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INTRODUCTION

The April 20, 2010 explosion of the Deepwater
Horizon (DWH) drilling rig at the MC252 well and
subsequent 87-d leak released 3.19 × 106 barrels (5.07
× 108 l) of oil into the northern Gulf of Mexico (GoM)
(NOAA 2016). At its maximum extent, oil covered
112 115 km2 of the northern GoM, which contami-

nated the coasts of Louisiana, Mississippi, Alabama,
and northern Florida, as well as adjacent waters and
wetlands (ERMA 2016; Fig. 1). The oil killed large
numbers of marine organisms and contaminated im-
portant developmental areas for many species (Anto-
nio et al. 2011, Henkel et al. 2102, White et al. 2012,
Rozas et al. 2014). Deleterious effects of the spill were
immediately evident, but long-term effects remain to
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ABSTRACT: The Deepwater Horizon explosion in April 2010 and subsequent oil spill released
3.19 × 106 barrels (5.07 × 108 l) of MC252 crude oil into important foraging areas of the endangered
Kemp’s ridley sea turtle Lepidochelys kempii (Lk) in the northern Gulf of Mexico (GoM). We
measured δ13C and δ15N in scute biopsy samples from 33 Lk nesting in Texas during the period
2010 to 2012. Of these, 27 were equipped with satellite transmitters and were tracked to tradi-
tional foraging areas in the northern GoM after the spill. Differences in δ13C between the oldest
and newest scute layers from 2010 nesters were not significant, but δ13C in the newest layers from
2011 and 2012 nesters was significantly lower compared to 2010. δ15N differences were not statis-
tically significant. Collectively, the stable isotope and tracking data indicate that the lower δ13C
values reflect the incorporation of oil rather than changes in diet or foraging area. Discriminant
analysis indicated that 51.5% of the turtles sampled had isotope signatures indicating oil expo-
sure. Growth of the Lk population slowed in the years following the spill. The involvement of oil
exposure in recent population trends is unknown, but long-term effects may not be evident for
many years. Our results indicate that C isotope signatures in scutes may be useful biomarkers of
sea turtle exposure to oil.
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be determined; organisms surviving initial (acute)
impacts of the spill may have sustained permanent or
temporary physiological injury, had difficulty finding
food, ingested or inhaled oil, consumed oil-contami-
nated prey, or moved to other foraging areas (e.g.
Milton et al. 2003, Moreno et al. 2013, Beyer et al.
2016). Any of these changes could affect the growth
rates, reproductive output, overall organism fitness
(Peterson et al. 2003) and, depending on the propor-
tion of the population affected, population dynamics
of the respective species.

Sea turtles of several species, life stages, and age
classes were affected by the spill. Of major concern
was the Critically Endangered Kemp’s ridley sea tur-
tle Lepidochelys kempii (Lk), especially considering
that most of the turtles known to have been killed
were Lk (NOAA 2010). The range of Lk is generally
considered to be the northwestern Atlantic Ocean,
but most adults reside in the GoM. Nesting occurs
primarily on beaches along the western GoM, from
Padre Island, Texas, in the USA southward to Ver-
acruz, México (Pritchard & Márquez 1973). Based on
satellite tracking studies, post-nesting Lk primarily
migrate northeastward and forage in a shallow
(approx. 10 to 40 m depth) coastal corridor from
Louisiana to southwestern Florida, where there is
strong foraging area fidelity (Seney & Landry 2008,
Shaver & Rubio 2008, Shaver et al. 2013, 2016a). A
13-yr tracking study of nesting Lk tagged at Padre

Island National Seashore (PAIS), Texas, and Rancho
Nuevo, Mexico, indicated that waters off Louisiana
are consistently important foraging areas (Shaver et
al. 2013). Coastal Louisiana also represents foraging
habitat for adult female Lk that nest along the upper
Texas coast (UTC) and for immature turtles (Seney &
Landry 2008). These areas were heavily contami-
nated by oil during and after the spill (Fig. 1), and
both direct observation (Wallace et al. 2017) and
post-spill modeling of the oil trajectory (Putman et al.
2015) indicated that many Lk were exposed.

International conservation efforts implemented
since the mid-1970s have resulted in partial recovery
of the Lk population (Caillouet 2011, Galloway et al.
2016a,b, Shaver et al. 2016b, Wibbels & Bevan 2016).
The DWH event began early in the 2010 nesting sea-
son. Although substantially greater numbers of Lk
nest in Mexico than in Texas, nest numbers in Texas
and Mexico are highly correlated (Shaver et al.
2016b). Nest numbers in Mexico and Texas during
the 2010 nesting season decreased 37% from 2009,
as did the number of hatchlings released (Crowder &
Heppell 2011). Nest numbers have remained lower
than expected in years since the spill (Bevan et al.
2016, Shaver et al. 2016b); however, the extent to
which the spill was involved in the recent decline is
not clear.

Stable isotopes of carbon (C) and nitrogen (N)
incorporated into the scutes of sea turtles provide a
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history of foraging and habitat use when serial sam-
ples of the scute are analyzed (Reich et al. 2007).
Scutes are inert keratinized tissue that grows contin-
uously. New scute is formed from a layer of epider-
mal tissue that overlies the bony shell of a turtle and
produces successive layers ‘from the bottom up’.
Thus, the oldest dietary record is retained in the out-
ermost (dorsal) layer, and each successive layer
(~0.05 mm) reveals more recent diet and habitat use
(Reich et al. 2007, 2008, Vander Zanden et al. 2010);
however, the amount of time represented by each
layer is variable and not precisely known. When used
together with satellite tracking, stable isotopes in
scute layers can reveal information about foraging
history and migration (e.g. Vander Zanden et al.
2016).

Stable isotope (i.e. biomarker) studies completed
since 2010 have documented the incorporation of
MC252 oil into the tissues of a variety of marine and
terrestrial organisms (Mitra et al. 2012, Cherrier et al.
2014, Quintana-Rizzo et al. 2015, Bonisoli-Alquati et
al. 2016, Wilson et al. 2016). Therefore, absorption via
inhalation, dermal exposure, or direct ingestion of oil
by turtles or their prey (Shigenaki 2003), incorporation
of oil into the food chain, a change in foraging area, or
any combination of these factors after the spill could
be reflected in the stable C and (or) N isotope signa-
tures of the most recent (ventral) scute layers. We ana-
lyzed stable isotopes of C and N in scute samples ob-
tained from Lk females nesting in Texas during 2010,
2011 and 2012, some of which were equipped with
satellite transmitters, to initially address 2 questions:
(1) Did the tracking data, isotope signatures, or both
indicate that the turtles changed their foraging areas
or diets after the spill? (2) What proportion of the nest-
ing female population was exposed to oil from the
spill based on the isotope signatures? We added a
third question, which became apparent during the in-
vestigation: (3) Did the isotope signatures indicate
that the turtles were exposed to oil or consume prey
containing oil (or oil C) after the spill?

MATERIALS AND METHODS

Sample collection and analysis

Scute biopsy samples were obtained from 33 Lk
nesting in Texas during the period 2010 to 2012 at
PAIS and on the UTC from Galveston Island to Surf-
side Beach (Fig. 1; Table 1). Biopsy samples were col-
lected from the posterior and anterior regions of the
second costal (lateral) scute with a 6-mm diameter

sterile biopsy punch (Integra Miltex) as described by
Reich et al. (2007). Samples were stored in 70%
ethanol until preparation for stable isotope analysis.
Prior to analysis, each sample was cleaned, rinsed in
distilled water, and dried at 60°C for at least 24 h.
Lipids were then removed from all samples using an
accelerated solvent extractor (Dionex ASE 350,
Thermo Fisher Scientific) with petroleum ether as the
solvent. The oldest material was collected from the
posterior region by grinding with a carbide end mill
(Sherline 2010 with 1/16 in SE drill bit) to a depth of
50 µm (yielding ~500 µg), beginning with the dorsal
side of each sample. Successive layers of scute were
collected by repeating this procedure on all posterior
samples. Anterior scute material was sampled in the
same manner except that the layers were collected
beginning from the ventral side to capture the most
recent foraging history. Samples obtained in this
manner, representing the oldest posterior scute layer
from the 2010 nesters and the newest material from
all 33 turtles (2 or 3 layers per turtle), were analyzed
for C and N isotope analysis and used in this study
(Table 1). No turtles included in this study were sam-
pled more than once.

Samples were combusted in a Costech ECS 4010
elemental analyzer interfaced via a Finnigan-MAT
ConFlow III device to a Finnigan-MAT DeltaPlus XL
isotope ratio mass spectrometer in the light stable
isotope lab at the University of Florida. Stable isotope
abundances were expressed in delta (δ) notation,
defined as parts per thousand (‰) relative to the
standard as follows:

δ = ([Rsample/Rstandard] − 1) / (1000) (1)

where Rsample and Rstandard are corresponding ratios
of heavy to light isotopes (13C/12C and 15N/14N) in
the sample and international standard, respectively.
Rstandard for 13C was Vienna Pee Dee Belemnite
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Nesting PAIS UTC Total With With Total
season transmitters centroids samples

2010 10 2 12 7 4 43
2011 8 3 11 10 8 31
2012 7 3 10 10 2 29
Total 25 8 33 27 14 103

Table 1. Number of Kemp’s ridley sea turtles nesting at Padre
Island National Seashore (PAIS) and on the upper Texas Coast
(UTC) during the 2010−2012 nesting seasons from which scute
biopsy samples were obtained for stable isotope analysis. Also
shown for each year are the numbers of turtles equipped with
satellite transmitters, the number of transmitter-equipped tur-
tles for which foraging area centroid locations were computed, 

and the total number of samples (layers) analyzed.
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(VPDB). The Rstandard for 15N was atmospheric N2.
Internal standards were included in all runs at
regular intervals to calibrate the system and assess
drift over time.

Satellite telemetry and statistical analysis

Of the 33 nesting turtles sampled in the period
2010 to 2012, 27 were fitted with platform transmitter
terminals as described by Shaver et al. (2013)
(Table 1). Location data transmitted to satellites by
these terminals were downloaded to and retrieved
from www.seaturtle.org and used to derive foraging
area centroid locations. The centroid locations repre-
sent kernel density estimates from the tracks of trans-
mitter-equipped turtles (Shaver et al. 2013 and refer-
ences therein). The tracking data and associated
centroids indicated that all the tracked turtles re -
turned to traditional foraging areas in the northern
GoM after nesting, regardless of nesting season or
tagging location (Fig. 1).

The δ13C and δ15N values of the oldest tissue of tur-
tles that nested in 2010, represented by the upper-
most posterior scute layer, and the
newest tissues of turtles that nested in
2010, 2011 and 2012, represented by
the lowermost anterior layers (n = 2 or
3), were analyzed as a generalized lin-
ear mixed-model analysis of variance
(ANOVA) using PROC GLIMMIX of
the Statistical Analysis System (SAS)
Version 9.4 (SAS Institute). In these
analyses, scute region− year combina-
tions (n = 4) were considered fixed
effects and turtles (i.e. subjects; n =
33), scute region within turtles (n = 1
or 2), and layers within scute region
(subsamples; n = 13) were random
effects. The Type-III mean-squares for
turtles were used to test the signifi-
cance of the overall models and of dif-
ferences between regions and years
(singly and in combination). Least-
squares means, which are adjusted for
all factors in the model and are there-
fore unbiased with respect to the num-
ber of turtles, scute regions, or layers
they represent, were compared as sin-
gle degree of freedom F-tests. Unless
otherwise indicated, a significance
level of α = 0.05 was used to judge the
results of statistical test.

We also performed a linear discriminant analysis
of the stable isotope results together with the track-
ing data using the R package MASS (Venables &
Ripley 2002, R Core Team 2013) to determine the
proportion of turtles that nested in 2011 and 2012
that were exposed to oil. We first divided the turtles
into 3 main groups: outside the oiled area (OUT),
which included only the isotope values representing
the oldest posterior scute layer of turtles sampled in
2010, including all 12 individuals, regardless of cen-
troid location or whether centroids were computed
(Table 2). We assumed that these turtles had left the
spill area prior to April 10 and were therefore not
exposed to the oil. The turtles that nested in 2011
and 2012 for which centroids were computed (n = 8
in 2011, n = 2 in 2012) were classified as either
within (OIL) or adjacent to (ADJ) the oiled area
(Table 2) according to the location of their foraging
area centroids (n = 1 to 4 ind.–1) relative to the
 maximum geographic extent of the oil (Fig. 1).
Based on these results, all individuals with centroids
except turtle 2011-4 (which was classified as ADJ
because it had 2 centroids located outside the oiled
area; Fig. 1), were classified as OIL (Table 2). Turtle
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Nesting Nest Nest Transmitter Foraging area Proximity
season no. area no. centroid location group

2010 1 PAIS NA NA OUT
2010 6 PAIS NA NA OUT
2010 15 PAIS 47529 Louisiana OUT
2010 18 PAIS 47562 Texas OUT
2010 21 PAIS NA NA OUT
2010 22 PAIS NA NA OUT
2010 42 PAIS 47690 NA OUT
2010 61 UTC NA NA OUT
2010 69 UTC 83245 Louisiana OUT
2010 104 PAIS NA NA OUT
2010 109 PAIS NA NA OUT
2010 FC PAIS 47519 Louisiana OUT
2011 1 PAIS 101136 Texas OIL
2011 4 PAIS 101137 Louisiana ADJ
2011 13 PAIS 101138 Mississippi/Louisiana OIL
2011 16 PAIS 101139 Louisiana OIL
2011 38 PAIS 106347 Mississippi/Louisiana OIL
2011 66 UTC 101131 Mississippi/Lousisiana OIL
2011 106 UTC 101132 Louisiana OIL
2011 196 UTC 101133 Louisiana OIL
2012 10 UTC 106811 Mississippi/Louisiana OIL
2012 21 PAIS 112763 Louisiana OIL

Table 2. Kemp’s ridley sea turtles nesting in 2 areas of the Texas coast (see
Table 1 legend for site abbreviations) during the 2010−2012 nesting seasons
that were used in the discriminant analysis to determine proximity to the oil for
2011 and 2012 turtles without tracking data (OUT: outside the oiled area; ADJ:
adjacent to the oiled area; OIL: within the oiled area). All 2010 nesters, includ-
ing those with no transmitter (NA), were assigned to the OUT group regard-
less of foraging area location. FC: false crawl (turtle crawls onto the beach but 

does not make a nest)
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2012-21, which had an early centroid located south
of Galveston, Texas, was classified as OIL because it
had a later centroid located southeast of Grand Isle,
Louisiana, that we assumed to be its primary forag-
ing area (Fig. 1). Differences among the stable iso-
tope data representing the newest anterior layers of
the turtles in each group were evaluated with a
multivariate analysis of variance (MANOVA), which
indicated that differences among the proximity
groups were statistically significant (F2,35 = 4.32, p =
0.021). However, a post hoc test indicated that only
the isotope values of the OIL and OUT (i.e. 2010)
groups differed significantly. The isotope values of
turtle 2011-4 (ADJ) were not significantly different
from either of the other 2 groups. This individual
was therefore excluded from the discriminant analy-
sis because it could not be unambiguously classified
as either OIL or OUT. To test the accuracy of the
discriminant analysis, we used the isotope values
of the OIL and OUT groups as known signatures
and conducted a leave-one-out cross-validation test.
This test yielded a 76.2% overall accuracy of classi-
fication; only 1 (of 9) turtles in the OUT group (all
2010) was misclassified, while 8 (of 12) turtles in the
OIL group were correctly classified. After validation,
we conducted a second discriminant analysis using
the posterior probabilities of the OIL and OUT
groups to classify turtles with unknown proximity.
The means of the newest anterior layers of each tur-
tle were used in this analysis.

RESULTS

Raw data (stable isotope results as δ15N and δ13C
values in individual scute layers and foraging area
centroids computed from tracking data) are available
online (https://doi.org/10.5066/F70C4SXJ).

Stable isotopes in scute layers

Mean δ15N in Lk ranged from 10.98 (anterior
2010) to 11.37 (posterior 2010), but there were no
statistically significant differences (Fig. 2). Neither
the overall ANOVA model (F3,42 = 0.10, p = 0.957)
nor any of the contrasts of least-squares means were
significant (F1,42 = <0.01–0.30, p = 0.587–0.0.981). In
other words, the oldest and newest tissue layers
obtained from turtles that nested in 2010 were iden-
tical, and there was no change in the most recent
tissues obtained from turtles that nested in 2010,
2011, or 2012.

In contrast to δ15N, δ13C differed significantly
among years. Mean δ13C ranged from –17.2 (posterior
2010) to –18.1 (anterior 2011) (Fig. 3). The overall
ANOVA model was only marginally significant (F3,42

= 2.26, p = 0.095), and the oldest (posterior) and
newest (anterior) scute tissues from turtles that nested
in 2010 were not significantly different (F1,42 = 0.37,
p = 0.545). In contrast, the oldest tissue from the 2010
nesters differed significantly from the newest tissues
of the 2011 nesters (p = 0.025; Fig. 3), as did the oldest
and newest tissues from the 2010 nesters considered
together (p = 0.019). The newest (anterior) tissues of
2010 nesters were not significantly different from
those of 2012 nesters (F1,42 = 1.30, p = 0.2604), but the
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difference between the newest 2010 and 2011 tissues
approached significance (F1,42 = 3.42, p = 0.071;
Fig. 3). The newest tissues from the 2011 and 2012
nesters considered together also differed significantly
from the oldest and newest tissue of the 2010 nesters
considered together (F1,42 = 6.15, p = 0.017); however,
the difference between the oldest and newest tissue
from the 2010 nesters and the newest tissue from the
2012 nesters was only marginally significant (F1,42 =
2.68, p = 0.109). Overall, there was a statistically
 significant δ13C decrease (Δ13C) of about 1.0 ‰ from
2010 to 2011 followed by an increase of about 0.35 ‰
from 2011 to 2012 that was not significant (Fig. 3).

Assignment of untracked turtles 
to proximity groups

The discriminant analysis assigned 15 of the 23
untracked turtles to the OUT group (65%) and the
other 8 (35%) to the OIL group based on their δ13C
and δ15N signatures (Fig. 4). The probability of cor-
rect classification ranged from 0.505 to 0.997, and
was >0.75 for 11 of the 23 turtles (61%). When sepa-
rated by year, 8 of the 12 turtles sampled in 2010
were assigned to the OUT group (67%); 4 were as -
signed to the OIL group (33%). Three of the 4 incor-

rectly assigned turtles were near the decision bound-
ary (Fig. 4). Of the unknown turtles sampled in 2011
(1 untagged, 2 without centroids), 2 were assigned to
the OUT group (67%) and one to the OIL group
(33.3%); and of the 8 turtles from 2012 without cen-
troids, 5 were assigned to the OUT group (63%) and
3 to the OIL group (37%). Considering all turtles
sampled (n = 33), the estimated proportion of nesting
turtles potentially exposed to the oil was 51.5 % (9
with foraging area centroids in the oiled area and 8
assigned to the oil group by discriminant analysis).

DISCUSSION

Foraging and migratory history indicated by
δ13C and δ15N

Foraging history inference through stable isotope
analysis depends on the residence time of C and N
isotopes in different tissue types and, in our study,
scute layers (Reich et al. 2008). A dietary study of an
adult female Lk held in captivity for 1 yr documented
the C and N isotope change that occurred during a
wild-to-captive diet shift; stable isotopes of C and N
signatures of the wild diet were retained in posterior
scute through the 1-yr study period and thus had a
residence time of at least 12 mo (Iseton & Reich 2013).
Isotope residence times increase with increasing
body mass and decline with decreasing growth rates
(Martínez del Rio et al. 2009). Because the studied tur-
tle was maintained on a protein-rich diet, we assume
that it was in an accelerated growth state and are
therefore confident that under normal conditions, the
average residence time is longer than our sample
period (1 yr) and that our samples are appropriate for
assessing stable isotope signatures of turtles prior to
their migration to the nesting grounds.

We assumed that the 2010 nesters had left the oiled
area either prior to the beginning of the spill or before
extensive contamination of their foraging area in the
northern GoM. Based on this assumption, we used the
2010 samples as a pre-spill baseline for both C and N.
Our data indicate that δ13C declined after the spill
(Fig. 3). Conversely, there was no change in δ15N
(Fig. 2). The δ15N results indicate that the Lk diet (pre-
ferred prey) did not change from 2010 to 2012 or that
the turtles at least fed at the same or similar trophic
level. Although the stable isotope results could be in-
terpreted as indicating that Lk moved from their main
foraging area in the northern GoM to secondary areas
in the southern or eastern GoM (Shaver et al. 2013),
we consider this unlikely for the following reasons: (1)
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Fig. 4. Assignment of Kemp’s ridley sea turtles sampled in
the GoM in 2011 and 2012 with unknown (Unk.) foraging ar-
eas to proximity groups based on the isotope values of tur-
tles with known foraging areas, defined as outside (OUT),
adjacent (ADJ) or oiled (OIL) with respect to the DWH oil
spill, by linear discriminant analysis. The OUT group in-
cludes all 2010 turtles, which were presumed to have left the
oiled area before the spill. The diagonal line represents
the OIL vs. OUT decision boundary computed from the func-
tion y(x) = wTx + w0, where wT is the weight vector (discrim-
inant functions), w0 is the bias or threshold weight, x is the 

predictor variable, and y(x) is the response variable
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A study of loggerhead sea turtles Caretta caretta that
used stable C and N isotopes to create isoscapes of
foraging areas in the GoM showed that δ13C values in
the 3 regions used by both species (northern, eastern
and southern GoM) are not significantly different and
therefore could not be differentiated (Vander Zanden
et al. 2015). (2) Vander Zanden et al. (2015) also re-
ported significant differences in δ15N between the
northern GoM and the eastern and southern GoM. If
the Lk had moved to the southern or eastern GoM, we
would have detected a significant change in δ15N be-
tween years, which we did not. Gelpi et al. (2013) also
documented an inshore−offshore δ15N increase in
blue crabs Callinectes sapidus along the Louisiana
coast. Blue crabs are important in the Lk diet (Bjorndal
1997 and references therein). Consequently, the ab-
sence of any δ15N difference indicates that the turtles
did not forage further offshore, which is also supported
by the tracking data (Fig. 1). (3) Long-term satellite
tracking has shown that many nesting Lk females
(98%, n = 24 over 13 yr) travel to foraging areas in the
northern GoM and mainly concentrate in coastal wa-
ters off Louisiana, Mississippi and Alabama (Shaver &
Rubio 2008, Shaver et al. 2013, 2016a). Gelpi et al.
(2013) also documented an east−west δ13C decline in
blue crabs along the Louisiana coast; nevertheless,
our satellite tracking data indicate that post-nesting
Lk returned to traditional foraging areas in the north-
ern GoM during all 3 nesting seasons, and there was
no indication of a westward shift that would result in a
δ13C change (Fig. 1).

Incorporaion of oil C

Our findings indicate that the δ13C change we
detected resulted from the incorporation of oil and
gas C and not from a post-spill foraging area or diet
shift. Our results differ from those of Vander Zanden
et al. (2016), who found no δ13C change in the scutes
of loggerhead turtles that foraged in the oiled area
after the spill; δ13C in the loggerheads was ca. –15 to
–18 ‰ before and after the spill, which is similar to
our pre-spill values for Lk (Fig. 3). The δ15N values
were similar (ca. 10 to 15 ‰) in both species and did
not change over time (Vander Zanden et al. 2016;
Fig. 2). Although the diets of C. caretta and Lk over-
lap (Bjorndal 1997 and references therein), the differ-
ing δ13C results may reflect diet differences between
the species.

Our results, together with previous satellite tracking
data (Shaver et al. 2013, 2016a), indicate that the prin-
cipal Lk foraging grounds in the northern GoM were

contaminated by MC252 oil after the DWH spill in
April 2010, but that Lk continued to forage in these ar-
eas in 2010 and later years. Loggerhead turtles also re-
turned to the oiled area after the spill (Vander Zanden
et al. 2016), but there was no δ13C change indicative of
oil exposure in the loggerheads. In contrast, the δ13C
change from 2010 to 2011−12 in Lk is consistent with
the incorporation and subsequent fractionation of C
from the oil (δ13C = –27 ± 0.2‰; Carmichael et al. 2012)
via direct oil ingestion, inhalation, or dermal absorp-
tion, the consumption of oil-contaminated prey, or in-
corporation of oil C at lower levels of the food chain
(Shigenaka 2003, Graham et al. 2010) and not a
change in foraging location. Other studies that have
documented the incorporation of oil C into lower
trophic levels and at different depths in the GoM also
reported depleted C signatures (Graham et al. 2010,
Mitra et al. 2012). In contrast to findings for loggerhead
turtles (Vander Zanden et al. 2016), our results indicate
that the oil signature was transferred to Lk, as also re-
ported for 2 species of mesopelagic GoM fishes (Quin-
tana-Rizzo et al. 2015). In the fish, a δ13C decrease in
muscle samples collected 5 mo after the spill relative to
pre-spill samples was attributed to the ingestion of oil-
contaminated prey (Quintana-Rizzo et al. 2015). De-
pleted C signatures attributed to the incorporation of
MC252 oil have also been reported in fish, inverte-
brates, and birds inhabiting coastal Louisiana (Fry &
Anderson 2014, Bonisoli-Alquati et al. 2016, Wilson et
al. 2016). The δ13C change in all of these taxa except
the birds (seaside sparrow Ammodramus maritimus)
was smaller than the ∼1 ‰ mean difference we de-
tected between the newest scute layers of Lk sampled
before and after the spill. A larger difference (∼2.5 ‰)
was reported between the feathers of seaside sparrows
foraging in oiled and un-oiled marsh areas of Louisiana
after the spill (Bonisoli-Alquati et al. 2016).

The integration of satellite telemetry and stable
isotope data (Vander Zanden et al. 2015, 2016)
allowed us to determine the isotope signature of tur-
tles from the oiled area, which we used to estimate
the proportion of nesting turtles for which centroids
were not available that were exposed to the oil in the
northern GoM. This was possible because, despite
the small number of tracked turtles (n = 10) for which
centroids were available, the isotope signatures of
the turtles that foraged in the oiled area differed sig-
nificantly from the baseline isotope signature of the
oldest scute tissue of turtles sampled in 2010. We
established a probability threshold of 0.75 for the
assignment of individuals to one of these 2 areas.
Although only 11 of the 23 turtles met the 0.75
threshold, the rest did not have probabilities lower
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than 0.505. Most of these turtles were close to the
decision boundary computed based on the scaled
discriminant functions and the mean and prior prob-
abilities of the known groups (Fig. 4).

According to NOAA (2010), 473 oiled turtles were
stranded and (or) captured as a result of direct inter-
action with the oil; 75% were Lk. Of these, only 17
died because of oil-related injuries; 456 were reha-
bilitated and released. Nevertheless, our data indi-
cate that a large percentage of the Lk population in
the northern GoM showed evidence of oil exposure
through 2012, when C signatures in the newest scute
tissue of nesting turtles (most recent foraging history)
remained depleted in δ 13C compared to 2010 values.
Evaluation of samples obtained in subsequent years
will be important to determine if δ13C returns to pre-
spill values in the main Lk foraging grounds of the
northern GoM.

SUMMARY AND CONCLUSIONS

The data from the tracked turtles together with
those assigned to the oiled area via discriminant
analysis indicate that 51.5% of the Lk in the northern
GoM may have been exposed to the oil. Although
post-spill effects of oil on sea turtle reproduction have
not been directly documented, oil contamination of
the principal Lk foraging areas in the northern GoM
may also be at least partly involved in the discontinu-
ation of the exponential Lk population increase that
was evident prior to 2010 (Crowder & Heppell 2011,
Shaver et al. 2016b). Bonisoli-Alquati et al. (2016) doc-
umented the post-spill incorporation of oil C into sea-
side sparrow nesting in Louisiana and suggested a
linkage between oil exposure and reduced post-spill
reproductive success. In contrast to the much shorter-
lived sparrows, immature sea turtles exposed to oil
and the progeny of exposed adults will not mature for
many years. It will also take many years for the large
amount of oil and gas C released to the northern GoM
to flow through and out of the Gulf ecosystem. Contin-
ued evaluation of data from Lk nesting beaches (i.e.
nest numbers, remigration intervals) will therefore be
required to ascertain whether oil contamination of the
foraging grounds affects reproductive success and,
ultimately, recovery. Growth rate of nesters, remigra-
tion intervals, and integration of neophytes into the
population, for which there has been recent evidence
of change (e.g. Shaver et al. 2016a), should also be
evaluated. And finally, our results indicate that C iso-
tope signatures in scutes represent a useful biomarker
of oil exposure in sea turtles, which would further

benefit from the analysis of 14C due to its low abun-
dance in oil (e.g. Chanton et al. 2012, Fry & Anderson
2014, Wilson et al. 2016).
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