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Abstract
Oral baiting is a fundamental method for delivering toxicants to pest species. Planning baiting strategies is challenging 
because bait-consumption rates depend on dynamic processes including space use and demographics of the target species. 
To determine cost-effective strategies for optimizing baiting, we developed a spatially explicit model of population dynamics 
using field-based measures of wild-pig (Sus scrofa) space use, bait consumption, and mortality probabilities. The most cost-
effective baiting strategy depended strongly on the population reduction objective and initial density. A wide range of baiting 
strategies were cost-effective when the objective was 80% population reduction. In contrast, only a narrow range of baiting 
strategies allowed for a 99% reduction. Cost-effectiveness was lower for low densities of wild pigs because of the increased 
effort for locating target animals. Bait avoidance due to aversive conditioning from sub-lethal dosing had only minor effects 
on cost-effectiveness when the objective was an 80% reduction, whereas the effect was much stronger when the objective was 
99% population reduction. Our results showed that a bait-based toxicant could be cost-effective for substantially reducing 
populations of wild pigs, but for elimination it may be most cost-effective to integrate additional management techniques 
following initial toxicant deployment. The nonlinear interaction of cost-effectiveness, initial population size, and reduction 
objective also emphasized the importance of considering the dynamics of space use and bait consumption for predicting 
effective baiting strategies. Although we used data for an acute toxicant and wild-pig consumption rates, our framework can 
be readily adapted to other vertebrate pest species and toxicant characteristics.

Keywords Toxicant · Bait · Cost-effectiveness · Population model · Decision-making tool · Wild pig

Key message

• Animal space use and bait-consumption rates determine 
effective baiting strategies for pest control.

• A spatially explicit model of consumption and control 
dynamics, based on field data, predicted cost-effective-
ness of baiting strategies.

• Cost-effectiveness scaled nonlinearly with population 
density and control objective.

• Considering space-use data alone in planning baiting 
strategies could lead to sub-optimal strategies, or strate-
gies that don’t meet management objectives.

• Considering the dynamic nature of bait visitation, con-
sumption by the target species, and variation in man-
agement effort is important for planning cost-effective 
baiting strategies.

Introduction

Baiting is a common method to deliver pharmaceuticals to 
a target species for control of pests or diseases (Bengsen 
2014; Campbell et al. 2006; Donlan et al. 2003; Gilbert 
et al. 2018; Hyngstrom and VerCauteren 1995; Savarie et al. 
2001; Tompkins and Ramsey 2007). A primary challenge 
for managing populations of vertebrate pests with pharma-
ceuticals is determining the optimal density of baits to apply 
across an area, which depends on many factors including: 
attractiveness of bait, animal movement behavior, landscape 
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heterogeneity, seasonality, efficacy of the bait, and duration 
of baiting effort. In general, it is suggested that in order to 
control pests using a bait-based strategy, spacing of baits 
should be within the radius of attraction to baits—i.e., the 
average distance between an animal’s home range centroid 
and bait sites that they visit (Bengsen 2014; Snow et al. 
2018; Tompkins and Ramsey 2007). Similar logic is used 
for planning aerial bait-drop strategies for vaccinating wild 
carnivores against rabies, where it is hypothesized that flight 
line spacing should aim to deliver multiple baits within an 
individual’s core home range area (i.e., 50% usage area, Ber-
entsen et al. 2018). However, as animals have highly variable 
space-use patterns that depend on seasonal demographic 
dynamics, and because more effort is needed to locate indi-
viduals as populations decline, it could be misleading to 
predict optimal bait density from average home range size.

Quantitative models of bait visitation behavior can pro-
vide an efficient means for understanding and predicting 
how ecological complexities such as individual variation 
in movement and social structure determine the effective-
ness of different baiting strategies. Deterministic population 
models have been useful in predicting the effects of toxi-
cants on wild pig (Sus scrofa) population abundance (Hone 
1992). This approach ignores heterogeneity in contact with 
bait and variation in the predicted time to elimination due 
to demographic stochasticity at low abundance. Determin-
istic population-level models also complicate the ability to 
account for the individual-level changes in bait status (con-
sumed versus not consumed) that are occurring in the field 
due to local wild pig density and can be monitored with 
trail cameras or manually monitoring bait sites. In contrast, 
individual-based models can provide more accurate predic-
tion in highly heterogeneous systems (Federico et al. 2013). 
Using an individual-based model, Tompkins and Ramsey 
(2007) showed that incorporation of individual-level space 
use and bait-encounter rates allowed for accurate predic-
tion of the proportion of individual possums (Trichosurus 
vulpecula) that consumed biomarked bait at different baiting 
densities. They focused on bait consumption within 10 days 
following a single application of bait, but did not address 
objectives that could be influenced by longer-term baiting 
and demographic dynamics. In particular, locating individu-
als requires increasingly more effort as population density 
declines (Choquenot et al. 1999), such that bait-encounter 
rates decrease nonlinearly with decreasing population den-
sity or distance from baits (Snow et al. 2018). A framework 
that combines individual-level bait-encounter behavior with 
demographic dynamics would be a useful tool for predicting 
optimal long-term baiting strategies because in most systems 
long-term baiting is required to achieve the desired level of 
control.

Another important component of optimizing baiting 
strategies is comparing costs of different bait application 

strategies in space and time. In the absence of costs, the 
best strategy will be the one that removes a pest the fastest. 
Often, though, management strategies are based on avail-
able funds, highlighting the importance of restricting the 
optimal strategies to realistic possibilities by incorporating 
economic data (McMahon et al. 2010) or realized manage-
ment patterns (Pepin et al. 2017a; Tompkins and Ramsey 
2007). Management costs are typically not directly propor-
tional to the density of target species because time to attract 
animals to bait (search effort) increases with decreasing 
density (Choquenot et al. 1999; Cowled et al. 2006). These 
nonlinear relationships of densities to costs can result in 
different predictions of optimal control strategies relative 
to cost-density relationships that are directly proportional 
(Davis et al. 2018). The most fundamental components 
of management costs are labor, equipment, and supplies. 
Almost completely unexplored is the effect of how costs of 
these components may change based on spatial strategies 
of controlling pest populations. For example, more fuel and 
labor costs are needed to conduct baiting at sites that are 
far apart versus close together. Thus, consideration of all 
associated costs based on the spatial strategy of baiting is 
important for planning optimal baiting strategies over large 
spatial areas.

Finally, another important consideration for optimizing 
baiting strategies is understanding how learned avoidance 
behavior by the target animals impacts the efficacy of con-
trol. Not all individuals will consume toxic baits or consume 
enough to succumb from the bait (e.g., Snow et al. 2018), 
and therefore sub-lethal dosing may occur. Furthermore, 
sub-lethal dosing can reduce the effectiveness of toxic baits 
over time via learned bait avoidance (Allsop et al. 2017). 
For some pest species, just a few remaining animals on the 
landscape can re-establish a population quickly (Morrison 
et al. 2007); thus, learned avoidance of toxic baits is impor-
tant for managers to consider.

Our primary aim was to predict the density of bait sites 
needed to reduce pest populations throughout a range of tar-
geted objectives at the lowest costs (optimal baiting strat-
egy). Our secondary aim was to understand how toxic bait 
efficacy and avoidance by previously exposed (aversively 
conditioned) individuals might affect effectiveness and cost 
of the optimal strategy. We approached these objectives 
using a computational model with parameters relevant to 
ongoing development of a sodium nitrite-based toxicant for 
wild pigs (Cowled et al. 2006; Shapiro et al. 2016; Snow 
et al. 2017a). We integrated field data on wild pig space use 
near bait sites, rates of bait consumption and efficacy, data 
of wild pig demographics and social behavior, and realistic 
constraints on the distribution and use of toxic bait, into 
an individual-level population model. We hypothesized that 
optimal bait-site density would depend on both wild pig pop-
ulation density and the control objective (e.g., amount of 
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population reduction that is desired) because attracting pigs 
to bait becomes more labor-intensive as density decreases. 
Thus, we predicted that the optimal density of bait sites 
would be higher in low-density relative to high-density pop-
ulations to reach similar proportional reduction objectives. 
Lastly, we predicted that avoidance would present a major 
challenge for reaching population reduction objectives near 
elimination but that some avoidance may be tolerated when 
the population reduction objective is less stringent, allowing 
some educated individuals to be left on the landscape. Our 
model provides a tool for predicting optimization of toxic 
baiting criteria using bait sites while considering the move-
ment and bait uptake behavior of the target species.

Methods

Study species

Invasive wild pigs cause extensive agricultural, ecological, 
and property damage (Anderson et al. 2016; Hone 1995; 
Pimentel 2007; Pimentel et al. 2000), which also occurs in 
their native range (Massei and Genov 2004; Schley et al. 
2008). To effectively reduce wild pig populations and dam-
age, managers must be capable of sustained and dramatic 
reductions (Keuling et al. 2013; Mayer 2009; Pepin et al. 
2017a, b). Methods of control have included toxicants, aer-
ial gunning, trap and remove, hunting, and sharp shooting 
(Da Rosa et al. 2018; Mayer and Brisbin 2009; Queensland 
2008). The effectiveness of different methods varies depend-
ing on habitat, weather, and population density (Muir and 
McEwen 2007; Steen 2006). Toxicants are thought to be 
cost-effective (Queensland 2008), particularly in certain 
habitat and weather conditions where other methods may 
be less effective (Cowled et al. 2008). Several countries 
have sought to develop a new toxic bait containing the acute 
active ingredient, sodium nitrite, (Lapidge et al. 2012; Sha-
piro et al. 2016; Snow et al. 2017a) to address animal wel-
fare concerns with previously developed toxicants such as 
sodium fluoroacetate (1080), warfarin, and yellow phospho-
rus, which have been used to varying degrees in Australia 
(Cowled et al. 2008). Sodium nitrite is considered humane 
due to its rapid lethality (Cowled et al. 2008) and has poten-
tial to economically remove large proportions of populations 
of wild pigs in treated areas (Lavelle et al. 2018b; Snow et al. 
2017a, 2018). Prototype sodium nitrite-based baits achieved 
89–95% lethality in pen studies with wild pigs (Shapiro 
et al. 2016; Snow et al. 2017a). Field studies have shown 
that attraction distances to bait sites can be highly variable 
among individuals and sexes depending on individual-level 
variation in space-use behavior (Lavelle et al. 2018b). Most 
wild pigs visit bait sites within 0.75–1.5 km from the centers 
of their home ranges, although may be attracted from > 3 km 

away (Lavelle et al. 2018b; Snow et al. 2018). A wild pig-
specific bait station is being developed to restrict access to 
toxic bait by non-target species (Lavelle et al. 2018a; Snow 
et al. 2017b) and requires a non-toxic pre-bait training period 
of ~ 15 days for wild pigs to become accustomed to using it 
(Lavelle et al. 2018b). Although sodium nitrite-based toxic 
bait delivery systems are still being tested and optimized to 
evaluate/minimize potential non-target losses (Snow et al. 
2017c, 2019), it is useful to begin evaluating the effective-
ness of potential implementation strategies to help guide 
experimental design of field studies, manage expectations 
of practitioners, and to have an off-the shelf planning tool 
when the product is ready.

Modeling approach

We developed a spatially explicit individual-based model to 
account for individual-level variation in space use (Kay et al. 
2017; Lavelle et al. 2018b), and thus the propensity to visit 
bait sites. We allowed individuals to have different move-
ment capacity to account for individual-level stochasticity in 
bait uptake. We focused on determining cost-effective bait-
ing densities for empirical distributions of pig movement 
and bait uptake using a theoretical toxic bait product with a 
negligible amount of non-target mortality. We describe the 
model structure and component algorithms in detail using 
the ODD Protocol (Grimm et al. 2010) in the supplementary 
text and give a conceptual overview below.

Determining the optimal strategy

We evaluated model output descriptively relative to achiev-
ing a range of management objectives—i.e., reduction of 
population abundance by a target amount. Effectiveness for 
a given strategy (set of parameters) was determined by the 
proportion of 100 stochastic simulations that reached the 
management objective within 5 years (probability of reach-
ing objective). The optimal strategy for bait density was 
determined as the one that had the lowest cost ($USD) per 
unit of effectiveness (total cost/probability of reaching the 
objective). We also descriptively summarized the amount of 
time it took to reach the management objective and the total 
costs for each parameter set. We describe how cost data were 
incorporated below the model description.

Individual‑based model

The model and analyses were developed in MATLAB pro-
gramming language (Version R2018a, Mathworks, Natick, 
MA, USA). The purpose of the model is twofold: 1) to 
predict the density of bait sites needed to reduce a wild 
pig population by a target proportion at the lowest cost, 
and 2) to understand how bait avoidance by previously 
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exposed individuals affects cost-effectiveness for differ-
ent population reduction objectives. The model included 
demographic dynamics of the pig population, baiting 
activities, and spatial movements of both wild pigs and 
bait sites (Fig. S1). Attributes for individual pigs included: 
age, sex, social group, age at dispersal, longevity, home 
range radius, movement distance, home range centroid, 
bait exposure status, and carrying capacity of their home 
grid cell. For females, we also tracked reproductive sta-
tus, gestation time, and time since last birthing event. Pig 
states were either alive and not yet exposed to toxic bait 
or alive and recovered from toxic bait exposure (based on 
bait efficacy in pen trails; Snow et al. 2017a). Pigs that 
died from toxic bait exposure were permanently removed 
from the population.

Bait sites had three states: (1) ‘locating’, where non-toxic 
pre-bait (e.g., corn) is placed on the ground to determine if 
wild pigs are in the area, but no bait station is present, (2) 
‘training’, where wild pigs have been located and a bait sta-
tion containing non-toxic pre-bait has been placed. During 
this phase wild pigs become accustomed to using the bait 
station. Finally, state (3) is the ‘toxic’ phase, where toxic 
bait is used allowing for pigs to be killed. For each bait site 
we tracked: the state, the number of pigs that visited per 
day, and the location of the bait sites on the habitat grid in 
continuous space.

Pig daily movements occurred in continuous space, but 
the habitat grid that defined abundance consisted of 225 dis-
crete 4 km2 cells (total area 900 km2). We examined land-
scapes with densities of 1, 3, 5, or 10 pigs/km2 (i.e., abun-
dances at biological carrying capacity of 900, 2700, 4500, or 
9000 pigs), which is similar to density variation observed in 
southern USA (Davis et al. 2017; Keiter et al. 2017). For this 
analysis we assumed a homogenous distribution of density 
(i.e., without variation in density due to landscape factors) 
in order to isolate the effects of animal density from hetero-
geneity in density. We also assumed that interactions with 
conspecifics did not affect visitation rates to bait sites.

All runs were begun after a 31-year burn-in period (no 
management) where populations were initialized at 10% of 
carrying capacity and allowed to increase until they reached 
carrying capacity (Fig. S2). The reason for the burn-in 
period was to allow enough time for the age, sex, and social 
structure to establish without influence from initial condi-
tions. After the burn-in period, management treatments were 
initiated and the simulations progressed for an additional 
5 years. The following events occurred in the model on a 
daily time step:

1. Bait-site dynamics, which included visits of pigs to each 
bait site, effects of the bait on individual pigs (kill or 
not), updates of the bait-site status, updates of labor time 
and costs, and relocation of bait sites as needed.

2. Natal dispersal, where pigs that reached their age of dis-
persal relocated to new home range centroids.

3. Social structure, where independent females joined 
nearby family groups and oversized groups were divided 
in half with one group moving to a new home range cen-
troid (according to a process similar to natal dispersal).

4. Density-dependent immigration, where new pigs from 
an exogenous population migrated into the area.

5. Conception, births, and natural mortality, where repro-
ductively active females in grid cells below carrying 
capacity were allowed to conceive and then birth litters 
following a gestation period. Conception probability was 
density-dependent (Fig. S1). Pigs at the age of natural 
longevity (i.e., longevity in the absence of control or 
hunting; (Jezierski 1977)) were removed from the popu-
lation.

Implementation details of the demographic and bait visi-
tation processes, all parameter values, and model assump-
tions are summarized in the Supplementary Text. In previous 
work we examined sensitivity of the demographic model 
to demographic parameters (Pepin et al. 2017a). Here, we 
developed baiting processes and examined sensitivity to 
three bait-related parameters: (1) the density of bait sites in 
relation to wild pig density—referred to as ‘pigs/bait site at 
initiation’, (2) the efficacy of toxic bait—the proportion of 
pigs killed after bait consumption, and (3) avoidance—pro-
portion of wild pigs that consumed bait but did not die and 
avoid the bait in the future.

Costs

For each run, costs were tracked in 4 categories: (1) initial 
costs for equipment (based on the maximum number of bait 
sites employed simultaneously and the cost per bait station), 
(2) salary and supplies costs for setting up or removing bait 
sites, (3) daily salary and supplies costs for running non-
toxic pre-baiting and post-baiting, and (4) daily salary and 
supplies costs for running bait sites with toxic bait. For each 
of these categories we assumed that costs increased linearly 
with the number of bait sites and average distance among 
them. Costs for the bait stations were only accrued initially, 
after which they were reused at no additional cost. Costs of 
non-toxic and toxic bait were factored into every category. 
For each category, the per day costs (ct) were calculated as: 
ct = b1 + m ∙ b1 ∙ Nb,t ∙ db,t, where b1 is the labor and sup-
plies cost for baiting one site, Nb,t is the total number of bait 
sites at time t, db,t is the average pairwise distance among 
all bait sites at time t, and m is the slope of the relationship 
between cost and the interaction of (bait site number × spa-
tial area). For example, if the cost of running one bait site 
for a day with placebo bait is $10, and m = 0.5, the cost 
to run 5 bait stations with placebo bait per day spaced at 
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1 km2 on average would be: $10 + (0.5 · $10 · 5 bait stations 
· 1 km2) = $35. The total cost at each time step was the sum 
of all 4 categories, and the total cost for the whole run was 
the sum across time and categories. We chose the following 
fixed parameters in each category (shown as [b1, m]): (1) 
$100 (equipment costs per bait station—no m parameter), 
(2) [$15, 0.05], (3) [$10, 0.05], and 4) [$50, 0.05] based on 
field work related to development of bait stations and toxic 
bait delivery (Lavelle et al. 2018b; Snow et al. 2018).

Results

Evaluation of bait‑station density

An acutely toxic bait was effective at reducing the popu-
lation by 80% over a wide range of bait-station densities 
(Fig. 1, top left). However, if the management target was 
99% reduction, then effectiveness reduced rapidly when 
lower bait-station density strategies were used (i.e., increase 
in pigs/bait station—X-axes of Fig. 1). In contrast, cost per 
unit of effectiveness was highest at the high and low ranges 
of bait-station density, meaning that these ranges of bait-sta-
tion density were not as cost-effective as intermediate values 
of bait-station density (Fig. 1). The optimal baiting strategy 

Fig. 1  Effects of bait-station density on metrics of effectiveness and 
efficiency. Each point is an average of 100 stochastic simulations 
(95% confidence intervals are contained within the large points). 
X-axis values are the number of pigs per bait station at initiation of 
the baiting treatments—a measure of bait-station density. Note, bait-
station density decreases from left to right on the X-axis. For 3 pigs/
km2, a range of 2––130 pigs per bait station (X-axis range) equates 
to a range of 1350–21 bait stations at initiation of control on average 

in a 900 km2 area, which is a bait station density of 1.5–0.023 bait 
stations per  km2, or 1 bait box per 0.67–43.5 km2. In b, c plots only 
simulations that reached the management target were included in the 
average. Size of the points are scaled to the number of simulations 
included in the average. Each plot shows results for 3 different man-
agement targets (see legend in a). Fixed conditions: 3 pigs/km2, no 
avoidance, toxic bait efficacy = 0.93
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also depended on the management objective. If the objective 
was 99% reduction (black line in Fig. 1, bottom right), then 
the optimal strategy was to target a bait-station density of 
5–20 pigs/station on a landscape with an average density of 
3 pigs/km2 (corresponding to 0.15–0.6 bait stations/km2 or 
1 bait station/1.7–6.7 km2). In contrast, if the objective was 
only 80% reduction (light gray line in Fig. 1, bottom right), 
then the optimal strategy was to target a bait-station density 
of 30–70 pigs/bait station on a landscape of the same average 
density (corresponding to 0.043–0.1 bait stations/km2 or 1 
bait station/10–23 km2).

As expected, more bait sites per pig (higher baiting 
densities) were needed to control low-density populations 

(Figs. 2, 3), because these populations were more sparse 
and because it required more bait stations to locate and 
attract individuals to bait. However, the range of effective 
baiting densities was not directly proportional to population 
density: populations with 1 pig/km2 required much higher 
bait-station densities to reduce populations by 95%, whereas 
populations of 3 or 5 pigs/km2 required similar baiting den-
sities, and populations of 10 pigs/km2 required much lower 
baiting densities (Fig. 2). 

Similar patterns occurred in terms of optimal strategies 
(cost per unit of effectiveness): at densities of 3–5 pigs/km2 
optimal baiting densities were similar, whereas at lower 

Fig. 2  Effects of bait-station density on effectiveness for different 
population densities of wild pigs. Lines show the average relationship 
(from 100 stochastic simulations) for different conditions of wild pig 
population density (indicated in the legend). X-axes are as in Fig. 1. 

Each plot shows the results for a different management objective 
(indicated at the top of plots). Fixed conditions: no avoidance, toxic 
bait efficacy = 0.93

Fig. 3  Effects of bait-station density on cost per unit of effectiveness 
for different population densities of wild pigs. Lines show the average 
relationship (from 100 stochastic simulations) for different conditions 
of wild pig population density (indicated in the legend). X-axes are 

as in Fig. 1. Each plot shows the results for a different management 
objective (indicated at the top of plots). Fixed conditions: no avoid-
ance, toxic bait efficacy = 0.93
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densities and higher densities of wild pigs the optimal bait-
ing density was quite different (Fig. 3).

Effects of avoidance behavior and toxic bait efficacy

With a management objective of 80% reduction of abun-
dance, effectiveness and cost per unit of effectiveness were 
not very sensitive to the efficacy of the toxic bait and avoid-
ance behavior (Figs. 4, 5). For example, even when toxic bait 
efficacy was only 51% (i.e., 49% consumed and recovered), 
and up to 70% of the recovered 49% (i.e., 34% ‘educated’) 
avoided baits in the future, the management objective could 
still be achieved in > 90% of simulations (Fig. 4, bottom 
right). However, this type of inefficiency did result in an 
increase in the cost per unit of effectiveness (Fig. 5, bottom 
right). Additionally, if the bait efficacy was 93% on average 
(as in Snow et al. 2017a), then effectiveness and cost per unit 
of effectiveness were unaffected even if all 7% of recovered 
individuals avoided re-exposure to the toxic bait (right side 
of gray lines in Figs. 4, 5, bottom left plots). In contrast, 

as the management objective approached elimination (99% 
reduction), bait efficacy and avoidance behavior strongly 
determined effectiveness and cost per unit of effectiveness 
(Figs. 4, 5). To achieve a 99% reduction in a population with 
1 pig/km2, the highest levels of effectiveness and cost per 
unit of effectiveness were achieved when avoidance follow-
ing consumption was < 30% and efficacy of the toxic bait 
efficacy was > 80% (meaning that 30% of 20% = 6%, was 
the maximum tolerance level for ‘resistance’ to the toxic 
bait when the management objective was 99% reduction; 
Figs. 4, 5). 

Discussion

Using a data-informed population model of wild-pig demo-
graphic dynamics and bait-consumption behavior, we devel-
oped a tool for inferring optimal baiting densities for achiev-
ing management objectives using a toxicant. If we calculate 
optimal bait density using the average radius of attraction 

Fig. 4  Effects of toxic bait efficacy (Y-axes) and avoidance behavior 
(X-axes) on effectiveness—the probability of reaching the manage-
ment objective out of 100 stochastic simulations (color bar). White 
corresponds to never reaching the management objective (0% effec-

tiveness), while black corresponds to always reaching the objective 
(100% effectiveness). The horizontal gray line indicates the baseline 
parameter for toxic bait efficacy that was used in Figs.  1, 2 and 3. 
Fixed conditions: 1 pig/km2, 15 pigs per bait station at initiation
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(~ 2 km, Snow et al. 2018) data alone, we might predict that 
a density of ≥ 0.08 bait sites per  km2 [≥ 1 bait site per circu-
lar home range: π(2)2 = 12.6 km2] could be sufficient to have 
at least 1 visited bait site per individual on average. But, 
this calculation would not factor in how effort changes as a 
function of density or individual-level variation in visitation 
and consumption as a function of distance. By incorporat-
ing costs and demographics, we found that the most cost-
effective baiting strategy depends strongly on the objective 
and population density, suggesting that calculations based on 
average space use alone are likely not accurate because they 
would be constant regardless of the objective. This illustrates 
the importance of accounting for spatiotemporal population 
dynamics, and how they interact with cost and management 
effort, when planning optimal baiting strategies. Basing rec-
ommendations only on attraction distance to baits might not 
be enough for cost-effective planning.

In our simulations, an acutely toxic bait for wild pigs 
was very effective at reducing abundance substantially, but 
was not cost-effective for transitioning populations from low 

abundance to elimination. In low-density populations, reduc-
ing the population by 99% involves driving the population to 
a lower absolute abundance than necessary in high-density 
populations. Thus, the management objective of 99% reduc-
tion was not achieved for most bait-station densities for the 1 
pig/km2 conditions, but could be achieved over a wider range 
of bait-station densities for the conditions with 3–10 pigs/
km2. For example, if the initial abundance was 900, a 99% 
reduction means that only 9 pigs are remaining, whereas 
if the initial abundance is 2700–9000 (3–10 pigs/km2), a 
99% reduction would mean that 27–90 wild pigs remain on 
the landscape. As effort increases exponentially to locate 
pigs at low abundance, removing the extra 81 wild pigs 
(90–9 = 81) at low density was exponentially more costly 
than stopping at an abundance of 90 wild pigs. This dispro-
portionate effort of removing final remaining individuals in 
eradication campaigns is well recognized and often requires 
integrating additional management strategies to be effective 
(McCann and Garcelon 2008; Parkes et al. 2010). Including 
additional strategies to target individuals once abundance 

Fig. 5  Effects of toxic bait efficacy (Y-axes) and avoidance behavior 
(X-axes) on cost per unit of effectiveness on a  log10 scale (color bar). 
Each plot shows the average outcome (from 100 stochastic simula-
tions) under a different management objective. White areas repre-
sent parameter sets that never reached the management objective (0% 

effectiveness), while black corresponds to always reaching the objec-
tive (100% effectiveness). The horizontal gray line indicates the base-
line parameter for toxic bait efficacy that was used in Figs. 1, 2 and 3. 
Fixed conditions: 1 pig/km2, 15 pigs per bait station at initiation
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drops below a low-abundance threshold could provide guide-
lines for more cost-effective management strategies when 
the objective is elimination.

We also showed that managers could apply a wide range 
of bait-station densities cost-effectively if the management 
target was a large reduction in abundance (e.g., 80%) but not 
elimination. We considered cost-effectiveness as a function 
of the probability that an abundance reduction target was 
reached within a fixed period of time (5 years). If the man-
agement objective (effectiveness) is framed in terms of how 
much the population is reduced or how long it takes to reach 
a particular abundance or agricultural damage-reduction 
objective, the range over which cost-effectiveness is highest 
could be reduced. Additionally, our measure of cost included 
implementation costs but not damage costs. Costs of running 
fewer bait stations for longer seemed similar to running more 
bait stations for shorter time over a wide range of bait-station 
densities. We may expect to see a finer resolution of optimal 
bait-station density if we had considered damage costs in the 
overall cost-effectiveness (e.g., Davis et al. 2018; Hone et al. 
2017; Yokomizo et al. 2009). This is because when more 
individuals are left on the landscape longer, more damage 
can occur, which is especially true when the relationship 
between density and damage is exponential (Davis et al. 
2018; Yokomizo et al. 2009). For example, when each addi-
tional individual on the landscape causes exponentially more 
damage, costs of cheaper but slower control could be more 
expensive overall due to the additional damage costs that are 
accrued from slower control (Davis et al. 2018; Yokomizo 
et al. 2009). A second layer of complexity to consider when 
including damage costs is the seasonality of damage. Visi-
tation to crops can vary seasonally in wild pigs (Kay et al. 
2017) due to variability in crop and natural-forage avail-
ability. Thus, when considering damage costs in optimal 
baiting strategy, the predicted optimal density could also 
vary seasonally. Incorporating field measures of seasonal 
variation in crop damage could refine predictions of the 
cost-effectiveness of baiting strategies, by highlighting how 
baiting strategies need to be adjusted seasonally to be most 
cost-effective.

Costs of implementing a particular management strategy 
depend not only on how densely baiting is done, but also on 
the total spatial area. It takes longer and thus is more expen-
sive to maintain 10 bait sites that are farther apart relative to 
10 that are closer together. Our cost analyses accounted for 
the increased cost with spatial area, but we assumed that the 
costs associated with running bait sites across farther dis-
tances (or at higher densities) only increased due to hourly 
salary costs. In fact, running far-apart or high-density baiting 
strategies will also require more personnel individuals work-
ing each day because a given person is limited in the amount 
of bait sites they can visit in 1 day. Personnel could thus be a 
limiting factor in far-apart or high-density strategies because 

it might not be possible to afford paying for additional labor 
costs. Considering the potential additional costs from extra 
personnel and an upper limit on a feasible number of per-
sonnel could be an important future direction for refining 
optimal baiting strategies in space.

Pests may avoid toxic bait to some degree after exposure 
and recovery from a sub-lethal dose (Bengsen 2014; Hick-
ling et al. 1999), but the impacts on toxicant effectiveness 
by aversion have not been studied in wild pigs (Allsop et al. 
2017). Our results showed that if the management target is 
an 80% reduction or less, the system is fairly robust to bait 
aversion and bait efficacy. But, the combination of aversion 
and efficacy becomes more important as the management 
objective becomes more stringent (i.e., > 80% reduction). 
Thus, if sub-lethal dosing and aversion are prevalent, addi-
tional management methods will need to be integrated into 
the program to eliminate remaining individuals once the 
population drops below 20% its pre-treatment abundance. 
We examined fixed values for aversion and efficacy, but if 
uncertainty in these parameters is quantified, it could also 
be useful to predict cost-effectiveness while accounting for 
uncertainty in these parameters. That would provide a more 
accurate portrayal of uncertainty in reaching the manage-
ment objective for better consideration of risks when choos-
ing the optimal baiting strategy.

We used bait visitation and consumption rates from a sin-
gle study site (Snow et al. 2018) to account for variation in 
the probability that wild pigs visit bait stations. Our method 
considered effects of age, sex, family group structure, and 
distance between bait stations and home range centroids of 
individuals. The study by Snow et al. (2018) was conducted 
on the Edwards Plateau and Blackland Prairie ecoregions of 
south-central Texas where dominant vegetation communities 
consisted of cedar-oak woodlands and grasslands on rocky 
soils and limestone outcrops. Baits were placed at sites that 
showed evidence of usage by wild pigs, and pigs from these 
sites were collared. Thus the movement data used in our 
study reflects movement variation under these conditions. 
However, visitation rates of animals to food-based baits are 
known to fluctuate in space and time due to the quality and 
availability of natural forage, seasonal changes in energy 
requirements of individuals, anthropomorphic disturbance, 
landscape structure, weather, and other factors (Krijger et al. 
2017; Kay et al. 2017; Lemel et al. 2002; Patergnani et al. 
2010). Thus, the probability of bait consumption could be 
lower under some conditions than predicted by the data 
we used, which would increase the overall costs per unit 
of effectiveness. Testing the effects of weather, seasonal-
ity, conspecific interactions, and landscape on variation in 
bait-consumption rates is an important direction for future 
field research. Recently mechanistic movement models 
have been used to describe wild pig movement trajectories 
and crop visitation on a variety of landscapes (Wilber et al. 
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2020). An especially useful future direction is to incorporate 
mechanistic resource-based movement (i.e., derived from 
GPS data as in Wilber et al. 2020) and realistic landscape 
layers into our modeling framework to predict how particular 
landscape conditions affect cost-effectiveness and determine 
the optimal mix of strategies for minimizing the costs per 
unit of effectiveness in different landscapes. This methodol-
ogy could incorporate seasonal or weather-based changes in 
movement behavior around bait sites (Raynor et al. 2017) 
as well as effects of conspecific interactions due to animal 
density and resource competition (Dundas et al. 2014) and 
would provide a quantitative framework for predicting opti-
mal bait placement on the landscape along with bait density, 
which is known to be an important determinant of consump-
tion rates (Patergnani et al. 2010).

A longer-term consideration that could be included in 
future work on toxicant use strategies is genetic resist-
ance. Resistance can arise following long-term use of some 
toxicants (Pelz et al. 2005; Twigg et al. 2002). Individu-
als that consume a toxicant but do not die are selected and 
their genes can become more prevalent in future genera-
tions. Thus, future generations have a larger proportion of 
individuals that are less susceptible to toxic bait. We mod-
eled toxicant application over generations for up to 5 years 
which could be long enough for genetic resistance to begin 
developing in a population. Depending on the genetic basis 
and strength of resistance, resistance effects could be more 
severe than aversion because the hard selection of the 
toxicant could increase the frequency of resistance while 
avoidance due to sub-lethal dosing may fluctuate around a 
similar level according to variation in habitat and delivery 
methods. Thus in populations where genetic resistance is 
likely to develop, it would be useful to consider the resist-
ance process for determining optimal management strategies 
(Desvars-Larrive et al. 2019). It could be that higher densi-
ties of baits and very high efficacies are required to reach the 
management objective, and a mix of integrated management 
strategies could be required if the objective is elimination. 
While our parameters were specific to the ecology of wild 
pigs and an acutely toxic bait, our methodology is easily 
amenable to other species and bait characteristics.

We used a distribution of visitation and bait-consumption 
probabilities, based on field measures for wild pigs (Snow 
et al. 2018), to inform the attraction distance of pigs to bait. 
This data set could readily be replaced with similar field data 
from any other species. Likewise, we used pre-baiting time 
frames that have been shown to be effective for wild pigs 
(Snow et al. 2018), and toxic-bait times that are appropriate 
for an acutely toxic bait (i.e., only 2-day intervals). These 
could easily be extended in the model to examine optimal 
baiting strategies using a different pre-baiting time or slower-
acting toxin. Decreased pre-baiting times would decrease the 
rates of subsequent toxic bait consumption because we used 

the shortest time frame that led to most wild pigs consum-
ing bait. However, cost-effectiveness would be increased in 
a system where a species could be ‘trained’ to use a bait 
site effectively via a shorter pre-baiting period, which could 
mean that lower density baiting strategies might be effec-
tive. To apply our approach for a slower-acting toxin, one 
would simply extend the toxic baiting period. This would 
likely decrease cost-effectiveness, depending on the cost of 
toxic bait and length of time that monitoring at bait sites is 
required to ensure success.

Similarly, we assumed that the toxic bait delivery mecha-
nism led to a negligible amount of non-target mortality. For 
situations where the bait matrix or delivery mechanism has a 
substantial risk of non-target mortality, the delivery protocol 
may need to be modified from the protocol we present here 
such that it is less efficient at killing the target species (i.e., 
less time available or using a device that is less efficient). 
Using a less efficient baiting protocol costs would increase 
per unit of effectiveness. Thus, while the qualitative insight 
we gained from our model may be generally applicable, the 
absolute values of cost-effectiveness and recommendations 
for bait-station density will vary depending on baiting pro-
tocol and other ecological conditions (as described above). 
Our methodology provides an off-the-shelf tool that can be 
readily adjusted with context-dependent host movement and 
baiting protocol data to help guide cost-effective implemen-
tation of baiting with toxicants. By helping to understand 
how multiple dynamical ecological processes interact, our 
framework can also be used to help guide experimental 
design of studies aimed at optimizing delivery of toxicants.

Conclusion

The use of toxic bait to control feral swine will be most cost-
effective when applied to reduce high-density populations 
by substantial amounts, but may benefit by the addition of 
other management strategies such as sharp shooting or aerial 
gunning when the objective is elimination. For large reduc-
tions in abundance (not more than 90%), we also found that 
the system is robust to a wide range of baiting strategies as 
long as personnel are available. The absolute range of cost-
effective baiting strategies does depend on absolute abun-
dance—i.e., if the management target involves a decrease in 
absolute abundance below 180 individuals, for example (for 
an 80% reduction: 900 total × 0.2 = 180 individuals), only 
high baiting densities were cost-effective. However, reduc-
ing the population from 2700 to 540 (also an 80% reduction) 
could be achieved over a wide range of baiting densities 
because locating individuals does not require as much effort 
when abundance is as high as 540 individuals. The toxicant 
delivery was also effective over a wide range of values for 
post-exposure avoidance and toxic bait efficacy, suggesting 
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that some level of inefficiency from avoidance and efficacy 
can be tolerated. However, tolerance of these inefficiencies 
depended strongly on the management objective, highlight-
ing that application of this tool should consider levels of 
avoidance and bait efficacy for planning appropriate manage-
ment targets. Most generally, our results suggest that using 
space-use data alone to plan optimal baiting strategies could 
lead to sub-optimal strategies, or even strategies that are 
unlikely to meet the management objective. Methods that 
consider the dynamic nature of bait visitation and consump-
tion, and management effort, are important for planning 
effective use of bait-based control tools.
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Optimal bait density for delivery of acute toxicants to vertebrate pests  
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Individual-based model 

Below we describe the spatially-explicit individual-based model using the ODD Protocol (Grimm et 

al. 2010). A schematic of the model components is given in Fig.S1. 

 

I. Purpose 

The purpose of the model is: 

 To predict cost-effectiveness of using different densities of bait sites for reduction of 

a wild pig population by a target proportion. 

 To understand how strength of avoidance behavior in previously exposed 

individuals affects cost-effectiveness of the baiting strategy. 

 

II. Entities, state variables, and scales 

II.1 Wild pigs 

Individual wild pigs and bait sites were the entities in the model. Attributes for individual 

wild pigs included: age, sex, social group, age at dispersal, longevity, home range radius, movement 
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distance, home range centroid, bait exposure status, and carrying capacity of their home grid cell. 

For females, we additionally tracked reproductive status, gestation time, and time since the last 

birthing event. Wild pig states were either alive and not yet exposed to toxic bait or alive and 

recovered from toxic bait exposure. Wild pigs that died from toxic bait exposure were permanently 

removed from the population.  

 

II.2 Bait sites 

Bait sites had three states: 1) ‘locating’ (where non-toxic pre-bait (e.g., corn) is placed on 

the ground to locate wild pigs, no bait site is present), 2) ‘training’ (where wild pigs have been 

located and a bait site has been placed and baited with non-toxic pre-bait). During this phase wild 

pigs become accustomed to using the bait site. Finally, state 3) is the ‘toxic’ phase (1 night of toxic 

baiting followed by 2 nights of non-toxic baiting for up to 3 cycles or until no wild pigs returned). 

For each bait site we tracked: the state, the number of pigs that visited per day, and the location of 

the bait site on the habitat grid in continuous space.  

 

II.3 Space 

Wild pig daily movements occurred in continuous space but the habitat grid that defined 

heterogeneity in abundance consisted of 225 discrete 4 km2 cells (total area 900 km2). We 

examined landscapes with densities of 1, 3, 5, or 10 wild pigs / km2 (i.e., abundance at biological 

carrying capacity of 900, 2700, 4500, or 9000 wild pigs), which encompasses the high and low 

range of wild pig densities in high-density regions of southern USA (Davis et al. 2017; Keiter et al. 

2017). For this analysis we assumed a homogenous distribution of density (i.e., without variation in 

density due to landscape factors) in order to isolate the effects of animal density from 
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heterogeneity in density. We also assumed that interactions with conspecifics did not affect 

visitation rates to bait sites. 

 

III. Process overview and scheduling 

After a 31 year burn-in period of the population dynamics (Fig. S2), the following events 

occurred in the model on a daily time step (processes described below in ‘Submodels’): 

a. Bait site dynamics, which included visits of wild pigs to each bait site, effects of the toxic bait on 

individual wild pigs, updates of the bait site status, updates of effort and costs, and relocation of bait 

sites as needed. 

b. Natal dispersal, where wild pigs that reached their age of dispersal relocated to a new home 

range centroid. 

c. Social structure, where independent females joined nearby family groups and oversized groups 

were divided in half with one group moving to a new home range centroid. 

d. Density-dependent immigration, where new wild pigs from an exogenous population migrated to 

the landscape. 

e. Conception, births, and natural mortality, where reproductively active females in grid cells below 

carrying capacity were allowed to conceive and then birth a litter following a gestation period. Wild 

pigs at the age of longevity in natural populations were removed from the population. 

 

Each simulation was run for a total of 5 years. 
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IV. Design concepts 

IV.1 Basic principles 

We used an individual-level model of wild-pig population dynamics to account for variation 

in bait-site status due to variation in wild pig visitation and consumption rates. We also accounted 

for changes in management costs as a function of population density and spatial extent of baiting. 

We examined the effects of management objectives, initial population density, toxic bait efficacy, 

and post-exposure avoidance on cost-effectiveness of bait-density designs.  

 

IV.2 Emergence and adaptation 

Both immigration and birth rates were density-dependent such that their rates changed as a 

function of population density under the assumption that individuals could adapt to density. Also, 

effort per wild pig increased with decreasing population density because bait sites were maintained 

until the last wild pig in a grid cell was removed. That is, at lower densities, fewer wild pigs were 

removed per day of toxic bait application. These non-linearities caused complex behavior in the 

total costs required to reach the management objective. 

 

IV.3 Learning 

Individuals that consumed toxic bait and recovered were able to avoid toxic bait in the 

future. This learning also affected their offspring that were currently in their family group, in that 

they too avoided baits. 
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IV.4 Sensing 

The managers were able to detect wild pig presence (whether or not there were still wild 

pigs in a given grid cell) - when bait sites were moved, they were relocated to grid cells that had at 

least one wild pig. Also, the number of bait sites decreased as wild pigs were eliminated from 

regions of the landscape, because managers were able to sense the decrease in wild pig density. In 

addition, individual wild pigs sensed grid cell abundance in grid cells they were dispersing to and 

did not disperse to grid cells that were at or above carrying capacity. Groups also sensed when 

there were too many members and spilt up when they grew above a maximum capacity (Table S1). 

Independent females sensed when they were alone and dispersed to join the nearest group. 

 

IV.5 Stochasticity 

Most parameter inputs were random distributions (Table S1). Also, movements on the landscape 

were random except for sensing density. 

 

IV.6 Observation 

We tracked daily abundance of wild pigs by sex and age group, area covered by wild pigs, 

cumulative monetary cost of the strategy, and cumulative effort (in terms of bait site days). We also 

tracked average sounder size and the ratio of annual births to removals by toxicant in order to 

understand the demographic effects of toxicant application. We determined the optimal strategy as 

the one that cost the lowest to reach a particular population reduction objective (‘management 

target’).  
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V. Initialization 

An empty matrix of individuals was initialized with the number of rows equivalent to the 

desired population size. Each individual (row) was assigned attributes at random (Table S1). Current age 

and longevity were chosen from a gamma distribution such that the current age was less than the 

longevity. Sex was assigned at random using a 50:50 ration of males:females. Dispersal age was assigned 

from a Poisson distribution (Table S1) - males whose age was beyond dispersal age, dispersal status was 

recorded as completed. Males beyond the age of dispersal were not assigned to a family group. All other 

individuals were assigned a unique group ID at random. The 30 year burn-in period allowed for group 

structure to develop and stabilize. Each individual was assigned to a grid cell ID and specific [x,y] 

coordinates within that grid cell, both of which were selected at random. After the population was 

initialized, population dynamics were allowed to occur for 30 years (Fig. S2). The population at the end 

of the 30 years, which was at carrying capacity, served as the starting point for all simulations with the 

bait site dynamics. To allow for stochasticity from the initial population structure, we generated 100 

different starting populations and selected from that set at random when initializing the bait site 

simulations. 

 

VI. Input data 

Input data are described in Table S1. 

 

VII. Submodels 

VII.1 Bait-site dynamics 
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For each simulation, bait sites were initialized on day 90 using the pre-determined bait-

density design (‘treatment’) and the current abundance (i.e., the total abundance at day 90 divided 

by the parameter defining the number of bait sites per wild pig). We specified that 1.2 bait sites 

were initialized for every available bait sites, so that only the best 83% of bait sites with the most 

visitation by wild pigs progressed to the next state of placing a bait site. All bait sites were placed 

randomly across a homogenous landscape. The status of each bait site was tracked as: active baiting 

with no bait site, training pigs to use bait site, containing toxic bait, containing non-toxic bait (post-

toxic baiting) for evaluation of further visitation. 

Decisions to transition between these states were informed by visitation data and pre-

defined time limits based on previous research (Lavelle et al. 2018) (Fig. S1). After a bait site was 

initialized, it was pre-baited for 5 days to determine if there were wild pigs visiting. Bait sites with 

no visits were discontinued. If there were not enough ‘good’ bait sites (i.e., bait sites with wild pigs 

that visited) for the number of available bait sites, then new bait sites were established (as above) 

at 1.2 times the number of available bait sites. Bait sites with the highest number of unique wild 

pigs visiting were prioritized for setting up the available bait sites (as defined by the bait site 

density treatment). Bait sites were then baited for 14 days (training time) to allow time for wild 

pigs to learn how to use the bait site. At the end of 14 days, toxic bait was added for 1 day. Wild pigs 

that visited and ate the toxic bait (process described below) had a fixed probability of dying of 0.95 

(Snow et al. 2017). The next day, placebo bait was added for an additional two days to monitor for 

additional visits. If, after the two days of placebo bait, there were additional visits, then toxic bait 

was added for an additional day. This cycle between toxic baiting and evaluation with placebo bait 

occurred up to 3 times. If there were no visits after any of the earlier toxic bait sessions, the bait site 

was removed and made available to be set-up in a new location.  
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VII.2 Bait site relocation. 

We assumed that wild pig presence in grid cells was known through wild pig sign. Thus, bait 

sites were only placed in grid cells with at least one wild pig. Within this constraint, the spatial 

relocation occurred at random by first choosing a random grid cell with at least one wild pig and 

then choosing a random x and y coordinate within that grid cell. If there were already the target 

number of bait sites (based on the treatment), then bait sites that were ready to be moved were 

removed but not reset in new locations. We calculated the available bait sites each day based on the 

current wild pig abundance and treatment density, the number of bait sites that were active, and 

the number that were available to be placed in new locations (i.e., number of available bait sites = 

abundance/treatment – number of active bait sites; where the minimum is 0). Available bait sites 

were assigned to new bait sites that were determined to have wild pig visitation (as described 

above) and new bait sites were initiated at a frequency that maintained 1.2 bait sites per available 

bait site (as described above).  

 

VII.3 Wild pig visitation to bait sites. 

Overall, our visitation algorithm accounted for sex, age, and distance-based determination 

of bait consumption, non-independence of wild pig-bait site associations due to social structure, 

and potential avoidance behavior from previous exposure to toxic bait. For each wild pig each day, 

we calculated the probability that a wild pig would visit and eat from each bait site using a 

generalized mixed logistic model and data from (Snow et al. 2018) (Table S1). Briefly, the response 

was binary whether or not a wild pig consumed bait. The covariates predicting the probability of 

bait consumption were: sex, age class (piglet: 0-0.5 years, juvenile: 0.5-1.5 years, adult: 1.5 years+), 

and distance between pig home range centroids and the nearest bait site (data and model fit in 

Table S1). The model also included a grouping variable for family groups to account for non-
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independence due to social structure. The fitted model was used to predict the probability of 

consumption at each day (per wild pig, per bait site) using current data in the simulations (wild pig 

sex, wild pig age class, distance between the wild pig’s home range centroid and the bait site 

coordinates, family group ID). Next, for bait site locations that were farther than the wild pig 

individual’s home range radius (Table S1), we set the visitation probability to 0. For all individuals 

that had previously encountered toxic bait and recovered, we multiplied their visitation probability 

(as well as their offspring that were currently in the same family group) to bait sites by an 

avoidance parameter (Table S1). We then chose a uniform random number for each wild pig x bait 

site combination as a critical value. Critical values less than the overall visitation probability were 

recorded as visitations, while all other cases did not result in visitation at this time step. Lastly, 

because wild pigs rarely visit more than 3 different bait sites (Snow et al. 2018), we only allowed up 

to three different bait sites to be visited per wild pig per day, and these were chosen at random 

from the bait sites per wild pig that were recorded as visits (as above).  

The process for consumption of toxic bait was the same except that wild pigs that consumed 

toxic bait died with a fixed probability (Table S1; again, using a randomly chosen critical value per 

wild pig and bait site). We also implemented a maximum feeding capacity per bait site location per 

day (Table S1). For bait sites that had more than the maximum number of wild pigs feeding on one 

day, we randomly selected a number of individual wild pigs equal to the excess number and did not 

allow them access that day.   

 

VII.4 Tracking costs. 

Costs were tracked in 4 categories: 1) initial costs for equipment (based on the maximum 

number of bait sites employed simultaneously and the cost per bait site), 2) salary and supplies 

costs for setting up or removing bait sites, 3) daily salary and supplies costs for running non-toxic 
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pre-baiting and post-baiting, and 4) daily salary and supplies costs for running bait sites with toxic 

bait. For each of these categories we assumed that costs increased linearly with the number of bait 

sites and average distance between them. Costs for the bait sites were only accrued once, despite 

their re-use. Costs of non-toxic and toxic baits were factored into every category. For each category, 

the per day costs (ct) were calculated as: ct = b1 + m ∙ b1 ∙ Nb,t  ∙ db,t, where b1 is the labor and supplies 

cost for baiting one site, Nb,t  is the total number of bait sites at time t, db,t is the average pairwise 

distance between all bait sites at time t, and m is the slope of the relationship between cost and the 

bait site number x spatial area metric. For example, if the cost of running one bait site for a day with 

placebo bait is $10, and m = 0.5, the cost to run 5 bait sites with placebo bait per day spaced at 1 

km2 on average would be: $10 + (0.5∙ $10 ∙ 5 bait sites  ∙ 1 km2) = $35. The total cost at each time 

step was the sum of all 4 categories, and the total cost for the whole run was the sum across time 

and categories. We chose the following fixed parameters in each category (shown as [b1, m]): 1) 

$100 (equipment costs per bait site – no m parameter), 2) [$15, 0.05], 3) [$10, 0.05], and 4) [$50, 

0.05]. We assumed that an adequate number of cameras were available to have one camera per bait 

site, thus camera/battery costs were not included in our overall costs. 

 

VII.5 Natal dispersal  

Wild pigs were assigned an age of natal dispersal at birth (Table S1). At the age of dispersal, 

males dispersed independently to a new unique location, while females dispersed with their sisters. 

Dispersal distance was chosen from a Weibull distribution (Table S1). The dispersal algorithm 

operated as follows: 1) for each 45 degree angle from the home range centroid, a new possible set of 

[x,y] coordinates was obtained using the dispersal distance value (i.e. x = distance x cos(angle) + current 

x coordinate, y = distance x sin(angle) + current y coordinate). If at least one of these potential locations 

were valid (i.e., in a grid cell with fewer wild pigs than the carrying capacity or a location off the grid), 
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then a valid potential location was chosen at random and wild pig(s) were relocated there. Wild pigs that 

traveled off the grid were lost permanently. If there were no valid locations, the distance value was 

doubled and the process repeated until a valid location was obtained. 

 

VII.6 Social structure  

All newborns were assigned the same group ID as their mothers and remained in those 

groups until natal dispersal. To maintain realistic group sizes we also implemented a maximum 

family group size (Table S1). For family groups at maximum capacity, the group was split in half, 

selecting one mature female and a subgroup of younger individuals to disperse together. Also, because 

adult females are rarely observed alone (Gabor et al. 1999; Podgorski et al. 2014), any adult females that 

were found independent of a group on the landscape dispersed to join the nearest family group. These 

relocations to maintain social structure occurred the same way as natal dispersal. 

 

VII.7 Density-dependent immigration  

Immigration from an exogenous population was allowed to occur in the periphery grid cells 

of the landscape. At each time step, the grid cells that were below carrying capacity were used to 

calculate the immigration rate as described in Table S1. To examine the effects of the strength of 

immigration on effectiveness, we varied , the scaling parameter (Table S1). The number of new 

immigrants were distributed at random with replacement in the set of grid cells below carrying 

capacity. Other attributes for these immigrants were initialized as described in the initialization 

section. 
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VII.8 Conception, births, and natural mortality 

Conceptions occurred randomly in reproductively active females (Table S1) according to a daily 

conception probability which varied monthly (Table S1). Pregnant females gave birth to a random 

number of offspring (Table S1) with a 50:50 ratio of males:females, after a gestation period of 115 days 

(Table S1). After birthing, there was a fixed lag before the possibility of conceiving again to allow for a 

period of lactational anestrus (Table S1). Thus, the maximum number of litters per year was 2. Net 

population growth rate was controlled by multiplying the daily conception probability by a scaling 

parameter (Table S1). We chose the scaling parameter so as to yield net population growth rates of 1.4 for 

population densities at 10% for carrying capacity (Fig. S2), consistent with (Bieber and Ruf 2005; Mellish 

et al. 2014; Timmons et al. 2012). Additionally, conception probability was density dependent such that 

conception did not occur in individuals existing in grid cells that were already beyond carrying capacity. 

Thus, the general host demographic dynamics were similar to a logistic model (see Pepin et al. 2017) for 

direct comparison). We modeled natural mortality by assigning each individual a longevity at birth that 

was a gamma-distributed random number such that the probability of living longer was smaller than the 

probability of dying young (Table S1). 

 

Model assumptions 

 

We assumed that birth rates were density-dependent such that their rates changed as a function of 

population density under the assumption that individuals could adapt to density. We assumed 

individual wild pigs did not disperse to grid cells that were at or above carrying capacity. Also, 

effort per wild pig increased with decreasing population density because bait sites were maintained 

until the last wild pig in a grid cell was removed. That is, at lower densities, fewer wild pigs were 
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removed per day of toxic bait application. These non-linearities caused complex behavior in the 

total costs required to reach the management objective. In terms of bait visitation and consumption, 

we assumed that the only factors determining these rates included age, sex, group membership, and 

distance to the baits. When examining post-exposure avoidance behavior, we assumed that a 

proportion of individuals that consumed toxic bait and recovered would avoid toxic bait in the 

future (i.e., based on 1-bait efficacy). This learning was also communicated to others in the family 

group, but not after the offspring had dispersed from the family group. We also assumed that 

managers were able to detect wild pig presence (whether or not there were still wild pigs in a given 

grid cell) - when bait sites were initialized or moved, they were set-up in grid cells that had at least 

one wild pig. The number of bait sites decreased as wild pigs were eliminated from regions of the 

landscape, because we assumed managers used trail cameras and wild pig sign to detect a lack of 

visitation to bait sites.  

Table S1. Description of parameters. 

Parameter Values References 

Demographic parameters 
Longevity ~gamma(0.95,738), truncated at 11 years. (Jezierski 1977) 

   

Daily conception probability 

per individual 

(fecundity) 

 

Daily probability of conceiving = monthly data of 

proportion that conceive ([0.21 0.17 0.072 0.075 0.11 

0.059 0.049 0.049 0.013 0.049 0.026 0.12]) / days per 

calendar month (i.e., the probability of conception per 

day in a calendar month). These values were then 

multiplied by a scaling factor (3, 1.1, or 1.1 in 

population densities of 4, 20, or 40 wild pigs per km2) to 

generate population dynamics similar to observed data 

(λ = 1.4 at abundances well below carrying capacity). 

See Fig. S1 and Pepin et al. (2017) for example 

population dynamics. 

(Mayer and Brisbin 

2009)(Fig. 1 pg 67); 

(Timmons et al. 

2012) 

(Mellish et al. 2014) 

   

Litter size ~Poiss(5 piglets), truncated at 1 and 12 

 

(Bieber and Ruf 

2005; Gethoeffer et 

al. 2007) 

   

Age at reproductive maturity  

(minimum age at which females 

may conceive) 

180 days (Gethoeffer et al. 

2007) 
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Minimum time between 

farrowing and conception 

90 days (Barrett 1978) 

Gestation time 115 days (Henry 1968) 

Age of natal dispersal  ~Poisson(456 days); truncated 304-730 days (Podgorski et al. 

2014) 

   

Dispersal distance ~Weibull() 

 

(Keuling et al. 

2010; Podgorski et 

al. 2014; Prevot and 

Licoppe 2013) 

   

Maximum group size  

 

15 (Gabor et al. 1999) 

Home range radius Selected at random from sex-specific distributions of 

home range size, where 

𝑟 =  √
𝑥

𝜋
 

r is the home range radius, and x is the home range area 

for an individual calculated using 95% MCP. All 

estimates were based on > 3 months of GPS monitoring 

data.  

(Kay et al. 2017) 

   

Bait site parameters 
Bait site density (number of 

wild pigs / bait site at 

initiation) 

15 (baseline) 

2-130 (sensitivity) 

User-defined 

   

Probability of visitation & 

consumption 

(daily probabilities) 

Y ~ Binomial(N,p) 

Logit(p) = X + where X = sex, age class, and 
distance to the nearest bait site. 
 (see Table S3 for data and fitted model). 

(Snow et al. 2018) 

   

Probability of dying given 

consumption 

0.93 (baseline) 

0.51-0.99 (sensitivity) 

(Snow et al. 2017) 

   

Avoidance 0 (baseline, i.e., no avoidance) 

0-1 (sensitivity) 

 

Unknown 
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Fig. S1. Schematic of the model processes.  
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Fig. S2. Population dynamics during the burn-in period (30 years of population dynamics with no 

baiting are shown). Each line represents the annual population growth rate (lambda; a) or 

abundance trajectory (b) for one stochastic simulation (100 total were conducted). End point 

populations served as the initial conditions for the runs with baiting. 

a.

b.
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