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Introduction

Classical Continuum Mechanics
•Considers only local interactions; phenomena captured only at x

•Based on partial differential equations with differential operators

•Example: classical heat equation

ut(x, t) = ∆u(x, t)

where u is temperature, x is position, t is time and all other relative physical
constants are scaled to one.

• Problems when partial derivatives appear in materials with discontinuities! (par-
tially solved by the use of weak derivatives)

The Problem
As mentioned in the last bullet point above, problems begin to arise with disconti-
nuities especially when they evolve in time. Common examples of this happening
include

• evolution of cracks (very bad; two derivatives on discontinuous functions) [3]

• phase-separation model (a binary discontinuous function, marking the two phases
is approximated by a smooth profile)

• image processing (transition from white to black is discontinuous; “fixing” such
images should not blur contour lines)

An Alternative to Classical Continuum Mechanics
• Peridynamics aims to more effectively model phenomena involving material dis-

continuities [4]

•Replaces differential operators with (weakly singular) integral operators, hence
one can deal with spatial discontinuities

• Interactions occur through bonds on a horizon, Hx, of radius δ, between all
points x and its “neighboring” points, y, that are within the horizon.

•These interactions occur inside a body, Ω, with specified boundary conditions
on the surrounding collar, Γ. [1, 2]

Below is a domain, Ω, with boundary conditions specified in the surrounding col-
lar, Γ. For a point x in the domain, all points, y, within the specified horizon, δ
interact with the point x.

Γ Ω

Hx

x
y
δ

Our Work

Definitions

We have defined three new operators that are analogous to the common local op-
erators in vector calculus.

Definition We define the dot convolution operator ∗·. Suppose f ,g are vector
valued functions. Then

f ∗· g :=

∫
R
f(τ ) · g(t− τ ) dτ

Definition We define the cross convolution operator ∗×. To compute f ∗× g, com-
pute a cross product, but instead of normal multiplication, use convolution, i.e.

f ∗× g :=

f2 ∗ g3 − g2 ∗ f3

g1 ∗ f3 − f1 ∗ g3

f1 ∗ g2 − g1 ∗ f2


We can now define our new operators based on these new types of convolution.

Nonlocal Gradient We define the nonlocal gradient of a scalar function u with
respect to the kernel α to be

Gα[u] := α ∗ u

Nonlocal Divergence We define the nonlocal divergence, with kernel α, of a vec-
tor function v : Rn→ Rm to be

Dα[v] := α ∗· v = α1 ∗ v1 + α2 ∗ v2 + α3 ∗ v3

Nonlocal Curl We define the nonlocal curl with kernel α of a function v : Rn →
R3 to be

Cα[v] := α ∗× v

Results

Nonlocal Helmholtz Decomposition Suppose F : Rn → R3. Then there exist
functions Φ and A such that

F(x) = −G(Φ) + C(A)

In the local case, this says that we can decompose a vector function into a solenoidal
and a curl-free component. In other words, a volume-preserving and an irrotational
component. In addition to our main result, we have proven some propositions that
begin to show the connections between our nonlocal operators.

Curl of the Gradient is 0 Consider a scalar function f ∈ L1(R). We have

Cα[Gα[f ]] = 0

Divergence of the Curl is 0 Consider a vector function f ∈ L1(R3). We have

Dα[Cα[f ]] = 0

Remarks

As an intuition for defining our nonlocal operators in this way, we can consider the
Dirac mass. Note that derivatives can be freely transferred between two functions in a
convolution (i.e. ∂f ∗ g = f ∗ ∂g) and that the Dirac mass is the identity for convolution.
It also, in a sense, allows us to look at these operators as they become local, because, at
least intuitively, the Dirac mass represents the point at which the horizon of interaction
is zero; that is, where we have a local operator.

So by letting α = ∂δ0 we can transfer the derivative to the function we are operating on
and we are left with the local counterparts of our operators. Using this, we can use our
proof of the nonlocal Helmholtz decomposition to prove the local version, so we hope to
see convergence of the operators. This does not, however, give any inkling of the rate of
convergence.

Conjectures and Future Work

The source of many of our conjectures is seeing the connections between the nonlocal
and the local operators.

(i) If the horizon of interaction is a ball of radius δ, then we hope to see convergence in
some norm (likely the L2 norm) at a rate of δ2 for all three of our operators.

(ii) If C[f ] = 0 then there exists some function h such that G[h] = f . This is the converse
of the first identity above.

(iii) Investigations of other identities of the local operators. Some examples of this would
be Green’s identities and integration by parts.

(iv) We plan to begin doing numerical analysis of these operators to gain insight on their
geometric interpretation. This could also possibly lead to conjectures and properties
that are unique to the nonlocal operators.

These next steps are aimed at understanding the properties of the new operators we have
defined. Once we have a better understanding of them, we can begin to apply them by
creating models and potentially obtaining solutions to nonlocal boundary value problems
set in the framework of these new operators.
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