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Climate change is the paramount challenge of today for a sustainable future. 

Mitigation of greenhouse gas (GHG) emissions is necessary to reduce the associated risks 

and impacts on society. Using the EPA’s SIT and literature review, comprehensive GHG-

emissions inventories were developed for the state of Nebraska over 25 years (1990-2015) 

and agricultural GHG emissions inventories were developed for the Midwest U.S for one 

year (2016). Nebraska’s net emissions increased from 56.2 million metric tons of carbon 

dioxide equivalent (MMtCO2e) in 1990 to 87.4 MMtCO2e in 2016. Agriculture was found to 

be the sector with the most emissions (36 MMtCO2e), primarily from beef cattle, followed 

by electricity generation (21 MMtCO2e), primarily from coal. Total emissions in Nebraska 

were found to be 47.4 MtCO2e per capita in 2015, compared to 20.6 in the U.S. due to 

concentrated agricultural emissions and low population. Total agricultural GHG emissions 

per state in the Midwest in 2016 were found to range from 10.3 MMtCO2e (Michigan) to 



41.0 MMtCO2e (Iowa), with an average of 23.3 MMtCO2e. In 2016, Wisconsin was the least 

efficient state (0.86 MtCO2e/kg product) and Illinois was the most efficient (0.34 

MtCO2e/kg product) in terms of emissions per product, which aligned with these states 

having the highest (71.5%) and lowest (21%) percentage of livestock out of total agriculture. 

Agricultural emissions per capita ranged from 1.0 MtCO2e (MI) to 26.2 MtCO2e (SD), driven 

by cattle and state population.  

A review of literature was also conducted to explore the interactions between climate 

change and the insurance industry. Climatic events accounted for 91% of $1.05 trillion in 

insured costs for global catastrophic events from 1980 to 2016. Insurance feedbacks in 

response to disaster events caused by climate change include changes in 1) premiums and 

insurance policies, 2) non-coverage, and 3) policy making and litigation. Alongside a suite of 

strategies, including government policies, insurance feedbacks could be used to facilitate and 

manage climate change mitigation. 
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Introduction 
 

Climate change will have significant long-term effects on all aspects of climate, including 

changes in precipitation, temperature, and the frequency and severity of weather events and 

natural disasters, such as droughts, floods, hurricanes, heat waves, wildfires, and sea-level 

rise. Anthropogenic greenhouse gases (GHGs) are the cause for the observed warming of 

the Earth’s average surface temperatures over the past century (IPCC, 2014). The observed 

higher average temperatures are the primary driver behind a changing climate and limiting 

the temperature increase is the goal of mitigation (reduction of GHG emissions). The sooner 

mitigation occurs, the greater the reduction of risks and impacts from climate change (IPCC, 

2014). It is especially important to reduce GHG emissions and warming before 

compounding non-linear feedback effects occur from climatic tipping points, such as the 

thawing of arctic permafrost or ocean acidification (Alley, 2003). These tipping points 

represent paths where irreversible and extensive change to our climate is no longer avoidable 

and may accelerate change to other aspects of Earth’s climate (Lenton, 2011).  

Alongside changes in climate, there will be major impacts on society. Agriculture is 

the primary sector that will be affected in the near term due to its susceptibility to, and 

dependence on, weather and climate. Changes in weather patterns, climate, and increased 

risk of damages from extreme weather events generally occur over broad geographic areas 

and directly impact crops, livestock, and farm operations. Agriculture is an essential industry 

at the beginning of the supply chain for many other industries and indirectly impacts all 

people as they need food for survival. Changes to the agricultural industry can have 

downstream effects on other industries.  
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Categorizing and quantifying agricultural GHG emissions compared to overall GHG 

emissions is vital to help reduce the impacts the agricultural industry will face from climate 

change. Agriculture is estimated to cause ~11% of global GHG emissions while total food 

systems (agriculture, storage, packaging, transport, etc.) account for ~25%, although 

estimates vary (Tubiello et al., 2015; Vermeulen et al., 2012). Inventories of GHG emissions, 

such as those in this dissertation, help provide the basis necessary to develop GHG 

mitigation plans that have the lowest current impact on the profitability of the agricultural 

industry, while minimizing future impacts from climate change. Mitigation of GHG 

emissions in the agricultural industry may also have compounding benefits down the supply 

chain and provide further opportunities to reduce emissions. To address climate change, 

society should understand the mechanisms of how the discussed changes to climate and 

society will be impacted and what factors can be changed to reduce some of these impacts. 

Accurate and comprehensive GHG emissions inventories are the first step in mitigation of 

GHGs to address climate change. Knowing the quantity and sources of GHG emissions 

provides a baseline to understand what sources are the most impactful and where mitigation 

efforts can be concentrated to efficiently reduce GHG emissions. Inventories can also 

provide some insight into interactions of emissions sources and can help pinpoint the 

specific aspect of an emissions source that is the most impactful.  

Policy and the structure of political systems are also likely to change. As society 

learns more about the impacts from climate change and as those changes start occurring, 

action becomes a necessity and no longer an option. Political issues such as migration of 

refugees from natural disasters or rising sea levels and economic or fiscal problems will 

become increasingly prominent. These issues will shape and change policy like 

environmental regulations of the past (O’Neill, 2002; Weiss and Jacobson, 2000). However, 
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the scale and urgency of these changes will likely disrupt current systems and cause more 

abrupt changes in political structure, akin to the likely effects of COVID-19 on political and 

social systems in 2020 (Monbiot, 2020). Proper action to mitigate GHG emissions now, and 

better plans to address impacts from climate change, are likely to minimize or even prevent 

this disruption and ensure that our political and social systems continue to function. 

The costs and risks associated with climate change will likely shift many economic 

subsystems. Changes in risk management, fiscal policy, work, payroll, and taxes are all likely 

to occur to varying degrees in response to climate change. These shifts will have a great 

impact on most social and political systems as economics is often intertwined with these 

other systems. Insurance may no longer be the most heavily used risk management tool, or 

the structure of insurance systems may look quite different than they do today (e.g. direct 

aid, public or partly public insurance, new insurance products).  

Once factors or areas that will impact future changes are identified, effective 

mitigation plans can be developed that address specific impacts, reducing costs and resource 

investments in strategies with low return on investments. With limited resources, not every 

emissions source can or should be reduced. In some areas, the effort required to reduce 

GHG emissions below current levels will simply be too costly and in others not enough 

reductions will occur to justify the costs. The potential reduction of large sources of GHG 

emissions, however, has the added effects of singular focus (more resources to pool together 

to address one problem than split among many) and necessity (GHG emissions must be 

reduced by as much as possible to mitigate the impacts of climate change). Potential GHG 

emissions reductions change from location to location and scenario to scenario. Which 

GHG emissions sources are the best candidates for reduction efforts will change and depend 
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on local factors and perspectives. Mitigation plans, then, should start with a GHG emissions 

inventory and then develop solutions that meet the specific needs to the area addressed.  

This dissertation covers two separate groups of GHG emissions inventories and a 

closer look at developing mitigation strategies in the insurance sector. These are small, but 

important, steps in the long and arduous process of addressing the impacts of climate 

change. The chapters ahead help provide a base for efforts in the reduction of GHG 

emissions on a state, regional, national, and international scale. Continuing to develop GHG 

emissions inventories and discussing the impacts and effects on social systems from climate 

change is important in addressing the largest and most complex series of problems that 

humanity may ever see over the long term.  

 

 

 

  



12 
 

CHAPTER 1 - GREENHOUSE GAS EMISSIONS INVENTORIES 

FOR NEBRASKA 

 
Anthropogenic GHG emissions and associated global climate change will increase the 

severity and destructiveness of heat waves, droughts, wildfires, floods, hurricanes, and sea-

level rise. In the U.S., these impacts are expected to cost hundreds of billions of dollars 

annually by the end of the century if global GHG emissions are not substantially reduced 

(USGCRP, 2018). The cumulative economic effect of climate change from 2020 to 2300 has 

been estimated to be between $1,390 trillion, with high levels of mitigation, and $2,197 

trillion for no mitigation (“business as usual”) (Yumashev, 2019). Climate change impacts 

and economic losses could also increase significantly by compounding feedback effects from 

the melting of Arctic permafrost and other cryosphere elements, meaning projections 

probably underestimate costs (Yumashev, 2019). Over the next two decades actions to 

reduce anthropogenic GHG emissions have the potential to limit atmospheric temperature 

increases to only 2°C above the pre-industrial era, but extensive emissions mitigation must 

occur on an economy-wide and global scale (UNEP, 2017; Figueres et al., 2017; Millar et al., 

2017; Xu and Ramanathan, 2017). As industrial-scale carbon sequestration technologies 

(‘negative carbon emissions’) are expected to cost many trillions of dollars to implement 

(Hansen et al., 2017), and as other potential solutions (e.g. geoengineering solar radiation) are 

excessively risky (Morton, 2016), the only practical and immediate approach to mitigate 

climate change is to reduce the annual rate of global anthropogenic GHG emissions 

alongside increased natural and, potentially, man-made carbon sequestration systems. 

Ultimately, a preponderance of high-emitting countries must reduce their emissions to limit 

increases in atmospheric CO2 concentrations. This will probably occur with a binding 

international climate change agreement, which has yet to come to fruition. Even without 
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such an agreement, many countries have set targets for emissions reductions and have begun 

transitions to low-carbon economies.  

The first stage of emissions reduction requires identification of GHG emissions rates 

and their sources. While many country-level GHG emissions have been quantified since the 

signing of the Kyoto Protocol, based on data such as national aggregate energy use, GHG 

emissions inventories for sub-national regions (states, provinces, etc.) have been far less 

developed. Sub-national inventories can be key tools for mitigating emissions because local 

characteristics and associated GHG emissions reduction potentials vary. Regional socio-

economic differences in fossil fuel production and use, in electricity generation, 

transportation, industry, forestry, and agriculture can present more specific and actionable 

GHG emissions reduction strategies.  

 Agricultural regions can have particularly high GHG emissions because 1) they can 

disrupt large amounts of carbon stored in soils, perennial plants, and forests, 2) livestock and 

rice are significant sources of methane (CH4) emissions, which has a global warming 

potential 25 times more potent than CO2, 3) nitrogen fertilizer and manure use produces 

nitrous oxide (N2O), which has a global warming potential 298 times more potent than CO2, 

and 4) the scale of agricultural systems needed to produce current food use exponentially 

amplifies inefficiencies and their resulting GHG emissions. As one of the leading agricultural 

economies and exporters of the U.S., the state of Nebraska has many characteristics of an 

agricultural region with potentially high GHG emissions. In 2018, Nebraska had the highest 

state-level commercial red meat production, highest beef exports among states, and the 

largest number of cattle on feed (NDA, 2019). The state is also the third largest producer of 

maize for grain in the U.S., according to state statistics. In 2012, the livestock industry in 
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Nebraska had annual sales of roughly $11.7 billion dollars (USDA NASS, 2019). Nebraska 

also has the largest area under irrigation among states in the U.S., which requires substantial 

amounts of energy (USDA ERS, 2012). In 2017, Nebraska had 47,400 farms and ranches 

with an average size of 386 hectares and a total of 18.3 million hectares of agricultural land 

(NDA, 2019). In 2017, Nebraska ranked second in maize-ethanol production capacity, with 

25 operating biorefineries that have a production capacity of ~7.6 billion liters and utilize 

~40% of the state’s maize crop.  

 Livestock production is a significant source of GHG emissions. Livestock farming 

contributes ~14.5% of anthropogenic GHG emissions globally, although estimates vary 

(Gerber et al., 2013). A large portion of GHG emissions from livestock come from enteric 

fermentation, the digestive process in ruminant animals such as cattle, sheep, or goats. Due 

to their large population and size, cattle account for a majority of GHG emissions from 

enteric fermentation (ICF, 2004). Around 65% of global livestock-related GHG emissions 

are from cattle, and over 80% of livestock-related GHG emissions are from ruminants 

(Gerber et al., 2013). The effect of livestock on agricultural soils also plays a large role in 

emissions, through the spread of manure on fields and pastures and the leeching and runoff 

of nitrogen from manure into soil and water systems. Manure use and management from 

livestock accounts for 26% of global livestock-related emissions (Gerber et al., 2013). To 

reduce GHG emissions in Nebraska, significant attention will need to be paid to livestock.  

 A second significant source of emissions comes from electricity generation. 

Emissions of GHGs from electricity generation accounted for 28% of total emissions for 

the U.S. in 2016 (EPA, 2019). Electricity-related GHG emissions in Nebraska largely come 

from the fuel source in the generation of electricity, specifically coal powered plants. 
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Generation of electricity is dependent on demand for electricity, that is in turn dependent 

upon economic growth, relative energy prices, technological efficiency, and several other 

factors (EIA, 2014). If economic growth and energy demand continues to increase and 

relevant energy prices remain stable, electricity generation will need to either increase the 

efficiency of current technologies (which may already be at or near efficiency limits) or 

switch to zero or net-zero emissions sources for energy (e.g. renewables, nuclear, carbon-

capture systems) to maintain or reduce GHG emissions. Addressing GHG emissions from 

electricity generation is vital to reducing Nebraska’s contribution to climate change.  

Emission inventories of GHGs are precursors for action. They allow comprehensive 

knowledge of a system and its emissions. Emission inventories are a building block upon 

which solutions can be tailored to reduce or even eliminate emissions dependent on the 

characteristics of the system. Regulation (e.g. cap-and-trade, carbon tax), market solutions 

(e.g. investments, incorporation of emissions costs into business plans and stock prices), and 

risk management systems (e.g. insurance, FEMA) all rely on inventories to provide a basis 

for resource allocation and management. State-specific inventories allow a more accurate and 

relevant analysis of state emissions compared to federal inventories and provide a framework 

for state-relevant solutions to climate change. Prior to this analysis, a comprehensive state 

specific GHG emissions inventory for Nebraska was unavailable. While default EPA model 

inputs could be used to estimate comprehensive GHG emissions for Nebraska, data were 

never coalesced into a publicly available report, as provided here; nor has a comprehensive 

analysis and comparison of the relevant systems been presented. This inventory uses non-

default data where data were accessible: fossil fuel combustion, natural gas transmission and 

distribution, transportation (non-highway), and emissions from fires (2000-2016). Future 
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comprehensive state GHG emissions inventories would benefit from the continuous 

evaluation of state-level emissions by governmental or non-governmental organizations. 

 

Methods for Estimation of Greenhouse Gas Emissions 

Emissions were estimated using the most recent version of the U.S. Environmental 

Protection Agency’s (EPA) State Greenhouse Gas Inventory Tool (SIT) (downloaded 

December 1, 2019) using data specific for Nebraska where available (data sources detailed 

below). The calculation methods in the SIT are based on the August 2004 version of EPA’s 

Emission Inventory Improvement Program guidance for GHGs (ICF, 2004). Default input 

values in the SIT were collected from relevant government or industry sources for each 

sector (i.e. US Geological Survey, Energy Information Administration, Nebraska Energy 

Office); details of the SIT’s calculation methods are available in the SIT User Guide (EPA, 

2019). The individual modules for each sector in the SIT are Excel workbooks populated 

with default emission factors (EF) and state-specific input values. Conversions from one unit 

to another were used in all calculations where appropriate. Emissions were calculated using 

available data for 26 years from 1990 to 2016 to keep annual comparisons as accurate as 

possible while still providing enough data to observe trends. The SIT estimates GHG 

emissions in million metric tons of CO2 equivalent (MMtCO2e) from eight major source 

sectors: agriculture, fossil fuel combustion, industrial processes, natural gas transmission and 

distribution, transportation, solid waste, wastewater treatment, and land use, land use change, 

and forestry (LULUCF). The global warming potentials (GWP) used for each GHG were 1 

(CO2), 25 (CH4), and 298 (N2O).  
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Emissions of GHGs from agriculture were calculated using the agriculture module of 

the EPA’s SIT. The agriculture module calculates emissions for nine categories: enteric 

fermentation (CH4), manure management (CH4 and N2O), residues and legumes from 

agricultural soils (N2O), fertilizers applied to agricultural soils (N2O), manure on agricultural 

soils (N2O), liming of agricultural soils (CO2), urea fertilization (CO2) (fertilizer production), 

rice cultivation (CH4), and burning of agricultural residues (CH4). Rice cultivation and 

burning of agricultural residues were not included in these inventories as these are not 

practices that take place in Nebraska. Emissions from livestock were based on animal 

populations from the USDA’s Quick Stats tool (USDA NASS, 2018) and corresponding 

annual EFs (kg CH4 per head per year) from the SIT. These livestock categories, with enteric 

fermentation EFs, where appropriate, include: dairy cows (108.9-139.7), dairy replacement 

heifers (42.2-68.7), beef cows (86.5-92.01), beef replacement heifers (52.4-67.6), heifer 

stockers (50.4-58.9), steer stockers (53.1-56.9), bulls (88.3-95.1), feedlot heifers (37.2-43.4),  

feedlot steers (36.3-42.2), calves, breeding swine (1.5), market swine (four categories by 

weight; 1.5), layer chickens, broiler chickens, sheep (8), goats (5), and horses (18). Emissions 

from legumes and residues were estimated based on annual production of alfalfa, maize for 

grain, wheat, barley, sorghum for grain, oats, rye, millet, and soybeans (USDA NASS, 2018). 

Liming of agricultural soils is calculated by multiplying the total limestone or dolomite 

applied to soil by an EF (Mt C per Mt limestone or dolomite). Urea fertilization is calculated 

by multiplying total urea applied to soil by an EF (Mt C per Mt urea). 

Historic (pre-1990) agricultural GHG emissions for Nebraska are estimated from 

historic cattle head counts and assumed EFs. Total cattle head count for Nebraska between 

1920-2016 includes dairy cows, beef cows, stockers, calves, and bulls. Feedlot cattle data 

starts in 1965 for Nebraska (USDA NASS, 2018) so feedlot totals for years 1920-1964 were 
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assumed to be the value for 1965. This assumption means pre-1965 values are slightly 

inflated and actual headcount was likely lower. Historic values were obtained by taking 

historic cattle head counts (USDA NASS, 2018) multiplied by the EF from 1990 (earliest 

calculated EF in the SIT) to give values in kilograms of methane. These values were 

converted to MMtCO2e to give historic emissions from enteric fermentation. Enteric 

fermentation accounts for 47.7% on average of total agricultural emissions from 1990-2016 

so values were divided by 0.477 to give historic agricultural emissions in MMtCO2e.  

Emissions of GHGs from fossil fuel combustion were calculated in two main 

categories: residential, commercial, and industrial (RCI) emissions, and electricity generation 

from power plants. Emissions of GHGs for RCI were calculated using two SIT modules: 

CO2FFC for CO2 emissions and the Stationary Combustion module for CH4 and N2O 

emissions (ICF, 2004). Residential CO2 emissions are calculated by multiplying consumption 

(billion BTUs) of a fuel type by the corresponding EF (kg C per million BTUs) for the 

following types: coal, distillate fuel, kerosene, liquefied petroleum gas (LPG), and natural gas. 

Commercial CO2 emissions are calculated the same as residential emissions with the addition 

of two categories: motor gasoline, and residual fuel. Industrial CO2 emissions are calculated 

by multiplying total energy consumption (billion BTUs) minus the result of non-energy 

related material consumption (billion BTUs) multiplied by a storage factor percentage, which 

yields net-combustible consumption (billion BTUs). The net-combustible consumption is 

then multiplied by an EF (kg C per million BTUs) for the following categories: coking coal, 

other coal, asphalt and road oil, aviation gasoline blending components, crude oil, distillate 

fuel, naphtha less than 401°F feedstocks, other oils greater than 401°F feedstocks, kerosene, 

LPG, lubricants, motor gasoline, motor gasoline blending components, miscellaneous 

petroleum products, petroleum coke, pentanes plus, residual fuel, still gas, special naphthas, 
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unfinished oils, waxes, and natural gas. While transportation and bunker fuels are included in 

the CO2FFC module, transportation emissions from mobile sources are included in the 

transportation sector and bunker fuel data were not available for Nebraska. Emissions of 

N2O and CH4 in the RCI module are calculated by multiplying energy consumption (billion 

BTUs) by corresponding EFs (metric tons of N2O per billion BTUs and metric tons of CH4 

per billion BTUs) in the same manner as CO2 emissions with the addition of wood as a 

category. Emissions from electricity generation were calculated using fuel consumption data 

for Nebraska available from the Energy Information Administration (EIA, 2018a & 2018b). 

While more site-specific emissions data are available from 2010 onward (EPA, 2019b), the 

SIT was used to calculate emissions to provide a consistent calculation for comparisons 

from 1990 to 2015. Consumption data (billion BTUs) for electricity generation is multiplied 

by the relevant EF for each fuel type, with factors and fuel types the same as residential for 

CO2, N2O, and CH4 emissions. 

The Industrial Processes module calculates emissions based on the amount of 

material produced in the state (ICF, 2004). In Nebraska, several categories were not included 

because the material is either not produced in the state or production data are unavailable: 

dolomite, magnesium, aluminum, nitric acid, adipic acid, and hcfc-22. Default production 

values for Nebraska present in the SIT were used for all other materials. Industrial processes 

emissions were calculated by multiplying production values by an EF (metric tons CO2 

emitted per metric ton of material produced) for the following materials: clinker cement, 

cement kiln dust, high-calcium lime, dolomitic lime, limestone, soda ash consumption, iron 

and steel production (basic oxygen furnace with coke ovens), iron and steel production 

(basic oxygen furnace without coke ovens), iron and steel production (electric arc furnace), 

ammonia production, urea production, and electric power transmission and distribution. 
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Lime is further multiplied by a CO2 reabsorption factor (0.8) that accounts for the 

precipitation of calcium carbonate during the process. Ozone Depleting Substances (ODS) 

substitutes are calculated by multiplying national ODS emissions (MtCO2e) by state 

population divided by national population for Nebraska’s share of national emissions.  

Emissions for natural gas transmission and distribution were calculated using the 

natural gas (NG) and oil systems module in the SIT. The emissions are broken down into 

five categories: NG production, NG transmission, NG distribution, NG venting/flaring, and 

petroleum systems. Default values from the SIT are used for the number of NG wells in 

Nebraska, number of gas transmission and storage compressor stations, and oil production. 

NG transmission and distribution were calculated using miles of pipeline and services 

(DOT, 2018). Production of NG is calculated by multiplying the total number of wells by an 

EF (metric tons CH4 per year per activity unit) which varies annually. Emissions from NG 

transmission were calculated by multiplying an EF (metric tons CH4 per year per activity 

unit) by each input value: miles of transmission pipeline, number of gas transmission 

compressor stations, and number of gas storage compressor stations. Emissions from NG 

distribution were calculated by multiplying an EF (metric tons CH4 per year per activity unit) 

by each input value: miles of cast-iron distribution pipeline, miles of unprotected-steel 

distribution pipeline, miles of protected-steel distribution pipeline, mile of plastic distribution 

pipeline, total number of services, number of unprotected-steel services, and the number of 

protected-steel services. Emissions from NG venting/flaring were calculated by multiplying 

the total NG vented or flared in the state (billion BTUs) by an EF (metric tons CO2 per year 

billion BTU). Petroleum systems were calculated by multiplying amount of oil in production, 

refining, and transportation in the state (per 1000 barrels) by an EF (kg CH4 per year per 

1000 barrels). 
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The transportation section of the SIT includes both highway and non-highway (e.g. 

aviation, marine vessels, locomotives, and tractors) vehicles. Default vehicle miles traveled 

(VMT) were used to calculate emissions for highway vehicles (FHWA, 2019) and petroleum 

consumption values were used for non-highway vehicles (EIA, 2019a). Highway vehicle 

N2O and CH4 emissions were calculated by multiplying VMT by an EF for each type of 

vehicle and emissions-control technology, then distributed by vehicle age. The types of 

vehicles are light duty gas vehicles (LDGV), light duty gasoline trucks (LDGT), heavy duty 

gas vehicles (HDGV), light duty diesel vehicles (LDDV), light duty diesel trucks (LDDT), 

heavy duty diesel vehicles (HDDV), and motorcycles (MC). Emissions-control technologies 

are: T2 three-way catalysts, T1 three-way catalysts, T0 early three-way, oxidation catalysts, 

non-catalysts, low emission vehicles, advanced, moderate, and uncontrolled. Non-highway 

N2O and CH4 emissions were calculated by multiplying fuel consumption by a density factor 

(kg/L) and by relevant EFs (g GHG per kg fuel, N2O and CH4) for aviation, boats, 

locomotives, and other (includes farm equipment, construction equipment, industrial, and 

snowmobiles). Carbon dioxide emissions in the transportation sector are calculated by the 

CO2FFC module of the SIT and used instead of CO2 emissions calculated using VMT in the 

transportation module because the method used in the CO2FFC module is less uncertain 

(ICF, 2004). Transportation emissions are calculated by multiplying fuel consumption 

(billion BTUs) by an EF (kg C per million BTUs) for each of the following categories: 

aviation gasoline, distillate fuel, jet fuel kerosene, jet fuel naphtha, LPG, motor gasoline, 

residual fuel, and natural gas.  

The Solid Waste module uses annual tons of solid waste landfilled and population as 

inputs to calculate emissions for municipal solid waste (MSW) landfills, minus any methane 

emissions flared. Default values present in the SIT were used to calculate emissions. 
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Combustion of municipal solid waste was not calculated for Nebraska due to lack of 

available data. Methane emissions from MSW landfills were calculated using a first order 

decay model from the SIT (Qtx = A * k * Rx * L0 * e-k(T-x)) where Qtx is the amount of CH4 

generated in a particular year, A is the normalization factor (1-ek)/k, k is the CH4 generation 

rate per year, Rx is the amount of waste landfilled for a particular year, L0 is the CH4 

generation potential (m3/Mt of refuse), T is the current year (i.e. 2019), and x is the year the 

waste was input into the system.  

The Wastewater module of the SIT calculates emissions for both municipal and 

industrial wastewater. Emissions from municipal wastewater are calculated using state 

population values multiplied by a series of EFs to generate the amount of CH4 produced per 

metric ton. This process does not account for collected CH4 and assumes all CH4 is released 

to the atmosphere. Industrial wastewater emissions are calculated by red meat production in 

the state. The SIT assumes a constant amount of emissions per metric ton of meat processed 

at meat processing facilities and deals only with the wastewater at those facilities. Municipal 

CH4 emissions from wastewater are calculated by multiplying state population by per-capita 

5-day biochemical oxygen demand (BOD5, 0.09), the number of days in a year, an EF (0.6 

Gg CH4 per Gg BOD5), and then the percentage of wastewater BOD5 that is anaerobically 

digested. Direct wastewater N2O emissions are calculated by multiplying population by the 

fraction of the population not on septic by an EF (g N2O per person per year). Indirect 

wastewater N2O emissions are calculated by multiplying population by the total annual 

protein consumption, the fraction of nitrogen content in protein, and the fraction of non-

consumed nitrogen, minus the direct nitrogen emissions from wastewater, multiplied by the 

percentage of biosolids not used as fertilizer, and an EF (kg N2O-N per kg sewage N-

produced). Industrial wastewater from red meat production is calculated by multiplying 
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metric tons of production by wastewater outflow (m3 per metric ton), chemical oxygen 

demand (COD), an EF (g CH4 per g COD), and the fraction of COD degraded.  

The LULUCF module is composed of seven categories: settlement soils, urban trees, 

burning CH4, burning N2O, yard trimmings, forest carbon flux, and agricultural soil carbon 

flux. Default SIT values were used for all categories except for burning CH4 and burning 

N2O from 2000-2016. Data provided by the Nebraska Forest Service was used to calculate 

emissions from 2000-2016; data before 2000 was not available. Settlement soils are 

calculated by multiplying total synthetic fertilizer applied to settlements (Mt N) by an EF, 

and the molecular weight ratio (N2O/N2). Urban trees are calculated by multiplying total 

urban area (km2) by the fraction of urban area with tree cover, and a carbon sequestration 

factor (Mt C per hectare per year). Burning CH4 and N2O were calculated by multiplying the 

area burned (ha) by the average biomass density for forests (kg dry matter per ha), the 

combustion efficiency for the type of forest, and an EF (g/kg dry matter burned). Yard 

trimmings were calculated by multiplying default assumed percentages of grass, leaves, and 

branches applied to the total landfilled yard trimmings and scraps by wet weight (state 

population multiplied by the national landfilled yard trimmings and food scraps per capita). 

Then, the amount of carbon for each category added to landfills annually is calculated by 

multiplying the landfilled materials wet weight by the initial carbon content percentage for 

grass, leaves, branches, and food scraps and by the dry-to-wet weight ratio for each category 

to get total mass additions (Gg C). The total annual stocks of landfilled carbon are then 

calculated by summing the carbon remaining from all previous years’ deposits of waste. The 

stock of carbon remaining in landfills for any given year is calculated as follows: total mass 

additions multiplied by a term (percentage of C stored permanently + (1 - percentage of C 

stored permanently) multiplied by e ^(-ln(0.5)/half-life of degradable C)). The annual flux of 
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carbon stored in landfills is then calculated by subtracting the current year’s carbon stocks 

from the previous year’s stocks. Forest carbon flux is calculated by multiplying outputs of 

the Carbon Calculation Tool (CCT) from the USDA Forest Service for carbon storage 

(million metric tons of carbon) and calculating the change in carbon storage over an 

inventory year. This change is then converted to MMtCO2e to give net sequestration or 

emissions from aboveground biomass, belowground biomass, dead wood, litter, and soil 

organic carbon. Carbon storage from wood products and landfills is calculated by 

multiplying estimates of harvested wood stocks from 1987, 1992, and 1997 and averaging 

change from 1987-1992 and 1992-1997 to get average annual change for each of those 

ranges. The average annual change for 1998-2016 is assumed to be the average annual 

change for 1992-1997. The average annual change was added to the net sequestration or 

emissions from the other categories to give total annual net sequestration or emission, or 

forest carbon flux. Agricultural soil flux is calculated in much the same way as forest carbon 

flux, but without wood products and landfills, for cropland remaining cropland, land 

converted to cropland, grassland remaining grassland, and land converted to grassland (EPA, 

2019; USDA, 2016).  

 

Aggregate State Emissions 1990-2016 

Nebraska’s net emissions increased from 56.2 MMtCO2e in 1990 to 87.4 MMtCO2e in 2016 

with an average increase of 1.2 MMtCO2e per year (Table 1.1 & 1.2). For comparison, Iowa 

and Illinois (both comprehensive inventories) reported 131.8 and 119.8 MMtCO2e, 

respectively, in 2015 for total emissions which includes non-energy sectors such as 

agriculture (Iowa DNR, 2018; ICF, 2018). Kansas, Texas, and Minnesota reported 63.1, 
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625.8, and 87.7 MMtCO2 (EIA, 2018a) in 2015, respectively, but didn’t include non-energy 

sectors or GHGs other than carbon dioxide. The largest increase in GHG emissions in 

Nebraska came between 2000 and 2001 with an increase of 10.35 MMtCO2e. This difference 

is largely due to an estimated decrease in soil organic carbon under forests (the difference 

between the release of carbon by oxidation and the storage of carbon through 

photosynthesis), but these values are uncertain and could simply be the result of a change in 

methodology. While more carbon was sequestered in later years, this change was offset by 

increased demands for fossil fuels in electricity production and transportation (Table 1.2). 

There were also small increases in emissions produced throughout most industries between 

1990-2016, probably due to an increase in population size (Table 1.1) placing higher 

demands on those industries. The overall trend is an increase of 0.41 MtCO2e per person per 

year (Fig. 1.1). Increasing trends for per capita emissions are from emissions growth beyond 

what can be accounted for by population growth. From 1990 to 2016, significant increases in 

emissions are primarily from agriculture (increasing by 8.2 MMtCO2e) and electricity 

(increasing by 7.5 MMtCO2e), which accounted for ~50% of the increase together, with 

lesser increases in other sectors (Table 1.2, Fig. 1.2). 

 

Table 1.1 Emissions per capita for Nebraska and the U.S. (MtCO2e).  

Category 1990 2016 Change % Change 

Nebraska Population 1,578,385 1,893,765 315,380 20% 

U.S. Population 249,620,000 321,040,000 71,420,000 29% 

Nebraska Net Emissions, MMtCO2e 56.2 87.4 31.2 56% 

U.S. Net Emissions, MMtCO2e 5,564 5,913 349 6% 

Fraction NE of U.S. Population 0.006 0.006 - - 

Nebraska Per Capita Emissions, MtCO2e 35.6 46.2 10.6 30% 

U.S. Per Capita Emissions, MtCO2e 22.3 18.4 -3.9 -17% 

Sources: Nebraska Energy Office; United Nations Population Division, 2018; U.S. Census Bureau, 2018; EPA, 2019. 
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Figure 1.1 A) Total net emissions for Nebraska 1990-2016 (MMtCO2e), and B) 
emissions per capita for Nebraska (MtCO2e), 1990-2015. 

Source: Nebraska Energy Office (NEO), 2018a. 
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Table 1.2 Inventory of GHG emissions from Nebraska by sector (MMtCO2e), 1990-2016. 

Emissions (MMtCO2e) 1990 1995 2000 2005 2010 2015 2016 

Agriculture 27.85 28.84 37.17 32.94 35.35 36.79 36.01 

Enteric Fermentation 9.91 11.15 17.75 12.74 13.06 13.03 13.38 

Manure Management 2.55 2.45 2.88 2.54 2.75 2.84 2.90 

Ag Soils 15.26 15.10 16.35 17.53 19.34 20.74 19.55 

Liming 0.08 0.09 0.11 0.03 0.10 0.04 0.04 

Urea Fertilization 0.04 0.05 0.07 0.09 0.10 0.13 0.13 

Agricultural Residue Burning 0.00 0.00 0.01 0.01 0.01 0.01 0.01 

Power Plants 13.53 16.94 19.00 21.19 22.94 23.27 21.04 

Electric Power (CO2) 13.47 16.86 18.90 21.08 22.83 23.15 20.93 

    Coal 13.26 16.67 18.55 20.63 22.59 22.90 20.60 

    Petroleum 0.01 0.03 0.05 0.03 0.02 0.01 0.01 

    Natural Gas 0.19 0.16 0.30 0.43 0.21 0.24 0.33 

Electric Power (CH4) 0.00 0.00 0.01 0.01 0.01 0.01 0.01 

    Coal 0.00 0.00 0.00 0.01 0.01 0.01 0.01 

    Petroleum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

    Natural Gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

    Wood — — — — — — — 

Electric Power (N2O) 0.06 0.08 0.09 0.10 0.11 0.11 0.10 

    Coal 0.06 0.08 0.09 0.10 0.11 0.11 0.10 

    Petroleum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

    Natural Gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

    Wood — — — — — — — 

RCI 9.02 10.46 10.25 10.06 12.41 13.42 13.45 

Residential (CO2) 2.51 2.69 2.77 2.51 2.67 2.34 2.20 

    Coal 0.00 0.00 — 0.00 — — — 

    Petroleum 0.34 0.34 0.50 0.48 0.53 0.39 0.35 

    Natural Gas 2.17 2.34 2.27 2.03 2.14 1.94 1.86 

Residential (CH4) 0.03 0.03 0.03 0.02 0.02 0.02 0.02 

    Coal 0.00 0.00 — 0.00 — — — 

    Petroleum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

    Natural Gas 0.00 0.01 0.01 0.00 0.00 0.00 0.00 

    Wood 0.03 0.03 0.02 0.02 0.02 0.02 0.01 

Residential (N2O) 0.01 0.01 0.01 0.00 0.01 0.00 0.00 

    Coal 0.00 0.00 — 0.00 — — — 

    Petroleum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

    Natural Gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

    Wood 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Commercial (CO2) 2.13 2.20 1.77 1.62 1.86 1.96 1.82 
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    Coal 0.01 0.02 — 0.01 — — — 

    Petroleum 0.22 0.10 0.23 0.15 0.16 0.30 0.30 

    Natural Gas 1.90 2.08 1.54 1.47 1.70 1.65 1.52 

Commercial (CH4) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

    Coal 0.00 0.00 — 0.00 — — — 

    Petroleum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

    Natural Gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

    Wood 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Commercial (N2O) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

    Coal 0.00 0.00 — 0.00 — — — 

    Petroleum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

    Natural Gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

    Wood 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Industrial (CO2) 4.32 5.51 5.65 5.87 7.82 9.06 9.38 

    Coal 0.21 0.63 0.76 0.74 1.21 2.01 1.90 

    Petroleum 2.79 2.60 2.46 2.96 2.16 2.35 2.46 

    Natural Gas 1.32 2.28 2.43 2.16 4.45 4.71 5.02 

Industrial (CH4) 0.00 0.01 0.01 0.01 0.01 0.01 0.01 

    Coal 0.00 0.00 0.00 0.00 0.00 0.01 0.00 

    Petroleum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

    Natural Gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

    Wood — 0.00 0.00 0.00 0.00 0.00 0.00 

Industrial (N2O) 0.01 0.01 0.01 0.01 0.02 0.02 0.02 

    Coal 0.00 0.00 0.00 0.00 0.01 0.01 0.01 

    Petroleum 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

    Natural Gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

    Wood — 0.00 0.00 0.00 0.00 0.00 0.00 

Industrial Processes 0.99 1.47 2.13 2.12 1.94 2.19 2.23 

CO2 Emissions 0.83 1.14 1.56 1.45 1.06 1.24 1.26 

    Cement Manufacture 0.32 0.60 0.69 0.71 0.41 0.52 0.52 

    Lime Manufacture — 0.07 0.06 0.09 0.09 0.11 0.11 

    Limestone and Dolomite Use — 0.05 0.03 0.03 0.08 0.09 0.08 

    Soda Ash 0.02 0.02 0.02 0.02 0.01 0.01 0.01 

    Iron & Steel Production — — 0.55 0.41 0.28 0.28 0.28 

    Ammonia Production 0.49 0.40 0.21 0.18 0.19 0.22 0.24 

    Urea Consumption 0.01 0.01 0.01 0.01 0.01 0.02 0.02 

HFC, PFC, and SF6 Emissions 0.15 0.32 0.57 0.67 0.87 0.95 0.97 

    ODS Substitutes 0.00 0.20 0.48 0.61 0.83 0.92 0.94 
Electric Power Transmission and 
Distribution Systems 0.15 0.13 0.09 0.06 0.05 0.03 0.03 

LULUCF 0.31 0.33 0.34 0.34 0.38 0.39 0.39 
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Forest Fires — — 0.01 0.00 0.00 0.00 0.00 

    CH4 — — 0.01 0.00 0.00 0.00 0.00 

    N2O — — 0.00 0.00 0.00 0.00 0.00 

N2O from Settlement Soils 0.31 0.33 0.33 0.33 0.38 0.39 0.39 

Natural Gas T&D 2.77 1.00 1.07 4.03 3.73 3.74 4.74 

Natural Gas 2.65 0.92 1.01 3.97 3.68 3.71 4.71 

Oil 0.12 0.08 0.06 0.06 0.05 0.03 0.03 

Transportation 11.86 12.80 13.16 13.99 15.17 15.23 15.25 

CO2 11.36 12.20 12.59 13.60 14.93 15.08 15.10 

    Gasoline Highway 5.81 6.11 6.74 7.33 6.52 6.68 7.13 

    Diesel Highway 1.70 2.08 2.40 2.13 3.01 2.93 2.72 

    Non-Highway 3.85 4.01 3.44 4.12 5.39 5.46 5.24 

    Alternative Fuel Vehicles 0.00 0.00 0.00 0.00 0.01 0.01 0.01 

CH4 0.06 0.06 0.05 0.04 0.03 0.03 0.03 

    Gasoline Highway 0.05 0.05 0.04 0.02 0.02 0.01 0.01 

    Diesel Highway 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

    Non-Highway 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

    Alternative Fuel Vehicles 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

N2O 0.44 0.54 0.52 0.36 0.21 0.13 0.12 

    Gasoline Highway 0.40 0.50 0.49 0.32 0.16 0.08 0.08 

    Diesel Highway 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

    Non-Highway 0.03 0.03 0.03 0.03 0.04 0.04 0.04 

    Alternative Fuel Vehicles 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Waste 0.86 1.01 1.19 1.37 1.60 1.65 2.66 

Solid Waste 0.53 0.65 0.78 0.97 1.18 1.21 2.21 

Wastewater 0.33 0.36 0.41 0.40 0.42 0.44 0.45 

    Municipal CH4 0.13 0.13 0.14 0.14 0.15 0.15 0.15 

    Municipal N2O 0.05 0.05 0.05 0.05 0.05 0.06 0.06 

    Industrial CH4 0.15 0.18 0.22 0.21 0.22 0.23 0.24 

Total Gross Emissions 67.20 72.84 84.31 86.03 93.51 96.69 95.77 

Carbon Stored in LULUCF -10.95 -8.16 -13.46 -11.11 -2.91 -7.67 -8.35 

Forest Carbon Flux -6.80 -4.38 -4.38 -9.50 -1.76 -1.76 -1.76 

Aboveground Biomass -2.63 -1.05 -1.05 -1.98 -0.92 -0.92 -0.92 

Belowground Biomass -0.50 -0.20 -0.20 -0.36 -0.18 -0.18 -0.18 

Dead Wood -0.35 -0.43 -0.43 -0.47 -0.27 -0.27 -0.27 

Litter -0.30 -0.25 -0.25 -0.58 -0.10 -0.10 -0.10 

Soil Organic Carbon -2.59 -2.31 -2.31 -5.96 -0.15 -0.15 -0.15 

Total Wood Products and Landfills -0.43 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 

Urban Trees -0.11 -0.12 -0.13 -0.14 -0.15 -0.16 -0.16 
Landfilled Yard Trimmings and Food 

Scraps -0.15 -0.08 -0.07 -0.06 -0.06 -0.06 -0.06 
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Agricultural Soil Carbon Flux -3.89 -3.57 -8.88 -1.41 -0.94 -5.69 -6.37 

Total Net Emissions 56.24 64.68 70.85 74.92 90.60 89.02 87.43 
Note: A dash denotes zero attributed emissions or unavailable data, whereas 0.00 denotes values less than 0.005 but greater 

than zero

 

 

Figure 1.2 Nebraska gross GHG emissions by sector (MMtCO2e), 1990-2016. 

 

Emissions of GHGs by Sector 

The majority of emissions between 1990-2016 in Nebraska were from the agriculture, 

electric power, transportation, and RCI sectors (Fig. 1.2). In 1990, these sectors made up 

92.6% of total emissions (Fig. 1.3A). By 2016, these sectors decreased slightly to 90.5% of 

state emissions (Fig. 1.3B). The relative proportion of emission sectors changed from 1990-

2016, with a much larger share of emissions stemming from energy production and industry 

compared to agriculture (Fig. 1.3). 
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Figure 1.3 Percentage of Nebraska gross GHG emissions by sector: A) 1990 and B) 
2016.

 

Agriculture 

The agriculture sector is comprised of emissions from livestock and crop production 

through the processes of enteric fermentation, manure management (CH4), manure 

management (N2O), residues and legumes in agricultural soils (N2O), fertilizers on 

agricultural soils (N2O), animals on agricultural soils (N2O), liming of agricultural soils (CO2), 

and urea fertilization (CO2) (Fig. 1.4). Enteric fermentation emissions are the emissions 

given off by ruminant animals (including cattle) from their digestive processes. Agricultural 

soil management includes emissions from fertilizers, runoff, plant residues, and cultivation 

of highly organic soils. Emissions from field equipment (e.g., tractors, harvesters) are 

included in the transportation sector. Agricultural emissions increased by nearly 30% from 
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1990-2016 with a nominal increase of 8.2 MMtCO2e, the second largest increase of all 

sectors (Table 1.3).  

Table 1.3 Emissions of GHGs from agriculture (MMtCO2e). 

Category 1990 2016 Change % Change 

Ag Soils 15.26 19.55 4.28 28% 

Enteric Fermentation 9.91 13.38 3.47 35% 

Manure Management 2.55 2.90 0.35 14% 

Urea Fertilization 0.04 0.13 0.09 219% 

Liming 0.08 0.04 -0.04 -54% 

Agricultural Residue Burning 0.00 0.01 0.00 111% 

Total 27.85 36.01 8.16 29% 

 

 

 

Figure 1.4 Nebraska agricultural emissions by category, 1990-2016. 
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Historic Agricultural Emissions in Nebraska 

 

Historic agricultural emissions for Nebraska from 1920-1989, based on cattle headcount, 

were compared to emissions calculated in the GHG inventory from 1990-2016 (Figs. 1.5 & 

1.6). Emissions from cattle alone made up, on average, 77.8% of total agricultural emissions 

from 1990-2016 and 25.8% of total Nebraska GHG emissions during the same time period. 

The characteristics and landscape of agriculture changed significantly between 1920 and 

2016 and these changes are not accounted for through this method. This approximation of 

historical agricultural emissions can still give insights into how agriculture has developed 

over time. 

 

 

Figure 1.5 Total beef head count in Nebraska, 1920-2016. 

Source: USDA NASS, 2018. 
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Figure 1.6 Estimated historic agricultural GHG emissions (1920-1990) and 
agricultural emissions (1990-2016). 

 

 

Fossil Fuel Combustion 

 

This sector is comprised of GHG emissions from four categories: power plants, residential 

emissions, commercial emissions, and industrial emissions (Table 1.4). These last three 

categories are often labeled under one category, RCI. Combined, these four categories 

account for ~40% of total net emissions in 2016. Industrial emissions had the highest 

increase, largely due to increased natural gas consumption (NEO, 2018b). The decrease for 

the residential and commercial sectors is due to a decrease in direct fuel consumption (i.e. 

wood or natural gas burned for heating homes or businesses) and probably due to a higher 

reliance on electric tools, appliances, and other home goods (NEO, 2018b). 

 Emissions from power plants for electricity had the largest increase of any of the 

sectors in the inventory, followed by agriculture. Emissions from electricity generation come 

from the increased use of coal, which was 98.4% of Nebraska’s electricity emissions and 

23.7% of Nebraska’s net GHG emissions in 2016 (Table 1.5, Fig. 1.7). Increases in state 
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emissions of GHGs have been growing at a steady rate since 1990, increasing by 56% (Table 

1.1). These steady increases are primarily attributable to increases in electricity generation 

(Table 1.2). Electricity consumption in Nebraska has increased by 69% from 1990-2016 

(NEO, 2019a). The largest increase in electricity use came from industry (146.8%), compared 

to the residential (42.2%) and commercial (44.1%) sectors. Increased energy demand in 

Nebraska may be explained by increases in ethanol production in new biorefineries and from 

transition of pumps for irrigation wells from diesel to electricity, among other factors (Liska 

and Perrin, 2011; NEO, 2018b).  

   

Table 1.4 Emissions of GHGs from fossil fuel combustion excluding transportation (MMtCO2e). 

Category 1990 2016 Change % Change 

Power Plants 13.5 21.0 7.5 55% 

RCI 9.0 13.5 4.4 49% 

    Industrial 4.3 9.4 5.1 117% 

    Residential 2.5 2.2 -0.3 -13% 

    Commercial 2.1 1.8 -0.3 -15% 

Total 22.6 34.5 11.9 53% 

 

 

Table 1.5 Coal-based electricity generation (million MWhrs) and emissions (MMtCO2e) in Nebraska. 

Category 1990 2016 Change % Change 

Coal Electricity Generation 12,661,150 21,897,715 9,236,565 73.0% 

Total Electricity Generation 21,633,587 36,524,869 14,891,282 68.8% 

Percentage Coal of Total Energy 
Generation 

58.5% 60.0% 0.01 2.4% 

Coal Emissions 13.3 20.7 7.4 55.3% 

Total Electricity Emissions (TEE) 13.5 21.0 7.5 55.5% 

Nebraska Total Net Emissions 56.2 87.4 31.2 55.4% 

Percentage Coal of TEE 98.5% 98.4% -0.001 -0.1% 

Source: EIA, 2018c. 
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Figure 1.7 Nebraska electricity generation by energy source, 1990 and 2016. 

Source: Energy Information Administration, 2018c. 

 

Industrial Processes and Natural Gas Transmission and Distribution 

The Industrial Processes sector includes non-combustion GHG emissions from a variety of 

processes including cement production, lime manufacture, limestone and dolomite use, soda 

ash use, iron and steel production, ammonia production, nitric acid production, substitutes 

for ozone depleting substances (ODS) and electric power transmission and distribution. 

Individual categories vary from 1990-2016, but the overall trend was an increase by 1.24 

MMtCO2e. Industrial processes only account for 1.4% of total Nebraska emissions for 2016 

(Fig. 1.3). Included in emissions from this sector are natural gas transmission and 

distribution (T&D) systems. The increase in T&D comes from an increase in services and 

renovations for existing systems (Table 1.6).  
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Table 1.6 Emissions of GHGs from industrial processes and natural gas transmission and distribution 
(MMtCO2e). 

Category 1990 2016 Change % Change 

ODS Substitutes - 0.94 0.94 - 

Cement Manufacture 0.32 0.52 0.20 63% 

Iron & Steel Production - 0.28 0.28 - 

Ammonia Production 0.49 0.24 -0.25 -51% 

Lime Manufacture - 0.11 0.11 - 

Limestone and Dolomite Use - 0.08 0.08 - 

Electric Power T&D Systems 0.15 0.03 -0.12 -77% 

Urea Consumption 0.01 0.02 0.02 284% 

Soda Ash 0.02 0.01 0.00 -27% 

Industrial Processes Total 0.99 2.23 1.24 126% 

Natural Gas 2.65 4.71 2.06 78% 

Oil 0.12 0.03 -0.09 -75% 

Natural Gas T&D Total 2.77 4.74 1.97 71% 

 

 

 

Transportation, Waste, and Land Use, Land Use Change, and Forestry  

Transportation includes both highway and non-highway vehicles in GHG emissions 

calculations with planes, trains, tractors, boats, utility vehicles, and alternative fuel (biofuels, 

etc.) counted as non-highway vehicles. Emissions from highway vehicles are calculated based 

on total vehicle miles traveled and emissions from non-highway vehicles are based on fuel 

consumption. Increase in locomotive activity accounts for most of the change from 1990-

2016 alongside a small increase in total miles driven (NEO, 2018c) and number of licensed 

drivers in the state (NEO, 2018d).  

 The waste sector incorporates GHG emissions from solid waste landfills and the 

treatment of municipal and industrial wastewater. Emissions from solid waste increased at a 

much higher rate than population growth (Table 1.1), but wastewater emissions increased at 
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a rate more similar to population growth, though still higher. These emissions only account 

for 3.1% of total Nebraska GHG emissions in 2016. 

 The LULUCF sector accounts for GHG emissions from liming and fertilization of 

agricultural and residential soils (e.g. golf courses, landscaping) as well as settlement soils. 

The sector also includes carbon sequestered by forests and urban trees, yard waste, and food 

scraps in landfills. Negative numbers represent net sequestration (taking in more carbon than 

giving off through combustion and other processes) and a positive change and percentage 

change represent less sequestration than previous years.  

 

Table 1.7 Emissions of GHGs from transportation, waste, and LULUCF (MMtCO2e). 

Category 1990 2016 Change % Change 

Transportation 11.0 15.3 3.4 29% 

Solid Waste 0.5 2.2 1.7 314% 

Wastewater 0.3 0.5 0.1 36% 

Waste Total 0.8 2.7 1.8 208% 

N2O from Settlement Soils 0.3 0.4 0.1 26% 

Forest Fires - 0.002 0.002 - 

Landfilled Yard Trimmings and Food Scraps -0.1 -0.1 0.1 -59% 

Urban Trees -0.1 -0.2 0.0 44% 

Forest Carbon Flux -6.8 -1.8 5.0 -74% 

Agricultural Soil Carbon Flux -3.9 -6.4 -2.5 64% 

LULUCF Total -10.5 -8.0 2.7 -25% 

 

 

Emissions of GHGs by Pollutant 

Emissions of GHGs accounted for in the EPA’s SIT tool include carbon dioxide (CO2), 

methane (CH4), nitrous oxide (N2O), perfluorocarbons (PFC), hydrofluorocarbons (HFC), 

and sulfur hexafluoride (SF6).  The LULUCF sector is included in this section to account for 
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the different type of pollutants, but the carbon sinks for LULUCF are not included, so gross 

emissions are presented in this section rather than net emissions (Table 1.2). Carbon dioxide 

is the highest emitted GHG for Nebraska at 60.1% of total emissions in 1990 and 58% of 

total emissions in 2016 (Figs. 1.8-1.10). Nearly all CO2 emissions are from combustion or 

transportation with some coming from industrial processes. A large majority of CH4 and 

nearly all N2O emissions are from the agriculture sector. Natural gas transmission and 

distribution contributes ~20% of CH4 emissions with most of the rest coming from waste. A 

small percentage of N2O emissions are from non-agricultural sectors, under 4% of total N2O 

emissions. The distribution of GHG emissions for Nebraska did not change significantly 

from 1990-2016, but the largest increases came from increased CO2 emissions from 

electricity and increases in GHG emissions from agriculture. Increases from agriculture were 

roughly half from N2O and half from CH4. 
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Table 1.8 Gross emissions of GHGs by pollutant and sector (MMtCO2e). 

GHG and Sector (MMtCO2e) 1990 1995 2000 2005 2010 2015 2016 

CO2 34.9 40.8 43.5 46.3 51.4 53.0 50.9 

Power Plants 13.5 16.9 18.9 21.1 22.8 23.2 20.9 
Transportation 11.4 12.2 12.6 13.6 14.9 15.1 15.1 
RCI 9.0 10.4 10.2 10.0 12.3 13.4 13.4 
Industrial Processes 0.8 1.1 1.6 1.4 1.1 1.2 1.3 
Agriculture 0.1 0.1 0.2 0.1 0.2 0.2 0.2 
Natural Gas T&D 0.1 0.1 0.1 0.1 0.1 0.0 0.0 

CH4 16.0 15.6 22.9 20.7 21.1 21.3 23.7 

Agriculture 12.5 13.6 20.6 15.3 15.8 15.9 16.3 
LULUCF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Natural Gas T&D 2.7 0.9 1.0 4.0 3.7 3.7 4.7 
Transportation 0.1 0.1 0.0 0.0 0.0 0.0 0.0 
Power Plants 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
RCI 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Waste 0.8 1.0 1.1 1.3 1.5 1.6 2.6 

N2O 16.1 16.3 17.5 18.5 20.3 21.6 20.4 

Agriculture 15.3 15.2 16.5 17.6 19.5 20.9 19.7 
LULUCF 0.3 0.3 0.3 0.3 0.4 0.4 0.4 
Transportation 0.4 0.5 0.5 0.4 0.2 0.1 0.1 
Power Plants 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
RCI 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Waste 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

HFC, PFC, SF6 0.2 0.3 0.6 0.7 0.9 1.0 1.0 

Industrial Processes 0.2 0.3 0.6 0.7 0.9 1.0 1.0 

Total Gross Emissions 67.2 73.0 84.5 86.1 93.7 96.9 95.9 
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Figure 1.8 Percentage of carbon dioxide emissions by sector in Nebraska: A) 1990 

and B) 2016. 

Figure 1.9 Percentage of methane emissions by sector: A) 1990 and B) 2016. 
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Figure 1.10 Percentage of nitrous oxide emissions by sector: A) 1990 and B) 2016. 

 

 

Comparison of State, U.S., and Global Emissions 

Nebraska’s share of total GHG emissions in the U.S. increased from 1.05% in 1990 to 

1.46% in 2016 (Table 1.9). Yet, Nebraska’s portion of the U.S. population decreased slightly 

from 0.63% in 1990 to 0.59% in 2016 in comparison (Table 1.1). Agricultural emissions 

account for a significantly higher proportion of Nebraska emissions than U.S. emissions, 

which is consistent with Nebraska’s extensive agricultural economy. Emissions from Power 

Plants, RCI, Natural Gas Transmission and Distribution, and Transportation sectors were 

combined into the energy sector for comparison with U.S. emissions, which use the IPCC 

sectors for the national GHG inventory (IPCC, 2006; Fig. 1.11). Data for U.S. and global 

emissions comes from the Climate Watch service provided by the World Resources Institute, 

which only has data to 2014 (Table 1.10). The U.S. share of global emissions decreased from 

1990 to 2014, while Nebraska’s share increased during the same time period.  
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Table 1.9 Emissions for Nebraska and the U.S. by IPCC sector category (MMtCO2e), 1990 and 2016. 

IPCC Sector NE 1990 U.S. 1990 NE 2016 U.S. 2016 

Energy 37.2 5339.8 54.5 5,465.3 

Agriculture 27.8 490.2 36.0 541.2 

Waste 0.9 198.9 2.7 131.1 

Industrial Processes 1.0 342.1 2.2 354.6 

Total 66.9 6371.0 95.4 6492.2 

 

 

 

Figure 1.11 Percentage of GHG emissions by sector: A) NE 1990, B) U.S. 1990, C) NE 
2016, D) U.S. 2016. 
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Table 1.10 Emissions of GHGs (MMtCO2e) by geographic area, 1990 and 2014.  

Category 1990 2014 Change % Change 

Global  33,823   48,892   15,069  45% 

U.S.  5,564   6,090   526  9% 

Nebraska  56.2   87.9   31.7  56% 

Nebraska Share of U.S. 1.01% 1.44% 0.004 43% 

U.S. Share of Global 16% 12% -0.04 -24% 

Nebraska Share of Global 0.2% 0.2% 0.0001 8% 

Source: World Resources Institute, 2018. 

 

Although Iowa has a higher amount of agricultural emissions compared to Nebraska, 

more of Nebraska’s emissions come from livestock, specifically cattle, with 23.7% of net 

emissions in Nebraska compared to 10% of net emissions in Iowa (Table 1.11). Beef cattle 

were found to contribute 22.6% of Nebraska’s net emissions (Table 1.11). A larger portion 

of Iowa’s agricultural emissions come from the manure management of swine and poultry, 

which do not contribute to enteric fermentation. Iowa’s swine and poultry populations vastly 

outnumber Nebraska’s populations (USDA NASS, 2018) and thus require more manure 

management. Along with a higher crop output, Iowa’s agricultural composition leads to 

more emissions, but also a larger agricultural economy (USDA ERS, 2019).  
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Table 1.11 Avg. GHG emissions from livestock in Nebraska and Iowa, in 2016 and 2014-2016. 

Category NE 2016 IA 2016 NE 3-year AVG IA 3-year AVG 

Gross Emissions 95.8 126.6 95.8 132.5 

Net Emissions 87.4 126.6 88.1 132.2 

Enteric Fermentation 13.4 8.4 13.2 7.4 

Manure Management 22.4 10.96 22.6 9.0 

Agricultural Soils 0.2 20.09 0.2 20.3 

Total Agricultural Emissions 36.0 39.5 35.9 36.7 

Percent Livestock of Agricultural Soils 78.2% 12.2% 47.8% 12.2% 

Emissions from Livestock 36.0 21.8 35.8 18.9 

Percent Livestock of Gross 37.5% 17.3% 37.4% 14.3% 

Percent Livestock of Net 41.1% 17.3% 40.7% 14.3% 

Total Cattle Emissions 20.7 12.7 20.5 12.5 

Percent Cattle of Gross 21.6% 10.0% 21.4% 9.4% 

Percent Cattle of Net 23.7% 10.0% 23.2% 9.4% 

Total Beef Cattle Emissions 19.8 10.1 19.4 9.7 

Percent Beef Cattle of Gross 20.6% 7.9% 20.3% 7.4% 

Percent Beef Cattle of Net 22.6% 7.9% 22.1% 7.4% 

 

 

Comprehensive state-level GHG inventories are not common among states in the 

U.S., but some states report gross emissions based on some of the available data for their 

state. Nebraska has the highest per capita gross emissions based on available data, with Iowa 

and Texas both higher than U.S. average emissions (Table 1.12). Nebraska emissions per 

capita are higher than other states partly due to having a sparse population with a relatively 

large geographic area devoted to high-emissions agriculture. Texas’s estimated value is not 

comprehensive and thus underestimates gross GHG emissions as it only accounts for 

energy-related carbon emissions and cattle emissions. Texas’s emissions were estimated by 

taking energy-related carbon emissions data from the EIA and cattle head count data from 

the USDA and, assuming the largest sources were also energy and agriculture (specifically 

cattle), applying the same ratio of cattle head count to emissions in Nebraska to Texas to get 
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an estimated gross emissions value, which may overestimate Texas’s cattle emissions (Table 

1.12). Texas is included because it is the largest emitting state in the U.S. (EIA, 2018a). Other 

states were included primarily due to availability of gross emissions data (DEWA, 2018; 

DECV, 2018; DEPM, 2019; DEPNJ, 2017; DEQO, 2018; UHERO and ICF, 2019). 

Nebraska per capita emissions have increased from 38.2 in 1990 to 47.4 in 2015, or 24.1% 

over the time frame. Nebraska’s 2015 per capita emissions total more than either the U.S. or 

global averages (Fig. 1.12). 

 The states’ emissions per capita also do not consider exports of products. In 

Nebraska, beef production is high but most of that beef is not consumed in the state. Thus, 

many people argue there exists a ‘shared responsibility’ among states that produce a product 

and consume that product for the emissions that occur in the transaction between them.  

 

 

Table 1.12 Per capita gross GHG emissions for the U.S. and relevant states, 2015*. 

State Gross Emissions Population Emissions Per Capita, MtCO2e 

Nebraska 89.9 1,896,190 47.4 

Iowa 131.8 3,123,899 42.2 

Texas 668.91 27,469,114 24.4 

U.S. 6616.8 321,418,820 20.6 

Vermont 10.0 626,042 16.0 

Oregon 63.0 4,028,977 15.6 

Maine 19.8 1,329,328 14.9 

Washington 97.4 7,170,351 13.6 

New Jersey 109.0 8,958,013 12.2 

California 441.0 39,144,818 11.3 

Hawaii 15.3 1,431,603 10.7 
1Estimated value, *Several states have not updated to 2016, so 2015 values were used for comparison 
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Figure 1.12 Relative per capita gross GHG emissions (MtCO2e) for selected regions 
and emissions sources, 2015. 
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reporting. Even relatively small amounts of uncertainty for each of these elements adds to 

the uncertainty of a given EF and the calculated EF is quite dependent on the accuracy of 

the methods that go into estimating it. The mixture of national, regional, and state data also 

adds some uncertainty to calculations. 

The amount of CH4 emissions due to enteric fermentation from livestock is 

dependent on the accuracy of the animal population estimates and the EFs used for each 

animal type. Animal populations vary throughout the year, which will affect annual total 

emissions and is not accounted for by the SIT (ICF, 2017a). EFs used have inherent 
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uncertainty due to differences in production, environment, diet, and genetics of the animal 

(ICF, 2017a). Like enteric fermentation, manure management is subject to uncertainty in 

livestock populations and EFs. The largest source of uncertainty in manure management, 

however, comes from EFs of manure management systems. The SIT does not account for 

Nebraska-specific facilities and relies on regional estimates of emissions for manure 

management systems. While the SIT does sub-categorize animal groups to some extent, 

there is insufficient data and infrastructure to accurately measure differences in animal types 

and diet and how they affect the constants used in the SIT (ICF, 2004). Nitrogen emissions 

from soils are dependent on many factors other than nitrogen input, including soil moisture, 

type, pH, temperature, organic carbon content, oxygen’s partial pressure, and soil 

amendment. The SIT uses only nitrogen input as a factor in calculating N2O emissions and 

does not account for these other variables or their interactions. The combination of type of 

soil, climate, and management conditions changes nitrogen output and this highly variable 

system is simply too complex to accurately determine (ICF, 2004). Fertilizer usage includes 

only synthetic fertilizers applied to crops and does not use organic fertilizers (such as 

manure) due to a lack of Nebraska-specific data for the application of fertilizers.  

The Fossil Fuel Consumption section includes GHG emissions from the 

consumption of fossil fuels in four main categories: power plants, residential, industrial, and 

commercial (i.e. RCI). The category of power plants includes direct emissions from 

electricity generation but not indirect emissions from imported electricity. Fossil Fuel 

Consumption also does not include fuel combusted from mobile sources. These are included 

in the “Transportation” section.  
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 The amount of CO2 emitted from fossil fuel consumption depends on the type and 

amount of fuel that is consumed, the carbon content of the fuel, and the fraction of the fuel 

that is oxidized. The SIT uses national default values for these variables in calculating 

emissions, which may differ from Nebraska-specific values. Carbon content and oxidization 

of fuels are more consistent between states (aside from coal) and the higher variability of 

coal is accounted for by state in the SIT. Sharing electricity between states adds complexity 

because it is difficult to track specific fuel mixes for generated or consumed electricity and a 

regional average is often used. EFs for CO2 may be generated from relatively uncertain 

emission monitors rather than carbon content. The amounts of CH4 and N2O emitted 

depend on the amount and type of fuel used, the technology in which it is combusted, and 

the type of emission control used. The contribution of these emissions to the total GHG 

emissions is small, however, and estimates are highly uncertain (IPCC, 2006; UNEP, 2017). 

Energy consumption and end-use estimates are also uncertain and some small source 

emissions may not be included in state-specific or national data (e.g. wood burning in 

fireplaces, stoves, campfires).  

 Most of the uncertainty associated with the industrial processes section pertains to 

the use of national averages and default data within the SIT. State-specific and site-specific 

data allow for more accurate estimations of GHG emissions. Other sources of uncertainty 

include inherent uncertainty in geologic composition of raw materials, use of population in 

calculating emissions, and use of sales rather than consumption in some categories.  

 The largest sources of uncertainty for transportation are the activity data and the EFs 

used in calculations. Methods of measurement for VMTs and the application of national 

factors to state-specific data creates variability in the total VMTs used. EFs also may not be 



50 
 

 

reflective of conditions in Nebraska. For those parts that use fuel consumption to calculate 

emissions, it is assumed that all fuel purchased is consumed in the same year. 

 Emissions of CH4 from landfills are impacted by several factors at individual sites 

that cannot be accounted for by the SIT. The time period that CH4 is emitted is also 

uncertain and is affected by the factors listed at the beginning of this section. The amount of 

CH4 oxidized during diffusion through soil cover over landfills will also affect the net CH4 

emissions and is not accounted for by the SIT. 

 Uncertainty in municipal wastewater is dependent largely on the uncertainty in 

activity data and EFs. State-specific and site-specific data can reduce this uncertainty to an 

extent but is still subject to the variation in process and conditions. Uncertainty in industrial 

wastewater comes from the lack of available data for wastewater outside of red meat 

production and in the differences between assumed production values and factors on a 

national scale and site-specific factors for facilities in Nebraska. 

 There is significant uncertainty in the LULUCF section from the methodologies for 

EFs and state data. SIT defaults cannot account for the wide variation in tillage practices, 

landfill composition, fires, and survey methodologies between states. There is inherent 

uncertainty in estimation methods of land use and land use change as well as geospatial 

variability. Agricultural soil organic carbon flux has a particularly high associated uncertainty 

and could affect the values presented in this section significantly. It was included, however, 

because it tends to overestimate sequestration and underestimate net emissions. 

 Despite the uncertainties discussed above, the SIT provides a standardized 

procedure that estimates sector emissions with relatively small errors compared to the 
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absolute amount of emissions and compared to the conclusions that can be interpreted from 

these sector emission estimates. 

 

Mitigation of Greenhouse Gas Emissions in Nebraska 

To reduce emissions without reducing consumption, decoupling GHG emissions associated 

with higher levels of consumption per capita has been identified as the paramount 

engineering challenge of today and the future; emissions could be drastically reduced with 

combinations of energy efficient technologies and renewable energy sources available today 

(Lovins, 2011; Pacala and Socolow, 2004). Technological changes such as switching from 

fossil fuels to renewables, reduction in potent GHG emissions, and carbon sequestration 

could reduce emissions to keep atmospheric warming below a 2°C increase by 2100 (Xu & 

Ramanathan, 2017; Miller et al., 2017). Globally, fossil fuel emissions are dominated by 

electricity and heat, transportation, manufacturing, and construction. Nebraska’s annual 

GHG emissions per capita (43.7 MtCO2e) are more than twice as high as average U.S. 

emissions per capita (18.4 MtCO2e), and far larger than most regions globally. In 2014, 

people in the U.S. and Canada emitted an average of ~16 metric tons of CO2 per capita per 

year from fossil fuels, compared to an average of 6.7 metric tons in China, 6 in European 

countries, 4.5 per capita on average globally, 1.6 in India and other Asian countries, and only 

1 metric ton per capita in African countries (IEA, 2016). Inclusion of other GHGs, primarily 

CH4 and N2O, would increase these emissions but the relative trends would probably remain 

the same. For example, U.S. emissions were found to be 18.4 MtCO2e per capita where all 

GHGs were considered, which is slightly higher than the 16 MtCO2 per capita per year from 



52 
 

 

fossil fuels alone. Higher emissions in the U.S. and Canada are largely due to higher 

consumption rates, but also geographical differences in heating and cooling needs.  

Emissions per capita can vary significantly depending on the methods used for 

estimations. Emissions in the SIT are calculated from production values of products or 

resources rather than from demand, which is a valid alternative metric. Production values are 

used, however, because they are often readily available and significantly easier to measure 

than demand (consumption). Areas with high production but low demand (large amounts of 

exports of a product) will have higher emissions per capita values than those based on 

consumption in an area. For Nebraska, per capita emissions based on consumption could be 

significantly lower than the values presented above (Table 12), as most of the beef produced 

in the state is exported rather than consumed by the population. Per capita production 

emissions can be interpreted as state activity that is attributed to the population in that state, 

as that population is ultimately responsible for the economy and laws that facilitate those 

emissions. Thus, the production based per capita GHG emissions values for Nebraska 

presented above should accurately represent the population’s impact on climate change.  

 A GHG emissions inventory for Nebraska is an important and feasible endeavor to 

track emissions to provide a framework for evaluating state-specific solutions and inform 

climate change mitigation decisions. Nebraska’s GHG emissions and its share of national 

GHG emissions have steadily increased since 1990 (Table 1.10). Emissions growth has 

outpaced population growth, meaning Nebraska emits more per person in 2016 than in 1990 

(Table 1.1). The distribution of Nebraska’s GHG emissions are much different compared to 

the national level, with over 37% of emissions from agriculture compared to 8% nationally 

(Fig. 1.11). Agriculture and electricity were found to be the two highest emissions sectors in 
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Nebraska (Table 1.2), and thus require the greatest attention to significantly reduce state 

emissions in the near term.  

The largest category of agricultural GHG emissions in Nebraska is from beef cattle, 

where feedlots are a major contributor with a population of ~2.7 million head in 2016 (Fig. 

1.13). Where agricultural emissions reductions are sought, the most direct action would be to 

reduce the population of beef cattle in the state. The IPCC recently suggested that changes 

in diet, including reduced meat consumption and increased use of agricultural products from 

resilient, sustainable, low-GHG emission systems, have a high potential for GHG emissions 

mitigation and improvement of human health globally (IPCC, 2019). But such a reduction in 

beef cattle will not be easily achieved as the livestock industry in Nebraska had annual sales 

of roughly $11.7 billion dollars in 2012 (USDA NASS, 2019), which means there are 

extensive social, economic, and political interests that complicate such reductions. One 

potential and perhaps equitable solution to reduce livestock populations would come from a 

carbon tax on the consumption or production of beef and other animal products. A carbon 

tax of $248 per ton of CO2e could increase the price of beef by as much as 41% in the 

supermarket, which reflects the external costs of climate change (Coniff, 2018). Current 

carbon prices are as high as $139 per ton of CO2e in Sweden and $101 in Switzerland and 

Liechtenstein, but most plans propose to price carbon at $55 per ton of CO2e or lower 

(World Bank and Ecofys, 2018). An increase in the price of beef would probably lower 

demand and consumers would probably substitute some of the beef they consume for lower 

cost options such as pork, poultry, or plant-based proteins. As monograstic animals, pork 

and poultry are considerably less GHG-intensive compared to beef. Based on life cycle 

assessments of meat production, emissions from pork are ~21% of those from beef and 

poultry are ~18% (Fig. 1.14). The production of pork and poultry also requires less water, is 
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associated with less nitrogen pollution, and requires less land area (Fig. 1.14). Substitutions 

away from beef could cause state-level reductions in GHG emissions. If all beef (9.6 kg 

CO2e/Mcal) were substituted with pork (2.03 kg CO2e/Mcal), Nebraska emissions would be 

lowered by 15.64 MMtCO2e based on emissions per unit energy in meat (Fig. 1.14), or 

17.9% of Nebraska’s net emissions in 2016. 

 

 

Figure 1.13 Enteric fermentation emissions by cattle category, 1990-2016. 
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Figure 1.14 Environmental impacts of livestock and common food crops in the U.S. 
(A, C, and D) and globally (B). 

A) Greenhouse gas emissions (González et al., 2011; Eshel, Shepon, Makov, & Milo, 2014); B) Total water use 

(Mekonnen & Hoekstra, 2012); C) Reactive nitrogen use; D) Arable land use (Eshel et al., 2014). Note: 

Environmental impacts of beef, pork, and poultry include results from other life cycle assessments compiled by 

Eshel et al. (2014) including: de Vries and de Boer (2010); Phetteplace, Johnson, & Seidl (2001); Pelletier et al. 

(2008; 2010a, 2010b). Thus, they are plotted as averages with standard deviations here. 
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Actions that reduce agricultural emissions without reducing livestock populations are 

also viable and can be used in conjunction with reduction of consumption of livestock. 

There is a significant amount of variance among farms due to agricultural practices, 

geography, temperature, and many other factors (Poore and Nemecek, 2018). Solutions to 

address these emissions (e.g. multi-variate, ground-up approach to quantify impacts; setting 

and incentivizing mitigation targets; reducing impacts through choices upstream in the 

supply chain; dietary changes; food supply and waste changes; communication and 

cooperation between entities in the supply chain to reduce impacts) are as varied as the 

factors themselves and the complexity is such that a potential solution addressing the same 

product in similar conditions across multiple farms may not be effective for all of those 

farms. With proper localized data and analysis, however, a portfolio of solutions can greatly 

reduce variability and lower emissions for producers of agricultural products (Poore and 

Nemecek, 2018). A multivariate approach could reduce environmental impacts and allow 

policymakers and producers more options in how they address agricultural emissions (Pacala 

and Socolow, 2004). 

Conversion of grasslands to agricultural land could also significantly contribute to 

emissions in Nebraska. From 2006 to 2011, expansion of maize area in the central U.S. 

resulted in 530,000 hectares converted from grassland to row crops (Wright and Wimberly, 

2013), which is associated with extensive carbon emissions from the disruption of soils 

(Fargione, et al. 2008). Increasing ethanol production and demand increases crop prices, 

which correspondingly drives conversion of grasslands to maize; the ethanol industry in 

Nebraska consumes ~40% of the state’s annual production of maize. Cropland can be 

converted back to grassland, but this is unlikely to occur unless ethanol demand and maize 

prices are also reduced, or relevant policy is implemented. Reduced demand for grain could 
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cause a corresponding reduction in the acreage of maize, with corresponding reductions in 

nitrogen use and land conversion, and thus reductions in GHG emissions. 

The second largest sector of emissions in Nebraska comes from electricity 

generation (Table 1.2). Reducing GHG emissions from electricity, like many other mitigation 

scenarios, will require a portfolio of solutions (Pacala and Socolow, 2004). There are several 

strategies that can be used to reduce emissions from electricity including reducing demand, 

changing fuel sources, and increasing the efficiency of the electrical system. Reducing 

electricity demand can be done through increasing efficiency of electric devices (e.g. LED 

lighting, appliances, phones, electric cars) or by using less energy intensive processes for 

manufacturing or in the home, such as turning the lights off when not in use. The most 

direct way to reduce emissions from electricity use is to change fuel sources for electric 

plants from fossil fuels to zero or net-zero emission sources such as nuclear, solar, or wind 

(Tollefson, 2018). Changing fuel sources requires investment in new infrastructure among 

other issues (Davis et al., 2018), but integration of these sources into existing structures is 

already occurring and decreasing prices for these alternative energy sources makes 

incorporation increasingly feasible (Tollefson, 2018). Lastly, increasing the efficiency of 

Nebraska’s electric infrastructure and reducing electrical waste can reduce emissions. Nearly 

5% of electricity T&D is lost annually in the U.S. (EIA, 2019b).  

 The incorporation of external costs from climate change into fossil fuels can help 

put into perspective the actual costs of fossil fuels compared to zero or net-zero emission 

sources. Coal currently costs the second least per kilowatt-hour in Nebraska for direct-fuel 

costs ($0.60 more than nuclear per million BTUs; NEO, 2019b), but if the costs of carbon 

emissions were included in the cost of electricity, the higher price of coal would probably be 
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less competitive compared to the initial infrastructure costs of renewable and/or net zero 

GHG emission sources. A carbon tax, much as with livestock, is a potential way to quantify 

these external costs. Tax breaks, subsidies, and other incentives can also be used to increase 

the use of zero or net-zero emission energy sources; unlike most states, Nebraska currently 

does not have a renewable portfolio standard, energy efficiency resource standards, or energy 

efficiency resource goals (DSIRE, 2019). Potential solutions will need to consider the effect 

that they might have economically as well as related repercussions. While a change might 

reduce emissions in the short term (probably by reducing consumption), production or use 

may simply shift elsewhere and increase net emissions.  

 Carbon taxes or cap-and-trade systems are an indispensable strategy for the 

reduction of GHG emissions efficiently across sectors (HLCCP, 2017). While the two largest 

emissions sectors in Nebraska are agriculture and energy, carbon pricing should be applied 

to all sectors. Carbon pricing is used internationally, nationally, regionally, and subnationally 

to help reach environmental and social objectives (HLCCP, 2017; World Bank and Ecofys, 

2018). Revenue generated from a carbon tax can be redistributed back to citizens on a per 

capita basis (a “climate dividend”), which could limit government holdings of climate 

revenue and keep average tax burdens largely unchanged (Carattini et al., 2019). Most people, 

however, tend to overestimate the costs of carbon pricing and underestimate its benefits 

which can impede implementation of carbon prices (Carratini, et al., 2018). Yet, research has 

shown that once a carbon price is enacted, public support increases over time. Ultimately, 

there will be no single solution for significant GHG emissions reductions. A diverse set of 

technologies and policies will be essential for meeting adaptation and mitigation goals 

(Pacala and Socolow, 2004; HLCCP, 2017; World Bank and Ecofys, 2018). Furthermore, to 
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avoid some of the worst impacts of a rapidly changing climate, action will need to be taken 

sooner rather than later (Figueres et al., 2017; IPCC, 2006; Tollefson, 2018).  
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CHAPTER 2 - AGRICULTURAL GREENHOUSE GAS EMISSIONS 

IN THE MIDWEST 
 

 

 Inventories of GHG emissions generally focus on national emissions rather than state 

emissions. Emissions inventories at the state level often do not include agricultural emissions 

except for Iowa, Illinois, and recently, Nebraska (Iowa DNR, 2018; ICF, 2018; see Chapter 

1). Agricultural emissions account for ~9% of U.S. emissions, but can account for as much 

as ~40% of state level emissions (see Chapter 1). The difference between national and state 

emission sources highlights the need for state specific GHG emissions inventories to help 

develop solutions tailored to the specific issues of each state (Poore and Nemecek, 2019). 

Agricultural regions can have particularly high GHG emissions compared to other regions 

and have a higher variability in site-specific emissions (see Chapter 1; Poore and Nemecek, 

2019). Understanding and accounting for agricultural emissions is essential for 

comprehensive GHG emissions inventories.  

This chapter calculates and compares agricultural GHG emissions for the Midwest 

region of the U.S. using the EPA’s SIT. Comparing agricultural GHG emissions across 

states can provide insights into what agricultural products may contribute more to overall 

emissions and what factors can be addressed when developing GHG emissions reduction 

plans. A comparison of inventories also emphasizes how agricultural industries differ 

amongst states and how specific agricultural products may interact. A deeper understanding 

of agricultural emissions can help to pinpoint potential emissions reductions that minimize 

the overall impact on an agricultural industry while still meeting GHG emissions reduction 

goals. 
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 Agriculture is an important aspect of state economies in the Midwest. Agriculture 

accounts for over two thirds of land use in the Midwest and ~40% of U.S. agricultural land 

is in the Midwest (Pryor et al., 2019). Farms directly contribute ~1% of U.S. GDP through 

sales and operations (USDA ERS, 2020a). Indirectly, farms contribute a much higher 

amount to U.S. GDP as many other industries rely on agricultural inputs to generate 

economic value (e.g. biofuels, restaurants, and tourism). Additionally, agriculture- and food-

related industries represent over 11% of employment in the U.S. with ~22 million jobs 

(USDA ERS, 2020b). Agriculture is the beginning of the food supply chain and potential 

changes will be amplified throughout the chain. Potential GHG emissions reduction 

strategies could be particularly effective within the agricultural industry, but care is needed as 

disruptions may also be amplified. State specific (or even farm specific) solutions alleviate 

some of the risk of change as they can minimize changes within the agricultural industry to 

lower the risk of disruption and maximize potential benefits. 

As emission sources may vary significantly between states or equivalent sources 

within a state (e.g. farm to farm), the more detailed and “ground up” a GHG emissions 

inventory is, the more comprehensive and effective plans to address GHG emissions can be 

developed. Detailed and exhaustive GHG emissions inventories are resource and time 

intensive, however, and may be too costly for sectors or sources with relatively low GHG 

emissions. A balance must be struck between too broad a scope and too much cost for not 

enough benefit.  State level GHG emissions inventories can often be the best of both, with 

specificity that leads to better solutions for an area and identifying key sectors for more 

detailed analysis to reduce the cost-to-benefit ratio of more thorough GHG emissions 

inventories. This chapter serves as an example of such an inventory by refining the scope of 
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the inventory as well as identifying important interactions and emissions sources for future, 

more exhaustive GHG emissions inventories in the Midwest. 

 

Methods 

Emissions were estimated using the most recent version of the EPA’s SIT (downloaded 

December 1, 2019). The calculation methods in the SIT are based on the August 2004 

version of EPA’s Emission Inventory Improvement Program guidance for GHGs (ICF, 

2004). Default input values in the SIT were collected from relevant government or industry 

sources (e.g. USDA); details of the SIT’s calculation methods are available in the SIT User 

Guide (EPA, 2019). The global warming potentials (GWP) used for each GHG were 1 

(CO2), 25 (CH4), and 298 (N2O).  

Emissions of GHGs from agriculture were calculated using the agriculture module of 

the EPA’s SIT. The agriculture module calculates emissions for nine categories: enteric 

fermentation (CH4), manure management (CH4 and N2O), residues and legumes from 

agricultural soils (N2O), fertilizers applied to agricultural soils (N2O), manure on agricultural 

soils (N2O), liming of agricultural soils (CO2), urea fertilization (CO2) (fertilizer production), 

rice cultivation (CH4), and burning of agricultural residues (CH4). Emissions from livestock 

were based on animal populations from the USDA’s Quick Stats tool (USDA NASS, 2019) 

and corresponding annual emission factors (EF; kg CH4 per head per year) from the SIT. 

These livestock categories, with enteric fermentation EFs where appropriate, include: dairy 

cows (108.9-139.7), dairy replacement heifers (42.2-68.7), beef cows (86.5-92.01), beef 

replacement heifers (52.4-67.6), heifer stockers (50.4-58.9), steer stockers (53.1-56.9), bulls 

(88.3-95.1), feedlot heifers (37.2-43.4), feedlot steers (36.3-42.2), calves, breeding swine (1.5), 
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market swine (four categories by weight; 1.5), layer chickens, broiler chickens, sheep (8), 

goats (5), and horses (18). Emissions from legumes and residues were estimated based on 

annual production of alfalfa, maize for grain, wheat, barley, sorghum for grain, oats, rye, 

millet, rice, soybeans, peanuts, dry edible beans, dry edible peas, Austrian winter peas, lentils, 

and wrinkled seed peas (USDA NASS, 2019). Liming of agricultural soils is calculated by 

multiplying the total limestone or dolomite applied to soil by an EF (Mt C per Mt limestone 

or dolomite). Urea fertilization is calculated by multiplying total urea applied to soil by an EF 

(Mt C per Mt urea). 

GHG emissions from the SIT are then used to generate comparison values for each 

animal and crop tracked by the SIT (Table 13). GHG emissions are often reported as million 

megatons of carbon dioxide equivalent (MMtCO2e) but may also be reported as megatons of 

carbon dioxide equivalent (MtCO2e) in some emissions comparisons for ease of reporting. 

There are no comparisons between these units; all comparisons are made using one or the 

other. To calculate MtCO2e per unit, the total emissions for each type of animal and crop is 

divided by the number of units (the type of unit is dependent on how emissions are tracked 

in the SIT) of that animal or crop (default values are present in the SIT and are taken from 

the USDA NASS), which are summed to give a total for the state then multiplied by one 

million to convert to MtCO2e for comparison. To calculate MtCO2e per kilogram of 

agricultural product, average mass per head or bushel (estimated by the SIT) is multiplied by 

the number of heads or bushels to get total mass for each agricultural product (Table 5). 

Some products are already reported by weight in the SIT and total weight for these products 

is converted to total mass. Total emissions are multiplied by one million to convert to 

MtCO2e, which are then divided by total mass to get MtCO2e per kilogram for each 

agricultural product, which can be summed to provide totals by state. To calculate MtCO2e 
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per hectare total emissions are multiplied by one million and then divided by the total 

number of hectares of agricultural land in the state. Total crop emissions are the sum of 

emissions from direct and indirect fertilizers, crop residues, nitrogen fixing crops, fertilizer 

leaching and runoff, rice cultivation, liming of agricultural soils, urea fertilization, and 

agricultural residue burning. Total livestock emissions are the sum of emissions from enteric 

fermentation, manure management, direct and indirect livestock agricultural soils emissions, 

and livestock leaching and runoff.  

 

Table 2.1 Calculations of comparison units. 

MtCO2e/unit = (GHG emissions from SIT x 1,000,000)/# of units in SIT 

MtCO2e/kg product = (GHG emissions from SIT x 1,000,000)/ (avg. mass per head or bushel x number of 

head or bushels or total mass from SIT) 

MtCO2e/hectare = (GHG emissions from SIT x 1,000,000)/total hectares of agricultural land 

 

 

 

Results 

Agricultural GHG emissions are an impactful and underrepresented part of GHG emissions 

inventories, particularly in the Midwest region of the U.S. Total agricultural GHG emissions 

in 2016 were found to range from 10.3 MMtCO2e (Michigan) to 41.0 MMtCO2e (Iowa), with 

an average of 23.3 MMtCO2e (Table 2.2). These data are also shown in a stacked bar chart 

(Fig. 2.1). Agricultural emissions for most states are dominated by three categories: enteric 

fermentation, ag soils, and manure management (Fig. 2.1). Both enteric fermentation and 

manure management are exclusive to livestock, while ag soils include fertilizer use, residues 

and legumes for crops, as well as effects from livestock on agricultural soils. Nebraska and 
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Kansas have the largest amount of emissions from enteric fermentation (Table 2.2). While 

these two states have a substantial amount of beef cattle, South Dakota and Missouri have 

comparable herds, with Missouri having the largest amount of beef cattle (as categorized by 

the SIT) in 2016 (USDA NASS, 2019).  

Nebraska, Kansas, and Iowa have much more stocker cattle than other states and 

more cattle in feedlots. Nebraska and Kansas have approximately double the total amount of 

cattle (beef, stocker, dairy etc.) as Iowa, South Dakota, and Missouri, thus having nearly 

double the enteric fermentation emissions. Iowa’s “enteric fermentation” emissions are 

higher than expected following this trend due to the vast swine population in the state (Iowa 

DNR, 2018). Sheep, goats, swine, and horses are monogastric animals that don’t have enteric 

fermentation as part of their digestive process, but GHG emissions from their digestive 

processes are accounted for by the enteric fermentation section of the SIT (ICF, 2004). Iowa 

and Wisconsin have the highest emissions in manure management (Table 2.2), due to Iowa’s 

large swine population and Wisconsin’s large dairy cattle population. Swine have a higher 

methane conversion factor (MCF), or the percentage of waste that degrades to methane, 

than other livestock because of their manure management systems (ICF, 2004). Dairy cattle 

have a higher rate of volatile solids (VS), or the amount of waste that could potentially be 

converted to methane, produced than other livestock. Both MCF and VS are used by the 

SIT to calculate emissions from manure management and are values calculated by the EPA. 

Manure management emissions in other states are largely dependent on the amount of dairy 

cattle and swine in that state.   
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Table 2.2 Agricultural GHG emissions (MMtCO2e) by state and category, 2016. 

Category IA NE KS IL MN SD MO WI ND IN OH MI 

Enteric 
Fermentation 

8.45 13.40 12.16 2.29 4.65 7.57 6.65 7.36 3.35 1.90 2.59 2.68 

Manure 
Management 

7.23 3.06 3.17 2.06 3.65 1.25 1.91 4.60 0.18 2.06 1.86 2.40 

Ag Soils 25.01 18.47 13.68 21.20 15.95 13.21 12.45 7.37 13.85 12.08 8.99 5.09 

Rice 
Cultivation 

0.00 0.00 0.00 0.00 0.00 0.00 0.55 0.00 0.00 0.00 0.00 0.00 

Liming 0.13 0.26 0.02 0.51 0.02 0.00 0.17 0.11 0.00 0.49 0.12 0.04 

Urea 
Fertilization 

0.14 0.13 0.21 0.06 0.47 0.52 0.17 0.20 0.52 0.09 0.05 0.07 

Ag Residue 
Burning 

0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 

Total 40.98 35.33 29.25 26.13 24.75 22.57 21.91 19.65 17.90 16.61 13.61 10.29 

 

 

 

 

Figure 2.1 Total state agricultural GHG emissions by category, 2016. 

 

Agricultural soils in the SIT are categorized into residues and legumes, fertilizers, and 
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summary purposes in the SIT (Table 2.3). These data are also shown in a stacked bar chart 

(Fig. 2.2). Fertilizers, crop residues, N-fixing crops, and fertilizer runoff/leached are the sub-

categories under crops and comprise the majority of GHG emissions from agricultural soils 

in the Midwest (Fig. 2.2). Livestock and manure runoff/leached GHG emissions are the 

sub-categories under livestock and their proportion of total agricultural soils emissions varies 

by state. Ag soils-animals consists of direct and indirect emissions from unmanaged manure 

on fields and soils. Iowa, Nebraska, and Kansas had the highest ag soils-animals emissions 

due to their respective cattle populations. Residues and legumes emissions are dependent 

mostly on the amount of soybeans produced in a state, with Illinois producing the most 

(USDA NASS, 2018). Fertilizer use depends on many factors, many of which aren’t captured 

by the SIT, but are primarily associated with corn production. Iowa and Illinois had the 

highest uses of fertilizers in 2016 (Table 2.3). Missouri is the only state in the Midwest that 

grows rice, so GHG emissions from rice cultivation in other states are non-existent.  

 

Table 2.3 Agricultural soils emissions (MMtCO2e) by subcategory and state, 2016. 

Category IA IL NE MN ND KS SD MO IN OH WI MI 

Direct 21.4 18.4 15.9 13.8 11.7 11.8 11.5 11.0 10.4 8.0 6.2 4.4 

Fertilizers 5.9 5.1 4.2 3.5 4.0 2.8 2.7 2.2 2.9 1.7 1.7 1.1 

Crop Residues 5.1 5.0 3.1 3.4 2.4 2.5 2.2 2.0 2.5 1.9 1.0 0.9 

N-Fixing Crops 7.2 7.4 4.3 5.3 3.8 2.7 3.6 3.4 4.1 3.4 1.7 1.6 

Histosols 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Livestock 3.2 1.0 4.2 1.6 1.5 3.8 3.0 3.3 0.9 1.0 1.8 0.7 

Indirect 3.6 2.8 2.6 2.1 2.2 1.8 1.7 1.4 1.7 1.0 1.2 0.7 

Fertilizers 1.0 0.9 0.7 0.6 0.7 0.5 0.5 0.4 0.5 0.3 0.3 0.2 

Livestock 0.2 0.1 0.2 0.1 0.0 0.2 0.1 0.1 0.1 0.1 0.1 0.1 

Leaching/Runoff 2.3 1.8 1.7 1.4 1.5 1.2 1.1 0.9 1.1 0.7 0.7 0.5 
Fertilizer 

Runoff/Leached 2.1 1.8 1.5 1.2 1.4 1.0 1.0 0.8 1.0 0.6 0.6 0.4 
Manure 

Runoff/Leached 0.2 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.2 0.1 

Total 25.0 21.2 18.5 15.9 13.8 13.7 13.2 12.4 12.1 9.0 7.4 5.1 
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Figure 2.2 Direct and indirect agricultural soils emissions (MMtCO2e) by category 
and state, 2016. 

 

The percentage crop and livestock are the respective percentages out of total 

agricultural GHG emissions (Fig. 2.3). The ratio of livestock to crop emissions varies by 

state, with half of states with more livestock emissions and half with more crop emissions 

(Fig. 2.3). The average ratio for the Midwest is 47.7% livestock emissions to 52.3% crop 

emissions. Wisconsin has the highest proportion of agricultural GHG emissions associated 

with livestock (71.5%) and Illinois has the lowest (21%).   
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Figure 2.3 Percentage total livestock vs percentage total crop GHG emissions by 
state, 2016. 

 

Emissions per state can also be compared using intensity metrics, such as GHG 

emissions per kilogram product and GHG emissions per area. Calculation of comparison 

metrics as described in the methods is summarized below (Table 2.4). Total emissions and 

total units are summed from values taken from the SIT. Total mass is derived from average 

mass per head or bushel which are values also present in the SIT (Table 2.5). Total 

agricultural land is provided by the USDA, which is the sum of pastureland, cropland, and 

woodland (Table 2.6). 
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Table 2.4 Calculation of emissions per unit, kg product, and hectare by state, 2016. 

Category IA NE KS IL MN SD MO WI ND IN OH MI 
Total Emissions 
(MMtCO2e) 

41.0 35.3 29.3 26.1 24.7 22.6 21.9 19.6 17.9 16.6 13.6 10.3 

Units (millions) 3.4 2.1 1.6 2.9 2.1 1.2 1.0 0.7 1.2 1.4 0.9 0.5 

Total Mass (Gg) 90.8 61.4 48.9 76.2 57.0 36.8 26.8 22.9 34.3 35.2 23.9 15.1 

Ag Land 
(million hectares) 

12.2 18.1 18.4 10.8 10.0 17.3 11.6 5.7 15.7 5.9 5.6 3.8 

MtCO2e/Unit 12.0 16.5 17.8 9.0 12.0 18.3 22.3 26.9 15.2 12.3 15.2 20.0 

MtCO2e/kg 
product 

0.45 0.58 0.60 0.34 0.43 0.61 0.82 0.86 0.52 0.47 0.57 0.68 

MtCO2e/hectare 3.4 2.0 1.6 2.4 2.5 1.3 1.9 3.5 1.1 2.8 2.4 2.7 

 

Table 2.5 Average mass per head, bushel, and unit for agricultural products, 2016. 

Category Unit 
Average Mass (kg)/head or 

bushel 
Average Mass 

(kg)/unit 

Dairy Cows 1000 Head                679.8                679,770  

Dairy Replacement 
Heifers 

1000 Head                   406.5  406,510 

Beef Cows 1000 Head                   610.9             610,890  

Beef Replacement 
Heifers 

1000 Head                   405.5                 405,540  

Heifer Stockers 1000 Head                   321.8                 321,820  

Steer Stockers 1000 Head                   324.3                  324,340  

Feedlot Heifers 1000 Head                        443.4                  443,370  

Feedlot Steer 1000 Head                   470.6                470,550  

Bulls 1000 Head                   916.3                 916,340  

Calves 1000 Head                  122.5                122,530  

Sheep on Feed 1000 Head                            55.8  55,791.8  

Sheep Not on Feed 1000 Head                   55.8               55,791.8  

Goats 1000 Head                     64                       64,000  

Breeding Swine 1000 Head                    198  198,000  

Market Under 60 lbs 1000 Head                  15.9                     15,880  

Market 60-119 lbs 1000 Head                    40.6                40,600  

Market 120-179 lbs 1000 Head                   67.8                  67,820  

Market over 180 lbs 1000 Head                   90.8                90,750  

Horses 1000 Head                   450               450,000  

Layers    

Hens > 1 yr 1000 Head                    3.1                3,066.3  

Pullets 1000 Head                     3.1                 3,066.3  

Chickens 1000 Head                     3.1            3,066.3  

Broilers 1000 Head                     2.9               2,898.5  

Alfalfa   '000 tons -           907,185  

Corn for Grain  '000 bushels                25.4   25,401.2  

All Wheat  '000 bushels                   27.2           27,215.5  
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Barley  '000 bushels                   21.8             21,772.4  

Sorghum for Grain '000 bushels                   25.4          25,401.2  

Oats '000 bushels                 14.5           14,514.9  

Rye '000 bushels                  25.4             25,401.2  

Millet '000 bushels                    22.7              22,679.6  

Rice '000 
hundredweight 

-            50,802.3  

Soybeans  '000 bushels                   27.2           27,215.5  

Peanuts '000 lbs -                 453.6  

Dry Edible Beans '000 
hundredweight 

-            50,802.3  

Dry Edible Peas '000 
hundredweight 

-            50,802.3  

Austrian Winter Peas '000 
hundredweight 

-           50,802.3  

Lentils '000 
hundredweight 

-          50,802.3  

Wrinkled Seed Peas '000 
hundredweight 

-                      50,802.3  

 

 

Table 2.6 Agricultural land (million hectares) by category and state, 2016. 

Category IA NE KS IL MN SD MO WI ND IN OH MI 

Pastureland 0.96 8.92 6.32 0.46 0.64 9.18 3.64 0.64 4.25 0.29 0.53 0.21 

Cropland 10.75 9.01 11.80 9.72 8.82 8.02 6.32 4.08 11.32 5.23 4.44 3.21 

Woodland 0.45 0.14 0.26 0.60 0.56 0.12 1.65 0.93 0.08 0.42 0.59 0.40 

Total 12.15 18.07 18.38 10.77 10.03 17.32 11.60 5.66 15.66 5.94 5.57 3.82 
Source: USDA NASS, 2020. 

 

Agricultural emissions per kilogram of agricultural product by state were found to 

vary between 0.86 (Wisconsin) and 0.34 (Illinois) (Fig. 2.4). Kilograms of agricultural product 

are based on mass estimates of crops and livestock amounts reported to the USDA and 

don’t reflect changes throughout the year or actual agricultural products derived from 

livestock or crops (e.g. steaks).  
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Figure 2.4 Agricultural emissions (MtCO2e) per kilogram of product by state, 2016. 

 

Plotting percentage livestock versus GHG emissions per kilogram of agricultural 

product helps to determine if there is a correlation between the amount of GHG emissions 

by mass and the ratio of livestock and crops in a state (Fig. 2.5). This comparison provides 

context for what insights emissions per mass can give as a basis of comparison between 

states. The percentage livestock or crop of total agricultural emissions is relatively correlated 

with MtCO2e/kg product, meaning that the ratio of livestock to crop emissions in a state is 

indicative of the emissions efficiency of a state’s agricultural sector, with livestock having 

higher emissions and crops having lower emissions (Fig. 2.5). As there are only two 

categories (livestock or crop), the effects are inversed, but the correlation is the same for 

both percentage crop and percentage livestock. The amount of emissions per kg agricultural 

product is correlated with whether a state is primarily livestock or crop based, which 

suggests that the equivalency assumption (the mass of crop and livestock are treated the 

same) may accentuate differences in emissions per kilogram product for livestock and crops, 
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and should be considered in comparisons. While the ratio of livestock to crop emissions 

likely matters in emissions per mass, emissions per mass still captures both livestock and 

crop emissions though one likely has more influence than the other. 

 

 

Figure 2.5 Emissions in MtCO2e per kilogram of product vs. percentage livestock, 
2016. 

 

Emissions per kilogram plotted against total livestock and total crop emissions of 

product provides insight into whether livestock or crop emissions are correlated with 

emissions per mass and which may have more influence (Fig. 2.6, Fig. 2.7). Emissions per 

mass do not change with increasing livestock emissions, but emissions per mass were 

moderately correlated with crop emissions (R2 = 0.59). This suggests the high emissions 

variability among types of livestock in a state (e.g. dairy cattle versus swine) complicates the 

relationship with efficiency, whereas efficiency is more linearly related to crop emissions, 
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influence on emissions per mass in some states and not others, whereas crop emissions likely 

have similar influence amongst states. 

 

Figure 2.6 Emissions in MtCO2e per kilogram product vs. total livestock emissions, 
2016. 

 

 

Figure 2.7 MtCO2e per kilogram product vs. total crop emissions vs, 2016. 
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Total agricultural GHG emissions plotted against total agricultural land provides 

insight into if and how the size of agricultural land use influences total agricultural emissions 

(Fig. 2.8); intuition would suggest a linear correlation. Total agricultural emissions are 

somewhat correlated with total agricultural land (R2 = 0.39). Livestock, particularly cattle, use 

a large amount of land with relatively low agricultural productivity and the differences in land 

use amongst livestock (e.g. pasture-raised, feedlot, CAFO) introduce variability. 

 

 

Figure 2.8 Total agricultural emissions vs total agricultural land, 2016. 

 

Plotting total livestock or cropland GHG emissions against total pastureland or 

cropland, respectively, provides insights into how either category of emissions is correlated 

with the amount of land dedicated to that category (Fig. 2.9, Fig. 2.10). Similar to efficiency, 
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cropland does with crop emissions (R2 = 0.48). Livestock land use is more dependent on 

IA

NE

KSILMN

SDMO
WI

ND

IN

OH
MI

y = 1E-06x + 11.517
R² = 0.3858

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

0 5 10 15 20

T
o

ta
l 
E

m
is

si
o

n
s 

(M
M

tC
O

2
e)

Ag Land (million hectares)



76 
 

 

type of livestock and how the livestock are raised (e.g. pasture-raised beef cattle versus dairy 

cattle). Crops have less variability in their land use, although type of crop is likely to still 

affect total crop emissions, with corn having significantly more emissions than soybeans per 

unit area, due to fertilizer application in the former.  

 

 

Figure 2.9 Pastureland vs total livestock emissions, 2016. 
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Figure 2.10 Cropland vs total crop emissions, 2016. 

 

Plotting emissions per hectare against total agricultural land provides insights into 

whether agricultural land might be a good predictor of the efficiency of agricultural 

emissions (Fig. 2.11). The total amount of agricultural land in a state is somewhat correlated 

with the emissions efficiency of that agricultural land (R2 = 0.52), suggesting that as 

agricultural land use increases, so does agricultural efficiency to a moderate degree. This 

relationship is probably due to the fact that cropland increases when agricultural land 

increases in size, which increases overall efficiency, and lowers emissions per hectare; yet, the 

four states with lowest emissions per hectare have high amount of pasture relative to 

cropland (Fig. 2.11).  
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Figure 2.11 GHG emissions per hectare of agricultural land (MtCO2e/hectare) vs 
total agricultural land (million hectares), 2016. 

 

Plotting emissions per hectare of agricultural land against total pastureland or 

cropland land can indicate whether cropland or pastureland might have a larger effect on 

land-based efficiency (Fig. 2.12, Fig. 2.13). Pastureland has a relative negative correlation 

with overall emissions per hectare, which is probably due to the diluting effects of low-

emission pastures, which have a less intensive operation (Fig. 2.12); the same relationship 

may hold for Figure 2.11. The differences in type of cattle and the amount of space given to 

each type of cattle likely have a large effect on emissions per hectare. Cropland has a 

relatively small negative correlation with overall emissions per hectare, meaning as cropland 

increases so does the agricultural land-based efficiency (Fig. 2.13). The smaller correlation is 

likely due to less variability in land use amongst crops, which are primarily corn and soybean 

in the Midwest.  
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Figure 2.12 GHG emissions per hectare of agricultural land (MtCO2e) vs pastureland 
(million hectares), 2016. 

 

 

  

Figure 2.13 GHG emissions per hectare of agricultural land (MtCO2e) vs cropland 
(million hectares), 2016. 
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Although per capita agricultural GHG emissions may not be the best comparator for 

states, it can still provide insight into the scope and nature of agricultural emissions. The 

highest emitting states per capita for agricultural emissions all have relatively low populations 

(Table 2.7). Four of these states (SD, NE, IA, and KS) have a strong livestock component of 

their agricultural industry, particularly cattle (Fig. 2.3). North Dakota does not have a 

particularly large livestock component but emissions per capita is high, while states like 

Missouri and Wisconsin do have large livestock components but per capita emissions are 

low. This emphasizes the issue with per capita emissions that population is too dominant of 

a factor and further work is necessary to improve per capita emissions as a comparator. 

However, these results suggest that livestock may be a significant factor in total emissions 

per capita and that these relationships would be useful to further characterize.  

 

Table 2.7 Agricultural emissions per capita, 2016.  

Category SD ND NE IA KS MN MO WI IN IL OH MI 

Ag Emissions 22.6 17.9 35.3 41.0 29.3 24.7 21.9 19.6 16.6 26.1 13.6 10.3 

Population (millions) 0.9 0.8 1.9 3.1 2.9 5.5 6.1 5.8 6.6 12.8 11.6 10.0 

MtCO2e/capita 26.2 23.7 18.5 13.1 10.1 4.5 3.6 3.4 2.5 2.0 1.2 1.0 
Source: U.S. Census Bureau, 2020. 

 

Uncertainties  

The accuracy of the EFs calculated by the SIT is the main source of uncertainty for the 

inventory. EFs are aggregations of measurements, calculations, studies, surveys, and 

reporting. Even relatively small amounts of uncertainty for each of these elements adds to 

the uncertainty of a given EF and the calculated EF is quite dependent on the accuracy of 
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the methods that go into estimating it. The mixture of national, regional, and state data also 

adds some uncertainty to calculations. 

The amount of CH4 emissions due to enteric fermentation from livestock is 

dependent on the accuracy of the animal population estimates and the EFs used for each 

animal type. Animal populations vary throughout the year, which will affect annual total 

emissions and is not accounted for by the SIT (ICF, 2004). EFs used have inherent 

uncertainty due to differences in production, environment, diet, and genetics of the animal 

(ICF, 2004). Like enteric fermentation, manure management is subject to uncertainty in 

livestock populations and EFs. The largest source of uncertainty in manure management, 

however, comes from EFs of manure management systems. The SIT does not account for 

state-specific facilities and specific management practices but relies on regional estimates of 

emissions for manure management systems. While the SIT does sub-categorize animal 

groups to some extent, there is insufficient data and infrastructure to accurately measure 

differences in animal types and diet and how they affect the constants used in the SIT (ICF, 

2004). Nitrogen emissions from soils are dependent on many factors other than nitrogen 

input, including soil moisture, type, pH, temperature, organic carbon content, oxygen’s 

partial pressure, and soil amendment (ICF, 2004). The SIT uses only nitrogen input as a 

factor in calculating N2O emissions and does not account for these other variables or their 

interactions. The combination of type of soil, climate, and management conditions changes 

nitrogen output and this highly variable system is simply too complex to accurately estimate 

(ICF, 2004). Fertilizer usage includes only synthetic fertilizers applied to crops and does not 

use organic fertilizers (such as manure) due to a lack of state-specific data for the application 

of fertilizers.  
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In addition to the uncertainties present in the SIT calculations, there are uncertainties 

associated with generating the comparison units for states. Emissions per unit has a small 

amount of uncertainty from animal population estimates as head counts get rounded at 

various stages in reporting. Emissions per kg of animal product introduces uncertainty 

through the assumed average masses of livestock and crops. The SIT uses regional data to 

estimate average masses for each animal type. Many factors not accounted for by the SIT 

impact animal mass including type of feed, breed of livestock, variability of mass throughout 

the year, and activity level. For crops, there is less uncertainty as some products are reported 

in weight (which can be converted to mass with relatively low uncertainty) and others are 

reported volumetrically, with relatively low changes between one bushel of corn, for 

instance, and another. Emissions per hectare also introduces some rounding uncertainties in 

reporting as well as total agricultural land includes land for products not accounted for by 

the SIT. 

Despite the uncertainties discussed above, the SIT provides a standardized 

procedure that estimates sector emissions with relatively small errors compared to the 

absolute amount of emissions and compared to the conclusions that can be interpreted from 

these GHG emission estimates. While the uncertainties discussed here can be reduced with 

refined methodology to provide a more accurate estimation of GHG emissions the results of 

this inventory provide the basis for planning and decision making. Future refinements of 

methodology improve estimations but do not discount the validity of previous inventories.  
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Discussion 

Agriculture is an important sector for the Midwest U.S. and is a vital sector for the success 

of many states in the region. Understanding and properly addressing GHG emissions 

associated with agriculture is especially important in a varied region such as the Midwest, or 

the “Corn Belt”. Crop emission percentages range from 28.5% to 79% of total state 

agricultural emissions and livestock emissions percentages range from 21% to 71.5%, 

emphasizing the diversity of agricultural industries among states in the Midwest and the need 

for more state-specific solutions to reduce agricultural emissions.  Problems with the 

agricultural industry aren’t necessarily the same from farm to farm, much less from state to 

state or beyond (Poore and Nemecek, 2019). Tailored solutions will require a more robust 

understanding of differences amongst state’s agricultural industries and the causes of those 

differences. Agricultural GHG emissions inventories are the basis for developing tailored 

solutions. 

The efficiency of an agricultural system regarding emissions can be measured by the 

amount of GHG emissions for every unit of agricultural product (e.g. bushel of corn, head 

of cattle). In 2016, Wisconsin was the least efficient state (0.86 MtCO2e/kg product) and 

Illinois was the most efficient (0.34 MtCO2e/kg product) (Fig. 2.4, Table 2.1). Dairy cattle 

have a high amount of emissions compared to their lower mass per animal, likely due to the 

production of milk over their lifetimes; yet, dairy cattle generally have higher emissions than 

beef cattle because they have a higher fraction of roughage in their diet, which leads to 

increased enteric fermentation emissions (as shown in the Methods). The SIT does not 

include milk production in its calculations and much of the mass produced by dairy cows is 
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not accounted for in final weight, which decreases the perceived efficiency. However, the 

separate supply chains for milk and milk products versus the use of meat from dairy cows is 

also not considered which offsets the loss of mass to an unknown degree. Illinois has the 

highest ratio of crop to animal emissions, and most of its agriculture is based on crops (i.e. 

corn and soybean), which are more efficient than livestock in those areas (Fig. 1.14).  

Using mass as a basis for comparison has several advantages when comparing 

agricultural emissions over more common comparisons like per capita or per GDP that are 

used when comparing overall emissions. Per capita emissions are useful when emissions are 

dependent on the consumption of a product (e.g. fuel use), or production of products that 

are constrained to the geographic area of the population considered (e.g. electricity 

disregarding exports, see Chapter 1). State-level, per GDP comparisons are particularly 

useful when the manufacture of a product is concentrated in an area and demand is 

elsewhere (e.g. exports). Per capita comparisons can give some insight into non-economic 

factors for comparison (e.g. laws) but fall short of direct comparisons as GHG emissions 

aren’t dependent on the population of a region (Table 2.7), as agricultural products are often 

exported (see Chapter 1). Per GDP comparisons are better for agricultural products as 

emissions are tied to the production, rather than the consumption, of livestock and crops, 

but the highly variable nature of agricultural pricing makes direct comparisons difficult. 

Emissions per unit mass produced allows direct comparisons based on production and 

allows insights into agricultural efficiency. The drawback to emissions per unit mass is that 

the comparison assumes that a unit mass of one product is the same as a unit mass of 

another product and doesn’t account for differences in economic or social value. As an 

example, a kg of corn has separate nutritional value, pricing, and inputs (e.g. labor, nitrogen) 

than a kg of beef but these differences are mostly ignored when comparing emissions per 
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unit mass. With per capita and per GDP comparisons, however, most of these factors are 

also ignored aside from the relevant factors for each specific comparison. Comparing 

emissions across agricultural land (MMtCO2e/million hectare) is similar to emissions per kg 

product in that it allows direct comparisons but makes the assumption that a hectare of land 

devoted to crops is the same as a hectare of land devoted to pasture. 

Future state agricultural GHG emissions comparisons should try to account for the 

large differences amongst types of livestock, as well as incorporating more agricultural 

products. A more detailed statistical analysis would allow some of the comparisons and 

interactions discussed to be more certain and may highlight more complex interactions that 

aren’t captured through scatterplots. Incorporation of agriculture in national GHG 

emissions reduction plans can help provide the necessary resources to reduce agricultural 

GHG emissions without disrupting current agricultural systems in unnecessary ways.  
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CHAPTER 3 - CLIMATE CHANGE AND MARKET-BASED 

INSURANCE FEEDBACKS 

 

Introduction 

Government policies have been a predominant approach to adapt to and mitigate climate 

change impacts (Drouet et al., 2015; Stern, 2015). Yet past political agreements have been 

largely unsuccessful in reducing carbon emissions necessary to avert probable widespread 

catastrophic effects (Stern, 2015). Changes in insurance coverage has been identified as an 

important external factor in driving adaptation and mitigation measures, among many other 

factors (USGCRP, 2018). Where future binding agreements are slow to develop (Stern, 2007; 

Lomborg, 2010), insurance feedbacks are under-recognized mechanisms and incentives to 

induce climate change adaptation and mitigation (Mills, 2005; Mills, 2012; Kunreuther et al., 

2013; Botzen, 2013; Attali, 2006; IPCC, 2014). Market-based insurance feedbacks that are 

systemic, forceful, and knowledge-driven may become more active and apparent as the 

percentage of insured claims increases from natural catastrophes (Fig. 3.1). Alongside other 

factors, market-based insurance feedbacks provide a framework to recognize the challenges 

posed by climate change and incorporate the problem and potential solutions into existing 

structures (USGCRP, 2018). Each factor has its limitations, and must be part of a larger, 

coordinated effort to address climate change adaptation and mitigation. 
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Figure 3.1 Insured losses as fraction of overall losses from natural catastrophes, 1980 
to 2018. 

Source: Munich Re, 2020. 

In 2019, the World Economic Forum ranked extreme weather events, failure of 

climate change mitigation and adaptation, and natural catastrophes as the first, second and 

third most probable (respectively) and the third, second, and fifth most impactful economic 

risks to occur in the next 10 years (WEF, 2019). Downside risks associated with weather-

related events are increasingly managed by the insurance industry, the largest global 

economic sector, with revenue of $4.6 trillion or 7% of the global economy in 2011 (Mills, 

2012). Climatic events have accounted for 91% of the $1.05 trillion in insured losses 

concerning property and casualty insurance claims from 1980 to 2016 for global catastrophic 

events, and average costs per event have been steadily increasing (Fig. 3.2); Hurricanes 
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not included on corporate balance sheets or asset prices (Dietz et al., 2016). But businesses, 
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governments, and financially concerned organizations are increasingly incorporating 

externalities in their plans and are making climate risk management a higher priority 

(Chestney, 2016).  

 

 

Figure 3.2 Overall and insured costs per event globally from 1980 to 2018 for relevant 
events only. 

(At least 1 death and/or produced normalized losses ≥ US$ 100k, 300k, 1m, or 3m (depending on the assigned World Bank 

income group of the affected country). Source: Munich Re 2016. 

 

The following sections describe the forceful and extensive mechanisms by which the 

insurance industry manages its role in adaptation and mitigation in market-based insurance 

markets. While some of our specific examples may cite the United States, these mechanisms 

and feedback processes are fundamental features of market-based insurance markets.  

Although the United States has the largest single share, the ten largest non-life insurance 

markets include Germany, the United Kingdom, France, Japan, Korea, Canada, Spain, Italy 
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non-life insurance markets is occurring in Ecuador, Nicaragua, Columbia, Finland, 

Singapore, Poland, Israel, Portugal, Mexico and South Africa (OECD, 2017).  Thus, the 

mechanisms described in our paper already operate in many developed countries (excluding 

public-private markets) and are rapidly expanding in a number of developing countries with 

market-based insurance. The descriptions following serve as a basis to understand the crucial 

interactions between the public and the insurance industry and to provide a framework for 

future research.  

 

Premiums and Insurance Policy Feedbacks 

Insurance premiums act as a signal of the average probability of a loss, and high initial 

premiums generally deter customers (Höppe and Gurenko, 2006; Kunreuther et al., 2013). 

Insurers will only offer catastrophe insurance if premiums can be priced sufficiently and 

where risks are not excessively uncertain (Jaffee and Russell, 1997; Kunreuther and Michel-

Kerjan, 2007; Ferguson, 2008). Premiums often reflect one-year contracts between the 

insurer and insured. This time frame allows premiums to be adjusted in response to new 

information about the expected value of future losses in the short or long term. An increase 

in premiums to cover the newly realized costs and unknown risks from climate change may 

leave previously insured assets without insurance and exposed to financial losses (Mills, 

2005; Kunreuther and Michel-Kerjan, 2007; Young and Schwartz 2014). Financial viability of 

policies also relies on applying differential pricing to coverage limits and deductibles (Höppe 

and Gurenko, 2006). Individual actions can lead to policy benefits, such as premium 

discounts or higher levels of coverage due to increased risk reduction behaviors (Botzen et 
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al., 2009), which may also reduce post-disaster risk associated with structural failures or 

environmental contaminants.  

High premiums signal there is a large amount of uncertainty, or that more risk 

management techniques by at-risk parties are needed (Höppe and Gurenko, 2006). 

Individual adaptation or societal mitigation can lead to decreased risk and cost savings for 

society (Ferguson, 2008; Young and Schwartz, 2014; Michel-Kerjan and Kunreuther, 2011; 

Aerts and Botzen, 2011). For example, in a hard-market scenario, where events lead to 

higher premiums and full adaptation, annual premium costs were projected to decrease to 

$5-6 billion after adaptation compared to $10-14 billion with existing building status in 

Florida (Young and Schwartz, 2014). More proactive engagement of risk management is a 

valuable investment that builds resilience and ultimately reduces insured losses (Jaffee et al., 

2008). However, the cost of risk reduction may offset the effectiveness of risk-based pricing 

(Surminski, 2016) as those most vulnerable to risks may not be able to afford risk-based 

premiums or have the means to reduce their risk. This equity-efficiency tradeoff (Picard, 

2008) might be bridged through subsidies for risk-reduction measures, subsidized insurance, 

cost-effective technology, or a guaranteed reduction in premiums to offset the initial or 

recurring costs of adaptation and mitigation efforts (Botzen et al., 2009; Surminski, 2016).  

But empirical studies show that people do not voluntarily invest in adaptation 

measures even when they are cost effective (Kunreuther et al., 2011, Bouwer et al., 2007). 

The theory of moral hazard suggests that those with a risk sharing mechanism such as 

insurance may be more likely to engage in risky behavior due to the protection provided by 

that risk sharing mechanism (Hölmstrom, 1979). However, Hudson et al. (2017) found that 

in some catastrophe insurance markets moral hazard is not present, due likely to the internal 
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characteristics of individual policyholders and the low-probability/high-impact nature of 

catastrophe events. Strong market pressure and marketable solutions, such as catastrophe 

bonds that transfer peak risks to capital markets, are proven incentives to adopt adaptation 

measures (Michel-Kerjan and Kunreuther, 2011). Multi-year contracts could also make the 

benefits of adaptation clearer, as the probability of a disaster during the time frame would be 

higher (Dlugolecki and Hoekstra, 2006; Kunreuther et al., 2011; Michel-Kerjan and 

Kunreuther, 2011). Incentives that both limit damage and reduce the probability of natural 

catastrophes have been the most effective way to reduce extreme costs (Aerts et al., 2008).  

Premiums reflect the direct demand and supply of insurance policies between 

customers and the insurance industry (Surminski et al., 2016). High premiums signal limited 

coverage availability, or low supply, due to high uncertainty or risk. These high premiums 

decrease the demand for coverage as many cannot afford it. Subsidizing premiums allows for 

more affordable premiums but ultimately fails to reduce risk and reduces the effectiveness of 

feedback between insurer and insured. While climate insurance can enhance resilience by 

providing post-disaster liquidity (World Bank, 2012), this requires affordable coverage. 

Lowering premiums to reward mitigation and adaptation behavior can help bridge the gap 

between higher premiums and affordable coverage for policyholders (reflecting reduced risk 

of loss and greater certainty, resulting in lower premiums).  

 

Non-Coverage Feedbacks 

Inaction is a major factor contributing to negative economic impacts from climate change 

(Tucker, 1997). The undesired result of inaction is non-coverage, consisting of two subtypes: 

(1) insurance premiums do not reflect true risk, leading insurers to not offer a policy and (2) 
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premiums are allowed to reflect true risk, but the premiums and deductibles (out-of-pocket 

costs for a claim) are too costly for the consumer to purchase the policy (Kunreuther et al., 

2013; Botzen et al., 2009; Tucker, 1997). Non-coverage occurs when the insurance supply is 

low and premiums are high (Surminski, 2016). Non-coverage is a deterrent to compounding 

harmful behaviors related to climate change such as rebuilding in catastrophe zones and 

failing to improve preparation or response to catastrophes (Mills, 2005; Aerts and Botzen, 

2011; Tucker, 1997). Non-coverage also pressures public organizations to assume more 

climate risks, which may lead to more federal debt. When the National Flood Insurance 

Program (NFIP) insured damages from Hurricanes Katrina, Rita, and Sandy, the NFIP 

incurred $24 billion in debt from these hurricanes alone (Kunreuther et al., 2013; 

Kunreuther and Michel-Kerjan, 2007). Other examples include hurricane protection in 

Florida, earthquake protection in California, and the crop insurance system in the United 

States (Kousky and Kunreuther, 2017).  

Risk financing comes from a variety of sources (Fig. 3.3).  The primary source is the 

party itself through a deductible (where losses are paid through savings or working capital) 

for events that are below a threshold of cost and are usually frequent and not severe. 

Insurance protects against events that are somewhat frequent and severe enough that equity 

alone cannot cover the losses.  Reinsurance, state-aid, and tort law cover rare events that 

have high financial impacts which an insurance company’s equity alone cannot cover. These 

methods transfer risks from an insurer to a third-party, protecting them in the case of a 

catastrophic event. Tort law is rare but may increase in the future if significant disagreements 

over liability continue.  
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Figure 3.3 Financing climatic loss at different levels of risk. 

 

 

Events leading up to non-coverage and the effects of non-coverage can be seen in 

the Saint Bernard Parish district of New Orleans after Hurricane Katrina (Ferguson, 2008). 

Total insured losses of at least $41 billion occurred; the risk to insure parts of New Orleans 

is extremely high and lack of understanding of these risks also plays a part in keeping 

premiums too high to afford (King, 2008). Contrasting interpretations of significant natural 

catastrophe risk, due to differences in assumptions and design of catastrophe models and 

minimal understanding of catastrophes, can lead to a large amount of uncertainty (King, 

2008). Many insurance agencies chose not to provide coverage in New Orleans as a result; a 

similar situation could occur in other places as more extreme events occur and flood plain 

maps are redrawn. The probability of non-coverage will be reduced with mutual adaptation 

and communication as well as increased understanding of the impacts of climate change.  



94 
 

 

 

Policymaking and Litigation Feedbacks 

The insurance industry has a role in influencing public policy (McCormick, 2018; 

Kunreuther, 2013; Attali 2006; Kleindorfer and Kunreuther, 1999). Government policies 

affect the industry directly by exempting parties from liability, subsidizing insurance 

deductibles or premiums, engaging in reinsurance, or providing coverage that competes with 

private sector insurance (Mills, 2005). The role of government has decreased over the last 20 

years as insurance coverage of natural disaster relief has increased from 20% to 40% in 

developed countries (Kunreuther and Michel-Kerjan, 2007). While developed economies 

have a buffer from widespread loss, the ability of this buffer to protect nations from 

crippling loss effects is dwindling as the rate and severity of natural disasters increases 

(Kunreuther et al., 2013; Kunreuther and Michel-Kerjan, 2007). As the need for more 

effective relief becomes apparent, many governments are using insurance to provide a 

reliable system for their citizens (Kunreuther et al., 2013; Kunreuther and Michel-Kerjan, 

2007; Tucker, 1997). The insurance industry interacts with the public sector in providing 

protection against risks, although there is always disagreement over the allocations of costs 

(Mills, 2005). The lack of cohesion in the response to Hurricane Katrina is one example of 

non-optimized risk allocation that resulted in $109 billion in post-disaster assistance and $8 

billion in tax relief provided by the government (McCoppin, 2014). For insurance and 

government to be more efficient and effective at disaster adaptation, mitigation, and relief, 

there must be more highly coordinated policy. Due to the immense costs from climate 

change, significant disagreements over the distribution of costs between the two sectors are 

not in the best interests of either party (Piketty, 2014). 
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Litigation from insurance to government has been the result of ineffective policy or 

failure to reasonably foresee and adapt to the impacts of climate change. In 2013, The 

Farmers Insurance Co. sued the city of Chicago, Illinois for damages caused by storm water 

and sewage overflow because local municipalities knew that the drainage systems were 

inadequate but failed to take reasonable action to prevent damages (Sullivan, 2014). The suit 

was eventually withdrawn, stating that the important issues were brought to the attention of 

the respective cities and counties and with the hope that policyholders’ interests will be 

protected in the future (Sullivan, 2014). As climate change impacts are further researched 

and understanding grows, more government entities and businesses may be held responsible 

via similar lawsuits for damages caused by climate change if proactive action is not taken to 

increase system resiliency (Sullivan, 2014; Sustainable Brands, 2017).  

 Coordination of efforts between government and insurers is crucial in developing a 

strong plan to provide affordable, adequate insurance coverage in the face of increasing risk 

from climate change (Glaas et al., 2016). Collaboration of building codes and standards, 

sharing of data, and better communication are all examples of action that can provide the 

knowledge and means necessary for policy-holders to adopt mitigation and adaptation 

measures and allow insurers to offer rewards or lower premiums for these measures. These 

actions can also provide direct feedback between the public, the government, and private 

insurers on how best to reduce risk and decrease costs for all stakeholders involved.  
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CONCLUSIONS 
 

The first step towards reduction of society’s contribution to climate change is understanding 

the state of emissions today. A comprehensive GHG emissions inventory is necessary to 

understand where mitigation efforts could have the greatest impact and future inventories 

will allow maintenance and adjustment of these strategies as needed. Agriculture and electric 

power were found to be the two largest sectors of emissions in Nebraska and any plans to 

reduce GHG emissions in Nebraska should prioritize these categories, with specific 

attention to beef cattle and coal. Nebraska may yet be an important example for the U.S. and 

the world that significant reductions of GHG emissions are possible, if the state’s population 

accepts its responsibility to address climate change and acts accordingly. 

Agricultural GHG emissions are an important aspect of comprehensive GHG 

emissions inventories, particularly in an agricultural region such as the Midwest U.S. region. 

Comparing agricultural GHG emissions between states provides more detailed inventories as 

well as identifying GHG emissions sources that could be reduced more effectively within the 

agricultural landscape of a state, rather than regionally or countrywide. The agricultural 

industry is crucial for many economies in the Midwest and emissions reduction strategies 

should seek to reduce the impact on agriculture as much as possible when changes are 

considered. More detailed and comprehensive GHG emissions inventories can pinpoint 

where GHG emissions reduction strategies would be most impactful on emissions and least 

impactful on the profitability of industry. Livestock, particularly beef, is a high intensity 

source of emissions in the agricultural sector and states that rely on livestock for their 

agricultural economies should focus on ways to reduce this impact, such as technological 

advancements (e.g. methane capture), feed or lifestyle changes, and diversification of 
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agricultural products. Future GHG emissions inventories should consider a focus on 

incorporating more interactions and more state-specific data to better inform research, 

development, and policy.  

Increased losses from climatic catastrophes will challenge insurance systems to adapt 

and offer affordable coverage (Botzen, 2013). Risk financing systems, including insurance, 

will need to be cautious of downside risks that can cause disincentives, market failures, and 

decrease equity (Botzen, 2013). Market-based insurance and its associated feedbacks are not 

a panacea, should not be expected to work well in all circumstances, and may even produce 

negative outcomes.  Like all firms, insurance companies are vulnerable to agency problems 

and conflicts of interest that may interfere with the effectiveness of the sector (Jensen and 

Meckling 1976).  While mechanisms exist within firms to reduce such conflicts, they are 

imperfect and sometimes the social costs of a firm’s actions outweigh the benefits.  In 

addition, there are numerous contexts in which insurance markets simply fail to form despite 

the fact there are real human needs or problems to be addressed.  The failure to form can 

arise from problems such as adverse selection (Rothschild and Stiglitz, 1976), moral hazard 

(Smith and Stutzer, 1995), or even a lack of perceived risks on the part of the public.  In the 

absence of market-based insurance, the feedback mechanisms described in this dissertation 

(excluding litigation) will fail to develop.  In these instances, alternative mechanisms must be 

established, which may include mutual aid or cooperative insurance arrangements (Smith and 

Stutzer, 1995), public-private partnerships, or direct government intervention among many 

other novel solutions. In addition, the scale of insurance feedbacks affects their viability as a 

factor in adaptation and mitigation measures. Some risks need to be addressed on a larger 

than individual scale and the feedbacks discussed will be less effective without external 

forces and other factors than individuals can provide alone (USGCRP, 2018).  
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Through improved research, the interactions between the insurance industry and 

society can create more efficient and effective risk management strategies for public and 

private interests to address the challenges associated with climate change (Botzen 2013). 

Future avenues of research should include the complexity of these feedback loops and 

insurers’ response to the discussed risk factors, including both climate and other risks. 

Specific interactions among these risks is not well understood and further empirical work on 

the dependencies of these risk factors is necessary. Another key challenge facing insurers is 

how to integrate climate change into their existing business models and including 

underwriting procedures that help to integrate these climate risks. Similarly, the dissertation 

did not look at specific methods for incentivizing risk reduction, and empirical analysis of 

the efficacy of practices on risk reduction will help to provide a more detailed understanding 

of which elements of the feedback processes work best. Encouraging proactive cooperation 

between private insurers and government can increase the probability that mitigation 

techniques and adaptation can align incentives to protect assets. The insurance industry will 

continue to be a forceful and systemic mechanism to drive adaption and mitigation to 

climate change impacts in the absence of, and alongside, effective government policies, but 

further research is needed to clarify these relationships. Insurance can serve as a market-

based approach to climate change that exists alongside policy-based approaches, providing a 

diversity of approaches that can shore-up the weaknesses of policy-based approaches and 

provide new and potent avenues for climate change adaptation and mitigation.  

 It is the responsibility of society to ensure the sustainability of Earth’s systems into 

the future. Inaction results in the disruption and restructuring of humans as a species as 

Earth’s climates and systems change in a manner that even humanity cannot adapt to quickly 

enough (Alley et al., 2003). Reducing GHG emissions and concentrations in the atmosphere 
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is the paramount challenge of today and requires all the knowledge, understanding, and 

effort that can be mustered. Climate change impacts all facets of society and all societal 

systems so there must be a collective effort to reduce our impacts to the environment and to 

help reduce the environment’s impact on society. Research must be simultaneous with action 

from local and world leaders to realize solutions. All GHG emissions reductions allow more 

time to develop effective, sustainable, long term solutions to climate change. By 

incentivizing, developing, and funding each small step in addressing climate change, 

humanity may not only survive but thrive in a sustainable world. 
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APPENDIX A: LIST OF ABBREVIATIONS 
 

Name Abbreviation 

5-Day Biochemical Oxygen Demand BOD5 

Carbon Calculation Tool CCT 

Carbon Dioxide CO2 

Chemical Oxygen Demand COD 

Concentrated Animal Feeding Operation CAFO 

Database of State Incentives for Renewables and Efficiency DSIRE 

Department of Ecology State of Washington DEWA 

Department of Environmental Conservation Air Quality and Climate 
Division State of Vermont 

DECV 

Department of Environmental Protection State of Maine DEPM 

Department of Environmental Protection State of New Jersey DEPNJ 

Department of Environmental Quality State of Oregon DEQO 

Department of Transportation DOT 

Economic Research Service ERS 

Emissions Factor EF 

Energy Information Agency EIA 

Environmental Protection Agency EPA 

Federal Emergency Management Agency FEMA 

Federal Highway Administration FHWA 

Global Domestic Product GDP 

Global Warming Potential GWP 

Greenhouse gas GHG 

Heavy Duty Diesel Vehicles HDDV 

Heavy Duty Gas Vehicles HDGV 

High-Level Commission on Carbon Prices HLCCP 

Hydrofluorocarbons HFC 

Insurance Information Institute III 

Intergovernmental Panel on Climate Change IPCC 

International Energy Agency IEA 

Land Use, Land Use Change, and Forestry LULUCF 

Light Duty Diesel Vehicles LDDV 

Light Duty Gas Vehicles LDGV 

Liquified Petroleum Gas LPG 

Methane CH4 

Methane Conversion Factor MCF 

Metric tons of carbon dioxide equivalent MtCO2e 

Million metric tons of carbon dioxide equivalent MMtCO2e 

Motorcycles MC 

Municipal Solid Waste MSW 
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National Agricultural Statistics Service NASS 

National Flood Insurance Program NFIP 

Natural Gas NG 

Nebraska Department of Agriculture NDA 

Nebraska Energy Office NEO 

Nitrous Oxide N2O 

Organization for Economic Co-operation and Development OECD 

Ozone Depleting Substance ODS 

Perfluorocarbons PFC 

Residential, Commercial, and Industrial RCI 

State Greenhouse Gas Inventory Tool SIT 

Sulfur Hexafluoride SF6 

Transmission and Distribution T&D 

United Nations Environment Programme UNEP 

United States Department of Agriculture USDA 

United States Global Change Research Program USGCRP 

Vehicle Miles Traveled VMT 

Volatile Solids VS 

World Economic Forum WEF 

World Resources Institute WRI 
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