 80.6 108.0 9.1 - 1507.5 < 0.001 - 

 + 614.7 1069.5 117.5 - 6743.9 < 0.001 - 

24h - 319.9 378.6 40.8 - 3083.0 < 0.001 - 

 + 1899.3 1520.2 791.3 - 11996.3 < 0.001 - 
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PGES (x103 copies/µg RNA) 

4h % ctr 830.9 760.2 196.6 - 8319.9 - < 0.001 

24h % ctr 621.6 552.4 146.5 - 3029.8 - < 0.001 

PGFS (x103 copies/µg RNA) 

Time LPS Median IQR Range P-Value* P-Value† 

0h - 191.3 138.6 60.7 - 795.1 - - 

4h - 194.2 145.8 30.5 - 810.7 0.662 - 

 + 146.3 110.9 41.9 - 690.6 < 0.001 - 

24h - 144.5 144.5 25.4 - 489.2 < 0.001 - 

 + 141.2 93.1 29.4 - 668.3 < 0.001 - 

4h % ctr 74.0 51.0 17.5 - 185.2 - < 0.001 

24h % ctr 102.3 50.0 34.3 - 229.8 - 0.553 

12-LOX (x103 copies/µg RNA) 

Time LPS Median IQR Range P-Value* P-Value† 

0h - 177.7 131.6 48.4 - 480.8 - - 

4h - 79.7 64.1 12.2 - 262.2 < 0.001 - 

 + 76.4 63.3 14.4 - 281.4 < 0.001 - 

24h - 2.3 4.9 0.3 - 19.8 < 0.001 - 

 + 2.3 2.9 0.3 - 19.0 < 0.001 - 

4h % ctr 95.7 19.9 50.6 - 148.4 - < 0.05  

24h % ctr 93.1 46.2 40.2 - 351.0 - 0.636 

5-LOX (x103 copies/µg RNA) 

Time LPS Median IQR Range P-Value* P-Value† 

0h - 8638.6 4615.1 4638.8 - 23344.6 - - 

4h - 7068.8 3488.4 3165.6 - 17808.2 < 0.001 - 

 + 5459.1 3157.5 1593.3 - 14083.8 < 0.001 - 

24h - 6399.2 3395.3 2659.4 - 15684.1 < 0.001 - 

 + 3003.9 2373.9 1065.7 - 11806.4 < 0.001 - 

4h % ctr 71.1 24.4 29.2 - 140.9 - < 0.001 

24h % ctr 47.1 28.1 16.7 - 147.1 - < 0.001 

FLAP (x103 copies/µg RNA) 

Time LPS Median IQR Range P-Value* P-Value† 

0h - 7958.8 4719.4 3382.5 - 27743.4 - - 

4h - 14777.5 9366.5 5712.2 - 50606.2 < 0.001 - 

 + 28059.2 18391.7 7917.4 - 92589.6 < 0.001 - 

24h - 23446.1 15620.8 9613.0 - 73713.3 < 0.001 - 

 + 27396.4 18293.0 7506.7 - 96017.7 < 0.001 - 

4h % ctr 186.8 68.3 83.0 - 334.5 - < 0.001 

24h % ctr 118.1 56.0 49.0 - 239.0 - < 0.001 

*   Absolute values related to baseline release 

†   Relative values normalized to medium control 
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Supplemental Table XVII. Differential Eicosanoid Response on Gene Expression Level in 

Patients with or without CAD 

PLA2 (x103 copies/µg RNA) 

Time LPS w/o CAD* with CAD P-Value† CAD < 50%‡ CAD ≥ 50%§ 

0h - 29.4 25.8 0.379 26.5 24.7 

4h - 31.2 31.8 0.772 35.3 31.1 

 + 39.0 33.9 0.570 34.3 32.2 

24h - 43.6 38.8 0.222 39.4 38.8 

 + 12.2 12.4 0.998 12.9 12.4 

4h % ctr 133.5 120.3 0.251 141.8 111.6 

24h % ctr 34.4 40.2 0.329 44.5 38.4 

COX-1 (x103 copies/µg RNA) 

Time LPS w/o CAD* with CAD P-Value† CAD < 50%‡ CAD ≥ 50%§ 

0h - 1278.7 1159.9 0.396 1473.7 1130.5 

4h - 712.6 622.7 0.616 801.3 584.4 

 + 686.8 580.8 0.701 668.4 500.2 

24h - 369.9 334.9 0.511 347.3 325.7 

 + 215.7 268.0 0.183 324.6 265.4 

4h % ctr 93.1 86.0 0.906 93.2 84.6 

24h % ctr 73.2 77.7 < 0.01 78.1// 77.7// 

COX-2 (x103 copies/µg RNA) 

Time LPS w/o CAD* with CAD P-Value† CAD < 50%‡ CAD ≥ 50%§ 

0h - 1296.0 1281.6 0.771 1198.3 1341.2 

4h - 680.6 726.6 0.695 614.7 784.3 

 + 7638.9 5977.7 < 0.05 5385.0// 6723.0 

24h - 166.3 158.0 < 0.05 158.3// 158.0 

 + 1657.0 1643.7 0.187 1608.7 1643.7 

4h % ctr 1063.7 837.6 0.062 973.3 806.0 

24h % ctr 1048.6 1129.2 0.517 1014.9 1258.6 

TXAS (x103 copies/µg RNA) 

Time LPS w/o CAD* with CAD P-Value† CAD < 50%‡ CAD ≥ 50%§ 

0h - 112.1 122.0 0.143 90.5 131.4 

4h - 109.7 89.3 0.239 64.5 105.1 

 + 34.8 28.1 0.149 26.2 33.5 

24h - 155.8 128.6 0.058 127.9 133.1 

 + 38.1 39.1 0.447 36.4 41.5 

4h % ctr 35.9 33.9 0.280 36.1 32.8 

24h % ctr 28.3 30.2 0.145 30.1 31.3 

PGES (x103 copies/µg RNA) 

Time LPS w/o CAD* with CAD P-Value† CAD < 50%‡ CAD ≥ 50%§ 

0h - 6.6 6.1 0.199 4.6 6.6 

4h - 88.8 74.7 0.198 55.6 93.7 

 + 723.2 527.8 0.307 488.6 805.7 

24h - 350.3 282.2 < 0.05 225.2// 394.2 

 + 1936.2 1864.8 0.211 1787.9 1982.6 
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PGES (x103 copies/µg RNA) 

4h % ctr 750.4 927.7 0.554 741.4 942.3 

24h % ctr 538.8 663.4 0.223 814.3 658.6 

PGFS (x103 copies/µg RNA) 

Time LPS w/o CAD* with CAD P-Value† CAD < 50%‡ CAD ≥ 50%§ 

0h - 197.9 191.3 0.360 230.2 171.1 

4h - 191.7 197.3 0.638 197.3 197.4 

 + 144.8 147.1 0.622 187.7 128.9 

24h - 156.7 142.2 0.486 140.7 144.2 

 + 141.2 132.7 0.429 158.7 125.1 

4h % ctr 73.3 75.9 0.931 84.3 72.8 

24h % ctr 105.1 99.5 0.805 104.3 92.5 

12-LOX (x103 copies/µg RNA) 

Time LPS w/o CAD* with CAD P-Value† CAD < 50%‡ CAD ≥ 50%§ 

0h - 188.0 164.8 0.075 220.1 142.4 

4h - 80.5 79.5 0.213 91.8 66.8 

 + 77.5 74.7 0.208 92.3 64.9 

24h - 2.9 2.3 0.143 2.4 2.3 

 + 2.3 2.3 0.373 2.7 1.9 

4h % ctr 97.8 94.2 0.580 95.9 92.8 

24h % ctr 88.4 93.5 0.106 93.1 94.7 

5-LOX (x103 copies/µg RNA) 

Time LPS w/o CAD* with CAD P-Value† CAD < 50%‡ CAD ≥ 50%§ 

0h - 8913.5 8604.4 0.394 8900.4 8336.8 

4h - 6943.5 7211.0 0.738 7053.5 7261.1 

 + 5484.5 5459.1 0.568 5658.2 4925.5 

24h - 7039.5 6343.5 0.166 6399.2 6276.1 

 + 3035.7 2897.7 0.943 2913.7 2897.7 

4h % ctr 70.8 72.1 0.975 78.1 69.7 

24h % ctr 41.9 47.6 0.089 45.3 51.4 

FLAP (x103 copies/µg RNA) 

Time LPS w/o CAD* with CAD P-Value† CAD < 50%‡ CAD ≥ 50%§ 

0h - 7552.2 8096.2 0.878 6642.4 8382.4 

4h - 15316 14360 0.613 14108 14907 

 + 28877 28059 0.614 27830 28980 

24h - 23968 22536 0.277 23921 22135 

 + 27382 28532 0.480 28997 25892 

4h % ctr 202.0 185.5 0.534 206.6 179.2 

24h % ctr 106.1 129.7 < 0.05 117.9 136.0// 

*   Subjects with catheter based exclusion of coronary artery disease (CAD) 

†   P-Value subjects w/o CAD compared to subjects with CAD 

‡   Subjects with angiographic coronary wall irregularities < 50 % luminal reduction 

§   Subjects with angiographic stenosis ≥ 50 % luminal reduction in at least one major   
    coronary artery 

//   P < 0.05 when compared to subjects w/o CAD 
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Supplemental Table XVIII. Quantitative Metabolite Analysis of AA Metabolism in Patients of the 

Leipzig Heart Study 

AA (ng/mL) 

Time LPS Median IQR Range P-Value* P-Value† 

0h - 1242.7 896.3 544.0   - 4973.3 - - 

4h - 1968.3 1286.7 809.0  - 14400.0 < 0.001 - 

 + 2135.0 1253.3 833.0  - 16333.3 < 0.001 - 

24h - 5158.3 3241.7 1956.7 - 23433.3 < 0.001 - 

 + 3507.5 1678.3 1230.0  - 14900.0 < 0.001 - 

4h % ctr 101.1 12.8 76.5 - 130.3 - 0.112 

24h % ctr 65.4 15.4 38.3 - 90.3 - < 0.001 

11-HETE (ng/mL) 

Time LPS Median IQR Range P-Value* P-Value† 

0h - 0.6 0.3 0.3  - 1.3 - - 

4h - 1.6 1.1 0.7  - 6.4 < 0.001 - 

 + 7.5 4.0 1.9  - 26.3 < 0.001 - 

24h - 6.1 3.7 1.9 - 58.3 < 0.001 - 

 + 28.2 19.5 5.6  - 100.8 < 0.001 - 

4h % ctr 439.5 319.3 146.3  - 1150.1 - < 0.001 

24h % ctr 396.3 304.5 83.8  - 1206.3 - < 0.001 

TxB2 (ng/mL) 

Time LPS Median IQR Range P-Value* P-Value† 

0h - 0.5 0.6 0.1  - 4.0 - - 

4h - 1.6 2.4 0.1  - 14.7 < 0.001 - 

 + 13.0 10.0 2.1  - 47.1 < 0.001 - 

24h - 1.5 2.5 0.2  - 14.9 < 0.001 - 

 + 10.9 11.5 0.6  - 54.2 < 0.001 - 

4h % ctr 747.0 1015.9 163.9  - 17205.9 - < 0.001 

24h % ctr 612.3 811.6 52.5 - 3662.8 - < 0.001 

PGE2 (ng/mL) 

Time LPS Median IQR Range P-Value* P-Value† 

0h - 0.2 0.2 0.1  - 2.2 - - 

4h - 0.3 0.2 0.1  - 2.3 < 0.001 - 

 + 1.2 1.0 0.1  - 8.0 < 0.001 - 

24h - 0.4 0.3 0.1  - 2.5 < 0.001 - 

 + 8.0 8.8 0.2  - 82.5 < 0.001 - 

4h % ctr 406.1 317.9 72.8  - 1444.5 - < 0.001 

24h % ctr 2174.4 2627.8 103.4 - 29262.8 - < 0.001 

PGF2α (ng/mL) 

Time LPS Median IQR Range P-Value* P-Value† 

0h - 0.2 0.1 0.1  - 0.4 - - 

4h - 0.3 0.1 0.1  - 0.6 < 0.01 - 

 + 0.7 0.3 0.1  - 1.7 < 0.001 - 

24h - 0.4 0.3 0.1 - 1.3 < 0.001 - 

 + 1.9 1.2 0.2  - 13.1 < 0.001 - 
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PGF2α (ng/mL) 

4h % ctr 243.0 148.0 23.5  - 1036.0 - < 0.001 

24h % ctr 520.9 395.7 117.3  - 3071.1 - < 0.001 

12-HETE (ng/mL) 

Time LPS Median IQR Range P-Value* P-Value† 

0h - 2.7 2.5 0.9  - 10.0 - - 

4h - 44.3 78.7 6.2  - 405.3 < 0.001 - 

 + 57.6 99.2 8.9  - 518.3 < 0.001 - 

24h - 157.5 172.4 17.4 - 2066.7 < 0.001 - 

 + 260.8 249.7 45.7  - 1600.0 < 0.001 - 

4h % ctr 121.0 30.5 89.4  - 332.4 - < 0.001 

24h % ctr 159.6 62.7 32.9  - 390.8 - < 0.001 

5-HETE (ng/mL) 

Time LPS Median IQR Range P-Value* P-Value† 

0h - 0.5 0.3 0.2  - 1.8 - - 

4h - 1.0 0.6 0.3  - 3.3 < 0.001 - 

 + 1.4 0.8 0.6  - 4.5 < 0.001 - 

24h - 2.2 1.1 0.9  - 6.4 < 0.001 - 

 + 1.6 0.9 0.6  - 4.9 < 0.001 - 

4h % ctr 140.4 46.4 79.5  - 335.0 - < 0.001 

24h % ctr 70.1 18.4 31.1  - 123.8 - < 0.001 

*   Absolute values related to baseline release 

†   Relative values normalized to medium control 
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Supplemental Table XIX. Differential Eicosanoid Response on Mediator Level in Patients with 

or without CAD 

AA (ng/mL) 

Time LPS w/o CAD* with CAD P-Value† CAD < 50%‡ CAD ≥ 50%§ 

0h - 1391.7 1081.8 < 0.01 1119.5 1033.7// 

4h - 2358.3 1743.3 < 0.05 1725.0 1755.0// 

 + 2386.7 1860.0 < 0.05  1681.7 1913.3 

24h - 5976.7 4470.0 < 0.05 4505.0 4470.0// 

 + 3808.3 2886.7 < 0.05 2651.7 2963.3// 

4h % ctr 99.3 102.1 0.733 95.8 103.8 

24h % ctr 66.7 64.0 0.311 59.7 65.7 

11-HETE (ng/mL) 

Time LPS w/o CAD* with CAD P-Value† CAD < 50%‡ CAD ≥ 50%§ 

0h - 0.6 0.6 0.927 0.6 0.6 

4h - 1.9 1.4 < 0.05 1.3 1.6 

 + 8.0 6.9 0.234 6.2 7.7 

24h - 6.8 5.6 < 0.05 5.0// 5.9// 

 + 31.4 25.6 0.121 19.3 28.4 

4h % ctr 437.2 494.8 0.486 399.6 512.8 

24h % ctr 412.3 384.4 0.482 352.5 438.5 

TxB2 (ng/mL) 

Time LPS w/o CAD* with CAD P-Value† CAD < 50%‡ CAD ≥ 50%§ 

0h - 0.5 0.4 0.532 0.4 0.6 

4h - 2.0 1.3 0.324 0.9 1.5 

 + 13.2 12.3 0.583 10.3 13.7 

24h - 1.9 1.3 0.439 1.0 1.6 

 + 10.9 10.6 0.997 8.6 11.3 

4h % ctr 584.8 850.6 0.785 803.6 903.1 

24h % ctr 465.9 711.9 0.894 745.0 644.9 

PGE2 (ng/mL) 

Time LPS w/o CAD* with CAD P-Value† CAD < 50%‡ CAD ≥ 50%§ 

0h - 0.2 0.2 0.880 0.2 0.3 

4h - 0.3 0.3 0.841 0.2 0.3 

 + 1.2 1.1 0.935 0.8 1.7 

24h - 0.4 0.3 0.415 0.2 0.4 

 + 8.6 6.2 0.870 4.3 8.4 

4h % ctr 408.8 405.5 0.796 335.8 405.5 

24h % ctr 2706.4 1980.7 0.523 1860.6 2002.6 

PGF2α (ng/mL) 

Time LPS w/o CAD* with CAD P-Value† CAD < 50%‡ CAD ≥ 50%§ 

0h - 0.2 0.2 0.541 0.2 0.3 

4h - 0.3 0.3 0.530 0.3 0.3 

 + 0.7 0.7 0.717 0.6 0.7 

24h - 0.4 0.3 0.266 0.3 0.4 

 + 2.1 1.9 0.927 1.4 2.1 
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PGF2α (ng/mL) 

4h % ctr 249.8 233.8 0.666 184.7 276.6 

24h % ctr 515.2 522.4 0.319 495.6 538.6 

12-HETE (ng/mL) 

Time LPS w/o CAD* with CAD P-Value† CAD < 50%‡ CAD ≥ 50%§ 

0h - 2.8 2.5 0.260 2.7 2.4 

4h - 54.4 41.0 0.060 36.5 45.9 

 + 81.8 47.9 < 0.05 47.4 49.4 

24h - 196.7 133.0 < 0.05 124.5 161.3// 

 + 311.0 211.8 < 0.05 167.5 262.5 

4h % ctr 120.0 124.3 0.354 118.8 129.0 

24h % ctr 147.9 167.2 0.073 160.5 175.3 

5-HETE (ng/mL) 

Time LPS w/o CAD* with CAD P-Value† CAD < 50%‡ CAD ≥ 50%§ 

0h - 0.5 0.5 0.967 0.5 0.5 

4h - 1.0 0.9 0.385 0.9 0.9 

 + 1.5 1.2 < 0.05 1.1// 1.4 

24h - 2.5 2.2 0.179 2.0 2.2 

 + 1.9 1.4 < 0.05 1.2// 1.4 

4h % ctr 138.2 141.3 0.058 134.9 147.5 

24h % ctr 76.9 66.8 < 0.01 63.3// 70.1// 

*   Subjects with catheter based exclusion of coronary artery disease (CAD) 

†   P-Value subjects w/o CAD compared to subjects with CAD 

‡   Subjects with angiographic coronary wall irregularities < 50 % luminal reduction 

§   Subjects with angiographic stenosis ≥ 50 % luminal reduction in at least one major   
    coronary artery 

//   P<0.05 when compared to subjects w/o CAD 
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