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Group testing is the process of combining items into groups to test for a binary

characteristic. One of its most widely used applications is infectious disease

testing. In this context, specimens (e.g., blood, urine) are amalgamated into

groups and tested. For groups that test positive, there are many algorith-

mic retesting procedures available to identify positive individuals. The appeal

of group testing is that the overall number of tests needed is signi�cantly less

than for individual testing when disease prevalence is small and an appropriate

algorithm is chosen. Group testing has a number of applications beyond in-

fectious disease testing, such as drug discovery, food contamination detection,

and diagnosis of faulty network sensors.

An important decision that needs to be made prior to implementation is

the group sizes to use. In best practice, an objective function is minimized

to determine the optimal set of group sizes, known as the optimal testing

con�guration (OTC). We examine several di�erent objective functions and

show that the OTCs and corresponding results (e.g., number of tests, accuracy)

are largely the same for these functions when using standard group testing

algorithms.

Both estimating the probability of disease and identifying positive individ-

uals are goals of group testing. We present the �rst general R functions for

identi�cation and make these available in the new binGroup2 package. We



also include in this package estimation functions from the binGroup package

by creating a uni�ed framework for them.

We developed a web-based Shiny application to assist laboratory personnel

in determining how well a group testing algorithm is expected to perform

before implementation. The app utilizes binGroup2 functions to calculate the

expected number of tests and diagnostic accuracy measures for a wide variety

of algorithms using one- and two-disease assays. The OTC can be found with

the app as well.

Most group testing research using one-disease assays makes the assumption

of equal sensitivity and equal speci�city values across all stages of testing. We

present derivations of operating characteristics for group testing algorithms

that allow the diagnostic test accuracy to di�er across stages of testing. These

resulting expressions are incorporated into the binGroup2 package.
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Chapter 1

Introduction

1.1. Fundamentals of group testing

As fears of a German World War II victory spread throughout the United

States in 1940, Congress and President Franklin Delano Roosevelt worked to-

gether to pass the Selective Training and Service Act (Encyclopaedia Britan-

nica, Inc., 2017). The law established the �rst peacetime draft in U.S. history

and instituted screening to determine men's physical and mental �tness for

war. Part of the screening process involved testing for diseases such as syphilis.

With millions of people needing to be screened, Dorfman (1943) proposed a

new testing algorithm meant to reduce the total number of tests needed. In

his algorithm, Dorfman proposed that individual specimens be amalgamated

into groups instead of being tested individually. If a group tested negative, all

members of the group would be declared negative for the syphilitic antigen. If

a group tested positive, all individuals would be retested to determine which

were positive and which were negative. Because the prevalence of syphilis was

low, it was believed that group testing would result in much fewer tests than

testing each specimen separately (i.e., individual testing). Screening for dis-

eases such as syphilis is just one of many diverse group testing applications.

Throughout this dissertation, we will focus our terminology on the infectious
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disease testing setting. That is, group testing will be discussed in the con-

text of testing specimens (e.g., blood, urine) to identify which are positive or

negative for a disease of interest.

Since Dorfman's original proposal, there have been many other group test-

ing algorithms developed. Most of these can be categorized as either hierar-

chical or non-hierarchical in nature. Hierarchical algorithms involve testing

individuals in non-overlapping groups at a particular stage of testing. The

testing pattern at each subsequent stage is determined by the results in the

previous stage. The Dorfman technique is a two-stage hierarchical algorithm.

In contrast, non-hierarchical algorithms involve testing individuals in overlap-

ping groups within a stage. This is done to reduce the number of retests needed

at subsequent stages. The next subsections describe each of these algorithm

types in detail.

1.1.1. Hierarchical algorithms

Let p be the probability that an individual is truly positive for the disease

of interest. For a group of size I, the probability that the group is truly

negative (all individuals in the group are truly negative) is (1 − p)I . Thus,

the probability that the group is truly positive (at least one individual in the

group is truly positive) is 1− (1− p)I . The expected number of tests needed

to decode one group becomes 1 + I[1− (1− p)I ]. Across a population of size

N , the expected total number of tests is N/I + N
[
1− (1− p)I

]
, assuming

that I divides evenly into N (Dorfman, 1943). In situations where I does

not divide evenly into N , any remaining individuals are usually combined in

another group so that the expected total number of tests is 1+b
[
1− (1− p)b

]
+

N/I +N
[
1− (1− p)I

]
, where b is the size of the remainder group.
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Using these equations, Dorfman (1943) showed that when compared to

individual testing, group testing can lead to signi�cant savings for the number

of tests, depending on I and p. Choosing too large of an I will result in too

many groups testing positive and consequently a large number of retests. On

the other hand, choosing too small of an I will lead to a larger number of tests

than would be needed if I was chosen better. There was an interest early in

this research then to �nd the �optimal� group size, one that was not too large or

too small for the corresponding p. For this reason, Dorfman provided tables to

�nd the optimal group size (i.e., the smallest expected number of tests) given

p and concluded that group testing is preferred to individual testing when the

disease has a small prevalence (i.e., p < 0.20).

The Dorfman algorithm is an example of a two-stage algorithm. Figure

1.1 shows a Dorfman algorithm with an initial group of size 10 followed by

individual testing. A natural extension of this technique involves repeatedly

dividing groups that test positive into smaller, non-overlapping subgroups un-

til all positive specimens are con�rmed through individual testing. Finucan

(1964) presented a three-stage algorithm in which an initial group is tested

�rst, subgroups are tested second, and individual retesting is done in the third

and �nal stage of the algorithm. The expected number of tests and minimum

cost (associated with the optimal initial group size) were derived for the three-

stage algorithm. Finucan (1964) also presented the optimal number of stages

and minimum cost for S-stage algorithms in general.

Figure 1.2 illustrates a three-stage hierarchical algorithm used in practice

for acute HIV detection in San Francisco (Sherlock et al., 2007). The �rst stage

has an initial group of size 50, followed by �ve subgroups with 10 individuals

each, and �nally, individual testing. In current practice, three- and four-stage
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Figure 1.1: Dorfman testing algorithm.

Figure 1.2: Three-stage hierarchical testing algorithm.

algorithms are often used (e.g. Sherlock et al., 2007; Quinn et al., 2000)

because they can be more e�cient (i.e., result in fewer tests) than two-stage

algorithms in particular situations.

1.1.2. Non-hierarchical algorithms

The most common type of non-hierarchical algorithm is known as array testing.

Array testing (Phatarfod and Sudbury, 1994) involves arranging specimens in

a square grid, or array. Specimens are amalgamated by row and by column,

so that each individual's specimen is included in two groups, and tested. All

specimens located at the intersection of a positive row and a positive column

are retested separately. In the presence of testing error, retesting is also done

for all specimens in a positive row (column) where no column (row) tests

positive. Figure 1.3 displays an array testing algorithm where rows 1 and 9
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Figure 1.3: Array testing algorithm.

test positive, as do columns 1 and 8. Four individuals (indicated by red circles)

lie at the intersections of positive rows and positive columns, so those four

individuals are individually retested to determine whether they are positive or

negative.

The original array testing proposal by Phatarfod and Sudbury (1994) in-

volved just two stages of testing, the �rst for testing row and column groups,

and the second for individual retesting. Kim et al. (2007) incorporated the

possibility of testing error into the algorithm that would necessitate the retest-

ing of entire rows/columns as aforementioned. Kim et al. (2007) also examined

adding a master group test to the algorithm. Such an algorithm involves three

stages, where a master group of all specimens in the array is tested �rst, fol-

lowed by row and column testing in the second stage, and individual retesting

in the third and �nal stage. Kim et al. (2007) provided expressions for the

expected number of tests for array testing with and without master pooling.

Additional work in this area includes Hudgens and Kim (2011) that stud-

ied the optimal group sizes for square array testing without master pooling.

Also, Kim and Hudgens (2009) examined three-dimensional array-based test-
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ing algorithms, where specimens are arranged in a three-dimensional array for

testing.

1.2. Testing error for the overall algorithm

Most of the early group testing papers assumed that the assays were perfect,

although this is not the case in many real-life applications. It is now common

practice to incorporate testing error in infectious disease testing applications.

Individual testing error occurs when a specimen that is truly positive (nega-

tive) is incorrectly identi�ed as negative (positive) by the assay. The sensitivity

(Se) is the proportion of true positives correctly identi�ed by the test and the

speci�city (Sp) is the proportion of true negatives correctly identi�ed by the

test (Altman and Bland, 1994a).

Recognizing that the true status of a specimen is not usually known in

application, Altman and Bland (1994b) also de�ned values that describe the

proportion of specimens that are correctly diagnosed with individual testing.

The positive (negative) predictive value is the proportion of specimens testing

positive (negative) who are correctly identi�ed as positive (negative). The

positive predictive value (PPV ) and negative predictive value (NPV ) can

then be calculated as

PPV =
Sep

Sep+ (1− Sp)(1− p)

and

NPV =
Sp(1− p)

(1− Se)p+ Sp(1− p)

for any probability of infection p (Altman and Bland, 1994b).

Throughout a group testing algorithm, an assay may be used several times
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on the same specimen (either in a group or individually) to determine whether

the specimen is positive or negative. For specimens that are tested multiple

times, the Se and Sp no longer describe the probability of being correctly diag-

nosed by the group testing algorithm though. Instead, Johnson et al. (1991)

de�ned the pooling sensitivity (PSe) as the probability that an individual is

identi�ed as positive, given that the individual is truly positive. Similarly, the

pooling speci�city (PSp) is the probability that an individual is identi�ed as

negative, given that the individual is truly negative. Kim et al. (2007) de-

�ned the pooling positive predictive value (PPPV ) as the probability that an

individual is truly positive, given that the individual is identi�ed by the test

as positive. The pooling negative predictive value (PNPV ) is the probability

that an individual is truly negative, given that the individual is identi�ed by

the test as negative. Applying Bayes' rule, the PPPV and PNPV can then

be expressed as

PPPV =
pPSe

(1− p)(1− PSp) + pPSe

and

PNPV =
(1− p)PSp

p(1− PSe) + (1− p)PSp

.

1.3. Informative testing

While nearly all of the previously mentioned papers assume that every indi-

vidual has the same probability p of testing positive, this assumption is not

reasonable in most applications. We can easily imagine that di�erent indi-

viduals may have di�erent probabilities of testing positive for a given disease,

say pi for i = 1, . . . , N individuals to be tested. In many situations, covariate

information, such as medical history or risk behaviors, is available for individ-
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uals being tested and can be used to estimate each individual's probability of

testing positive. The number of tests needed for group testing can then be

reduced by taking advantage of these individual probabilities.

Hwang (1975) is likely the �rst group testing paper that considered testing

specimens that do not all have the same probability of being positive. While

the paper allows for individual probabilities to di�er, it does not discuss how

to estimate these probabilities or account for testing error. The �rst paper to

propose a way to identify positive specimens using available covariate infor-

mation came decades later. Bilder et al. (2010) de�ned �informative retesting�

as an algorithm in which covariate information is used to inform how retest-

ing is implemented in groups that test positive when testing error is present.

This paper showed that signi�cant reductions in the expected number of tests

for a group testing algorithm can occur when accounting for the di�erences

among individual probabilities. McMahan et al. (2012a) examined informa-

tive retesting in the context of Dorfman's algorithm and derived expressions

for the expected number of tests, PSe, PSp, PPPV , and PNPV . McMahan

et al. (2012b) did the same for informative retesting in the context of array

testing without master pooling. Both of these papers continued to show the

advantages of using the available covariate information, while also showing

that the informative algorithms resulted in similar or sometimes better ac-

curacy than their non-informative (pi = p for all i = 1, ..., N) counterparts.

Bilder and Tebbs (2012) compared a number of informative retesting algo-

rithms and found that no single algorithm was best overall in terms of the

number of tests and accuracy. Several factors including prevalence, accuracy

of the assay, availability of covariate information, and heterogeneity among in-

dividual probabilities all are important factors in determining which algorithm
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is best. Black et al. (2015) later provided an extension of informative testing

to hierarchical testing for three or more stages.

1.4. Multiplex testing

All of the aforementioned papers dealt with group testing in the context of

single-disease assays, assays that test for only one disease at a time. In re-

cent years, group testing research has expanded to the use of multiplex assays,

i.e., assays that test for more than one disease at a time. Tebbs et al. (2013)

examined a two-stage hierarchical algorithm used by the State Hygienic Lab-

oratory (SHL) at the University of Iowa to test for chlamydia and gonorrhea

simultaneously via the Aptima Combo 2 Assay. For this algorithm, individual

specimens are randomly assigned to groups of two or more, and each group

is tested for both diseases. If a group tests negative for both diseases, all

members are declared disease free. If a group tests positive for either disease,

all members are retested individually for both diseases using the same assay.

Tebbs et al. (2013) derived expressions for the expected number of tests and

accuracy measures. Using these expressions, they were able to identify opti-

mal group sizes for the two-stage algorithm. The authors found that pooling

for multiple infections results in fewer tests than both individual testing with

multiplex assays and group testing with single-disease assays.

Hou et al. (2017) generalized the methods in Tebbs et al. (2013) to hier-

archical testing with three or more stages and derived closed-form expressions

for the expected number of tests and accuracy measures. The authors showed

a reduction in the expected number of tests can occur when using these higher-

stage hierarchical algorithms rather than the two-stage algorithms. For their

contribution to the statistical science and its application, both Tebbs et al.
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(2013) and Hou et al. (2017) were awarded the Outstanding Statistical Appli-

cation award by the American Statistical Association, and Hou et al. (2017)

was also awarded the Biometrics paper of the year award. However, both of

these papers assumed that all individuals had the same probability of testing

positive. Bilder et al. (2019) provided the �rst group testing algorithms for

multiplex assays that take advantage of individual-speci�c probabilities. The

algorithms developed can be applied in hierarchical testing with two or more

stages, and the authors derived the expected number of tests and accuracy

measures for the algorithms. Bilder et al. (2019) showed that the combina-

tion of informative group testing and multiplex assays can signi�cantly reduce

the number of tests required without loss of accuracy in comparison to non-

informative algorithms. Hou et al. (2020) further provided methods for array

testing with multiplex assays.

1.5. Assumptions about diagnostic accuracy

The sensitivity and speci�city of a diagnostic test are often assumed to be the

same for each stage of testing. For example, this means that a three-stage

hierarchical algorithm would have Se = 0.95 for the initial group test, subse-

quent tests of smaller subgroups, and individual tests. This assumption may

not be realistic for two reasons: 1) when larger groups are used, positive indi-

viduals can be diluted by negative individuals past the threshold of detection

for an assay; and 2) di�erent diagnostic tests may be used at di�erent stages

of the testing algorithm. In situations where dilution e�ects are a cause for

concern, McMahan et al. (2013) removed the assumption that sensitivity and

speci�city are constant for all groups (pools) and derived expressions for pool-

speci�c sensitivity and speci�city that is dependent upon the size of the group,
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improving prevalence estimation.

Usually though, properly calibrated assays will have the same diagnostic

accuracy for each test at each stage, especially for nucleic acid ampli�cation

tests (NAATs). Kacena et al. (1998a; 1998b) found negligible loss in diagnos-

tic accuracy with as many as 10 samples when screening for chlamydia and

gonorrhea with a NAAT. Also, NAATs have been used to detect acute HIV

infection in groups of 90 or more specimens with no signi�cant dilution e�ects

(Quinn et al., 2000; Pilcher et al., 2005). For other types of tests, Kline et al.

(1989) and Tu et al. (1995) found that groups of up to 15 specimens can be

used with negligible loss of diagnostic test accuracy for HIV screening with

an enzyme-linked immunosorbent assay (ELISA). Soroka et al. (2003) showed

the same for groups of up to size 20 with two di�erent lateral �ow rapid an-

tibody assays. These studies support Black et al. (2015), McMahan et al.

(2012a), McMahan et al. (2012b), and Kim et al. (2007) in their assumption

that sensitivity and speci�city do not depend on the size of the group.

In some situations, di�erent assays may be used within a testing algorithm.

For example, an ELISA test may be utilized to test an initial group size due

to its lower cost and NAATs may be used to test positive groups in subsequent

stages due to their frequently higher sensitivity values. For these situations,

Bilder et al. (2019) allowed for di�erences in the diagnostic accuracy across

stages of testing in their derivations of operating characteristics (e.g., expected

number of tests, accuracy measures) for hierarchical testing algorithms with

multiplex assays. Similarly, Hou et al. (2020) allowed for di�erent values of

sensitivity and speci�city for the master array, row/column tests, and indi-

vidual testing in their derivations of operating characteristics for array testing

algorithms with multiplex assays.
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1.6. Implementation in R

There are two primary objectives in group testing research. The �rst is the

estimation problem: estimate the overall prevalence of disease or individual

probabilities of testing positive. The binGroup package (Bilder et al., 2010)

was the �rst R package to provide functions for the estimation problem for

both homogeneous populations, where all individuals are assumed to have the

same probability of testing positive, and heterogeneous populations, where

each individual is allowed to have a di�erent probability of testing positive. For

homogeneous populations, the package provides functions that estimate the

overall prevalence p, calculate a p-value and determine power for a hypothesis

test involving p, and �nd the optimal group size for a design. For heterogeneous

populations, the contributed functions �t group testing regression models and

simulate group testing data.

The second objective in group testing research is the identi�cation problem:

identify all positive individuals being tested via a testing algorithm. Unfortu-

nately, the binGroup package did not provide functions for the identi�cation

problem until a number of functions were added associated with this disser-

tation. For both the estimation and identi�cation problems, the functions in

binGroup were contributed by a number of di�erent researchers. This led to

an inconsistent style that can make it di�cult for practitioners to use.

Several papers in the group testing literature provide R functions to calcu-

late operating characteristics for various group testing algorithms. For single-

disease assays, Black et al. (2015) provided functions for up to four-stage hier-

archical testing and McMahan et al. (2012a) provided functions for informative

two-stage hierarchical testing. McMahan et al. (2012b) supplied functions for
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array testing without master pooling. These R functions for single-disease as-

says utilized the assumption that sensitivity/speci�city values are equal across

all stages of testing. For multiplex assays, Bilder et al. (2019) developed R

functions for up to �ve-stage hierarchical testing and Hou et al. (2020) de-

veloped R functions for array testing with and without master pooling. The

functions for hierarchical testing algorithms with multiplex assays allow sen-

sitivity/speci�city values to di�er across stages of testing, while the functions

for array testing with multiplex assays allow for only a single sensitivity/speci-

�city value in the algorithm. All of the R functions mentioned here can be

accessed at www.chrisbilder.com/grouptesting.

1.7. Organization of the dissertation

The order of this dissertation is as follows. Chapter 2 is a paper published

in Statistics in Medicine. This paper compares objective functions that are

used to determine the optimal testing con�guration (set of group sizes that

minimize an objective function) for a signi�cant number of group testing al-

gorithms. The goal of this paper is to settle a controversy in group testing

research regarding which objective function is best to use in practice. Chapter

3 describes a new R package named binGroup2 that provides R functions for

both the estimation and identi�cation problems of group testing. This package

is built upon the estimation functions in the binGroup package but performs

a large reorganization of these functions and creates a consistent framework

that researchers will �nd easier to use. The binGroup2 package also incor-

porates functions for the identi�cation problem. Included are new functions

that enable practitioners to �nd an optimal testing con�guration to imple-

ment group testing. Chapter 4 describes a new Shiny application to allow

http://www.chrisbilder.com/grouptesting
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researchers without R experience to access particular identi�cation functions

from binGroup2 without having to understand code. Chapter 5 summarizes

the work completed and proposes ideas for future research.
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Chapter 2

The objective function controversy for group testing:

Much ado about nothing?

This chapter is published: Hitt, B., Bilder, C., Tebbs, J., and McMahan, C.

(2019). The objective function controversy for group testing: Much ado about

nothing? Statistics in Medicine 38(24), 4912-4923. Used with permission.

Abstract

Group testing is an indispensable tool for laboratories when testing high

volumes of clinical specimens for infectious diseases. An important decision

that needs to be made prior to implementation is determining what group sizes

to use. In best practice, an objective function is chosen and then minimized

to determine an optimal set of these group sizes, known as the optimal testing

con�guration (OTC). There are a few options for objective functions, and they

di�er based on how the expected number of tests, assay characteristics, and

testing constraints are taken into account. These varied options have led to a

recent controversy in the literature regarding which of two di�erent objective

functions is better. In our paper, we examine these objective functions over

a number of realistic situations for infectious disease testing. We show that

this controversy may be much ado about nothing because the OTCs and cor-
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responding results (e.g., number of tests, accuracy) are largely the same for

standard testing algorithms in a wide variety of situations.

Keywords: Binary response; Infectious disease; Pooled testing; Screening; Sen-

sitivity; Speci�city

2.1. Introduction

Laboratories throughout the world test high volumes of clinical specimens for

infectious diseases, including HIV, hepatitis C, and West Nile virus. In such

situations, it has become standard practice to test amalgamations of specimens

as a �group� or �pool� rather than to test individual specimens. The reason is

simple: members of a negative testing group can be declared negative all at

once. Thus, for a group of size I, say, just one test is needed to declare all

members negative, rather than the I separate tests that would be needed with

individual testing. Fortunately, when disease prevalence is small, the majority

of groups will test negatively when sensibly chosen group sizes are used. For

members of a positive testing group, there are many algorithmic retesting pro-

cedures available to determine which speci�c individuals are positive. The �rst

retesting procedure was proposed by Dorfman (1943) and simply involved in-

dividually retesting each member of a positive group. Since this seminal work,

group testing has been used to e�ciently test for infectious diseases in a vast

number of human applications, including blood donation screening (American

Red Cross, 2020), antiretroviral treatment failure detection for HIV-positive

individuals (Kim et al., 2014; Tilghman et al., 2015), chlamydia and gonorrhea

testing (Papp et al., 2014), and in�uenza outbreak surveillance (Hourfar et al.,

2007). Outside of infectious disease testing in humans, group testing is used in
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an extensive number of applications, including cow milk surveillance (Græs-

bøll et al., 2017), disease detection in cattle and bu�aloes (Abdellrazeq et al.,

2014), West Nile virus monitoring in mosquitoes (Khan et al., 2017), food

contamination detection (Pasquali et al., 2014), drug discovery (Kainkaryam

and Woolf, 2009), and diagnosis of faulty network sensors (Lo et al., 2013).

For all group testing applications, the choice of group sizes is extremely

important for success. Choosing group sizes too large will lead to exceedingly

many groups testing positively. This will subsequently lead to a large number

of retests, perhaps even a larger number of tests overall than what would be

needed for individual testing. Similarly, choosing group sizes too small will

lead to a larger number of tests than would be needed if the group sizes were

chosen better. In best practice, laboratories choose group sizes by minimizing

an objective function that takes into account the group testing algorithm to

be implemented. There are a number of di�erent algorithms in use, and they

are best characterized as being either hierarchical or non-hierarchical in na-

ture. Hierarchical algorithms begin by testing individuals in non-overlapping

groups. For a group that tests positively, subsequent retesting stages occur in

smaller, non-overlapping groups. The previously described Dorfman algorithm

is a two-stage algorithm. Three- and four-stage algorithms are commonly used

in practice (Quinn et al., 2000; Sherlock et al., 2007) because they are often

more e�cient (i.e., fewer tests). Non-hierarchical algorithms involve testing

each individual in overlapping groups to reduce the number of retests. The

most common type of non-hierarchical algorithm is known as array testing

(Phatarfod and Sudbury, 1994; Kim et al., 2007). For this algorithm, individ-

ual specimens are arranged in a two-dimensional grid. These specimens are

amalgamated by row and by column and then tested. Intersecting positive
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rows and columns indicate where retesting should be performed to determine

which individuals are positive. For a thorough review of hierarchical and array

testing algorithms, see Hughes-Oliver (2006) and Bilder (2019).

While there are many di�erent types of group testing algorithms, all labo-

ratories are interested in minimizing the number of tests needed to assay their

specimens. For this reason, objective functions are based on the expected

number of tests, so that a set of group sizes for a testing algorithm, known

as the optimal testing con�guration (OTC), can be found by minimizing this

function. Traditionally, group testing research has focused on objective func-

tions expressed solely as the expected number of tests per individual. This is

due to a close correspondence between the number of tests and testing costs.

However, using an objective function that contains only the expected number

of tests leaves out an important component of infectious disease testing: accu-

racy. Infectious disease testing is rarely perfect. Errors can occur for reasons

such as improper laboratory implementation or a specimen being collected dur-

ing the window period between disease contraction and the ability to detect

it. Fortunately, known mathematical expressions are available for the accuracy

of most group testing algorithms. This enables laboratories to calculate the

expected accuracy of a chosen testing con�guration prior to implementation.

Malinovsky et al. (2016) recently proposed a new objective function that

includes the expected number of tests and a measurement of accuracy. This

allows laboratories to evaluate accuracy at the same time as the number of tests

when choosing an OTC. As may be expected when breaking with tradition, the

proposal generated controversy in the group testing research literature. Both

Hudgens (2016) and McMahan et al. (2016) o�ered rejoinders to Malinovsky

et al. (2016) that disagreed with this new objective function. All three of these
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works focused only on the Dorfman algorithm in their limited evaluations. The

purpose of our paper is to examine a signi�cant number of other group testing

algorithms with respect to objective functions. This is important because other

algorithms are widely used and known to result in a smaller number of tests

and/or higher accuracy than the Dorfman algorithm. We present �ndings in

our paper that interestingly show both the traditional and the new objective

function are actually quite similar and very often lead to the same OTC in

realistic infectious disease testing situations.

The order of this paper follows. Section 2.2 explicitly de�nes the objective

functions and provides a mathematical comparison between them. Section

2.3 calculates the OTC for each objective function along with their operating

characteristics (expected number of tests and accuracy measures) in a wide

variety of settings. These calculations are performed for both hierarchical and

array testing algorithms. We show under what conditions these operating

characteristics will be the same and when they will be di�erent. Section 2.4

examines the objective function controversy in the context of actual assays

used for infectious disease detection. To conclude, Section 2.5 summarizes our

�ndings, discusses alternative objective functions, and provides recommenda-

tions for practice. We also discuss R functions that we provide with our paper

to �nd the OTCs and to reproduce our work.

2.2. Objective Functions

De�ne T as a random variable representing the total number of tests for an

overall group of size I with a hierarchical algorithm. When using the tra-

ditional objective function, the OTC is found by minimizing the expected



20

number of tests per individual:

OET = E(T )/I.

For example, the expected number of tests for three-stage hierarchical testing

is given by

E(T ) = 1 +m11P (G11 = 1) +

c2∑
j=1

m2jP (G11 = 1, G2j = 1),

where Gsj is the binary random variable (values of 1 and 0 indicate a positive

and a negative test result, respectively) representing the outcome for group j

at stage s, msj is the number of subgroups that would be created if group j at

stage s tests positively, and cs is the number of groups at stage s (see Black

et al. (2015); an example diagram is given in Appendix A). The probabilities

P (G11 = 1) and P (G11 = 1, G2j = 1) are both functions of the number of

groups and their respective sizes, the probability of being positive for each

individual, and the sensitivity Se and speci�city Sp of the assay each time it

is applied. We do not provide further detailed expressions for E(T ) here to

avoid distraction from the main points of our paper and because expressions

are already provided elsewhere. For example, Kim et al. (2007) provides ex-

pressions for the case of each individual having the same true probability of

being positive, say p, and Black et al. (2015) provides expressions for the case

of each individual potentially having a di�erent probability of being truly pos-

itive, say pi for i = 1, . . . , I. The latter case is known as informative group

testing (Bilder et al., 2010; Lewis et al., 2012; Bilder and Tebbs, 2012), be-

cause pi can be estimated with the help of disease-risk information that may

be available for each individual tested. We will refer to the former case then as
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non-informative group testing in our work here. Expressions for the expected

number of tests are known for array testing algorithms (Kim et al., 2007;

McMahan et al., 2012b) as well, where OET is still de�ned as the expected

number of tests per individual.

While OET is the most commonly utilized objective function, it does not

directly take into account the accuracy of the algorithm. However, one will still

examine separately the accuracy of the OTC to judge if it is satisfactory. As an

alternative approach, Malinovsky et al. (2016) proposed an objective function

that simultaneously takes into account accuracy and the expected number of

tests. To examine the accuracy aspect, de�ne Yi as the �nal positive/negative

(1/0) outcome based on the group testing algorithm, and de�ne Ỹi as the true

positive/negative (1/0) status of individual i, for i = 1, . . . , I. Commonly used

accuracy measures for a group testing algorithm as a whole are the pooling

sensitivity PSe,i = P (Yi = 1|Ỹi = 1) and the pooling speci�city PSp,i =

P (Yi = 0|Ỹi = 0) for individual i. As an overall measure of accuracy, de�ne

C as the number of correct classi�cations for a group of size I. The expected

number of correct classi�cations is

E(C) =
I∑

i=1

{
P (Yi = 0, Ỹi = 0) + P (Yi = 1, Ỹi = 1)

}
=

I∑
i=1

{PSp,i(1− pi) + PSe,ipi} , (2.2.1)

where P (Ỹi = 1) = pi is the probability that individual i is truly positive.

Malinovsky et al. (2016) proposed to �nd the OTC by maximizing the ex-

pected number of correct classi�cations per individual divided by the expected
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number of tests per individual. Equivalently, this results in minimizing

OMAR = E(T )/E(C).

Because C is never larger than the number of individuals I, E(C) ≤ I. By

comparing OMAR and OET , we see that

OET =
E(T )

I
≤ E(T )

E(C)
= OMAR

for the same initial group size I. In fact, OMAR and OET will be quite close

in value. This is because infectious disease assays will only be put into use if

they have high accuracy. Thus, E(C) will be quite close to I in practice.

To examine this closeness more precisely, consider minimizing the logarithm

of each objective function:

log(OET ) = log {E (T )} − log(I)

and

log(OMAR) = log {E (T )} − log {E (C)} . (2.2.2)

For hierarchical testing, the pooling sensitivity is always the same for every

individual tested in the same number of stages(Kim et al., 2007; Black et al.,

2015). The pooling speci�city is the same for every individual as well, but only

for non-informative group testing with equal group sizes within a stage. Under

this scenario then, we can simplify the expression for the expected number of

correct classi�cations to be

E(C) = I {PSp(1− p) + PSep} , (2.2.3)
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where PSp and PSe are the pooling speci�city and sensitivity, respectively,

but now equal for each individual. For array testing, the same simpli�cation

for E(C) from Equation (2.2.1) to Equation (2.2.3) occurs when the number

of rows and the number of columns are the same (i.e., a square array), which

is how array testing is usually applied.

By substituting Equation (2.2.3) into Equation (2.2.2), we obtain

log(OMAR) = log {E(T )} − log [I {PSp(1− p) + PSep}]

= log(OET )− log {PSp(1− p) + PSep} .

Thus, any di�erence between the OTCs for the two objective functions is due

to the �penalty� of

log {PSp(1− p) + PSep} . (2.2.4)

Unfortunately, further de�nitive statements cannot be made regarding Equa-

tion (2.2.4), and we are left with making general statements regarding what

will happen most often. In particular, we see that the penalty places a large

weight on PSp in comparison to PSe because p is small for realistic group

testing applications. Also, because PSp and PSe tend to be close to 1 for

realistic applications, the penalty tends to be close to 0. Thus, log(OMAR) will

most often be close to log(OET ).

2.3. Comparisons

Because de�nitive statements are not possible for Equation (2.2.4) or for the

more general cases of unequal group sizes and informative group testing, we

provide in this section a thorough investigation of the OTCs when using the

objective functions over a very large number of situations. For each of these
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situations, we calculate the OTCs along with corresponding operating charac-

teristics. Our results for both non-informative and informative group testing

algorithms are described next.

2.3.1. Non-informative group testing

We include in this investigation the following group testing algorithms: two-

stage hierarchical, three-stage hierarchical, array testing without a master pool

(row and column groups are tested �rst, as described in Section 2.1), and array

testing with a master pool (all specimens in the array are tested together in

one group before any row or column groups are formed). For the �rst three

algorithms, we allow the initial group sizes to range from I = 3, ..., 40, but

allow higher initial group sizes when the overall prevalence is very small (e.g.,

p = 0.005) so that the OTC does not include our arbitrary upper bound for I.

For array testing with a master pool, we use the same range of group sizes for

the row and column groups, leading to a maximum master pool size of I2. All

array testing algorithms use square arrays, and we account for potential testing

ambiguities that can occur in arrays (e.g., a row tests positively without any

columns testing positively) by the methods described in Kim et al. (2007) We

apply these group testing algorithms over thirty di�erent values of p ranging

from 0.005 to 0.150 by 0.005 and over �ve separate sets of accuracy levels (Se

and Sp values range from 0.90 to 0.99). These values of p, Se, and Sp are chosen

because they correspond to when group testing is used for infectious disease

testing. The assay accuracies are assumed to not change based on group size,

meaning that the assays have been properly tested and calibrated for group

testing.

Table 2.1 displays the results for p = 0.01. The OTCs are the same for
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both objective functions when using the hierarchical algorithms. Some small

di�erences between OTCs exist for the array testing algorithms, but the dif-

ferences are not of practical importance. For example, examine the results

for array testing without master pooling and Se = Sp = 0.90. The expected

number of tests and the pooling sensitivities are the same to four decimal

places. The pooling speci�cities are also quite close. In practical terms, for

a testing load of 100,000 individuals, there would be 98,267 correct negatives

found when using the OTC for OET and 98,307 correct negatives found when

using the OTC for OMAR. While 40 additional false positives would result

from the OTC for OET , these false positives would most likely be discovered

from follow-up con�rmatory testing that normally would occur. We also pro-

vide similar tables for p = 0.05 and p = 0.10 in Appendix A. These tables

show only one case with di�erences between the OTCs.

Table 2.2 summarizes the largest di�erences among the operating charac-

teristics across all thirty di�erent values of p included in our investigation.

Most often, the OTCs found are the same for the two objective functions.

When di�erences exist, these di�erences occur more often for smaller values

of Sp, but again are not of practical importance. Overall, these �ndings help

con�rm what was strongly suspected in Section 2.2 through our mathematical

analysis. Namely, the objective functions lead to the same OTCs or OTCs

with similar operating characteristics when di�erences exist.

2.3.2. Informative group testing

We include in this investigation the following group testing algorithms: two-

stage hierarchical implemented via the pool-speci�c optimal Dorfman (PSOD)

method (McMahan et al., 2012a), three-stage hierarchical (Black et al., 2015),
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Table 2.1: OTC summary for p = 0.01 under non-informative group testing.
Equally sized groups are optimal at each stage; thus, an OTC of �24-6-1� means
that stage 1 has a group of size 24, stage 2 has four groups of size 6, and stage
3 has twenty-four groups of size 1. Di�erences between OET and OMAR are
highlighted.

Objective
Algorithm Se Sp function OTC E(T )/I PSe PSp

0.99 0.99
OET 11-1 0.2035 0.9801 0.9990
OMAR 11-1 0.2035 0.9801 0.9990

0.95 0.95
OET 11-1 0.2351 0.9025 0.9932
OMAR 11-1 0.2351 0.9025 0.9932

Two-stage
0.90 0.90

OET 12-1 0.2742 0.8100 0.9816
hierarchical OMAR 12-1 0.2742 0.8100 0.9816

0.99 0.90
OET 11-1 0.2841 0.9801 0.9815
OMAR 11-1 0.2841 0.9801 0.9815

0.90 0.99
OET 11-1 0.1941 0.8100 0.9990
OMAR 11-1 0.1941 0.8100 0.9990

0.99 0.99
OET 25-5-1 0.1354 0.9703 0.9996
OMAR 25-5-1 0.1354 0.9703 0.9996

0.95 0.95
OET 24-6-1 0.1443 0.8574 0.9973
OMAR 24-6-1 0.1443 0.8574 0.9973

Three-stage
0.90 0.90

OET 24-6-1 0.1562 0.7290 0.9938
hierarchical OMAR 24-6-1 0.1562 0.7290 0.9938

0.99 0.90
OET 24-6-1 0.1708 0.9703 0.9928
OMAR 24-6-1 0.1708 0.9703 0.9928

0.90 0.99
OET 25-5-1 0.1229 0.7290 0.9997
OMAR 25-5-1 0.1229 0.7290 0.9997

0.99 0.99
OET 25-1 0.1378 0.9703 0.9995
OMAR 25-1 0.1378 0.9703 0.9995

0.95 0.95
OET 25-1 0.1475 0.8575 0.9970
OMAR 24-1 0.1475 0.8575 0.9972

Array w/o
0.90 0.90

OET 25-1 0.1611 0.7291 0.9926
master pooling OMAR 24-1 0.1611 0.7291 0.9930

0.99 0.90
OET 23-1 0.1726 0.9703 0.9923
OMAR 23-1 0.1726 0.9703 0.9923

0.90 0.99
OET 27-1 0.1279 0.7292 0.9995
OMAR 27-1 0.1279 0.7292 0.9995

0.99 0.99
OET 625-25-1 0.1364 0.9606 0.9995
OMAR 625-25-1 0.1364 0.9606 0.9995

0.95 0.95
OET 625-25-1 0.1402 0.8146 0.9972
OMAR 576-24-1 0.1402 0.8146 0.9974

Array w/
0.90 0.90

OET 625-25-1 0.1450 0.6562 0.9934
master pooling OMAR 576-24-1 0.1450 0.6562 0.9937

0.99 0.90
OET 529-23-1 0.1708 0.9606 0.9924
OMAR 529-23-1 0.1708 0.9606 0.9924

0.90 0.99
OET 729-27-1 0.1151 0.6563 0.9996
OMAR 729-27-1 0.1151 0.6563 0.9996
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Table 2.2: Largest di�erences between operating characteristics for OTCs un-
der non-informative group testing. Values of p range from 0.005 to 0.150 by
0.005. The frequency column denotes the number of times a di�erent OTC
was found for OET and OMAR among these values of p. Di�erences between
operating characteristics are rounded to four decimal places. Note that the
operating characteristic value for OET is always subtracted from the operating
characteristic value for OMAR. Thus, a negative value (indicated with paren-
theses) means that the value for OET was larger than the value for OMAR.

Largest di�erence
Algorithm Se Sp Frequency E(T )/I PSe PSp

Two-stage
hierarchical

0.99 0.99 0 - - -
0.95 0.95 3 0.0018 0.0000 0.0049
0.90 0.90 4 0.0023 0.0000 0.0054
0.99 0.90 7 0.0056 0.0000 0.0096
0.90 0.99 0 - - -

Three-stage
hierarchical

0.99 0.99 0 - - -
0.95 0.95 1 0.0014 0.0000 0.0051
0.90 0.90 3 0.0015 0.0000 0.0049
0.99 0.90 7 0.0041 (0.0098) 0.0136
0.90 0.99 1 0.0000 0.0000 0.0002

Array w/o
master
pooling

0.99 0.99 0 - - -
0.95 0.95 5 0.0010 0.0018 0.0026
0.90 0.90 8 0.0028 0.0022 0.0054
0.99 0.90 5 0.0043 0.0005 0.0076
0.90 0.99 1 0.0000 0.0006 0.0001

Array w/
master
pooling

0.99 0.99 2 0.0005 0.0006 0.0008
0.95 0.95 4 0.0012 0.0017 0.0026
0.90 0.90 8 0.0015 0.0018 0.0051
0.99 0.90 5 0.0048 0.0005 0.0077
0.90 0.99 2 0.0003 0.0026 0.0005
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and array testing without a master pool implemented via the gradient method

(McMahan et al., 2012b). For the PSOD method, we use a block size of 50

and replace its greedy optimization algorithm with examination of all possible

testing con�gurations. Array testing with a master pool is not included in our

investigations because there have been no informative group testing algorithms

proposed for it. We continue to allow the initial group sizes to range from

I = 3, ..., 40 and allow for higher initial group sizes when the overall prevalence

is very small.

To provide di�erent levels of heterogeneity among the pi for i = 1, . . . , I,

we use the expected value of order statistics from Pi ∼ beta {α, α(1− p)/p} for

i = 1, . . . , I in the same manner as in Black et al. (2015) This beta distribution

has E(Pi) = p, and we once again consider values of p ranging from 0.005 to

0.150 by 0.005. The amount of heterogeneity is controlled by α, where lower

levels indicate a larger amount of heterogeneity (see Black et al. 2015 for

further discussion regarding the choice of α).

Table 2.3 displays the results for E(Pi) = 0.01, and Appendix A provides

the results for E(Pi) = 0.05 and E(Pi) = 0.10. The displayed pooling sensi-

tivity, PSW
e , and pooling speci�city, PSW

p , are weighted averages of individual

pooling sensitivities and pooling speci�cities, respectively, for all individuals

within the initial group for a hierarchical algorithm or within the entire array

for an array testing algorithm. Expressions for these averages are provided

in Appendix A and are based on accuracy de�nitions given by Altman and

Bland (1994a). The largest di�erences for each operating characteristic across

all values of p are given in Table 2.4. Overall, while di�erences exist more

often for some algorithms than in the non-informative group testing setting,

OET and OMAR still result in the same or very similar OTCs the majority of
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the time, and, when di�erences exist, the vast majority of the di�erences likely

would not be of practical importance due to similar operating characteristic

values.

For three-stage hierarchical, the maximum di�erence in PSe for some set-

tings, such as Se = 0.90 and Sp = 0.99, may be somewhat concerning at a

�rst examination. Further investigation revealed that this occurred when the

OTC for OMAR had more sub-groups in the second stage of testing with a size

of 1 than did the OTC for OET . This is important because 1) a third stage

of testing is unnecessary for those individuals with a sub-group size of 1 in

the second stage of testing; 2) pooling sensitivity for each individual is SL
e ,

where L is the number of stages that the individual is tested within (Black

et al., 2015); and 3) PSW
e is a weighted average of each individual's pooling

sensitivity. Especially when p is large for three-stage hierarchical testing, the

initial group size can be quite small, so each individual's pooling sensitivity

plays a larger role in the weighted average. Thus, while there are some di�er-

ences in the weighted averages of the pooling sensitivities, it is due to those

few individuals who are not tested in the third stage. The individuals tested

in the same number of stages still have the same pooling sensitivity values.

2.4. Applications

We present two di�erent applications comparing the OTCs obtained from us-

ing OET or OMAR for infectious disease testing. To �nd the OTC for these and

other applications, the value of p or pi for i = 1, . . . , I is needed. Of course,

these quantities would most likely be unknown. Instead, some type of past

experience would be used by laboratories to estimate these quantities so that

an �estimated� OTC could be chosen. Also to �nd the OTC, the values of
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Table 2.4: Largest di�erences between operating characteristics for OTCs un-
der informative group testing. Values of E(Pi) = p range from 0.005 to 0.150
by 0.005. The frequency column denotes the number of times a di�erent OTC
was found among these values of p. Di�erences between operating characteris-
tics are rounded to four decimal places. Note that the operating characteristic
value for OET is always subtracted from the operating characteristic value for
OMAR. Thus, a negative value (indicated with parentheses) means that the
value for OET was larger than the value for OMAR.

Largest di�erence

Algorithm α Se Sp Frequency E(T )/I PSW
e PSW

p

2

0.99 0.99 0 - - -
0.95 0.95 7 0.0006 (0.0023) 0.0011
0.90 0.90 12 0.0010 (0.0052) 0.0023
0.99 0.90 12 0.0011 (0.0008) 0.0022

Two-stage 0.90 0.99 2 0.0003 0.0052 0.0000
hierarchical

0.5

0.99 0.99 0 - - -
0.95 0.95 3 0.0003 (0.0035) 0.0011
0.90 0.90 15 0.0008 (0.0103) 0.0022
0.99 0.90 16 0.0012 (0.0011) 0.0022
0.90 0.99 11 0.0006 0.0078 (0.0002)

2

0.99 0.99 1 0.0000 (0.0019) 0.0002
0.95 0.95 2 0.0035 0.0219 0.0033
0.90 0.90 6 0.0044 0.0152 0.0062
0.99 0.90 4 0.0035 0.0006 0.0066

Three-stage 0.90 0.99 14 0.0180 0.0500 0.0003
hierarchical

0.5

0.99 0.99 1 0.0000 0.0001 0.0001
0.95 0.95 0 - - -
0.90 0.90 3 0.0010 0.0250 0.0033
0.99 0.90 5 0.0022 0.0034 0.0070
0.90 0.99 9 0.0057 0.0355 0.0003

2

0.99 0.99 1 0.0003 0.0004 0.0005
0.95 0.95 2 0.0011 0.0012 0.0027
0.90 0.90 5 0.0016 0.0012 0.0040
0.99 0.90 4 0.0028 0.0003 0.0053

Array w/o 0.90 0.99 0 - - -
master pooling

0.5

0.99 0.99 0 - - -
0.95 0.95 4 0.0003 0.0004 0.0015
0.90 0.90 14 0.0015 0.0004 0.0032
0.99 0.90 8 0.0024 0.0001 0.0041
0.90 0.99 1 0.0003 0.0005 0.0003
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Se and Sp are needed because E(T ) and the pooling sensitivities/speci�cities

depend upon them. Laboratories can obtain these values from a number of

sources, including internal validations, research articles, product inserts for as-

says, and summaries provided by organizations such as the Centers for Disease

Control and Prevention (CDC) and the Association of Public Health Labora-

tories. For each source, the sensitivity and speci�city are actually observed

through taking a large sample. For instance, a set of known positive specimens

may be tested to evaluate the sensitivity of an assay. Alternatively, clinical-

based evaluations may be performed by applying the assay in practice and

using other means to validate true positive/negative statuses. The observed

sensitivities and speci�cities usually are treated as constants and sometimes

con�dence intervals are stated along with them. Our purpose in this section

is not to evaluate these procedures but rather use the accuracy measures as

they are in practice to determine OTCs.

Group testing is used widely for HIV testing in applications including blood

donation screening (American Red Cross, 2020) and health surveillance via

public health clinics (Sherlock et al., 2007). Branson et al. (2014) provided

the CDC's recommendations for HIV testing by laboratories. To make these

recommendations, the authors examined over 30 research articles and product

inserts, and they included the sensitivities and speci�cities associated with

each assay examined. Observed sensitivities ranged from 96.3% to 100%, and

observed speci�cities ranged from 99.03% to 100%. For our investigation here,

we use the lowest values in these ranges to �nd the OTC. Our reason for

using these particular values is because di�erences between OTCs would most

likely occur with the lowest accuracies. Table 2.5 provides the OTCs from

non-informative group testing algorithms. For these calculations, we use an
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Table 2.5: OTC summary for HIV testing using p = 0.004, Se = 0.963, and
Sp = 0.9903, with non-informative group testing. Equally sized groups are
optimal at each stage; thus, an OTC of �24-6-1� means that stage 1 has a
group of size 24, stage 2 has four groups of size 6, and stage 3 has twenty-four
groups of size 1. There are no di�erences between the OTCs.

Objective
Algorithm function OTC E(T )/I PSe PSp

Two-stage hierarchical
OET 17-1 0.1313 0.9274 0.9993
OMAR 17-1 0.1313 0.9274 0.9993

Three-stage hierarchical
OET 49-7-1 0.0732 0.8931 0.9998
OMAR 49-7-1 0.0732 0.8931 0.9998

Array w/o master pooling
OET 44-1 0.0749 0.8931 0.9997
OMAR 44-1 0.0749 0.8931 0.9997

Array w/ master pooling
OET 1936-44-1 0.0721 0.8600 0.9998
OMAR 1936-44-1 0.0721 0.8600 0.9998

overall HIV prevalence of p = 0.004 based on CDC estimates of HIV (Centers

for Disease Control and Prevention, 2019) and Census Bureau estimates of

population (U.S. Census Bureau, Population Division, 2018) in the United

States from 2016. Overall, the table shows that OET and OMAR lead to the

same OTCs for all group testing algorithms considered. While the OTCs for

array testing with master pooling are the same for OET and OMAR, a master

pool with a 44×44 array may be too large to use in practice (the largest group

size that we have seen used for HIV testing is 128 (Sullivan et al., 2011)). A

laboratory may need to choose a sub-optimal array size for such a situation.

Group testing is used widely for chlamydia testing as well. High volumes

of clinical specimens are tested each year in this manner by public health

laboratories across the United States as part of statewide surveillance projects

(e.g., see Lewis et al. (2012) and Bilder et al. (2019)). Black et al. (2012)

examined the testing performed by the Nebraska Public Health Laboratory

(NPHL) with the BD ProbeTec ET CT/GC Ampli�ed DNA Assay. A main

purpose of this paper was to evaluate how well an informative group testing
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algorithm could perform in comparison to their current implementation of

individual testing. For our purpose here, we use the observed data from the

urine specimen testing in 2009 to examine OTCs over a number of group

testing algorithms. The overall observed chlamydia prevalence was 0.080 for

females and 0.081 for males. We use these observed prevalences as our values

for p when performing non-informative group testing by gender. To implement

informative group testing, we used the beta distribution �ts given by Black

et al. (2015) for the individual probabilities of being positive pi and implement

methods similar to those in Section 2.3.2. We limit our maximum group sizes to

be 20 due to large group sizes not being used in chlamydia testing (Mund et al.,

2008). The NPHL provided assay sensitivities of Se = 0.805 and Se = 0.93 and

speci�cities of Sp = 0.96 and Sp = 0.95 for females and males, respectively.

This assay had an unusually low sensitivity for female urine specimens, and

the laboratory eventually switched after that year to the Aptima Combo 2

Assay which has a much higher sensitivity (Se = 0.947) (Food and Drug

Administration, 2018). However, to be consistent with how the actual tests

were performed, we use the accuracies for the BD assay. Table 2.6 provides the

OTCs for non-informative and informative group testing algorithms. Overall,

the table shows that OET and OMAR lead to the same OTCs for all non-

informative group testing algorithms considered. While di�erences do exist

for females when using informative hierarchical testing algorithms, these small

di�erences likely would not be of practical importance.

2.5. Conclusion

We have shown that the choice between OET and OMAR most often does not

change the OTC, and even when the OTC is di�erent, there are not practical
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di�erences in the operating characteristics. Therefore, our work helps to close

the case on the recent controversy regarding objective functions: both can be

used in practice because they lead to very similar results. Some individuals

may prefer to state that they used OMAR because it directly takes into account

accuracy at the beginning of the process. However, we tend to favor the

traditionally used OET for one main reason. Simply, laboratories need to know

the number of tests to be expected and the corresponding costs involved. In

many instances, the expected costs are directly proportional to the expected

number of tests. While the expected number of tests could also be stated

when using OMAR, this seems to be an unnecessary extra step, especially for

laboratory directors and technicians who choose the OTC.

It is important to emphasize that laboratories would not use OET with-

out still looking at accuracy. Rather than incorporating accuracy within the

objective function, they would �nd the OTC and then examine the accuracy

associated with it. If the accuracy resulting from OET (or OMAR) was un-

satisfactory, a new sub-optimal testing con�guration would be chosen with

accuracies that are acceptable. To help laboratories and those performing re-

search in this area, we make available a set of R functions in the binGroup

package that can be used to �nd the OTC or other suitable testing con�gu-

rations by using OET and OMAR. Examples of how to use these functions are

available on our research website at www.chrisbilder.com/grouptesting and in

Appendix A.

Our evaluations of OET and OMAR focus on realistic settings for infectious

disease detection when group testing would be used. Thus, we focus on values

of Se and Sp close to 1 and small values of p. When smaller values of Se and

Sp and/or larger values of p are used, there can be di�erences in the OTCs

http://www.chrisbilder.com/grouptesting
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and associated accuracy measures. For example, when Se = 0.75, Sp = 0.80,

and p = 0.10 for three-stage hierarchical testing, the OTC for OET has I = 15

and second-stage group sizes of 5 for each sub-group. For these same settings,

the OTC for OMAR has I = 12 and second-stage group sizes of 4 for each

sub-group. However, the pooling sensitivity is only PSe = 0.42 for both

testing con�gurations, which makes the use of group testing unrealistic for

this situation.

Laboratories may need to limit the particular values of I for which the

OTC is searched over, similar to what we did in Section 2.4 for the chlamydia

testing example. This may be due to physical constraints, such as a maximum

group size that can be incorporated into an automated pooling platform. Also,

this limit may be due to what is known as the �dilution e�ect� in group testing.

Because specimens are pooled together, each individual specimen becomes a

smaller part of the whole as the group size increases. This reduced portion can

make it more di�cult for an assay to identify its target, which in turn lowers

its sensitivity. Laboratories may need to place an upper limit on I in this type

of situation. Properly calibrated tests are needed whenever group testing is

used to make sure the dilution e�ect does not become a problem. Fortunately,

the dilution e�ect is now much less likely to occur due to modern nucleic acid

ampli�cation testing methods.

There are other objective functions that could be used. For example, Ma-

linovsky et al. (2016) considered maximizing E(C/T ), but concluded this to

be inferior to OMAR. Therefore, we focused only on their OMAR proposal in

our paper. Objective functions can include penalties for making classi�cation

errors. For example, Gra� and Roelo�s (1972) proposed using an objective

function that is a linear combination of the expected number of tests, the
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number of misclassi�ed negatives, and the number of misclassi�ed positives.

Subjectively chosen weights are used with the misclassi�cation measures to

increase or decrease their importance. As would be expected, there will be

weights then that result in an OTC which is quite di�erent than what would

be obtained from using OET and OMAR. We provide examples in Appendix A

illustrating these di�erences. However, the subjectiveness of these weights can

depend on the infectious disease, the laboratory, or even particular individuals

at a laboratory. Therefore, for general applications and research settings, it is

di�cult to use this or similar types of objective functions. We say this by no

means to diminish the importance of taking into account the misclassi�cation

type. Because of its importance for speci�c applications, we provide tools in

our binGroup package to �nd the OTC in those situations when this type of

control is necessary. Examples are provided again on our research website and

in Appendix A.
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Chapter 3

binGroup2: Identi�cation and estimation using group

testing

3.1. Introduction

As discussed in Chapter 1, the two primary objectives of group testing re-

search are estimation and identi�cation. The binGroup package (Bilder et al.,

2010) was created to provide researchers and practitioners functions to use

for estimation. Because functions for the identi�cation problem did not exist

in the binGroup package, a primary purpose of this dissertation was to make

these types of functions available as well.

Over time, a number of additions have been made to binGroup by multi-

ple researchers (including myself). These additions resulted in many di�erent

styles among functions in the package, making use of the package more di�-

cult than necessary. For this reason, the binGroup2 package was created to

align the binGroup functions in style and format and to incorporate new func-

tions for the group testing identi�cation problem. The identi�cation functions

in binGroup2 include those that were written for the research in Chapter 2

and to incorporate new mathematical derivations that will be presented in

Appendix B. These functions focus on calculating operating characteristics
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(e.g., expected number of tests) and �nding the optimal testing con�guration

(OTC) for commonly used hierarchical and array-based group testing algo-

rithms. Minor modi�cations have also been made to repackage and improve

documentation for most of the estimation functions in binGroup to include

in binGroup2. Information on the original binGroup package is available in

Bilder et al. (2010).

In this chapter, we show how to use four main identi�cation functions in

the binGroup2 package. The operatingCharacteristics1() (opChar1())

function calculates operating characteristics for a speci�ed testing con�gura-

tion with a single-disease assay. The OTC1() function calculates the operating

characteristics and �nds the OTC over a range of possible initial group sizes

and/or testing con�gurations with a single-disease assay. The

operatingCharacteristics2() (opChar2()) and OTC2() functions provide

the same calculations as their counterparts with a multiplex assay that tests

for two diseases. All four of these functions perform calculations for a number

of group testing algorithms. Appendix C contains the R documentation for

these functions and for the binGroup2 package.

In addition, we will brie�y summarize the estimation functions included

in binGroup2 and provide tables illustrating the mapping of R functions from

binGroup to binGroup2. All of the functions written for this dissertation and

the supporting functions written for other papers (see Section 3.4) are included

in the binGroup2 package. This package is available from the Comprehensive

R Archive Network (CRAN).



42

3.2. Operating characteristics for group testing algorithms

In Chapter 2, we examined operating characteristics for seven di�erent group

testing algorithms, including hierarchical and array testing algorithms for both

homogeneous and heterogeneous populations. We have written an R function

to calculate operating characteristics for these group testing algorithms using

a single-disease assay. Also, we have written an analogous R function for

multiplex assays. We discuss both of these functions next.

3.2.1. Single-disease assays

The operatingCharacteristics1() (opChar1()) function calculates oper-

ating characteristics for group testing algorithms using a single-disease assay.

Suppose a laboratory wants to implement the simplest form of group testing,

two-stage hierarchical testing, to detect a single disease among a continuous

stream of specimens that arrive daily. The opChar1() function can be used to

determine the expected number of tests and corresponding diagnostic accuracy

for a speci�c initial group size.

To illustrate opChar1() in a simple setting, suppose a group size of 5 is

used in a situation with a disease prevalence of 0.05. Note that this is the

prevalence and group size used by the Nebraska Public Health Laboratory

in March 2020 for its calculations when planning to test for SARS-CoV-2,

the virus that causes COVID-19, via group testing (Nebraska Department of

Health and Human Services, 2020; Abdalhamid et al., 2020; Bilder et al., 2020).

If we assume a sensitivity of 0.99 and a speci�city of 0.99 (good estimates are

not available as of March 2020), the opChar1() function can be used the

following way:
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> library(binGroup2)
> # Example 1 - non -informative two -stage hierarchical testing
> config.mat1 <- matrix(data = c(rep(1, 5), 1:5), nrow = 2,

ncol = 5, byrow = TRUE , dimnames = list(Stage = 1:2,
Individual = 1:5))

> config.mat1
Individual

Stage 1 2 3 4 5
1 1 1 1 1 1
2 1 2 3 4 5

> results1 <- opChar1(algorithm = "D2", p = 0.05, Se =
rep (0.99, 2), Sp = rep (0.99 , 2), hier.config = config.mat1)

Number of minutes running: 0

> names(results1)
[1] "algorithm" "prob" "Se" "Sp" "Config"
[6] "p.vec" "ET" "value" "Accuracy"
> results1$ET # One component of the returned list
[1] 2.158473
> names(results1$Config)
[1] "Stage1"
> names(results1$Accuracy)
[1] "Individual" "Overall"

> summary(results1)

Algorithm: Non -informative two -stage hierarchical testing

Testing configuration:
Stage 1: 5

Expected number of tests: 2.16
Expected number of tests per individual: 0.4317

Accuracy for individuals:
PSe PSp PPPV PNPV Individuals

1 0.9801 0.9981 0.9642 0.9990 All

Overall accuracy of the algorithm:
PSe PSp PPPV PNPV

1 0.9801 0.9981 0.9642 0.9990

PSe denotes the pooling sensitivity.
PSp denotes the pooling specificity.
PPPV denotes the pooling positive predictive value.
PNPV denotes the pooling negative predictive value.

We �rst de�ne a matrix, config.mat1, that speci�es the full testing con�gu-

ration for the hierarchical testing algorithm. This matrix, known as a group

membership matrix (Bilder et al., 2019), is provided in the hier.config ar-

gument of op.Char1(). The rows correspond to the stages of testing, the

columns correspond to each individual to be tested, and the cell values specify

the group number of each individual at each stage. For example, row 1 of the

matrix shows that each individual is being tested as one group in stage 1, and

row 2 of the matrix shows that each individual is tested separately in stage

2. While row and column names are used here for readability, these are not
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required. For array testing algorithms, the row/column size is provided in the

rowcol.sz argument of op.Char1() and the hier.config argument is not

used. Only square arrays are considered for array testing algorithms because

that is how array testing is most often applied.

Within the opChar1() function, we also specify the desired group testing

algorithm. While we speci�ed algorithm = "D2" here for non-informative

two-stage hierarchical testing, other options include hierarchical testing up to

four stages and array testing with and without master pooling. The overall

prevalence of disease is speci�ed with the p argument. The sensitivity and

speci�city of the diagnostic test are speci�ed by the Se and Sp arguments,

respectively. Their values are given in vectors, where one value is stated for

each stage of testing (in order). The values in Example 1 are speci�ed as (stage

1, stage 2). As another example, values are speci�ed as (stage 1, stage 2, stage

3) for three-stage hierarchical testing or (master group testing, row/column

testing, individual testing) for array testing with master pooling. If a single

value is provided, sensitivity/speci�city values are assumed to be equal for all

stages of testing.

The list of results for opChar1() includes the algorithm (algorithm), over-

all probability of disease (prob), sensitivity (Se), speci�city (Sp), and testing

con�guration (Config) provided by the user. The Config result provides group

sizes for each stage of hierarchical testing algorithms or the row/column size

and array size for array testing algorithms. The vector of individual proba-

bilities (all of which are equal in Example 1) is provided by p.vec. Operat-

ing characteristics calculated are the expected number of tests (ET), expected

number of tests per individual (value), and accuracy measures (Accuracy) for

individuals and the overall algorithm.



45

Accuracy measures include the pooling sensitivity, pooling speci�city, pool-

ing positive predictive value, and pooling negative predictive value. Individual

accuracy measures (Accuracy$Individual) are calculated for each individual

speci�ed (by number) in the optional a argument of op.Char1(). The a argu-

ment is not provided here, so individual accuracy measures for all individuals

in the algorithm are calculated. Individual accuracy measures are displayed

in a matrix, where each row is a unique set of individual accuracy measures.

The �Individuals� column lists which individuals share those measures. In

Example 1, the �Individuals� column displays �All� instead of listing every

individual in the algorithm because the accuracy measures for all individuals

are equal. Overall accuracy measures (Accuracy$Overall) for the algorithm

are displayed as well. These overall measures are weighted averages of the cor-

responding individual accuracy measures for all individuals in the algorithm.

Expressions for these averages are provided in Appendix A.

The summary.opChar() method function provides a concise summary for

objects of class �opChar� returned by opChar1(). Information displayed in-

cludes the speci�ed testing con�guration, expected number of tests, expected

number of tests per individual, individual accuracy measures, and overall accu-

racy measures of the algorithm. Note that R is referred to as an object-oriented

programming language. This is because generic functions, like summary(),

can produce di�erent results due to the class of the object used with it. R

checks an object's class when a generic function is run and looks for a method

function with the name format <generic function>.<class name>. The

summary.opChar() function is the method function called when summary() is

used with an object of class �opChar�.

Additional features of opChar1() can be demonstrated with an informative
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group testing example. Suppose that, as is the case in most real-life applica-

tions, the probability of disease is not the same for all individuals being tested.

For example, the Nebraska Public Health Laboratory would like to categorize

specimens tested for SARS-CoV-2 as either high risk (high probability) or low

risk (low probability) to maximize the potential bene�t from group testing. To

illustrate this approach, we will again use a two-stage hierarchical algorithm,

but this time with a heterogeneous probability vector. Informative two-stage

hierarchical testing is implemented in binGroup2 via the pool-speci�c optimal

Dorfman (PSOD) method described in McMahan et al. (2012a). Suppose a

block size of 25 represents the total number of specimens to be tested in a

laboratory in a single day. The �rst stage of the algorithm involves testing

specimens in �ve groups of �ve individuals each. We will again assume a sen-

sitivity of 0.99 and a speci�city of 0.99. The opChar1() function can be used

the following way:

> # Example 2 - informative two -stage hierarchical testing
> config.mat2 <- matrix(data = c(rep(x = 1:5, each = 5),

1:25), nrow = 2, ncol = 25, byrow = TRUE , dimnames =
list(Stage = 1:2, Individual = 1:25))

> set.seed (1002)
> p.vec <- expectOrderBeta(p = 0.05, alpha = 0.1, grp.sz = 25)
> p.vec
[1] 1.709007e-11 5.071419e-10 7.221785e-09 6.573282e-08
[5] 4.299270e-07 2.155123e-06 8.632776e-06 2.849657e-05
[9] 7.953888e-05 1.923566e-04 4.133953e-04 8.108784e-04

[13] 1.490215e-03 2.622304e-03 4.534883e-03 7.483465e-03
[17] 1.224643e-02 1.966959e-02 3.108131e-02 4.847474e-02
[21] 7.493288e-02 1.154149e-01 1.785798e-01 2.817468e-01
[25] 4.702845e-01

> results2 <- opChar1(algorithm = "ID2", probabilities =
p.vec , Se = 0.99, Sp = 0.99, hier.config = config.mat2 , a
= 1:5, print.time = FALSE)

> names(results2)
[1] "algorithm" "prob" "alpha" "Se"
[5] "Sp" "Config" "p.vec" "ET"
[9] "value" "Accuracy"

> results2$alpha
[1] NA

> summary(results2)

Algorithm: Informative two -stage hierarchical testing

Testing configuration:
Block size: 25
Group sizes: 5,5,5,5,5

Expected number of tests: 9.50
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Expected number of tests per individual: 0.3802

Accuracy for individuals:
PSe PSp PPPV PNPV Individuals

1 0.9801 0.9999 0.0000 1.0000 1
2 0.9801 0.9999 0.0000 1.0000 2
3 0.9801 0.9999 0.0001 1.0000 3
4 0.9801 0.9999 0.0006 1.0000 4
5 0.9801 0.9999 0.0042 1.0000 5

Overall accuracy of the algorithm:
PSe PSp PPPV PNPV

1 0.9801 0.9986 0.9740 0.9990

PSe denotes the pooling sensitivity.
PSp denotes the pooling specificity.
PPPV denotes the pooling positive predictive value.
PNPV denotes the pooling negative predictive value.

The config.mat2 matrix provides the testing con�guration and is speci�ed in

the hier.config argument of opChar1().

The expectOrderBeta() function creates a heterogeneous vector of indi-

vidual probabilities that are the expected value of order statistics from a beta

distribution. This function is based on the beta.dist() function written for

Black et al. (2015), where we discuss our additions/changes to it shortly. The

p argument represents the overall disease prevalence. In the context of a beta

distribution, it is the expected value of a random variable with this distribu-

tion, p = α/ (α + β), where α > 0 and β > 0 are shape parameters (Casella

and Berger, 2002). The alpha argument represents the α shape parameter for

a beta distribution, and it speci�es the degree of heterogeneity in the prob-

ability vector. Higher values of α correspond to lower levels of heterogeneity

among the generated individual probabilities. The number of probabilities

desired is given by the grp.sz argument.

Depending on the context that the function is used in, grp.sz may rep-

resent the initial group size for a group testing algorithm. Depending on the

speci�ed p, α, and number of desired probabilities, simulation may be nec-

essary to determine the probabilities. For this reason, expectOrderBeta()

augments beta.dist() by checking whether simulation is necessary. An op-
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tional num.sim argument specifying the number of simulations can be passed

to expectOrderBeta() through the ... argument in opChar1(). While simu-

lation is not needed for Example 2, setting a seed is good practice and ensures

reproducibility of results in informative settings.

The sensitivity and speci�city provided in Example 2 are single values

rather than vectors, meaning that the sensitivity values are equal, and the

speci�city values are equal for all stages of testing. Example 2 utilizes the

optional a argument to calculate individual accuracy measures only for the

�rst 5 individuals. Because none of these individuals have equal accuracy

measures, measures for all 5 individuals are displayed in the output. The a

argument can also be used to specify a list of non-consecutive individuals. The

print.time argument is also optional and determines whether the length of

time for calculations to complete is printed. In Example 2, we have decided

not to print the time elapsed during calculations.

The components within the returned list of opChar1() are the same for

non-informative settings, but now with the addition of alpha for this infor-

mative group testing example. In Example 2, we generated a vector of in-

dividual probabilities outside the opChar1() function and speci�ed it using

the probabilities argument. Because we did not use the optional alpha

argument, alpha in the list of results does not have a value. Another way to

generate individual risk probabilities is to do so inside the opChar1() function

by specifying an overall disease prevalence p and a shape parameter alpha for

the beta distribution. By using the same random seed value, p = 0.05, and

α = 0.1, we can produce the same results as in Example 2.

> set.seed (1002)
> results2a <- opChar1(algorithm = "ID2", p = 0.05, alpha =

0.1, Se = 0.99, Sp = 0.99, hier.config = config.mat2 , a =
1:5, print.time = FALSE)
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> results2a$p.vec
[1] 1.709007e-11 5.071419e-10 7.221785e-09 6.573282e-08
[5] 4.299270e-07 2.155123e-06 8.632776e-06 2.849657e-05
[9] 7.953888e-05 1.923566e-04 4.133953e-04 8.108784e-04

[13] 1.490215e-03 2.622304e-03 4.534883e-03 7.483465e-03
[17] 1.224643e-02 1.966959e-02 3.108131e-02 4.847474e-02
[21] 7.493288e-02 1.154149e-01 1.785798e-01 2.817468e-01
[25] 4.702845e-01

> summary(results2a)

<< OUTPUT EDITED >>

Expected number of tests: 9.50
Expected number of tests per individual: 0.3802

Accuracy for individuals:
PSe PSp PPPV PNPV Individuals

1 0.9801 0.9999 0.0000 1.0000 1
2 0.9801 0.9999 0.0000 1.0000 2
3 0.9801 0.9999 0.0001 1.0000 3
4 0.9801 0.9999 0.0006 1.0000 4
5 0.9801 0.9999 0.0042 1.0000 5

Overall accuracy of the algorithm:
PSe PSp PPPV PNPV

1 0.9801 0.9986 0.9740 0.9990

<< OUTPUT EDITED >>

The vector of individual probabilities (p.vec) in the results is the same as

the vector we generated using expectOrderBeta() outside the opChar1()

function.

3.2.2. Multiplex assays

Multiplex assays test for multiple diseases in a single application. If a group

tests negative for both diseases, all members of the group are declared negative.

If a group tests positive for at least one disease, retesting occurs according to

the group testing algorithm. With multiplex assays, we have a set of joint

probabilities of disease, one for each set of potential binary outcomes for the

diseases. For this dissertation, we focus only on the two disease case. In this

situation, there are four joint probabilities to consider: p00, the probability

that an individual tests negative for both diseases; p10, the probability that an

individual tests positive for only the �rst disease; p01, the probability that an

individual tests positive for only the second disease; and p11, the probability
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that an individual tests positive for both diseases. We use the ordering of

(p00, p10, p01, p11) throughout our discussion.

The operatingCharacteristics2() (opChar2()) function calculates op-

erating characteristics for group testing algorithms with a multiplex assay that

tests for two diseases. Calculations for hierarchical group testing algorithms

are performed as described in Bilder et al. (2019) and calculations for array-

based group testing algorithms are performed as described in Hou et al. (2020).

The required arguments are generally the same as for opChar1(), where we

describe exceptions during our discussion as needed. We show below how to

calculate operating characteristics for non-informative �ve-stage hierarchical

testing.

> # Example 3 - non -informative five -stage
> # hierarchical testing
> config.mat3 <- matrix(data = c(rep(1, 20), rep(1, 10),

rep(2, 10), rep(c(1, 2, 3, 4), each = 5), rep(1, 3),
rep(2, 2), rep(3, 3), rep(4, 2), rep(5, 3), rep(6, 2),
rep(7, 3), 8, 9, 1:18, NA, NA), nrow = 5, ncol = 20, byrow
= TRUE , dimnames = list(Stage = 1:5, Individual = 1:20))

> config.mat3
Individual

Stage 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
3 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4
4 1 1 1 2 2 3 3 3 4 4 5 5 5 6 6 7 7 7 8 9
5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 NA NA

> results3 <- opChar2(algorithm = "D5", p.vec = c(0.95, 0.02,
0.02, 0.01), Se = c(0.96 , 0.98), Sp = c(0.99, 0.99) ,
hier.config = config.mat3 , ordering = matrix(data = c(0,
1, 0, 1, 0, 0, 1, 1), nrow = 4, ncol = 2), print.time =
FALSE)

> names(results3)
[1] "algorithm" "prob.vec" "Se" "Sp" "Config"
[6] "p.mat" "ET" "value" "Accuracy"
> names(results3$Config)
[1] "Stage1" "Stage2" "Stage3" "Stage4"
> names(results3$Accuracy)
[1] "Disease 1 Individual" "Disease 2 Individual" "Overall"

> results3$Se
Stage

Disease 1 2 3 4 5
1 0.96 0.96 0.96 0.96 0.96
2 0.98 0.98 0.98 0.98 0.98

> results3$Sp
Stage

Disease 1 2 3 4 5
1 0.99 0.99 0.99 0.99 0.99
2 0.99 0.99 0.99 0.99 0.99

> summary(results3)
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Algorithm: Non -informative five -stage hierarchical testing

Testing configuration:
Stage 1: 20
Stage 2: 10,10
Stage 3: 5,5,5,5
Stage 4: 3,2,3,2,3,2,3,1,1

Expected number of tests: 7.96
Expected number of tests per individual: 0.3978

Disease 1 accuracy for individuals:
PSe PSp PPPV PNPV Individuals

1 0.8828 0.9989 0.9615 0.9964 1,2,3,6,7,8,11,12,13,16,17,18
2 0.8821 0.9993 0.9760 0.9964 4,5,9,10,14,15
3 0.9048 0.9981 0.9349 0.9971 19,20

Disease 2 accuracy for individuals:
PSe PSp PPPV PNPV Individuals

1 0.9388 0.9989 0.9641 0.9981 1,2,3,6,7,8,11,12,13,16,17,18
2 0.9385 0.9993 0.9778 0.9981 4,5,9,10,14,15
3 0.9507 0.9981 0.9381 0.9985 19,20

Overall accuracy of the algorithm:
PSe PSp PPPV PNPV

1 0.8848 0.9989 0.9630 0.9964
2 0.9399 0.9990 0.9654 0.9981

PSe denotes the pooling sensitivity.
PSp denotes the pooling specificity.
PPPV denotes the pooling positive predictive value.
PNPV denotes the pooling negative predictive value.

The config.mat3 matrix describes the testing con�guration for the �ve-stage

algorithm. Note the use of �NA� to indicate that the 19th and 20th individuals

are not tested in the �fth stage because individual testing already occurred for

these individuals in the fourth stage of the algorithm.

Because this is a non-informative setting, a vector of overall joint probabil-

ities is speci�ed using the p.vec argument. The ordering argument speci�es

the ordering for the binary responses of the diseases. The columns of the

matrix correspond to each disease and the rows of the matrix correspond to

each of the four sets of binary outcomes. Together with the joint probabili-

ties provided in p.vec, this speci�es p00 = 0.95, p10 = 0.02, p01 = 0.02, and

p11 = 0.01.

Because a vector of two values is speci�ed for the sensitivity/speci�city,

the sensitivity/speci�city values for all stages are assumed to be equal. The

�rst value in the vector is used for the �rst disease and the second value in
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the vector is used for the second disease. The opChar2() function generates a

sensitivity/speci�city matrix of appropriate size based on the speci�ed group

testing algorithm, available in the Se and Sp results objects. Alternatively,

the sensitivity/speci�city values can be speci�ed by matrices, where one value

is given for each disease at each stage of testing. The rows of the matrix

correspond to each disease and the columns of the matrix correspond to each

stage of testing, s = 1, ..., S.

The same operating characteristics are calculated in opChar2() as in

opChar1(), and individual accuracy measures are now calculated for each

disease. The overall joint probabilities speci�ed by the user are provided

by prob.vec and the matrix of joint probabilities for each individual are

provided by p.mat. Accuracy measures for each individual speci�ed in

the a argument are provided in Accuracy$'Disease 1 Individual' and

Accuracy$'Disease 2 Individual'. Because we did not specify a list of

individuals in the a argument in Example 3, accuracy measures for all indi-

viduals are displayed. The overall accuracy of the algorithm is displayed in

a matrix of two rows. The �rst row corresponds to accuracy measures for

the �rst disease and the second row corresponds to the accuracy measures

for the second disease. The summary.opChar() function is compatible with

opChar2() and provides the speci�ed testing con�guration, expected number

of tests, expected number of tests per individual, individual accuracy measures

for each disease, and overall accuracy measures for the algorithm.

In Example 3, we assumed that all 20 individuals had the same set of joint

probabilities. For heterogeneous populations, users can specify a matrix of

individual probabilities in one of two ways: 1) a vector of length four containing

shape parameters for a Dirichlet distribution that leads to the simulation of the
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necessary joint probabilities, or 2) a matrix containing the joint probabilities

for each individual of interest. Consider a group of 5 individuals. We can

specify a matrix of individual probabilities in the following way:

> joint.p <- matrix(data = c(0.90, 0.04, 0.04, 0.02, 0.92,
0.03, 0.03, 0.02, 0.94, 0.03, 0.02, 0.01, 0.95, 0.02,
0.02, 0.01, 0.96, 0.02, 0.01, 0.01) , nrow = 4, ncol = 5,
byrow = FALSE)

> rownames(joint.p) <- c("00" , "10", "01", "11")
> colnames(joint.p) <- 1:5
> joint.p

1 2 3 4 5
00 0.90 0.92 0.94 0.95 0.96
10 0.04 0.03 0.03 0.02 0.02
01 0.04 0.03 0.02 0.02 0.01
11 0.02 0.02 0.01 0.01 0.01

The rows of the matrix correspond to the four joint probabilities and the

columns correspond to each individual in the algorithm. This matrix can be

speci�ed in the probabilities argument of opChar2(). Alternatively, we can

use the alpha argument in opChar2() to specify a vector of shape parameters

for a Dirichlet distribution. Using the same testing con�guration and diagnos-

tic accuracy as in Example 3, we can calculate operating characteristics for an

informative setting in the following way:

> results3a <- opChar2(algorithm = "ID5", alpha = c(18.25 ,
0.75, 0.75, 0.25), Se = c(0.96, 0.98) , Sp = c(0.99, 0.99),
hier.config = config.mat3)

> results3a$alpha.vec
[1] 18.25 0.75 0.75 0.25
> results3a$p.mat

1 2 3 4 5
00 0.9818650992 0.975220605 0.957523560 0.95518040 0.941661877
10 0.0107148978 0.002383102 0.035062204 0.01020303 0.002262310
01 0.0070155163 0.020264074 0.006309220 0.01744923 0.046596268
11 0.0004044867 0.002132218 0.001105015 0.01716733 0.009479545

<< OUTPUT EDITED >>

16 17 18 19 20
00 0.87651645 0.866355783 0.85353355 0.7804062963 0.7421553006
10 0.06069141 0.105318444 0.10013884 0.0052134818 0.0319714149
01 0.01564643 0.021725148 0.01673743 0.2140780373 0.2249153986
11 0.04714571 0.006600624 0.02959018 0.0003021846 0.0009578858

Additional details on the use of the Dirichlet distribution for this purpose are

provided in Bilder et al. (2019). The user-speci�ed vector of shape parameters
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is provided in alpha.vec of the results. The matrix of joint probabilities for

each individual are provided in p.mat.

Additional examples using the opChar1() and opChar2() functions (e.g.,

array testing) are provided in the R documentation for the functions in

binGroup2. This documentation is also provided in Appendix C of this dis-

sertation.

3.3. Optimal testing con�gurations for group testing algorithms

In Chapter 2, we discussed the importance of choosing group sizes when im-

plementing group testing. In practice, group sizes are chosen by minimizing

an objective function, usually the expected number of tests per individual.

The set of group sizes corresponding to the minimum value of the objective

function is the optimal testing con�guration (OTC). Chapter 2 examined sev-

eral di�erent objective functions and provided comparisons for seven di�erent

group testing algorithms, including hierarchical and array testing algorithms

for both homogeneous and heterogeneous populations. We have written an R

function to �nd the optimal testing con�guration over every possible con�gu-

ration for those group testing algorithms using a single-disease assay. We have

also written a comparable R function for multiplex assays. We discuss both

of these functions next.

3.3.1. Single-disease assays

The OTC1() function (a.k.a., the OTC() function in Chapter 2 for binGroup)

�nds the OTC for group testing algorithms with a single-disease assay and

computes the associated operating characteristics, as described in Chapter 2.

The required arguments are the same as for opChar1() with two exceptions: 1)
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initial group sizes are speci�ed instead of a speci�c testing con�guration and 2)

a list of objective functions is provided for �nding the OTC. An initial group

size or range of initial group sizes (or row/column sizes) is speci�ed using

the group.sz argument. The obj.fn argument speci�es a list of objective

functions which are minimized to �nd the OTC.

Options for the objective functions include the expected number of tests

per individual; the expected number of tests divided by the expected number

of correct classi�cations (Malinovsky et al., 2016); and a linear combination of

the expected number of tests, the number of misclassi�ed negatives, and the

number of misclassi�ed positives (Gra� and Roelo�s, 1972). These objective

functions are referred to as ET, MAR, and GR, respectively, where the latter

two objective functions are termed for the authors of the papers in which

the objective functions were presented. The GR objective function requires

a matrix of weights, speci�ed in the weights argument, for the number of

misclassi�ed negatives and misclassi�ed positives. The rows of the matrix

correspond to each set of weights and up to six sets of weights are allowed.

The available group testing algorithms include up to three-stage hierarchical

testing and array testing with and without master pooling.

We show below how to use the OTC1() function to �nd the OTC for an

informative three-stage hierarchical group testing algorithm with sensitivity

and speci�city that vary across stages of testing and individual probabilities

that are the expected values of order statistics from a beta(0.5, 49.5) distribu-

tion. Note that random variables from this beta distribution have an expected

value of E (Pi) = 0.01. Just as in the opChar1() function, we can alternatively

specify a vector of individual probabilities using the probabilities argument.

> # Example 4 - OTC for informative three -stage
> # hierarchical testing
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> set.seed (1234)
> results4 <- OTC1(algorithm = "ID3", p = 0.01, alpha = 0.5,

Se = c(0.95 , 0.95, 0.98), Sp = c(0.96 , 0.96, 0.99) ,
group.sz = 3:30, obj.fn = c("ET", "MAR", "GR"), weights =
matrix(data = c(1, 1, 10, 10, 1, 10), nrow = 3, ncol = 2,
byrow = TRUE))

Initial Group Size = 3
Initial Group Size = 4

<< OUTPUT EDITED >>

Initial Group Size = 29
Initial Group Size = 30

Number of minutes running: 0.34

> names(results4)
[1] "algorithm" "prob" "alpha" "Se"
[5] "Sp" "opt.ET" "opt.MAR" "opt.GR1"
[9] "opt.GR2" "opt.GR3" "Configs" "Top.Configs"

> names(results4$opt.ET)
[1] "OTC" "p.vec" "ET" "value" "Accuracy"
> names(results4$opt.ET$OTC)
[1] "Stage1" "Stage2"

> results4$Configs
I config ET value PSe PSp PPPV PNPV

1 28 13,7,5,3 3.5120 0.1254 0.8844 0.9996 0.9532 0.9988
2 29 14,7,5,3 3.6378 0.1254 0.8844 0.9995 0.9516 0.9988
3 30 15,7,5,3 3.7692 0.1256 0.8844 0.9995 0.9499 0.9988
4 27 13,7,4,3 3.3934 0.1257 0.8844 0.9996 0.9549 0.9988
5 26 13,6,4,3 3.2710 0.1258 0.8844 0.9996 0.9567 0.9988

<< OUTPUT EDITED >>

24 7 5,2 1.4067 0.2010 0.8844 0.9998 0.9780 0.9988
25 6 5,1 1.3339 0.2223 0.8935 0.9994 0.9339 0.9989
26 5 4,1 1.2604 0.2521 0.8944 0.9994 0.9362 0.9989
27 4 3,1 1.2011 0.3003 0.8955 0.9994 0.9358 0.9989
28 3 2,1 1.1553 0.3851 0.8970 0.9993 0.9303 0.9990

> head(results4$Top.Configs)
I config ET value PSe PSp PPPV PNPV

1 28 13,7,5,3 3.5120 0.1254 0.8844 0.9996 0.9532 0.9988
2 29 14,7,5,3 3.6378 0.1254 0.8844 0.9995 0.9516 0.9988
3 28 14,7,4,3 3.5132 0.1255 0.8844 0.9996 0.9531 0.9988
4 28 14,6,5,3 3.5146 0.1255 0.8844 0.9996 0.9531 0.9988
5 30 15,7,5,3 3.7692 0.1256 0.8844 0.9995 0.9499 0.9988
6 27 13,7,4,3 3.3934 0.1257 0.8844 0.9996 0.9549 0.9988

> summary(results4)

Algorithm: Informative three -stage hierarchical testing

Optimal testing configuration:
Stage 1 Stage 2

ET 28 13,7,5,3
MAR 28 13,7,5,3
GR1 28 13,7,5,3
GR2 23 11,5,4,3
GR3 28 13,7,5,3

Expected number of tests:
E(T) Value

ET 3.51 0.1254
MAR 3.51 0.1256
GR1 3.51 0.1270
GR2 2.91 0.1412
GR3 3.51 0.1373

E(T) denotes the expected number of tests.
Value denotes the objective function value per individual.

Overall accuracy of the algorithm:
PSe PSp PPPV PNPV

ET 0.8844 0.9996 0.9532 0.9988
MAR 0.8844 0.9996 0.9532 0.9988
GR1 0.8844 0.9996 0.9532 0.9988
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GR2 0.8844 0.9996 0.9616 0.9989
GR3 0.8844 0.9996 0.9532 0.9988

PSe denotes the pooling sensitivity.
PSp denotes the pooling specificity.
PPPV denotes the pooling positive predictive value.
PNPV denotes the pooling negative predictive value.

Because we speci�ed a range of group sizes (I = 3, ..., 30) over which to �nd the

OTC, an appropriately-sized vector of individual probabilities is newly gen-

erated for each initial group size in the range using the expectOrderBeta()

function described in Section 3.2.1. We compare OTCs for all three objec-

tive functions by specifying obj.fn = c("ET","MAR","GR"), where the GR

objective function from Gra� and Roelo�s (1972) uses three di�erent sets of

weights speci�ed in the weights argument.

The results produced by the OTC1() function are similar to those produced

by the opChar1() function, and include the algorithm, overall probability of

disease, α shape parameter for the beta distribution (for informative testing

settings only), sensitivity, and speci�city as speci�ed by the user. Results

for each requested objective function (provided in opt.ET, for example) in-

clude the OTC (OTC) and the corresponding vector of individual probabilities

(p.vec), expected number of tests (ET), objective function value per individual

(value), and overall accuracy measures for the algorithm (Accuracy). Similar

to the Config result produced by opChar1() and opChar2(), the OTC result

details the full testing con�guration (group sizes for each stage in hierarchical

testing algorithms or row/column sizes for array testing algorithms).

Additionally, the OTC1() function provides results for some con�gurations

other than the OTC. For algorithms where there is only one con�guration for

each initial group size (e.g., non-informative two-stage hierarchical or array

testing), results for each initial group size are provided (Configs). For al-

gorithms where there is more than one possible con�guration for each initial
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group size (e.g., informative two-stage hierarchical or three-stage hierarchical

testing), two sets of con�gurations are provided: 1) the best con�guration for

each initial group size (Configs), and 2) the top 10 con�gurations for each

initial group size (Top.Configs). The summary.OTC() function provides a

concise summary for objects of class �OTC� returned by OTC1(). Information

displayed includes the optimal testing con�guration, expected number of tests,

objective function value per individual, and overall accuracy measures of the

algorithm for each objective function.

Notice that the OTC for the GR2 objective function (with weights of D1 =

10 and D2 = 10) di�ers from the others. The OTC for GR2 has an initial group

size of 23 with stage 2 group sizes of 11, 5, 4, and 3 and 2.91/23 = 0.1265

expected tests per individual. In contrast, the OTC for all other objective

functions is an initial group size of 28 with stage 2 group sizes of 13, 7, 5, and

3 and 3.51/28 = 0.1254 expected tests per individual. The pooling predictive

values are slightly higher for GR2 than for the other objective functions. All

other accuracy measures are the same as for other objective functions up to

four decimal places.

The optional trace argument determines whether the progress of calcula-

tions should be printed for each initial group size provided by the user. The

optional print.time argument is available for the OTC1() function as well.

3.3.2. Multiplex assays

The OTC2() function �nds the OTC for group testing algorithms with a mul-

tiplex assay that tests for two diseases and computes the associated operating

characteristics. Calculations are performed the same as in the opChar2() func-

tion. The required arguments are the same as for OTC1(), except that no list
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of objective functions is provided. The OTC is found only for the expected

number of tests per individual. This simpli�cation was made due to the results

described in Chapter 2. The joint probabilities are speci�ed in the same way

as for opChar2(). Available group testing algorithms include up to three-stage

hierarchical testing and array testing with and without master pooling. We

show below how to �nd the OTC for non-informative array testing with master

pooling.

> # Example 5 - non -informative array testing
> # with master pooling
> Se <- matrix(data = rep(0.95, 6), nrow = 2, ncol = 3,

dimnames = list(Infection = 1:2, Stage = 1:3))
> Sp <- matrix(data = rep(0.99, 6), nrow = 2, ncol = 3,

dimnames = list(Infection = 1:2, Stage = 1:3))
> results2 <- OTC2(algorithm = "A2M", p.vec = c(0.90, 0.04,

0.04, 0.02), Se = Se, Sp = Sp, ordering = matrix(data =
c(0, 1, 0, 1, 0, 0, 1, 1), nrow = 4, ncol = 2), group.sz =
3:20)

Row/Column Size=3, Array Size=9
Row/Column Size=4, Array Size =16

<< OUTPUT EDITED >>

Row/Column Size=19, Array Size =361
Row/Column Size=20, Array Size =400

Number of minutes running: 0.15

> names(results5)
[1] "algorithm" "prob.vec" "Se" "Sp"
[5] "opt.ET" "Configs"
> names(results5$opt.ET)
[1] "OTC" "p.mat" "ET" "value" "Accuracy"
> names(results5$opt.ET$OTC)
[1] "Array.dim" "Array.sz"

> summary(results5)

Algorithm: Non -informative array testing with master pooling

Optimal testing configuration:
Row/column size Array size

ET 8 64

Expected number of tests:
E(T) Value

ET 34.77 0.5432

E(T) denotes the expected number of tests.
Value denotes the objective function value per individual.

Overall accuracy of the algorithm:
PSe PSp PPPV PNPV

1 0.8919 0.9976 0.9601 0.9931
2 0.8919 0.9976 0.9601 0.9931

PSe denotes the pooling sensitivity.
PSp denotes the pooling specificity.
PPPV denotes the pooling positive predictive value.
PNPV denotes the pooling negative predictive value.
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The sensitivity and speci�city values (speci�ed in matrices) are equal for all

stages of testing and all individuals share the same set of joint probabilities.

For array testing algorithms, the group.sz argument speci�es the row/column

size for testing. All of the functions described in this chapter consider only

square arrays for array testing algorithms, which is how array testing is usually

applied. Because we have speci�ed a range of row/column sizes over which

to �nd the OTC, the matrix of joint probabilities for each individual is newly

generated for each array so that the correct number of individuals are speci�ed.

The same operating characteristics are calculated as in OTC1(). Because

the only objective function option available is the expected number of tests

per individual, all OTC results are provided in opt.ET. For array testing al-

gorithms, the OTC results include the row/column size (Array.dim) and the

array size (Array.sz). Similar con�gurations are provided as well. The

summary.OTC() function is compatible with OTC2() and provides the opti-

mal testing con�guration, expected number of tests, expected number of tests

per individual, and overall accuracy measures for the algorithm. Overall ac-

curacy measures for each disease are displayed in a matrix, where each row

corresponds to a disease.

3.4. Calculation details

Calculations of operating characteristics in binGroup2 are performed by uti-

lizing code written for several papers by other authors. New code was also

written for array testing with master pooling. This section provides details

on the mathematical expressions and R functions used for the group testing

algorithms available in OTC1(), OTC2(), opChar1(), and opChar2().
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3.4.1. Single-disease assays

Operating characteristics for hierarchical testing algorithms, with the excep-

tion of informative two-stage hierarchical testing, are calculated based on ex-

pressions provided in Black et al. (2015). The opChar1() and OTC1() functions

utilize the hierarchical.desc() function, which implements up to four-stage

hierarchical testing and was written for the same paper. Informative two-stage

hierarchical testing (Dorfman) is implemented via the pool-speci�c optimal

Dorfman (PSOD) method described in McMahan et al. (2012a), where the

greedy algorithm proposed for PSOD is replaced by considering all possible

testing con�gurations. For this algorithm, the opChar1() and OTC1() func-

tions utilize the characteristics.pool() and accuracy.dorf() functions

written for McMahan et al. (2012a). The former function is used to calculate

the expected number of tests and the latter function calculates the individual

accuracy measures for the algorithm.

Operating characteristics for array testing without master pooling are cal-

culated based on expressions provided in McMahan et al. (2012b). Infor-

mative array testing without master pooling is implemented using the gradi-

ent arrangement (the most e�cient array design) for the matrix of individ-

ual risk probabilities, where higher-risk individuals are grouped in the left-

most columns of the array. The gradient arrangement is executed with the

informativeArrayProb() function (originally Informative.array.prob())

and operating characteristics are calculated using the Array.Measures() func-

tion written for McMahan et al. (2012b). Operating characteristics for non-

informative array testing with master pooling are calculated based on expres-

sions provided in Kim et al. (2007) using the MasterPool.Array.Measures()
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function written for Chapter 2.

All of the R functions and papers mentioned in this section make the as-

sumption that the sensitivity/speci�city values are equal for all stages of test-

ing. In Appendix B, we present derivations that allow the sensitivity/speci-

�city values to vary across stages of testing for all seven group testing algo-

rithms in the opChar1() and OTC1() functions. The functions written for

Black et al. (2015), McMahan et al. (2012a), McMahan et al. (2012b), and

Chapter 2 have been revised to match the derivations presented in Appendix

B and incorporated into the binGroup2 package.

3.4.2. Multiplex assays

Operating characteristics for hierarchical testing algorithms with multiplex

assays that test for two diseases are calculated by the ET.all.stages.new()

and PSePSpAllStages() functions written for Bilder et al. (2019). These

functions allow the sensitivity/speci�city values to vary across stages of testing

for hierarchical testing up to �ve stages. As a result, no new derivations were

needed. Only minor modi�cations (e.g., formatting of returned values) were

made to the functions from Bilder et al. (2019) for inclusion in the binGroup2

package.

Operating characteristics for array testing algorithms with multiplex assays

that test for two diseases are calculated based on expressions provided in Hou

et al. (2020). While the derivations presented in that paper allow for the

sensitivity/speci�city values to vary across stages of testing, the corresponding

ARRAY() function written for the paper does not. Revisions were made to the

ARRAY() function to allow the sensitivity/speci�city to vary across stages of

testing. These revisions involved editing the C++ code that was used for
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ARRAY(). No derivations for array testing algorithms with multiplex assays

are presented in this dissertation.

3.5. Estimation functions

To provide a coherent structure and reconcile the diverse styles present in the

binGroup package, most of the estimation functions were reorganized and their

documentation revised for inclusion in the binGroup2 package. The propCI()

function integrates three functions from binGroup into one to calculate point

estimates and con�dence intervals for a single proportion when only group

responses are observed. It provides a number of di�erent methods for point

estimation and con�dence interval calculation, and it allows for both equal and

unequal group sizes. The propDiffCI() function calculates point estimates

and con�dence intervals for a di�erence of proportions in a similar setting.

Additional information on methods for estimation of and inference on pro-

portions for group testing algorithms is available in Schaarschmidt (2007), Big-

gersta� (2008), and Tebbs and Bilder (2004). The expected width of a con�-

dence interval can be calculated using the gtWidth() function. The gtTest()

and gtPower() functions calculate the p-value and power associated with a

hypothesis test, respectively. Minor modi�cations were made to these three

functions for inclusion in binGroup2. The designPower() function combines

two functions from binGroup that help determine the number of groups or

group size needed to achieve a speci�ed level of power. The designEst()

function helps to �nd the optimal group size for a design and was included in

binGroup2 with only minor modi�cations. Additional information on deter-

mining the optimal group testing design is available in Schaarschmidt (2007).

The gtSim() function merges three separate simulation functions from
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binGroup, simulating group testing data for simple pooling (two-stage hier-

archical testing), halving (an S-stage algorithm where each group that tests

positive is split into two subgroups), and array testing designs. The gtReg()

function joins three distinct regression functions from binGroup and �ts group

testing regression models for simple pooling, halving, and array testing designs.

Additional information on group testing simulation and regression functions

is available in Zhang (2012). Print and summary method functions were com-

bined, as necessary, so that a single print and/or summary method function

exists for the estimation functions included in the binGroup2 package.

3.6. Additional functions

In addition to the opChar1(), opChar2(), OTC1(), and OTC2() func-

tions discussed in this chapter, we authored 32 functions to perform cal-

culations for each of the group testing algorithms internally. For ex-

ample, NI.Dorf.calc1() and NI.Dorf.calc2() perform calculations for

non-informative two-stage hierarchical (Dorfman) testing to support the

opChar1() and opChar2() functions. Similarly, NI.Dorf.OTC1() and

NI.Dorf.OTC2() support the OTC1() and OTC2() functions by �nding the

OTC for non-informative Dorfman testing. Analogous functions provide

support for the other group testing algorithms available in the opChar1(),

opChar2(), OTC1(), and OTC2() functions.

Operating characteristics for the halving protocol can be calculated with

the halving() function written for Black et al. (2012). The Sterrett()

function written for Bilder et al. (2010) performs calculations for the unique

Sterrett (1957) algorithm that was adapted for informative retesting by Bilder

et al. (2010). Functions described by McMahan et al. (2012a) for informa-
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Table 3.1: New functions for binGroup2.

binGroup2
operatingCharacteristics1 (opChar1)
operatingCharacteristics2 (opChar2)

summary.opChar

OTC2

summary.OTC

Sterrett

tive two-stage hierarchical testing implemented via methods other than PSOD

were previously included in the binGroup package but are not included in the

binGroup2 package.

Table 3.1 provides a list of functions that did not exist in the binGroup

package and are new to the binGroup2 package. Table 3.2 illustrates the

mapping of exported functions in the binGroup package to the binGroup2

package. The mapping of internal functions is shown in Table 3.3. Table

3.4 provides a list of binGroup functions without direct counterparts in the

binGroup2 package.
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Table 3.2: Mapping of R functions from binGroup to binGroup2 (exported
functions only).

binGroup binGroup2
p.vec.func* expectOrderBeta

Informative.array.prob* informativeArrayProb

OTC* OTC1

halving* halving

sim.gt

gtSimsim.halving

sim.mp

gtreg

gtReggtreg.halving

gtreg.mp

gt.control gtRegControl

summary.gt
summary.gtReg

summary.gt.mp

print.summary.gt
print.summary.gtReg

print.summary.gt.mp

predict.gt predict.gtReg

bgtCI

propCIbgtvs

pooledBin

summary.poolbin

print.propCI
print.bgtCI

print.bgtvs

print.poolbin

pooledBinDiff propDiffCI

summary.poolbindiff
print.propDiffCI

print.poolbindiff

bgtPower gtPower

bgtTest gtTest

print.bgtTest print.gtTest

bgtWidth gtWidth

estDesign designEst

nDesign
designPower

sDesign

print.nDesign
print.designPower

print.sDesign

*denotes functions that were incorporated into the binGroup package by
myself before the decision to create binGroup2 was made.
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Table 3.3: Mapping of R functions from binGroup to binGroup2 (internal/hid-
den functions).

binGroup binGroup2
beta.dist* (called by

p.vec.func)
beta.dist / beta.dist2 (called

by expectOrderBeta)
NI.Dorf* NI.Dorf.OTC1, NI.Dorf.calc1
Inf.Dorf* Inf.Dorf.OTC1, Inf.Dorf.calc1
NI.D3* NI.D3.OTC1, NI.D3.calc1
Inf.D3* Inf.D3.OTC1, Inf.D3.calc1
NI.Array* NI.Array.OTC1, NI.Array.calc1

Inf.Array*
Inf.Array.OTC1,
Inf.Array.calc1

NI.A2M* NI.A2M.OTC1, NI.A2M.calc1

hierarchical.desc2* (called by
NI.Dorf, NI.D3, Inf.D3)

hierarchical.desc2 (called by
NI.Dorf.OTC1, NI.Dorf.calc1,
NI.D3.OTC1, NI.D3.calc1,

Inf.D3.OTC1, Inf.D3.calc1)
inf.dorf.measures* (called by

Inf.Dorf)
inf.dorf.measures (called by

Inf.Dorf.OTC1, Inf.Dorf.calc1)
characteristics.pool* (called

by inf.dorf.measures)
characteristics.pool (called by

inf.dorf.measures)
accuracy.dorf* (called by

inf.dorf.measures)
accuracy.dorf (called by

inf.dorf.measures)

Array.Measures* (called by
NI.Array, Inf.Array)

Array.Measures (called by
NI.Array.OTC1, NI.Array.calc1,

Inf.Array.OTC1,
Inf.Array.calc1)

MasterPool.Array.Measures*
(called by NI.A2M)

MasterPool.Array.Measures

(called by NI.A2M.OTC1,
NI.A2M.calc1)

bgtAC, bgtBlaker, bgtCP, bgtSOC,
bgtWald, bgtWilson (called by

bgtCI)

bgtAC, bgtBlaker, bgtCP, bgtSOC,
bgtWald, bgtWilson (called by

propCI)
bgtPowerI (called by bgtPower) bgtPowerI (called by gtPower)
bgtWidthI (called by bgtWidth) bgtWidthI (called by gtWidth)
gtreg.fit (called by gtreg) gtreg.fit (called by gtReg)

EM (called by gtreg) EM (called by gtReg)
EM.ret (called by gtreg) EM.ret (called by gtReg)

EM.halving (called by gtreg) EM.halving (called by gtReg)
EM.mp (called by gtreg.mp) EM.mp (called by gtReg)

*denotes functions that were incorporated into the binGroup package by
myself before the decision to create binGroup2 was made.
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Table 3.4: binGroup functions not included in binGroup2

binGroup
opt.info.dorf, pool.specific.dorf, opt.pool.size,

thresh.val.dorf

binCI (binAC, binBlaker, binCP, binSOC, binWald,
binWilson)

plot.poolbin, print.binCI
binDesign

plot.binDesign, print.binDesign
plot.nDesign, plot.sDesign
binPower, binTest, binWidth

print.binTest

print.gt

residuals.gt
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Chapter 4

A Shiny app for pooled testing

4.1. Background

Laboratories around the world frequently need to test a high volume of

clinical specimens for disease. For these situations, a decision needs to be

made about whether group testing will reduce testing loads compared to test-

ing specimens individually. Additionally, laboratories need to determine the

set of group sizes to use. We developed a Shiny application (available at

www.chrisbilder.com/shiny) to assist directors and technicians in laboratories

with making these decisions.

A Shiny application (a.k.a., Shiny app) is an interactive web-based applica-

tion built using the Shiny package in R. The app seeks input via a user-friendly

interface in a web browser. The app then takes those inputs and performs cal-

culations or produces plots by calling functions in R. Our Shiny app utilizes

functions in the binGroup2 package to calculate the expected number of tests

and diagnostic accuracy measures for a wide variety of group testing algorithms

using both one- and two-disease assays. The optimal testing con�guration for

an algorithm can be identi�ed with the app as well.

Our app focuses on group testing in homogeneous (i.e., non-informative)

settings because that is how group testing is most often utilized in laboratories.

http://www.chrisbilder.com/shiny
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While the use of the binGroup2 package requires reading the R documentation

and some prior knowledge of programming, the goal of the Shiny app is to

make this research accessible to those with non-statistical backgrounds who

are using group testing in practice. The Shiny app uses simple questions, �ll-in

text boxes, and slider/radio button inputs to elicit the same speci�cations used

for the binGroup2 functions. We illustrate the use of our app with a simple

example for single-disease assays, and with regard to the Aptima Combo 2

Assay used to test for chlamydia and gonorrhea throughout the United States.

4.2. Methods

Users can calculate operating characteristics for a single testing con�guration

or �nd the optimal testing con�guration over a range of initial group sizes for

hierarchical or array testing algorithms by following links available 1) in the

side bar panel, 2) on the Introduction (A Shiny App for Pooled Testing) page

(Figure 4.1), and 3) on the About pooled testing page (Figure 4.2) of the app.

Each of the calculation pages (pages that calculate operating characteristics

or �nd the OTC) pose questions to draw out the user's testing speci�cations.

These speci�cations are:

1. The number of diseases for the assay,

2. The overall disease prevalence for a one-disease assay or a set of joint

probabilities for a two-disease assay,

3. Sensitivity and speci�city values for each stage of testing for each disease,

4. The number of stages for the algorithm, and

5. The testing con�guration.
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Figure 4.1: Introduction page in the Shiny app.

Like the functions in binGroup2, the Shiny app allows for sensitivity and

speci�city values to di�er across stages of testing. Examples of the app spec-

i�cations are shown in Figures 4.3, 4.4, and 4.5 for hierarchical testing and

Figures 4.6 and 4.7 for array testing. Examples are given for when the op-

erating characteristics of a speci�c testing con�guration are of interest and

for when the optimal testing con�guration is to be found. After providing

the required inputs, the user clicks Calculate and the Shiny app uses the

binGroup2 package to perform calculations.

Operating characteristics for a single testing con�guration are calculated

using the opChar1() and opChar2() functions in the binGroup2 package.

While the computed results are the same as with using these functions in R,

the testing con�guration, expected number of tests, expected number of tests

per individual, and accuracy measures are displayed nicely in paragraph form
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Figure 4.2: About pooled testing page in the Shiny app.

Figure 4.3: Speci�cations for two-stage hierarchical testing with a one-disease
assay prior to speci�cations being included.
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Figure 4.4: Speci�cations for three-stage hierarchical testing with a one-disease
assay prior to speci�cations being included.

Figure 4.5: Speci�cations for two-stage hierarchical testing with a two-disease
assay prior to speci�cations being included.
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Figure 4.6: Speci�cations for array testing with a one-disease assay prior to
speci�cations being included.

Figure 4.7: Speci�cations for array testing when �nding the OTC prior to
speci�cations being included.
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in the app.

Additionally, the app provides the percent reduction in the number of tests

when compared to individual testing and displays the input values used for

calculations. An algorithm diagram is also produced to illustrate the testing

con�guration. When �nding the optimal testing con�guration, the app dis-

plays operating characteristics corresponding to the best con�guration for each

initial group size provided by the user. A plot of the the expected number of

tests per individual for each of these similar con�gurations is also displayed.

4.3. Examples

4.3.1. Single-disease assays

Consider an example involving a two-stage hierarchical testing algorithm with

an overall prevalence of p = 0.03 and an initial group size of 15. The sensi-

tivity is Se = 0.95 and the speci�city is Sp = 0.99 for each stage of testing.

Figure 4.8 displays the speci�cations. After a user selects Calculate, the

corresponding operating characteristics are displayed as shown in Figure 4.9

and the algorithm diagram is displayed as shown in Figure 4.10.

The expected number of tests per individual is E (T ) /I = 6.32/15 = 0.42.

Thus, two-stage hierarchical testing reduces the expected number of tests by

(1− 0.42)× 100 = 58% when compared to individual testing.

4.3.2. Multiplex assays

Consider an example involving the Aptima Combo 2 Assay that is used to

test for both chlamydia and gonorrhea simultaneously. We focus here on how

the State Hygienic Laboratory (SHL) at the University of Iowa uses the assay,

where details are provided in Hou et al. (2020). While the SHL uses group
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Figure 4.8: Example 1 - Speci�cations for two-stage hierarchical testing.

Figure 4.9: Example 1 - Operating characteristics for two-stage hierarchical
testing.
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Figure 4.10: Example 1 - Algorithm diagram for two-stage hierarchical testing.

testing for female swab specimens, it uses individual testing for female urine

specimens because they are concerned that the probability of having at least

one disease may be too large for group testing to work well. The purpose

here is to determine if group testing would be bene�cial for the female urine

specimens.

Figure 4.11 displays the speci�cations for a three-stage hierarchical testing

algorithm. The joint probabilities of disease were estimated based on previous

testing results for 5,998 individuals, where the �rst disease is chlamydia and

the second disease is gonorrhea in our speci�cations. Sensitivity and speci�city

values were obtained from the Aptima Combo 2 Assay product insert (Food

and Drug Administration, 2018), and we assumed these accuracy measures to

be equal for all stages of testing. A maximum group size of 10 is used here

because this is the largest size that we have seen used with group testing for

these diseases (e.g., see Mund et al. (2008)).

Figure 4.12 shows the optimal testing con�guration has an initial group

size of 9 individuals with groups of size 3 in the second stage of testing.

The expected number of tests per individual is E (T ) /I = 4.83/9 = 0.54.

Thus, three-stage hierarchical testing reduces the expected number of tests by
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Figure 4.11: Example 2 - Speci�cations for three-stage hierarchical testing.

(1− 0.54)× 100 = 46% when compared to individual testing. Figure 4.13 dis-

plays the algorithm diagram for the OTC and results for similar con�gurations

are displayed in Figure 4.14.

The speci�cations are the same for array testing without master pooling.

Figure 4.15 shows the optimal array is 7×7, with an expected number of tests

per individual of E (T ) /I = 26.50/49 = 0.54. Thus, array testing without

master pooling also reduces the expected number of tests by 46% when com-

pared to individual testing. Figure 4.16 shows the algorithm diagram for the

OTC and results for similar con�gurations are shown in Figure 4.17. Both

algorithms o�er signi�cant savings over the individual testing currently being

used by the SHL to test female urine specimens.

Because both algorithms provide a 46% reduction in the number of tests

compared to individual testing, we can examine the accuracy of each algorithm
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Figure 4.12: Example 2 - OTC and operating characteristics for three-stage
hierarchical testing.

Figure 4.13: Example 2 - Algorithm diagram for three-stage hierarchical test-
ing.
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Figure 4.14: Example 2 - Similar con�gurations for three-stage hierarchical
testing.

to determine which is best. The overall sensitivity of the algorithm is slightly

higher for both diseases when using array testing. The overall speci�city and

positive predictive value of the algorithm is slightly higher for both diseases

when using three-stage hierarchical testing. The overall negative predictive

value corresponding to chlamydia is the same for both diseases and the overall

negative predictive value corresponding to gonorrhea is slightly higher for array

testing. Depending on which overall accuracy measure is considered most

important for these diseases, this information can help to make a decision on

which algorithm is preferred.

Sometimes laboratories face testing constraints and may not be able to im-
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Figure 4.15: Example 2 - Optimal testing con�guration and operating charac-
teristics for array testing without master pooling.

Figure 4.16: Example 2 - Algorithm diagram for array testing without master
pooling.
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Figure 4.17: Example 2 - Similar con�gurations for array testing without
master pooling.

plement the optimal testing con�guration. This may be due to physical limits,

such as a restriction on the group size that can be used in an automated pool-

ing platform, or due to concerns over dilution e�ects. In these situations, the

results for similar con�gurations can assist laboratories in choosing a di�erent

set of group sizes as close as possible to the optimal. For example, if the SHL

chooses to utilize three-stage hierarchical testing but an initial group size of 9 is

too large for implementation, an initial group of 6 individuals might be a good

alternative (see Figure 4.17). This con�guration allows for a smaller initial

group size and provides similar savings in the number of tests over individual

testing.
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4.4. Conclusions

There are several additional features in our Shiny app that contribute to a

more user-friendly experience:

� After clicking Calculate, a pop-up indicator bar displays the progress

of the calculations as shown in Figure 4.18. The proportion of calcula-

tions completed is based on the range of initial group sizes provided by

the user.

� An Example button allows users to quickly populate input �elds with

sample values to demonstrate the app's capabilities. As the number of

diseases or the testing con�guration inputs change, the button can be

clicked again and new sample values will populate as appropriate.

� Popover text provides helpful information about the sensitivity, speci-

�city, and testing con�gurations and how to correctly specify their val-

ues. Figure 4.19 illustrates the popover text that appears when the

user's mouse hovers over a �ll-in box for the test sensitivity. Helpful ex-

planations also appear over the overall accuracy measures in the results

section.

� The results for similar con�gurations are displayed in an interactive data

table and can be sorted by any column in increasing or decreasing order.

Additionally, these results are available for download in a .csv �le. For

three-stage hierarchical testing, two sets of similar con�gurations (the

best con�guration for each initial group size and the top 10 con�gurations

for each initial group size) are accessible.
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Figure 4.18: Progress indicator for the three-stage hierarchical testing algo-
rithm in Example 2.

Figure 4.19: Popover text for the test sensitivity in Example 2.
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Our Shiny app implements group testing algorithms for hierarchical and array-

based testing algorithms with one- and two-disease assays over a wide variety

of settings. It performs calculations for speci�ed testing con�gurations and

�nds the optimal testing con�guration over a range of initial group sizes. The

app allows laboratories to do an initial investigation and determine if group

testing would be bene�cial for their situation, making the binGroup2 functions

available to researchers with no statistical or programming background.
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Chapter 5

Additional Research

While developing this dissertation, we considered some investigations addi-

tional to those already presented in other chapters. We present here a few

of these explorations related to the work in Chapter 2 and Chapter 4. We

then discuss potential topics of future mathematical investigations related to

multiplex assays. Finally, we propose ideas for future work on the binGroup2

package and Shiny app.

5.1. Additional investigations for �The objective function contro-

versy for group testing�

In an initial e�ort to �nd the OTC in Chapter 2, we considered the use of sim-

ulated annealing implemented via the optim() function in the stats package

in R. Simulated annealing is a method for combinatorial optimization that gets

its name from the process of slowly heating and cooling metals. The algorithm,

described in detail within Givens and Hoeting (2013), involves randomly se-

lecting moves and accepting them with a probability dependent on the amount

the solution is worsened and a temperature parameter. Simulated annealing

is best used with large candidate spaces (e.g., the set of all possible con�gu-

rations for three-stage hierarchical testing); however, it can be extremely slow
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to converge and may require a signi�cant amount of skilled tuning to improve

the performance of the algorithm (Givens and Hoeting, 2013).

We investigated the use of simulated annealing to �nd the OTC for both

three-stage hierarchical and array testing algorithms. In the end, we discov-

ered that searching over all possible testing con�gurations is faster in non-

informative settings and in informative settings when the individual probabil-

ities are ordered, which is how informative group testing is applied in practice

(Black et al., 2012). In informative settings where risk probabilities are not

ordered, simulated annealing might provide a bene�t.

Expanding on our search for the OTC, we examined much larger preva-

lences than those given in Chapter 2. These investigations ranged up to a value

of p = 0.30. Overall, the patterns discussed in Chapter 2 were similar for these

larger prevalences. In addition, the optimal initial group size decreased as the

overall prevalence increased in most cases. Occasionally, the optimal group

size for larger probabilities was found to be 40 instead, which was the maxi-

mum group size allowed in our investigations. This result coincided with what

Malinovsky et al. (2016) showed, that the optimal initial group size can be

in�nite for certain combinations of p, Se, and Sp. For this reason, and because

p > 0.15 rarely occurs in application, we focused on a range of prevalences

from 0.005 to 0.150 by 0.005 in that chapter.

5.2. Additional considerations for the Shiny app

While developing the Shiny app, a signi�cant amount of work was put into two

features of the app: 1) a progress indicator that was only brie�y mentioned

in Chapter 4, and 2) a Reset button. In this section, we provide additional

details on the e�orts related to these features.
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In Chapter 4, we introduced the progress indicator available in the Shiny

app. To make this feature available, the app utilizes several functions from

the shiny package to create and update the progress indicator as calculations

are completed. Before any calculations are started, Progress$new() creates a

new progress object and progress$set() is used to initialize the value of the

progress bar to 0. The message argument provides the text to be displayed

on the progress bar, which is �Calculation in progress� for the app. When the

app calculates operating characteristics for a speci�ed testing con�guration,

the progress is set to a value of 0.5 right before the opChar1() or opChar2()

function is called and the progress is set to a value of 1 after the calculations

are complete.

When the app �nds the OTC, we are able to provide an additional level

of detail in the progress indicator. Prior to the OTC1() or OTC2() function

being called, a simple progress function is created. This function is passed as

an additional argument to the OTC functions in binGroup2. For every initial

group size in the range provided by the user, the progress bar is incremented

by 1/ (m+ 1), where m is the number of initial group sizes considered. The

text for the progress bar is also updated, displaying the initial group size

(or row/column size) for which calculations were just completed. When all

calculations are completed, the progress is set to a value of 1 and the pop-up

window containing the progress indicator closes. We added code to update

Shiny progress objects in the binGroup2 functions so that the functions would

not have to be revised for use with the Shiny app. This code allows Shiny

to interact with the binGroup2 functions and update the progress indicators

without making binGroup2 dependent on the shiny package.

Previous versions of the Shiny app attempted to provide a Reset button
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to complement the Example and Calculate buttons. The goal of a Reset

button was to clear the speci�ed input values and erase any displayed results.

Issues arose when resetting the speci�ed inputs caused the disabling of the

Calculate button. Additionally, the e�ects of a Reset button were not

isolated to the page on which the button appeared. For example, resetting

inputs on the calculation page for hierarchical testing disabled the Calculate

button on all pages of the app. While we believe a Reset button could prove

a useful addition to the Shiny app, additional research is needed to implement

this feature successfully.

5.3. Future research

In this dissertation, we focused on calculating operating characteristics and

�nding OTCs for a large number of group testing algorithms using one- or

two-disease assays. We presented an R package and Shiny app to this end and

provided derivations to allow diagnostic accuracy to vary across stages of test-

ing. We next describe extensions to our proposed methods and programming

work, and provide recommendations for future research. We discuss addi-

tional mathematical investigations for group testing using multiplex assays,

especially with three or more diseases. Additionally, the binGroup2 package

and Shiny app will continue to be advanced with the goal of enhancing the

user experience. Additions and revisions are proposed to improve the app for

statisticians and researchers who use group testing in practice.

5.3.1. Mathematical investigations

This dissertation focused on the implementation of group testing algorithms

with assays that test for one or two diseases. One of the largest areas for new
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research in group testing is with multiplex assays that test for more diseases.

Closed-form expressions are available to calculate operating characteristics for

hierarchical and array-based group testing algorithms with two-disease assays.

Research could be performed to derive operating characteristics for the same

algorithms using multiplex assays that test for three or more diseases.

At the time of publication, the authors of Bilder et al. (2019) were only

aware of multiplex assays for up to K = 3 diseases being used in practice.

For example, the American Red Cross uses a multiplex assay to screen blood

donations for HBV, HCV, and HIV (American Red Cross, 2020), and the

BD Max CT/GC/TV assay tests for chlamydia, gonorrhea, and trichomonas

(Van Der Pol et al., 2016). However, there exist several multiplex assays to

test for more than three diseases. Rumyantseva et al. (2015) evaluated a

multiplex assay that detects chlamydia, gonorrhea, trichomonas, and M.gen,

and the Tick-Borne Disease Serochip tests for eight major tick-borne pathogens

including Lyme disease, babesiosis, anaplasmosis, and Powassan virus disease

(Tokarz et al., 2018). While the implementation of these tests does not appear

to utilize group testing procedures at this time, it serves as motivation for

developing statistical methodology to show how best to take advantage of

such an assay with group testing. Also, it is of interest to determine at what

point the probability of testing positive for at least one disease becomes too

high for realistic group testing applications.

Bilder et al. (2019) developed algorithms for hierarchical testing with two

or more stages, but their derivations focused primarily on the K = 2 disease

setting. Work is needed to explore settings for K ≥ 3 diseases and to develop

functions that implement the associated calculations. It may be possible to

�nd closed-form expressions for operating characteristics in the K = 3 disease
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case, but the derivations will likely be cumbersome because there are eight

joint probabilities and many more probability terms to deal with than for the

K = 2 disease setting. In the case that closed-form expressions for K ≥ 3 are

not attainable, a simulation approach could be used instead. It is important

to note that simulation raises questions of whether �nding the OTC would

be feasible in regards to the time it takes to �nd a solution. Additional ex-

plorations potentially involve four-stage hierarchical testing, �nding the OTC

using combinatorial algorithms. Overall, further research is needed to deter-

mine how to calculate operating characteristics and �nd the OTC for K ≥ 3

diseases and to evaluate how well hierarchical testing works as K increases.

Additionally, there are a number of investigations associated with the re-

search in Bilder et al. (2019) that could be valuable. First, the e�ect of the

correlation between diseases for K > 2 needs to be examined. As the correla-

tion increases, it is more likely that positive responses for diseases will occur

together and, hence, fewer tests should be needed. Investigation is also needed

to determine what happens as the correlation between diseases approaches

zero. Second, research is needed in regards to the pooling sensitivity. With a

higher number of diseases, the pooling sensitivity increases. Work is needed

to determine whether there is a mathematical reason for this phenomenon and

to observe contextually what happens with simulation.

5.3.2. binGroup2

The binGroup2 package is available on CRAN, but development of the package

continues. The OTC and operating characteristic functions make available a

large number of hierarchical and array-based group testing algorithms. The

halving() and Sterrett() functions are available separately in binGroup2,
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but these are only available for single-disease assays and do not allow for

diagnostic accuracy to vary across stages of testing. One potential addition to

the package involves revising these functions to allow sensitivity and speci�city

values to di�er across stages of testing. These algorithms could also be added

as options to the OTC and operating characteristic functions.

Another possible addition to the package involves a revision to the obj.fn

argument in the OTC1() function. The OTC1() function only calculates oper-

ating characteristics and �nds the OTC for a limited set of objective functions.

Rather than use the objective functions currently available, we could allow the

user to provide their own objective function. This capability would require the

user to understand how the OTC1() and associated internal functions operate,

but would allow the user to customize OTC1() for their needs.

The OTC1() and OTC2() functions provide results for con�gurations similar

to the OTC. For algorithms that have only one testing con�guration per initial

group size (i.e., non-informative two-stage hierarchical testing, array testing),

the set of similar con�gurations includes results for every initial group size

speci�ed by the user. For algorithms that have more than one testing con�g-

uration per initial group size (i.e., informative two-stage hierarchical testing,

three-stage hierarchical testing), two sets of similar con�gurations are pro-

vided: 1) the best con�guration for each initial group size speci�ed by the

user, and 2) the top 10 con�gurations for each initial group size speci�ed by

the user. A potential addition to the OTC functions involves a new argument,

say sim.config, that allows the user to specify how many testing con�gu-

rations to display for each initial group size. Another method for providing

similar con�gurations could utilize a threshold value ε, speci�ed by the user.

All con�gurations where the objective function value per individual is within
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ε of the OTC could be displayed by the function.

Currently, the functions for array testing with a two-disease assay do not

allow for individuals with di�erent risk probabilities pi. Once methods for in-

formative array testing with multiplex assays are developed, the corresponding

functions in binGroup2 could be revised to include this option and calculate

individual accuracy measures as appropriate. Additionally, R functions could

be written to perform simulation for hierarchical and array-based testing al-

gorithms using multiplex assays. Bilder et al. (2019) made available R func-

tions to implement simulation using hierarchical testing with multiplex assays

that test for two diseases. These functions could be incorporated into the

binGroup2 package. Additional work could be done to expand these programs

for multiplex assays that test for three or more diseases. New functions that

implement simulation for array testing algorithms could also be included in

binGroup2 when they become available.

5.3.3. Shiny app

The most signi�cant future development for our Shiny app is to incorporate

programs for simulation that were mentioned in Section 5.3.2. However, we

mentioned in Section 5.3.1 that these simulations may not be feasible with

regards to the time required to �nd the OTC. For incorporation of these simu-

lations in the Shiny app, we could omit the OTC and only calculate E (T ) /I,

the expected number of tests per individual. If it is determined that analytical

derivations for the K ≥ 3 disease case are not possible, the Shiny app could

be limited to K = 2 diseases. Functions for simulation could either be incor-

porated on another page in the existing app or in a completely separate app

that focuses on simulation.
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Our Shiny app currently provides only overall accuracy measures when cal-

culating operating characteristics for a speci�ed testing con�guration and only

allows non-informative settings. The corresponding functions in binGroup2

provide overall and individual accuracy measures. Individual accuracy mea-

sures could be added to the results in the Shiny app, particularly for hierarchi-

cal testing. Individual accuracy measures for hierarchical testing algorithms

can vary depending on the set of group sizes used, but accuracy measures

for array testing algorithms will be the same for all individuals. Additionally,

future versions of the Shiny app could incorporate informative group testing

settings. The expansion of the app in this manner would need to be care-

fully implemented though, because laboratory directors and technicians would

need to decide on what risk probabilities to use and/or a distribution of risk

probabilities.

The current version of the Shiny app needs a true disease prevalence(s)

to perform calculations. In practice, laboratories most often won't know this

information. Instead, they will have the proportion of individuals declared as

positive from previous tests. To be more accurate, users of the app could spec-

ify which probability they have. If they provide the positive test proportion,

the app could calculate a maximum likelihood estimate of the true disease

prevalence using this proportion.

Minor revisions could be made to the app pertaining to long running com-

putations and displayed error messages. When performing long running com-

putations (e.g., �nding the OTC for three-stage hierarchical testing over a

large range of initial group sizes), the only way to stop calculations is to close

the app and reopen it. To make the app more user-friendly, we could modify

it to allow long running computations to be halted without restarting the app.
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In addition, multiple copies of an error message (e.g., �Please specify a sen-

sitivity value for each stage of testing.�) are displayed when input values are

incorrectly speci�ed. This occurs because multiple rendered outputs depend

on the calculations and each generates its own copy of the error message. A

simple revision to the app could clean up the display so that only a single

copy of an error message is displayed when necessary. Finally, development

of a phone app would provide an exciting new way for users to access our

research.
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Appendix A

Supporting information for Chapter 2

This appendix provides supporting information for the published manuscript

in Chapter 2: Hitt, B., Bilder, C., Tebbs, J., and McMahan, C., (2019).

The objective function controversy for group testing: Much ado about nothing?

Statistics in Medicine 38(24), 4912-4923. Used with permission.

A.1. Notation for Section 2.2

In Section 2.2, we provided the following expression for the expected number

of tests for three-stage hierarchical testing:

E(T ) = 1 +m11P (G11 = 1) +

c2∑
j=1

m2jP (G11 = 1, G2j = 1).

To help explain the expression's notation, Figure A.1 provides a visual repre-

sentation of this type of algorithm as it is used for HIV testing in San Francisco

(Sherlock et al., 2007). The binary random variable Gsj indicates the positive

(1) or negative (0) outcome for group j at stage s. For the initial group of

50 individuals in the �rst stage of Figure A.1, there will be a single group

testing result for G11. When G11 = 1, c2 = 5 subgroups of size m11 = 10

are formed for a second stage of testing. These �ve subgroups have binary
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Figure A.1: Diagram of the three-stage hierarchical testing algorithm used for
HIV testing in San Francisco.

testing outcomes of G21, G22, G23, G24, and G25. If G2j = 1 for some subgroup

j = 1, . . . , 5, m2j = 10 individual tests are performed in the third and �nal

stage of testing.

A.2. Additional results for Section 2.3.1

We provide additional results to coincide with our investigations in Section

2.3.1. Overall, these additional results continue to show that the OTCs have

the same or very similar operating characteristics when using either objective

function. We also include in our summaries the pooling positive predictive

value, PPPV , and the pooling negative predictive value, PNPV , as additional

accuracy measures. The pooling positive (negative) predictive value is the

probability that an individual who is determined to be positive (negative)

by the testing algorithm is truly positive (negative). Predictive values simply

provide an alternative way of looking at accuracy in comparison to the pooling

sensitivity and pooling speci�city. Expressions for all accuracy measures are
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available in Kim et al. (2007), McMahan et al. (2012a,b), and Black et al.

(2015).

Table 2.1 provides a summary of the optimal testing con�gurations (OTCs)

and their operating characteristics when p = 0.01. This table is reproduced

here as Table A.1 with the addition of the predictive values. Similar tables

for p = 0.05 and p = 0.10 are shown in Tables A.2 and A.3, respectively.

The largest di�erences between operating characteristics for OTCs are shown

in Table 2.2. Table A.4 displays the same results with the addition of the

predictive values.

A.3. Additional results for Section 2.3.2

A.3.1. Tables

We provide additional results to coincide with our investigations in Section

2.3.2. Once again, these additional results show that the same or very similar

operating characteristics are obtained regardless of which objective function is

used. Table A.5 displays the same results as Table 2.3 but with the addition

of the predictive values. Similar tables for E(Pi) = 0.05 and E(Pi) = 0.10

are provided in Tables A.6 and A.7, respectively. Table A.8 displays the same

�ndings as Table 2.4 but with the addition of the predictive values.

Because informative group testing results in potentially di�erent accuracy

measures for each individual tested, we formed weighted averages across all in-

dividuals tested to present one overall value for each accuracy measure. These

weighted averages are developed from accuracy de�nitions given by Altman

and Bland (1994a,b) and were used by Black et al. (2015). The pooling sensi-
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tivity is de�ned as

PSW
e =

∑
i piPSe,i∑

i pi
, (A.3.1)

and the pooling speci�city is de�ned as

PSW
p =

∑
i(1− pi)PSp,i∑

i(1− pi)
. (A.3.2)

Similarly, the pooling positive predictive value is de�ned as

PPPV W =

∑
i piPSe,i∑

i piPSe,i + (1− pi)(1− PSp,i)
, (A.3.3)

and the pooling negative predictive value is de�ned as

PNPV W =

∑
i(1− pi)PSp,i∑

i(1− pi)PSp,i + pi(1− PSe,i)
. (A.3.4)

Expressions (A.3.1) through (A.3.4) represent weighted averages over all I

individuals within the initial group for a hierarchical algorithm or all I2 indi-

viduals within the array for an array testing algorithm.

A.3.2. OTCs for informative group testing

Due to the lack of available space, Tables A.5, A.6, and A.7 display at most

only the initial (stage 1) group size for the informative hierarchical algorithms.

We display their full algorithms in Tables A.9 - A.14. De�ne Isj as the size of

group j at stage s. For two-stage hierarchical testing, individuals are assembled

into blocks (McMahan et al., 2012a), where we use a block size of 50. Thus,

we have
∑

j I1j = 50 by design.

To better understand the displayed OTCs in the tables, consider the OTC

given in the �rst row of results in Table A.12. The algorithm is performed
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over S = 3 stages with an initial group size of I11 = 10 individuals. If this

initial group tests positively, four new groups are formed for the second stage

of testing with sizes I21 = 4, I22 = 3, I23 = 2, and I24 = 1. Informative group

testing always orders individuals by their probabilities of positivity. Therefore,

the �rst group consists of the individuals with the four smallest probabilities,

and the last group consists of the individual with the largest probability. If

any of these groups test positively and has a size greater than 1, individual

testing is performed upon its group members. For the �rst group in stage 2,

this means that individual tests would be performed on each of its members in

stage 3 (I31 = I32 = I33 = I34 = 1). For the last group in stage 2, no subsequent

retesting would be performed. Figure A.2 provides a pictorial representation

of this group testing algorithm.

Figure A.2: Diagram of the group testing algorithm described in Section A.3.2.
Group sizes are provided within nodes.
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A.4. Additional results for Section 2.4

We provide additional results to coincide with our investigations in Section

2.4. Tables A.15 and A.16 display the same results as Tables 2.5 and 2.6,

respectively, but with the addition of the predictive values. Due to the lack of

available space, Table A.16 displays at most only the initial (stage 1) group size

for the informative hierarchical algorithms. We display their full algorithms

in Tables A.17 and A.18.

A.5. Additional results for Section 2.5

Gra� and Roelo�s (1972) proposed an objective function that is a linear com-

bination of the expected number of tests, the number of misclassi�ed negative

individuals (FN1), and the number of misclassi�ed positive individuals (FP1).

This linear combination can be expressed as

E(T ) +D1 × FN1 +D2 × FP1

= E(T ) +
I∑

i=1

{D1(1− PSp,i)(1− pi) +D2(1− PSe,i)pi} ,

where D1 and D2 are subjectively chosen weights. The OTC is found by

minimizing the value of this linear combination per individual, denoted by

OGR. Because weights are subjectively chosen, there will be weights that

result in an OTC di�erent than what is obtained by using OET or OMAR.

We provide results in Tables A.19 and A.20 to illustrate these di�erences.

Overall, the value of D1 has a larger e�ect than the value of D2, because there

are many more individuals who are truly negative than positive due to the

small probability of being positive.
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A.6. R examples

To reproduce the research in this paper, we make available a set of R functions

in the binGroup package that

� Calculate E(T ) and associated accuracy measures for di�erent objective

functions, and

� Find the OTC over a wide variety of settings.

All calculations for the paper were performed in version 3.4.1 of R (R Core

Team, 2017).

The examples provided next show how to use binGroup to reproduce re-

sults from Tables 2.1 and 2.3. Examples 1 and 2 use non-informative group

testing with an overall disease prevalence of p = 0.01. Examples 3 and 4 use

informative group testing with an overall disease prevalence of E(Pi) = 0.01.

Estimated running times for each example were calculated using a computer

with 16 GB of RAM and one core of an Intel i7-6500U processor.

> library(binGroup)
> # Example 1
> # Finding the OTC using non -informative
> # three -stage hierarchical testing , where
> # p denotes the overall prevalence of disease ,
> # Se denotes the sensitivity of the diagnostic test ,
> # Sp denotes the specificity of the diagnostic test ,
> # group.sz denotes the range of initial pool sizes
> # for consideration , and obj.fn specifies
> # the objective functions for which to find results.

> # This example takes approximately 2.5 minutes to run.
> results1 <- OTC(algorithm ="D3", p=0.01, Se=0.99 , Sp=0.99,

group.sz=3:40, obj.fn=c("ET", "MAR"))

You have specified an overall probability of disease.
A probability vector will be generated based on the algorithm

specified.
Algorithm: Non -informative three -stage hierarchical testing
Initial Group Size = 3
Initial Group Size = 4
Initial Group Size = 5

<OUTPUT EDITED >

Initial Group Size = 38
Initial Group Size = 39
Initial Group Size = 40
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Number of minutes running: 2.429667

> # Print the results.
> data.frame("Obj.Fn"=c("O_ET", "O_MAR"),

"OTC"=c(paste(results1$opt.ET$OTC$Stage1 ,
results1$opt.ET$OTC$Stage2 [1], 1, sep="-"),
paste(results1$opt.MAR$OTC$Stage1 ,
results1$opt.MAR$OTC$Stage2 [1], 1, sep="-")),
"ET.I"=c(round(results1$opt.ET$ET /
results1$opt.ET$OTC$Stage1 , 4),
round(results1$opt.MAR$ET/results1$opt.MAR$OTC$Stage1 ,
4)), "PSe"=c(round(results1$opt.ET$PSe , 4),
round(results1$opt.MAR$PSe , 4)),
"PSp"=c(round(results1$opt.ET$PSp , 4),
round(results1$opt.MAR$PSp , 4)))

Obj.Fn OTC ET.I PSe PSp
1 O_ET 25-5-1 0.1354 0.9703 0.9996
2 O_MAR 25-5-1 0.1354 0.9703 0.9996

> # Example 2
> # Finding the OTC using non -informative
> # array testing with master pooling.
> # The OTC differs for the ET and MAR
> # objective functions in this example.

> # This example takes approximately 2 minutes to run.
> results2 <- OTC(algorithm ="A2M", p=0.01 , Se=0.90, Sp=0.90 ,

group.sz=3:30, obj.fn=c("ET", "MAR"))
You have specified an overall probability of disease.
A probability vector will be generated based on the algorithm

specified.
Algorithm: Non -informative square array testing with master

pooling
Row/Column Size = 3, Array Size = 9
Row/Column Size = 4, Array Size = 16
Row/Column Size = 5, Array Size = 25

<OUTPUT EDITED >

Row/Column Size = 28, Array Size = 784
Row/Column Size = 29, Array Size = 841
Row/Column Size = 30, Array Size = 900
Number of minutes running: 1.745667

> # Print the results.
> data.frame("Obj.Fn"=c("O_ET", "O_MAR"),

"OTC"=c(paste(results2$opt.ET$OTC$Array.sz,
results2$opt.ET$OTC$Array.dim , 1, sep="-"),
paste(results2$opt.MAR$OTC$Array.sz,
results2$opt.MAR$OTC$Array.dim , 1, sep="-")),
"ET.I"=c(round(results2$opt.ET$ET /
results2$opt.ET$OTC$Array.sz, 4),
round(results2$opt.MAR$ET/results2$opt.MAR$OTC$Array.sz,
4)), "PSe"=c(round(results2$opt.ET$PSe , 4),
round(results2$opt.MAR$PSe , 4)),
"PSp"=c(round(results2$opt.ET$PSp , 4),
round(results2$opt.MAR$PSp , 4)))

Obj.Fn OTC ET.I PSe PSp
1 O_ET 625-25-1 0.145 0.6562 0.9934
2 O_MAR 576-24-1 0.145 0.6562 0.9937

> # Example 3
> # Finding the OTC using informative two -stage
> # hierarchical testing , implemented via the
> # pool -specific optimal Dorfman (PSOD) method
> # described in McMahan et al. (2012) , where
> # alpha denotes the level of heterogeneity in
> # the beta distribution used to generate the
> # vector of individual probabilities.
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> # Depending on the specified probability , level of
> # heterogeneity , and initial group size , simulation
> # may be necessary in order to generate an ordered
> # vector of individual probabilities. This is done
> # with the beta.dist() function (see Black et al. 2015)
> # using 10,000 simulated data sets. The user will
> # need to set a seed in order to reproduce results.

> # This examples takes approximately 2.5 minutes to run.
> set.seed (1002)
> results3 <- OTC(algorithm ="ID2", p=0.01, Se=0.95 , Sp=0.95,

group.sz=50, obj.fn=c("ET", "MAR"), alpha =2)
You have specified an overall probability of disease.
A probability vector will be generated based on the algorithm

specified.
A single group size was provided. The optimal testing

configuration will be found
over all possible testing configurations for the specified

group size.
NOTE: You have specified a maximum group size of 50 or larger.
This function may take a VERY long time to run.
Press 'ESC ' if you wish to cancel the submitted statements.
Algorithm: Informative Dorfman testing
[1] "Using simulation"
Block Size = 50
[1] "Using simulation"
[1] "Using simulation"
Number of minutes running: 2.617833

> # Print the results.
> data.frame("Obj.Fn"=c("O_ET", "O_MAR"),

"OTC"=c(results3$opt.ET$OTC$Block.sz,
results3$opt.MAR$OTC$Block.sz),
"ET.I"=c(round(results3$opt.ET$ET /
results3$opt.ET$OTC$Block.sz, 4),
round(results3$opt.MAR$ET / results3$opt.MAR$OTC$Block.sz,
4)), "PSe"=c(round(results3$opt.ET$PSe , 4),
round(results3$opt.MAR$PSe , 4)),
"PSp"=c(round(results3$opt.ET$PSp , 4),
round(results3$opt.MAR$PSp , 4)))

Obj.Fn OTC ET.I PSe PSp
1 O_ET 50 0.2264 0.9025 0.9931
2 O_MAR 50 0.2264 0.9025 0.9931

> # Second -stage of OTCs
> results3$opt.ET$OTC$pool.szs
[1] 18 13 11 8
> results3$opt.MAR$OTC$pool.szs
[1] 18 13 11 8

> # Example 4
> # Finding the OTC using non -informative two -stage
> # hierarchical testing

> # This example takes approximately 2.5 minutes to run.
> set.seed (1002)
> results4 <- OTC(algorithm ="ID3", p=0.01, Se=0.95 , Sp=0.95,

group.sz=3:40, obj.fn=c("ET", "MAR"), alpha =0.5)
You have specified an overall probability of disease.
A probability vector will be generated based on the algorithm

specified.
Algorithm: Informative three -stage hierarchical testing
Initial Group Size = 3
Initial Group Size = 4
Initial Group Size = 5

<OUTPUT EDITED >

Initial Group Size = 38
Initial Group Size = 39
Initial Group Size = 40
Number of minutes running: 2.614333
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> # Print the results.
> data.frame("Obj.Fn"=c("O_ET", "O_MAR"),

"OTC"=c(results4$opt.ET$OTC$Stage1 ,
results4$opt.MAR$OTC$Stage1),
"ET.I"=c(round(results4$opt.ET$ET /
results4$opt.ET$OTC$Stage1 , 4), round(results4$opt.MAR$ET
/ results4$opt.MAR$OTC$Stage1 , 4)),
"PSe"=c(round(results4$opt.ET$PSe , 4),
round(results4$opt.MAR$PSe , 4)),
"PSp"=c(round(results4$opt.ET$PSp , 4),
round(results4$opt.MAR$PSp , 4)))

Obj.Fn OTC ET.I PSe PSp
1 O_ET 28 0.1291 0.8574 0.9977
2 O_MAR 28 0.1291 0.8574 0.9977

The next example shows how to use binGroup to reproduce results from Table

A.19.

> # Example 5
> # Finding the OTC using two -stage
> # hierarchical testing with O_GR

> # This example takes less than 1 second to run.
> results5 <- OTC(algorithm ="D2", p=0.01, Se=0.99 , Sp=0.99,

group.sz=3:40, obj.fn="GR", weights=matrix(data=c(1, 1,
1000, 1000), nrow=2, ncol=2, byrow=TRUE))

You have specified an overall probability of disease.
A probability vector will be generated based on the algorithm

specified.
Algorithm: Non -informative two -stage hierarchical (Dorfman)

testing

Initial Group Size = 3
Initial Group Size = 4
Initial Group Size = 5

<OUTPUT EDITED >

Initial Group Size = 38
Initial Group Size = 39
Initial Group Size = 40
Number of minutes running: 0.0001666667

> names(results5)
[1] "prob" "Se" "Sp" "opt.ET" "opt.GR1"
[6] "opt.GR2" "Configs"

> data.frame("Obj.Fn"=c("O_GR", "O_GR"),
"OTC"=c(paste(results5$opt.GR1$OTC$Stage1 , 1, sep="-"),
paste(results5$opt.GR2$OTC$Stage1 , 1, sep="-")),
"ET.I"=c(round(results5$opt.GR1$ET /
results5$opt.GR1$OTC$Stage1 , 4), round(results5$opt.GR2$ET
/ results5$opt.GR2$OTC$Stage1 , 4)),
"PSe"=c(round(results5$opt.GR1$PSe , 4),
round(results5$opt.GR2$PSe , 4)),
"PSp"=c(round(results5$opt.GR1$PSp , 4),
round(results5$opt.GR2$PSp , 4)))

Obj.Fn OTC ET.I PSe PSp
1 O_GR 11-1 0.2035 0.9801 0.9990
2 O_GR 3-1 0.3724 0.9801 0.9997
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Table A.1: OTC summary for p = 0.01 under non-informative group testing.
Equally sized groups are optimal at each stage; thus, an OTC of �24-6-1� means
that stage 1 has a group of size 24, stage 2 has four groups of size 6, and stage
3 has twenty-four groups of size 1. Di�erences between OET and OMAR are
highlighted.

Objective
Algorithm Se Sp function OTC E(T )/I PSe PSp PPPV PNPV

0.99 0.99
OET 11-1 0.2035 0.9801 0.9990 0.9052 0.9998
OMAR 11-1 0.2035 0.9801 0.9990 0.9052 0.9998

0.95 0.95
OET 11-1 0.2351 0.9025 0.9932 0.5727 0.9990
OMAR 11-1 0.2351 0.9025 0.9932 0.5727 0.9990

Two-stage
0.90 0.90

OET 12-1 0.2742 0.8100 0.9816 0.3081 0.9980
hierarchical OMAR 12-1 0.2742 0.8100 0.9816 0.3081 0.9980

0.99 0.90
OET 11-1 0.2841 0.9801 0.9815 0.3485 0.9998
OMAR 11-1 0.2841 0.9801 0.9815 0.3485 0.9998

0.90 0.99
OET 11-1 0.1941 0.8100 0.9990 0.8959 0.9981
OMAR 11-1 0.1941 0.8100 0.9990 0.8959 0.9981

0.99 0.99
OET 25-5-1 0.1354 0.9703 0.9996 0.9604 0.9997
OMAR 25-5-1 0.1354 0.9703 0.9996 0.9604 0.9997

0.95 0.95
OET 24-6-1 0.1443 0.8574 0.9973 0.7634 0.9986
OMAR 24-6-1 0.1443 0.8574 0.9973 0.7634 0.9986

Three-stage
0.90 0.90

OET 24-6-1 0.1562 0.7290 0.9938 0.5437 0.9973
hierarchical OMAR 24-6-1 0.1562 0.7290 0.9938 0.5437 0.9973

0.99 0.90
OET 24-6-1 0.1708 0.9703 0.9928 0.5780 0.9997
OMAR 24-6-1 0.1708 0.9703 0.9928 0.5780 0.9997

0.90 0.99
OET 25-5-1 0.1229 0.7290 0.9997 0.9564 0.9973
OMAR 25-5-1 0.1229 0.7290 0.9997 0.9564 0.9973

0.99 0.99
OET 25-1 0.1378 0.9703 0.9995 0.9529 0.9997
OMAR 25-1 0.1378 0.9703 0.9995 0.9529 0.9997

0.95 0.95
OET 25-1 0.1475 0.8575 0.9970 0.7456 0.9986
OMAR 24-1 0.1475 0.8575 0.9972 0.7566 0.9986

Array w/o
0.90 0.90

OET 25-1 0.1611 0.7291 0.9926 0.4996 0.9973
master pooling OMAR 24-1 0.1611 0.7291 0.9930 0.5112 0.9973

0.99 0.90
OET 23-1 0.1726 0.9703 0.9923 0.5614 0.9997
OMAR 23-1 0.1726 0.9703 0.9923 0.5614 0.9997

0.90 0.99
OET 27-1 0.1279 0.7292 0.9995 0.9410 0.9973
OMAR 27-1 0.1279 0.7292 0/9995 0.9410 0.9973

0.99 0.99
OET 625-25-1 0.1364 0.9606 0.9995 0.9529 0.9996
OMAR 625-25-1 0.1364 0.9606 0.9995 0.9529 0.9996

0.95 0.95
OET 625-25-1 0.1402 0.8146 0.9972 0.7458 0.9981
OMAR 576-24-1 0.1402 0.8146 0.9974 0.7569 0.9981

Array w/
0.90 0.90

OET 625-25-1 0.1450 0.6562 0.9934 0.4997 0.9965
master pooling OMAR 576-24-1 0.1450 0.6562 0.9937 0.5115 0.9965

0.99 0.90
OET 529-23-1 0.1708 0.9606 0.9924 0.5618 0.9996
OMAR 529-23-1 0.1708 0.9606 0.9924 0.5618 0.9996

0.90 0.99
OET 729-27-1 0.1151 0.6563 0.9996 0.9410 0.9965
OMAR 729-27-1 0.1151 0.6563 0.9996 0.9410 0.9965
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Table A.2: OTC summary for p = 0.05 under non-informative group testing.
Equally sized groups are optimal at each stage; thus, a �24-6-1� means that
stage 1 has a group of size 24, stage 2 has four groups of size 6, and stage 3
has twenty-four groups of size 1. There are no di�erences between the OTCs.

Objective
Algorithm Se Sp function OTC E(T )/I PSe PSp PPPV PNPV

0.99 0.99
OET 5-1 0.4317 0.9801 0.9981 0.9642 0.9990
OMAR 5-1 0.4317 0.9801 0.9981 0.9642 0.9990

0.95 0.95
OET 5-1 0.4536 0.9025 0.9892 0.8141 0.9948
OMAR 5-1 0.4536 0.9025 0.9892 0.8141 0.9948

Two-stage
0.90 0.90

OET 6-1 0.4786 0.8100 0.9719 0.6027 0.9898
hierarchical OMAR 6-1 0.4786 0.8100 0.9719 0.6027 0.9898

0.99 0.90
OET 5-1 0.5013 0.9801 0.9735 0.6605 0.9989
OMAR 5-1 0.5013 0.9801 0.9735 0.6605 0.9989

0.90 0.99
OET 5-1 0.4113 0.8100 0.9982 0.9605 0.9901
OMAR 5-1 0.4113 0.8100 0.9982 0.9605 0.9901

0.99 0.99
OET 9-3-1 0.3773 0.9703 0.9990 0.9812 0.9984
OMAR 9-3-1 0.3773 0.9703 0.9990 0.9812 0.9984

0.95 0.95
OET 9-3-1 0.3798 0.8574 0.9950 0.8993 0.9925
OMAR 9-3-1 0.3798 0.8574 0.9950 0.8993 0.9925

Three-stage
0.90 0.90

OET 12-4-1 0.3806 0.7290 0.9853 0.7227 0.9857
hierarchical OMAR 12-4-1 0.3806 0.7290 0.9853 0.7227 0.9857

0.99 0.90
OET 9-3-1 0.4227 0.9703 0.9874 0.8023 0.9984
OMAR 9-3-1 0.4227 0.9703 0.9874 0.8023 0.9984

0.90 0.99
OET 12-4-1 0.3409 0.7290 0.9988 0.9701 0.9859
OMAR 12-4-1 0.3409 0.7290 0.9988 0.9701 0.9859

0.99 0.99
OET 10-1 0.3809 0.9705 0.9986 0.9735 0.9984
OMAR 10-1 0.3809 0.9705 0.9986 0.9735 0.9984

0.95 0.95
OET 10-1 0.3852 0.8581 0.9926 0.8597 0.9925
OMAR 10-1 0.3852 0.8581 0.9926 0.8597 0.9925

Array w/o
0.90 0.90

OET 10-1 0.3907 0.7302 0.9842 0.7086 0.9858
master pooling OMAR 10-1 0.3907 0.7302 0.9842 0.7086 0.9858

0.99 0.90
OET 9-1 0.4243 0.9705 0.9839 0.7602 0.9984
OMAR 9-1 0.4243 0.9705 0.9839 0.7602 0.9984

0.90 0.99
OET 11-1 0.3511 0.7301 0.9986 0.9659 0.9860
OMAR 11-1 0.3511 0.7301 0.9986 0.9659 0.9860

0.99 0.99
OET 100-10-1 0.3772 0.9608 0.9986 0.9736 0.9979
OMAR 100-10-1 0.3772 0.9608 0.9986 0.9736 0.9979

0.95 0.95
OET 100-10-1 0.3660 0.8152 0.9930 0.8600 0.9903
OMAR 100-10-1 0.3660 0.8152 0.9930 0.8600 0.9903

Array w/
0.90 0.90

OET 100-10-1 0.3517 0.6572 0.9858 0.7091 0.9820
master pooling OMAR 100-10-1 0.3517 0.6572 0.9858 0.7091 0.9820

0.99 0.90
OET 81-9-1 0.4201 0.9608 0.9842 0.7617 0.9979
OMAR 81-9-1 0.4201 0.9608 0.9842 0.7617 0.9979

0.90 0.99
OET 121-11-1 0.3160 0.6571 0.9988 0.9660 0.9823
OMAR 121-11-1 0.3160 0.6571 0.9988 0.9660 0.9823
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Table A.3: OTC summary for p = 0.10 under non-informative group testing.
Equally sized groups are optimal at each stage; thus, a �24-6-1� means that
stage 1 has a group of size 24, stage 2 has four groups of size 6, and stage
3 has twenty-four groups of size 1. Di�erences between OET and OMAR are
highlighted.

Objective
Algorithm Se Sp function OTC E(T )/I PSe PSp PPPV PNPV

0.99 0.99
OET 4-1 0.5970 0.9801 0.9972 0.9753 0.9978
OMAR 4-1 0.5970 0.9801 0.9972 0.9753 0.9978

0.95 0.95
OET 4-1 0.6095 0.9025 0.9853 0.8722 0.9891
OMAR 4-1 0.6095 0.9025 0.9853 0.8722 0.9891

Two-stage
0.90 0.90

OET 4-1 0.6251 0.8100 0.9683 0.7396 0.9787
hierarchical OMAR 4-1 0.6251 0.8100 0.9683 0.7396 0.9787

0.99 0.90
OET 4-1 0.6561 0.9801 0.9659 0.7614 0.9977
OMAR 4-1 0.6561 0.9801 0.9659 0.7614 0.9977

0.90 0.99
OET 4-1 0.5661 0.8100 0.9975 0.9728 0.9793
OMAR 4-1 0.5661 0.8100 0.9975 0.9728 0.9793

0.99 0.99
OET 9-3-1 0.5836 0.9703 0.9981 0.9827 0.9967
OMAR 9-3-1 0.5836 0.9703 0.9981 0.9827 0.9967

0.95 0.95
OET 9-3-1 0.5733 0.8574 0.9905 0.9091 0.9843
OMAR 9-3-1 0.5733 0.8574 0.9905 0.9091 0.9843

Three-stage
0.90 0.90

OET 9-3-1 0.5619 0.7290 0.9808 0.8081 0.9702
hierarchical OMAR 9-3-1 0.5619 0.7290 0.9808 0.8081 0.9702

0.99 0.90
OET 9-3-1 0.6295 0.9703 0.9772 0.8254 0.9966
OMAR 6-3-1 0.6295 0.9703 0.9786 0.8345 0.9966

0.90 0.99
OET 9-3-1 0.5188 0.7290 0.9984 0.9809 0.9707
OMAR 9-3-1 0.5188 0.7290 0.9984 0.9809 0.9707

0.99 0.99
OET 7-1 0.5821 0.9705 0.9978 0.9800 0.9967
OMAR 7-1 0.5821 0.9705 0.9978 0.9800 0.9967

0.95 0.95
OET 7-1 0.5776 0.8585 0.9888 0.8950 0.9843
OMAR 7-1 0.5776 0.8585 0.9888 0.8950 0.9843

Array w/o
0.90 0.90

OET 7-1 0.5722 0.7310 0.9772 0.7808 0.9703
master pooling OMAR 7-1 0.5722 0.7310 0.9772 0.7808 0.9703

0.99 0.90
OET 7-1 0.6250 0.9704 0.9732 0.8009 0.9966
OMAR 7-1 0.6250 0.9704 0.9732 0.8009 0.9966

0.90 0.99
OET 7-1 0.5335 0.7324 0.9982 0.9778 0.9711
OMAR 7-1 0.5335 0.7324 0.9982 0.9778 0.9711

0.99 0.99
OET 49-7-1 0.5767 0.9608 0.9978 0.9800 0.9957
OMAR 49-7-1 0.5767 0.9608 0.9978 0.9800 0.9957

0.95 0.95
OET 49-7-1 0.5491 0.8156 0.9894 0.8952 0.9797
OMAR 49-7-1 0.5491 0.8156 0.9894 0.8952 0.9797

Array w/
0.90 0.90

OET 49-7-1 0.5154 0.6579 0.9795 0.7812 0.9626
master pooling OMAR 49-7-1 0.5154 0.6579 0.9795 0.7812 0.9626

0.99 0.90
OET 49-7-1 0.6191 0.9607 0.9735 0.8013 0.9955
OMAR 49-7-1 0.6191 0.9607 0.9735 0.8013 0.9955

0.90 0.99
OET 49-7-1 0.4806 0.6592 0.9983 0.9778 0.9635
OMAR 49-7-1 0.4806 0.6592 0.9983 09778 0.9635



119

Table A.4: Largest di�erences between operating characteristics for OTCs
under non-informative group testing. Values of p range from 0.005 to 0.150
by 0.005. The frequency column denotes the number of times a di�erent
OTC was found for OET and OMAR among these values of p. Di�erences
between operating characteristics are rounded to four decimal places. Note
that the operating characteristic value for OET is always subtracted from the
operating characteristic value for OMAR. Thus, a negative value (indicated
with parentheses) means that the value for OET was larger than the value for
OMAR.

Largest di�erence

Algorithm Se Sp Frequency E(T )/I PSe PSp PPPV PNPV

Two-stage
hierarchical

0.99 0.99 0 - - - - -
0.95 0.95 3 0.0018 0.0000 0.0049 0.0262 0.0001
0.90 0.90 4 0.0023 0.0000 0.0054 0.0345 0.0001
0.99 0.90 7 0.0056 0.0000 0.0096 0.0382 0.0000
0.90 0.99 0 - - - - -

Three-stage
hierarchical

0.99 0.99 0 - - - - -
0.95 0.95 1 0.0014 0.0000 0.0051 0.0296 0.0001
0.90 0.90 3 0.0015 0.0000 0.0049 0.0575 0.0001
0.99 0.90 7 0.0041 (0.0098) 0.0136 0.0580 (0.0015)
0.90 0.99 1 0.0000 0.0000 0.0002 0.0097 0.0000

Array w/o
master
pooling

0.99 0.99 0 - - - - -
0.95 0.95 5 0.0010 0.0018 0.0026 0.0195 0.0003
0.90 0.90 8 0.0028 0.0022 0.0054 0.0305 0.0005
0.99 0.90 5 0.0043 0.0005 0.0076 0.0317 0.0001
0.90 0.99 1 0.0000 0.0006 0.0001 0.0042 0.0000

Array w/
master
pooling

0.99 0.99 2 0.0005 0.0006 0.0008 0.0046 0.0001
0.95 0.95 4 0.0012 0.0017 0.0026 0.0198 0.0003
0.90 0.90 8 0.0015 0.0018 0.0051 0.0307 0.0005
0.99 0.90 5 0.0048 0.0005 0.0077 0.0327 0.0001
0.90 0.99 2 0.0003 0.0026 0.0005 0.0048 0.0004
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Table A.8: Largest di�erences between operating characteristics for OTCs un-
der informative group testing. Values of E(Pi) = p range from 0.005 to 0.150
by 0.005. The frequency column denotes the number of times a di�erent OTC
was found among these values of p. Di�erences between operating characteris-
tics are rounded to four decimal places. Note that the operating characteristic
value for OET is always subtracted from the operating characteristic value for
OMAR. Thus, a negative value (indicated with parentheses) means that the
value for OET was larger than the value for OMAR.

Largest di�erence

Algorithm α Se Sp Frequency E(T )/I PSW
e PSW

p PPPV W PNPV W

2

0.99 0.99 0 - - - - -
0.95 0.95 7 0.0006 (0.0023) 0.0011 0.0156 0.0004
0.90 0.90 12 0.0010 (0.0052) 0.0023 0.0160 0.0007
0.99 0.90 12 0.0011 (0.0008) 0.0022 0.0182 (0.0001)

Two-stage 0.90 0.99 2 0.0003 0.0052 0.0000 0.0002 0.0007
hierarchical

0.5

0.99 0.99 0 - - - - -
0.95 0.95 3 0.0003 (0.0035) 0.0011 0.0102 0.0003
0.90 0.90 15 0.0008 (0.0103) 0.0022 0.0277 0.0007
0.99 0.90 16 0.0012 (0.0011) 0.0022 0.0194 (0.0001)
0.90 0.99 11 0.0006 0.0078 (0.0002) (0.0028) 0.0007

2

0.99 0.99 1 0.0000 (0.0019) 0.0002 0.0057 (0.0001)
0.95 0.95 2 0.0035 0.0219 0.0033 0.0270 0.0034
0.90 0.90 6 0.0044 0.0152 0.0062 0.0409 0.0023
0.99 0.90 4 0.0035 0.0006 0.0066 0.0445 0.0001

Three-stage 0.90 0.99 14 0.0180 0.0500 0.0003 0.0046 0.0064
hierarchical

0.5

0.99 0.99 1 0.0000 0.0001 0.0001 0.0018 0.0000
0.95 0.95 0 - - - - -
0.90 0.90 3 0.0010 0.0250 0.0033 0.0296 0.0025
0.99 0.90 5 0.0022 0.0034 0.0070 0.0385 0.0005
0.90 0.99 9 0.0057 0.0355 0.0003 0.0051 0.0030

2

0.99 0.99 1 0.0003 0.0004 0.0005 0.0039 0.0001
0.95 0.95 2 0.0011 0.0012 0.0027 0.0169 0.0002
0.90 0.90 5 0.0016 0.0012 0.0040 0.0265 0.0003
0.99 0.90 4 0.0028 0.0003 0.0053 0.0277 0.0001

Array w/o 0.90 0.99 0 - - - - -
master pooling

0.5

0.99 0.99 0 - - - - -
0.95 0.95 4 0.0003 0.0004 0.0015 0.0129 0.0001
0.90 0.90 14 0.0015 0.0004 0.0032 0.0194 0.0002
0.99 0.90 8 0.0024 0.0001 0.0041 0.0211 0.0000
0.90 0.99 1 0.0003 0.0005 0.0003 0.0027 0.0001
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Table A.9: Full OTCs for E(Pi) = 0.01 under informative two-stage hierarchi-
cal group testing. There are no di�erences in the OTCs for OET and OMAR.

Objective Block Group sizes

α Se Sp function size E(T )/I I11 I12 I13 I14 I15

2

0.99 0.99
OET 50 0.1947 16 11 9 8 6
OMAR 50 0.1947 16 11 9 8 6

0.95 0.95
OET 50 0.2264 18 13 11 8
OMAR 50 0.2264 18 13 11 8

0.90 0.90
OET 50 0.2657 18 13 11 8
OMAR 50 0.2657 18 13 11 8

0.99 0.90
OET 50 0.2754 18 13 11 8
OMAR 50 0.2754 18 13 11 8

0.90 0.99
OET 50 0.1854 18 13 11 8
OMAR 50 0.1854 18 13 11 8

0.5

0.99 0.99
OET 50 0.1683 25 12 8 5
OMAR 50 0.1683 25 12 8 5

0.95 0.95
OET 50 0.2019 25 12 8 5
OMAR 50 0.2019 25 12 8 5

0.90 0.90
OET 50 0.2439 25 12 8 5
OMAR 50 0.2439 25 12 8 5

0.99 0.90
OET 50 0.2511 25 12 8 5
OMAR 50 0.2511 25 12 8 5

0.90 0.99
OET 50 0.1611 25 12 8 5
OMAR 50 0.1611 25 12 8 5
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Table A.10: Full OTCs for E(Pi) = 0.01 under informative three-stage hi-
erarchical group testing. There are no di�erences in the OTCs for OET and
OMAR.

Objective Group sizes

α Se Sp function I11 E(T )/I I21 I22 I23 I24 I25

2

0.99 0.99
OET 26 0.1285 9 5 5 4 3
OMAR 26 0.1285 9 5 5 4 3

0.95 0.95
OET 26 0.1375 10 7 5 4
OMAR 26 0.1375 10 7 5 4

0.90 0.90
OET 26 0.1497 10 7 5 4
OMAR 26 0.1497 10 7 5 4

0.99 0.90
OET 26 0.1638 10 7 5 4
OMAR 26 0.1638 10 7 5 4

0.90 0.99
OET 26 0.1168 9 5 5 4 3
OMAR 26 0.1168 9 5 5 4 3

0.5

0.99 0.99
OET 33 0.1197 15 6 5 4 3
OMAR 33 0.1197 15 6 5 4 3

0.95 0.95
OET 28 0.1291 13 7 5 3
OMAR 28 0.1291 13 7 5 3

0.90 0.90
OET 29 0.1422 14 7 5 3
OMAR 29 0.1422 14 7 5 3

0.99 0.90
OET 28 0.1554 13 7 5 3
OMAR 28 0.1554 13 7 5 3

0.90 0.99
OET 37 0.1078 17 7 6 4 3
OMAR 37 0.1078 17 7 6 4 3
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Table A.11: Full OTCs for E(Pi) = 0.05 under informative two-stage hierar-
chical group testing. Di�erences between OET and OMAR are highlighted.

Objective Block Group sizes

α Se Sp function size E(T )/I I11 I12 I13 I14 I15 I16 I17 I18 I19

2

0.99 0.99
OET 50 0.4101 9 7 6 6 5 5 4 4 4
OMAR 50 0.4101 9 7 6 6 5 5 4 4 4

0.95 0.95
OET 50 0.4321 9 7 6 6 5 5 4 4 4
OMAR 50 0.4321 9 7 6 6 5 5 4 4 4

0.90 0.90
OET 50 0.4586 10 8 7 6 5 5 5 4
OMAR 50 0.4586 10 8 7 6 5 5 5 4

0.99 0.90
OET 50 0.4798 9 7 6 6 5 5 4 4 4
OMAR 50 0.4798 9 7 6 6 5 5 4 4 4

0.90 0.99
OET 50 0.3898 9 7 6 6 5 5 4 4 4
OMAR 50 0.3898 9 7 6 6 5 5 4 4 4

0.99 0.99
OET 50 0.3584 16 9 6 5 4 4 3 3
OMAR 50 0.3584 16 9 6 5 4 4 3 3

0.95 0.95
OET 50 0.3830 16 9 6 5 4 4 3 3
OMAR 50 0.3830 16 9 6 5 4 4 3 3

0.5 0.90 0.90
OET 50 0.4124 17 9 7 5 5 4 3
OMAR 50 0.4124 17 9 7 5 5 4 3

0.99 0.90
OET 50 0.4308 17 9 6 5 5 4 3 1
OMAR 50 0.4311 16 9 6 5 4 4 3 3

0.90 0.99
OET 50 0.3411 16 9 6 5 4 4 3 3
OMAR 50 0.3411 16 9 6 5 4 4 3 3
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Table A.12: Full OTCs for E(Pi) = 0.05 under informative three-stage hierar-
chical group testing. Di�erences between OET and OMAR are highlighted.

Objective Group sizes

α Se Sp function I11 E(T )/I I21 I22 I23 I24

0.99 0.99
OET 10 0.3687 4 3 2 1
OMAR 10 0.3687 4 3 2 1

0.95 0.95
OET 11 0.3709 5 3 3
OMAR 11 0.3709 5 3 3

2 0.90 0.90
OET 12 0.3724 5 4 3
OMAR 12 0.3724 5 4 3

0.99 0.90
OET 9 0.4136 5 3 1
OMAR 8 0.4140 4 3 1

0.90 0.99
OET 12 0.3315 5 4 3
OMAR 12 0.3336 5 3 3 1

0.99 0.99
OET 11 0.3365 6 3 1 1
OMAR 11 0.3365 6 3 1 1

0.95 0.95
OET 11 0.3433 6 3 1 1
OMAR 11 0.3433 6 3 1 1

0.5 0.90 0.90
OET 10 0.3503 6 3 1
OMAR 10 0.3503 6 3 1

0.99 0.90
OET 10 0.3833 6 3 1
OMAR 10 0.3833 6 3 1

0.90 0.99
OET 15 0.3052 7 4 3 1
OMAR 11 0.3076 6 3 1 1
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Table A.14: Full OTCs for E(Pi) = 0.10 under informative three-stage hierar-
chical group testing. Di�erences between OET and OMAR are highlighted.

Objective Group sizes

α Se Sp function I11 E(T )/I I21 I22 I23 I24 I25 I26 I27 I28 I29 I2,10

0.99 0.99
OET 5 0.5567 3 1 1
OMAR 5 0.5567 3 1 1

0.95 0.95
OET 8 0.5550 4 3 1
OMAR 8 0.5550 4 3 1

2 0.90 0.90
OET 8 0.5461 4 3 1
OMAR 8 0.5461 4 3 1

0.99 0.90
OET 5 0.6044 3 1 1
OMAR 5 0.6044 3 1 1

0.90 0.99
OET 8 0.5055 4 3 1
OMAR 6 0.5203 3 1 1 1

0.99 0.99
OET 40 0.5074 12 6 5 4 4 3 3 1 1 1
OMAR 40 0.5074 12 6 5 4 4 3 3 1 1 1

0.95 0.95
OET 40 0.5050 12 6 5 4 4 3 3 1 1 1
OMAR 40 0.5050 12 6 5 4 4 3 3 1 1 1

0.5 0.90 0.90
OET 40 0.4994 12 7 5 4 4 3 3 1 1
OMAR 40 0.4994 12 7 5 4 4 3 3 1 1

0.99 0.90
OET 6 0.5611 4 1 1
OMAR 6 0.5611 4 1 1

0.90 0.99
OET 40 0.4442 12 7 5 4 4 3 3 1 1
OMAR 40 0.4445 12 6 5 4 4 3 3 1 1 1

Table A.15: OTC summary for HIV testing using Se = 0.963, Sp = 0.9903,
and p = 0.004 with non-informative group testing. Equally sized groups are
optimal at each stage; thus, an OTC of �24-6-1� means that stage 1 has a
group of size 24, stage 2 has four groups of size 6, and stage 3 has twenty-four
groups of size 1. There are no di�erences in the OTCs for OET and OMAR.

Objective
Algorithm function OTC E(T )/I PSe PSp PPPV PNPV
Two-stage OET 17-1 0.1313 0.9274 0.9993 0.8478 0.9997
hierarchical OMAR 17-1 0.1313 0.9274 0.9993 0.8478 0.9997
Three-stage OET 49-7-1 0.0732 0.8931 0.9998 0.9402 0.9996
hierarchical OMAR 49-7-1 0.0732 0.8931 0.9998 0.9402 0.9996
Array w/o OET 44-1 0.0749 0.8931 0.9997 0.9348 0.9996

master pooling OMAR 44-1 0.0749 0.8931 0.9997 0.9348 0.9996
Array w/ OET 1936-44-1 0.0721 0.8600 0.9998 0.9348 0.9994

master pooling OMAR 1936-44-1 0.0721 0.8600 0.9998 0.9348 0.9994
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Table A.18: Full OTCs for informative three-stage hierarchical testing sum-
marized in Table A.16. Di�erences between OET and OMAR are highlighted.

Objective Group sizes
function I11 E(T )/I I21 I22 I23 I24

Female
OET 19 0.4102 7 5 4 3
OMAR 14 0.4113 6 4 3 1

Male
OET 8 0.5081 4 3 1
OMAR 8 0.5081 4 3 1

Table A.19: OTC summary for OGR with p = 0.01 under non-informative
two-stage hierarchical testing. An OTC of �11-1� means that stage 1 has a
group of size 11 and stage 2 consists of individual testing.

Se Sp D1 D2 OTC E(T )/I PSe PSp PPPV PNPV

0.99 0.99

1 1 11-1 0.2035 0.9801 0.9990 0.9052 0.9998
1000 1000 3-1 0.3724 0.9801 0.9997 0.9711 0.9998
1 10 11-1 0.2035 0.9801 0.9990 0.9052 0.9998
1 100 11-1 0.2035 0.9801 0.9990 0.9052 0.9998
10 1 10-1 0.2037 0.9801 0.9991 0.9127 0.9998
100 1 7-1 0.2194 0.9801 0.9993 0.9363 0.9998

0.95 0.95

1 1 11-1 0.2351 0.9025 0.9932 0.5727 0.9990
1000 1000 3-1 0.4101 0.9025 0.9966 0.7286 0.9990
1 10 11-1 0.2351 0.9025 0.9932 0.5727 0.9990
1 100 11-1 0.2351 0.9025 0.9932 0.5727 0.9990
10 1 9-1 0.2389 0.9025 0.9940 0.6040 0.9990
100 1 4-1 0.3355 0.9025 0.9962 0.7038 0.9990

0.90 0.90

1 1 11-1 0.2746 0.8100 0.9824 0.3167 0.9981
1000 1000 3-1 0.4571 0.8100 0.9884 0.4138 0.9981
1 10 11-1 0.2746 0.8100 0.9824 0.3167 0.9981
1 100 11-1 0.2746 0.8100 0.9824 0.3167 0.9981
10 1 8-1 0.2868 0.8100 0.9846 0.3464 0.9981
100 1 3-1 0.4571 0.8100 0.9884 0.4138 0.9981

0.99 0.90

1 1 11-1 0.2841 0.9801 0.9815 0.3485 0.9998
1000 1000 3-1 0.4598 0.9801 0.9882 0.4568 0.9998
1 10 11-1 0.2841 0.9801 0.9815 0.3485 0.9998
1 100 11-1 0.2841 0.9801 0.9815 0.3485 0.9998
10 1 8-1 0.2938 0.9801 0.9840 0.3816 0.9998
100 1 3-1 0.4598 0.9801 0.9882 0.4568 0.9998

0.90 0.99

1 1 11-1 0.1941 0.8100 0.9990 0.8959 0.9981
1000 1000 3-1 0.3698 0.8100 0.9997 0.9672 0.9981
1 10 11-1 0.1941 0.8100 0.9990 0.8959 0.9981
1 100 11-1 0.1941 0.8100 0.9990 0.8959 0.9981
10 1 11-1 0.1941 0.8100 0.9990 0.8959 0.9981
100 1 8-1 0.2038 0.8100 0.9993 0.9207 0.9981
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Table A.20: OTC summary for OGR with p = 0.01 under non-informative
three-stage hierarchical testing. When equally sized groups are optimal, we use
the same notation as given in other tables (e.g., Table A.1). When unequally
sized groups are optimal, we write out each group size for its stage. For
example, an OTC of �21-6,5,5,5-1� means that stage 1 has a group of size 21;
stage 2 has groups of size 6, 5, 5, and 5; and stage 3 has groups of size 1.

Se Sp D1 D2 OTC E(T )/I PSe PSp PPPV PNPV

0.99 0.99

1 1 25-5-1 0.1354 0.9703 0.9996 0.9604 0.9997
1000 1000 14-2-1 0.1614 0.9703 0.9999 0.9889 0.9997
1 10 25-5-1 0.1354 0.9703 0.9996 0.9604 0.9997
1 100 25-5-1 0.1354 0.9703 0.9996 0.9604 0.9997
10 1 25-5-1 0.1354 0.9703 0.9996 0.9604 0.9997
100 1 18-3-1 0.1435 0.9703 0.9998 0.9791 0.9997

0.95 0.95

1 1 25-5-1 0.1444 0.8574 0.9977 0.7907 0.9986
1000 1000 6-2-1 0.2401 0.8574 0.9993 0.9289 0.9986
1 10 25-5-1 0.1444 0.8574 0.9977 0.7907 0.9986
1 100 25-5-1 0.1444 0.8574 0.9977 0.7907 0.9986
10 1 20-4-1 0.1479 0.8574 0.9982 0.8290 0.9986
100 1 12-2-1 0.1841 0.8574 0.9992 0.9166 0.9986

0.90 0.90

1 1 24-6-1 0.1562 0.7290 0.9938 0.5437 0.9973
1000 1000 4-2-1 0.3432 0.7290 0.9980 0.7900 0.9973
1 10 24-6-1 0.1562 0.7290 0.9938 0.5437 0.9973
1 100 24-6-1 0.1562 0.7290 0.9938 0.5437 0.9973
10 1 20-4-1 0.1644 0.7290 0.9955 0.6192 0.9973
100 1 10-2-1 0.2202 0.7290 0.9976 0.7533 0.9973

0.99 0.90

1 1 21-6,5,5,5-1 0.1714 0.9703 0.9937 0.6074 0.9997
1000 1000 4-2-1 0.3486 0.9703 0.9979 0.8204 0.9997
1 10 21-6,5,5,5-1 0.1714 0.9703 0.9937 0.6074 0.9997
1 100 21-6,5,5,5-1 0.1714 0.9703 0.9937 0.6074 0.9997
10 1 16-4-1 0.1785 0.9703 0.9951 0.6684 0.9997
100 1 8-2-1 0.2438 0.9703 0.9975 0.7977 0.9997

0.90 0.99

1 1 25-5-1 0.1229 0.7290 0.9997 0.9564 0.9973
1000 1000 3-1 0.3698 0.8100 0.9997 0.9672 0.9981
1 10 25-5-1 0.1229 0.7290 0.9997 0.9564 0.9973
1 100 11-1 0.1941 0.8100 0.9990 0.8959 0.9981
10 1 25-5-1 0.1229 0.7290 0.9997 0.9564 0.9973
100 1 21-3-1 0.1330 0.7290 0.9998 0.9766 0.9973
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Appendix B

Operating characteristics for group testing algorithms

when testing error is allowed to di�er across stages of

testing

Chapter 1 provides reasons why the assumption of equal sensitivity and equal

speci�city across stages of testing might be unrealistic. In this appendix, we

present derivations of operating characteristics for hierarchical and array test-

ing algorithms that allow the sensitivity and speci�city to each di�er across

testing stages. Our derivations pertain only to group testing with a single-

disease assay because Bilder et al. (2019) and Hou et al. (2020) supplied

derivations for the two-disease calculations in the binGroup2 package. It is im-

portant to note that all of our derivations follow those in other papers where

the derivations were performed assuming equal sensitivity and equal speci-

�city. Throughout our own work, we purposely use the same notation as these

other papers to maintain a consistency in the group testing literature and the

associated R functions. Because of the close correspondence to these other

papers, we do not provide a multitude of details. Rather, we focus on where

unequal sensitivity and speci�city values will lead to changes in the operating

characteristics.
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B.1. Hierarchical testing (excluding informative two-stage hierar-

chical)

We closely follow the work of Black et al. (2015) to derive the operating char-

acteristics of hierarchical testing, excluding informative two-stage (Dorfman)

testing. Derivations for informative two-stage testing are provided in Appendix

D. Consider an initial group of size I where the ith individual has probabil-

ity pi, i = 1, ..., I, of being positive for a disease. Let Gs,j = 1 (0) denote a

positive (negative) test result and let G̃s,j = 1 (0) denote a positive (negative)

true status for the jth group at stage s. There are Is,j individuals screened in

the group corresponding to Gs,j, where I1,1 = I. If Gs,j = 0, all members of

the corresponding group are declared negative. If Gs,j = 1, individuals in that

group are split into ms,j groups for the next stage of testing. Let cs be the

total possible groups tested at stage s, where c1 = 1 and cs =
∑cs−1

j=1 ms−1,j

for s = 2, ..., S.

To help explain this notation, consider the following example based on how

HIV testing is performed in Seattle using a three-stage hierarchical testing

algorithm (Sherlock et al., 2007). An initial group size of I = 30 is used

in the �rst stage of the algorithm. Groups that test positive are split into

three groups of size 10 for the second-stage of testing. Individual testing is

performed on any sub-group that tests positive. In this context, I = I1,1 = 30,

c1 = 1, and m1,1 = 3 for the �rst stage of testing. For the second stage of

testing, I2,j = 10, c2 = 3, and m2,j = 10 for j = 1, 2, 3. For the third stage,

I3,j = 1, c3 = 30, and m3,j = 0 for j = 1, ..., 30.
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B.1.1. Expected number of tests

De�ne T as the number of tests needed to decode an initial group of size I.

Black et al. (2012) showed the expected number of tests for an initial group of

size I to be

E (T ) = 1 +
S−1∑
s=1

cs∑
j=1

ms,jP

 ⋂
{(s′,j′):Gs,j=1}

{Gs′,j′ = 1}

 (B.1.1)

for an S-stage algorithm. The probability in equation (B.1.1) is

P

 ⋂
{(s′,j′):Gs,j=1}

{
Gs′,j′ = 1

}
= (1− Sp)s

{
I∏

i=1

(1− pi)

}
+

s−1∑
a=1

Sa
e (1− Sp)

s−a

 ∏
i∈Ba+1,j′

(1− pi)


1−

∏
i∈B̄a+1,j′

(1− pi)

+

Ss
e

1−
∏

i∈Bs,j

(1− pi)

 , (B.1.2)

where Se = P
(
Gs,j = 1

∣∣∣ G̃s,j = 1
)

is the test sensitivity and Sp =

P
(
Gs,j = 0

∣∣∣ G̃s,j = 0
)
is the test speci�city. Additionally, i ∈ Bs,j repre-

sents the individuals who belong to the jth group at stage s, and i ∈ B̄s,j

represents the set of individuals within the parent group of Bs,j not including

those in Bs,j itself (e.g., i ∈ B̄2,1 denotes all individuals within the initial group

B1,1 who are in stage 2 groups other than B2,1).

The probability in equation (B.1.2) represents a series of groups testing

positive up to and including Gs,j = 1 (Black et al., 2015). For example,

consider a four-stage hierarchical testing algorithm. One of the probabilities
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that needs to be found to calculate E (T ) is P (G1,1 = 1, G2,1 = 1, G3,1 = 1),

where s = 3 and j = 1. The probability P
(⋂

{(s′,j′):Gs,j=1} {Gs′,j′ = 1}
)
can

be expressed as the sum of the following:

1. The joint probability that groups at each stage test positive and all are

truly negative in status,

2. The joint probabilities that groups at each stage test positive and at

least one, but not all, are truly positive in status, and

3. The joint probability that groups at each stage test positive and all are

truly positive in status.

It is important to note that this probability is expressed under the assumption

of equal sensitivity and equal speci�city across all stages of testing. With-

out this assumption, we show in this section that the probability in equation

(B.1.1) becomes

P

 ⋂
{(s′,j′):Gs,j=1}

{Gs′,j′ = 1}


=

{
s∏

k=1

(1− Sp:k)

}{
I∏

i=1

(1− pi)

}
+

s−1∑
a=1

{
a∏

k=1

Se:k

}{
s∏

l=a+1

(1− Sp:l)

}
× ∏

i∈Ba+1,j′

(1− pi)


1−

∏
i∈B̄a+1,j′

(1− pi)

+

{
s∏

k=1

Se:k

}1−
∏

i∈Bs,j

(1− pi)

 , (B.1.3)
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where Se:s = P
(
Gs,j = 1

∣∣∣ G̃s,j = 1
)

and Sp:s = P
(
Gs,j = 0

∣∣∣ G̃s,j = 0
)

are the test sensitivity and test speci�city particular to stage s =

1, ..., S, respectively. Thus, the only di�erence between equation (B.1.2)

and equation (B.1.3) is the leading sensitivity and speci�city prod-

ucts for the three main terms in the expression. To see why these

changes occur, suppose S = 3. For this situation, we need to �nd

P (G1,1 = 1) and P (G1,1 = 1, G2,1 = 1) , ..., P (G1,1 = 1, G2,c2 = 1). The prob-

ability P (G1,1 = 1) is for the initial group testing positive. It is found by

taking into account the true group statuses,

P (G1,1 = 1)

= P
(
G1,1 = 1, G̃1,1 = 0

)
+ P

(
G1,1 = 1, G̃1,1 = 1

)
= P

(
G1,1 = 1

∣∣∣ G̃1,1 = 0
)
P
(
G̃1,1 = 0

)
+

P
(
G1,1 = 1

∣∣∣ G̃1,1 = 1
)
P
(
G̃1,1 = 1

)
= (1− Sp:1)

{
I∏

i=1

(1− pi)

}
+ Se:1

{
1−

I∏
i=1

(1− pi)

}
. (B.1.4)

For the probabilities of the �rst- and second-stage groups testing positive,

consider the derivation for P (G1,1 = 1, G2,1 = 1). This probability can be

written as the sum of three separate terms:

P (G1,1 = 1, G2,1 = 1)

= P
(
G1,1 = 1, G2,1 = 1, G̃1,1 = 0, G̃2,1 = 0

)
+

P
(
G1,1 = 1, G2,1 = 1, G̃1,1 = 1, G̃2,1 = 0

)
+

P
(
G1,1 = 1, G2,1 = 1, G̃1,1 = 1, G̃2,1 = 1

)
, (B.1.5)

which takes into account the three ways that {G1,1 = 1} ∩ {G2,1 = 1} may
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occur with respect to the true statuses. The �rst joint probability is

P
(
G1,1 = 1, G2,1 = 1, G̃1,1 = 0, G̃2,1 = 0

)
= P

(
G1,1 = 1, G2,1 = 1

∣∣∣ G̃1,1 = 0, G̃2,1 = 0
)
×

P
(
G̃1,1 = 0, G̃2,1 = 0

)
= P

(
G1,1 = 1

∣∣∣ G̃1,1 = 0
)
P
(
G2,1 = 1

∣∣∣ G̃2,1 = 0
)
×

P
(
G̃1,1 = 0, G̃2,1 = 0

)
= (1− Sp:1) (1− Sp:2)P

(
G̃1,1 = 0, G̃2,1 = 0

)
= (1− Sp:1) (1− Sp:2)P

(
G̃2,1 = 0

∣∣∣ G̃1,1 = 0
)
P
(
G̃1,1 = 0

)
= (1− Sp:1) (1− Sp:2)P

(
G̃1,1 = 0

)
= (1− Sp:1) (1− Sp:2)

{
I∏

i=1

(1− pi)

}
, (B.1.6)

where we make the assumption that the test outcomes are conditionally in-

dependent once the true status is known (see Litvak et al. (1994) for more

information). Similarly, the second and third joint probabilities can be shown

to be

P
(
G1,1 = 1, G2,1 = 1, G̃1,1 = 1, G̃2,1 = 0

)
= Se:1 (1− Sp:2)

 ∏
i∈B2,1

(1− pi)


1−

∏
i∈B̄2,1

(1− pi)


and

P
(
G1,1 = 1, G2,1 = 1, G̃1,1 = 1, G̃2,1 = 1

)
= Se:1Se:2

1−
∏

i∈B2,1

(1− pi)

 .
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Combining these results together, the probability in equation (B.1.5) becomes

P (G1,1 = 1, G2,1 = 1)

= (1− Sp:1) (1− Sp:2)

{
I∏

i=1

(1− pi)

}
+

Se:1 (1− Sp:2)

 ∏
i∈B2,1

(1− pi)


1−

∏
i∈B̄2,1

(1− pi)

+

Se:1Se:2

1−
∏

i∈B2,1

(1− pi)


for three-stage hierarchical testing. The patterns shown here for three-stage

hierarchical testing are also observed for S-stage hierarchical testing in gen-

eral. Putting all this information together, one can show that for an S-stage

algorithm, the probability in (B.1.1) becomes

P

 ⋂
{(s′,j′):Gs,j=1}

{Gs′,j′ = 1}


=

{
s∏

k=1

(1− Sp:k)

}{
I∏

i=1

(1− pi)

}
+

s−1∑
a=1

{
a∏

k=1

Se:k

}{
s∏

l=a+1

(1− Sp:l)

}
× ∏

i∈Ba+1,j′

(1− pi)


1−

∏
i∈B̄a+1,j′

(1− pi)

+

{
s∏

k=1

Se:k

}1−
∏

i∈Bs,j

(1− pi)

 . (B.1.7)
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B.1.2. Accuracy measures

De�ne Yi = 1 (0) as the �nal positive (negative) test outcome based on the

group testing algorithm, and de�ne Ỹi = 1 (0) as the positive (negative) true

status of the ith individual, for i = 1, ..., I. The pooling sensitivity for the

ith individual is the probability of a correct positive diagnosis and is ex-

pressed as PS
(i)
e = P

(
Yi = 1

∣∣∣ Ỹi = 1
)
. The pooling speci�city for the ith

individual is the probability of a correct negative diagnosis and is written

as PS
(i)
p = P

(
Yi = 0

∣∣∣ Ỹi = 0
)
. We also de�ne the pooling positive predictive

value and pooling negative predictive value as PPPV (i) = P
(
Ỹi = 1

∣∣∣ Yi = 1
)

and PNPV (i) = P
(
Ỹi = 0

∣∣∣ Yi = 0
)
, respectively.

B.1.2.1. Pooling sensitivity

For the ith individual to be diagnosed as positive (Yi = 1), the initial group and

all later groups containing that individual must test positive. This includes

the last group which contains only the ith individual (Black et al., 2015). We

de�ne group j∗ in stage L (L ≤ S) as the group in the �nal stage of testing

for individual i (i.e., the stage where individual i could be tested individually

with respect to the con�guration).

Black et al. (2015) showed the pooling sensitivity for an S-stage algorithm

to be

PS(i)
e = P

(
Yi = 1

∣∣∣ Ỹi = 1
)

= P

 ⋂
{(s′j′):GL,j∗=1}

{Gs′,j′ = 1}

∣∣∣∣∣∣∣
⋂

{(s′j′):GL,j∗=1}

{
G̃s′,j′ = 1

}
= SL

e .
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This derivation uses the conditional independence assumption previously men-

tioned in Section B.1.1 to result in the product of the sensitivities at each stage

of the algorithm. Allowing for unequal sensitivities across the stages, the pool-

ing sensitivity simply becomes

PS(i)
e =

L∏
k=1

Se:k.

Thus, the pooling sensitivity is the same for each individual testing positive

within L stages.

B.1.2.2. Pooling speci�city

Black et al. (2015) showed the pooling speci�city for an S-stage algorithm to

be

PS(i)
p = P

(
Yi = 0

∣∣∣ Ỹi = 0
)

= 1− P
(
Yi = 1

∣∣∣ Ỹi = 0
)

= 1−
P (Yi = 1)− P

(
Yi = 1

∣∣∣ Ỹi = 1
)
P
(
Ỹi = 1

)
P
(
Ỹi = 0

)
= 1−

P
(⋂
{(s′j′):GL,j∗=1} {Gs′,j′ = 1}

)
− SL

e pi

(1− pi)
.

Allowing for unequal sensitivities and unequal speci�cities across stages of

testing, the pooling speci�city simply becomes

PS(i)
p = 1−

P
(⋂
{(s′j′):GL,j∗=1} {Gs′,j′ = 1}

)
− PS(i)

e pi

(1− pi)
,
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where P
(⋂
{(s′j′):GL,j∗=1} {Gs′,j′ = 1}

)
is given by equation (B.1.3) and

PS
(i)
e =

∏L
k=1 Se:k. Notice that the individual pooling speci�city is a func-

tion of the individual probabilities, unlike what was found for PS
(i)
e . The

pooling positive and negative predictive values, given in Black et al. (2015),

are then found through applications of Bayes' rule:

PPPV (i) =
piPS

(i)
e

piPS
(i)
e + (1− pi)

(
1− PS(i)

p

)
and

PNPV (i) =
(1− pi)PS(i)

p

(1− pi)PS(i)
p + pi

(
1− PS(i)

e

) .
New expressions for PPPV (i) and PNPV (i) (allowing for unequal sensitivity

and unequal speci�city across stages of testing) are found by substituting the

derived expressions for PS
(i)
e and PS

(i)
p into the above equations. Overall mea-

sures of pooling sensitivity, pooling speci�city, and pooling predictive values

are provided in Appendix A.

B.2. Array testing without master pooling

We closely follow the work of McMahan et al. (2012b) to derive the operating

characteristics for array testing without master pooling. Consider an array

with J > 1 rows and K > 1 columns, and denote the individual assigned

to the (j, k) cell as Ijk, for j = 1, ..., J and k = 1, ..., K. Let Ỹjk denote

the true status of individual Ijk based on the group testing algorithm, so that

pjk = P
(
Ỹjk = 1

)
is the probability of being truly positive. We make the same

assumption as McMahan et al. (2012b) that the true statuses are independent

random variables.
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De�ne Rj = 1 (0) as the positive (negative) test outcome and R̃j = 1 (0)

as the positive (negative) true status of the jth row for j = 1, ..., J . Likewise,

de�ne Ck as the test outcome and C̃k as the true status of the kth column for

k = 1, ..., K. Note that R̃j = 1 (C̃k = 1) if the jth row (kth column) contains

at least one truly positive individual. Equivalently, R̃j = I
(∑K

k=1 Ỹjk > 0
)

and C̃k = I
(∑J

j=1 Ỹjk > 0
)
, where I(·) represents the indicator function. As

in McMahan et al. (2012b), we assume that diagnostic test outcomes are con-

ditionally independent given the true statuses. We also assume that if a group

contains at least one positive individual, it will test positive with probability

Se (sensitivity) and if a group consists entirely of negative individuals, it will

test negative with probability Sp (speci�city). Note that Se and Sp are allowed

to vary across stages of testing (e.g., row/column test, individual test), but we

assume that these accuracy measures do not depend on the size of the group.

Using diagnostic tests with perfect accuracy, Phatarfod and Sudbury (1994)

classi�ed Ijk as negative if Rj = 0 or Ck = 0. Individual retesting for Ijk occurs

when Rj = 1 and Ck = 1. However, diagnostic tests are rarely perfect, so we

need to account for the possibility that one or more row (column) tests are

positive while all column (row) tests are negative (Kim et al., 2007). As a

result of this ambiguity, we use the notation in McMahan et al. (2012b) and

partition all individuals in the algorithm into one of two categories:

M+ =

{
Ijk : I (Rj = 1, Ck = 1) + I

(
Rj = 1,

K∑
k=1

Ck = 0

)
+

I

(
J∑

j=1

Rj = 0, Ck = 1

)
= 1

}

and M_ = M+. Individuals in M+ are classi�ed as positive or negative after
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individual retesting and individuals in M_ are classi�ed as negative without

individual testing.

B.2.1. Expected number of tests

Let T denote the total number of tests required to decode one array. McMahan

et al. (2012b) showed the expected number of tests is

E (T ) = J +K +
J∑

j=1

K∑
k=1

E (Tjk) ,

where Tjk represents the number of tests required to classify Ijk after the

initial stage of testing (i.e., row and column tests). Using the classi�cation

methodology provided by Kim et al. (2007), Tjk can be written as

Tjk =



1, if Rj = 1 and Ck = 1

1, if Rj = 1 and
∑K

k′=1Ck′ = 0

1, if
∑J

j′=1Rj′ = 0 and Ck = 1

0, otherwise.

Then, for the two-dimensional array testing algorithm without master pooling,

E (Tjk) = P (Rj = 1, Ck = 1) +

P

(
Rj = 1,

K∑
k′=1

Ck′ = 0

)
+

P

(
J∑

j′=1

Rj′ = 0, Ck = 1

)
. (B.2.1)
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McMahan et al. (2012b) provided expressions for each of these probabilities.

For the �rst term in equation (B.2.1),

P (Rj = 1, Ck = 1)

=
{
1− P

(
Rj = 0

∣∣∣ R̃j = 0
)}{

1− P
(
Ck = 0

∣∣∣ C̃k = 0
)}
×

P
(
R̃j = 0, C̃k = 0

)
+

P
(
Rj = 1

∣∣∣ R̃j = 1
){

1− P
(
Ck = 0

∣∣∣ C̃k = 0
)}

P
(
R̃j = 1, C̃k = 0

)
+{

1− P
(
Rj = 0

∣∣∣ R̃j = 0
)}

P
(
Ck = 1

∣∣∣ C̃k = 1
)
P
(
R̃j = 0, C̃k = 1

)
+

P
(
Rj = 1

∣∣∣ R̃j = 1
)
P
(
Ck = 1

∣∣∣ C̃k = 1
)
P
(
R̃j = 1, C̃k = 1

)
.

When the sensitivity and speci�city are unequal across stages of testing, this

becomes

P (Rj = 1, Ck = 1)

= (1− Sp:R) (1− Sp:C)P
(
R̃j = 0, C̃k = 0

)
+

Se:R (1− Sp:C)P
(
R̃j = 1, C̃k = 0

)
+

(1− Sp:R)Se:CP
(
R̃j = 0, C̃k = 1

)
+

Se:RSe:CP
(
R̃j = 1, C̃k = 1

)
, (B.2.2)

where Se:R (Sp:R) and Se:C (Sp:C) represent the sensitivity (speci�city) for the

row and column tests, respectively. The jth row and kth column have only

individual, Ijk, in common. Under the assumption that the individual statuses

are independent, R̃j and C̃k are independent, conditional on Ỹjk (McMahan

et al., 2012b). Expressions for the probabilities in equation (B.2.2) consisting

only of R̃j and C̃k do not change from those already given in McMahan et al.
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(2012b). Thus, the �rst term in equation (B.2.1) can be written as

P (Rj = 1, Ck = 1)

= (1− Sp:R) (1− Sp:C)

{
πR (j) πC (k)

1− pjk

}
+

Se:R (1− Sp:C)

{
πC (k)− πR (j)πC (k)

1− pjk

}
+

(1− Sp:R)Se:C

{
πR (j)− πR (j) πC (k)

1− pjk

}
+

Se:RSe:C

{
1− πR (j)− πC (k) +

πR (j)πC (k)

(1− pjk)

}
, (B.2.3)

where πR (j) = P
(
R̃j = 0

)
=
∏K

k′=1 (1− pjk′) and πC (k) = P
(
C̃k = 0

)
=∏J

j′=1 (1− pj′k). The remaining terms in equation (B.2.1) are much more

complicated to derive.

First, we consider the second probability in equation (B.2.1). To �nd

this probability, we must consider each of the 2K con�gurations of the true

column statuses; i.e.,
{
C̃1 = c̃1, C̃2 = c̃2, ..., C̃K = c̃K

}
,where c̃k ∈ {0, 1}, for

k = 1, ..., K (McMahan et al., 2012b). By the Law of Total Probability,

P

(
Rj = 1,

K∑
k′=1

Ck′ = 0

)

=
1∑

r̃=0

1∑
c̃1=0

...
1∑

c̃K=0

P

(
Rj = 1,

K⋂
k=1

{Ck = 0}

∣∣∣∣∣ R̃j = r̃,
K⋂
k=1

{
C̃k = c̃k

})
×

P

(
R̃j = r̃,

K⋂
k=1

{
C̃k = c̃k

})
.

De�ne Bc, for c = 1, ..., K, to be the set of all c-combinations of K0 =

{1, 2, ..., K}, and let B0 = ∅, the empty set. For all B ∈ Bc, c = 0, 1, ..., K,
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de�ne the events

C̃(B) =
K⋂
k=1

{
C̃k = I (k ∈ B)

}

C(B) =
K⋂
k=1

{Ck = I (k ∈ B)} ,

where I(·) is the indicator function. For example, suppose K = 3. We have

K0 = {1, 2, 3}, B0 = ∅, B1 = {{1} , {2} , {3}}, B2 = {{1, 2} , {1, 3} , {2, 3}},

and B3 = {{1, 2, 3}}. The set B = {1, 2} ∈ B2 corresponds to{
C̃1 = 1, C̃2 = 1, C̃3 = 0

}
, the event that columns 1 and 2 are truly positive

and column 3 is truly negative. Using this notation from McMahan et al.

(2012b), the previous probability can be written as

P

(
Rj = 1,

K∑
k′=1

Ck′ = 0

)

=
1∑

r̃=0

K∑
c=0

∑
B∈Bc

P
{
Rj = 1, C(B0)

∣∣∣ R̃j = r̃, C̃(B)
}
×

P
{
R̃j = r̃, C̃(B)

}
. (B.2.4)

Using the assumptions about test sensitivity and speci�city and allowing sen-

sitivity and speci�city to di�er across stages of testing, for all c ∈ {0, 1, ..., K},

we have

P
{
Rj = 1, C(B0)

∣∣∣ R̃j = 0, C̃(Bc)
}

= P
(
Rj = 1

∣∣∣ R̃j = 0
)
P
{
C(B0)

∣∣∣ C̃(Bc)
}
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=
{

1− P
(
Rj = 0

∣∣∣ R̃j = 0
)}
×

P

[
K⋂
k=1

{Ck = I (k ∈ B0)}

∣∣∣∣∣
K⋂
k=1

C̃k = I (k ∈ Bc)

]
= (1− Sp:R) (1− Se:C)c (Sp:C)K−c

and

P
{
Rj = 1, C (B0)

∣∣∣ R̃j = 1, C̃ (Bc)
}

= P
(
Rj = 1

∣∣∣ R̃j = 1
)
P
{
C(B0)

∣∣∣ C̃(Bc)
}

= Se:R (1− Se:C)c (Sp:C)K−c .

Substituting back into equation (B.2.4) and changing the order of summation,

we get

P

(
Rj = 1,

K∑
k′=1

Ck′ = 0

)

=
K∑
c=0

∑
B∈Bc

[
P
{
Rj = 1, C(B0)

∣∣∣ R̃j = 0, C̃(B)
}
P
{
R̃j = 0, C̃(B)

}
+

P
{
Rj = 1, C(B0)

∣∣∣ R̃j = 1, C̃(B)
}
P
{
R̃j = 1, C̃(B)

}]
=

K∑
c=0

∑
B∈Bc

[
(1− Sp:R) (1− Se:C)c (Sp:C)K−c P

{
R̃j = 0, C̃(B)

}
+

Se:R (1− Se:C)c (Sp:C)K−c P
{
R̃j = 1, C̃(B)

}]
. (B.2.5)

Expressions for the probabilities consisting only of R̃j and C̃ (B) do not change

from those already given in McMahan et al. (2012b). The probability expres-

sions in equation (B.2.5) are

P
{
R̃j = 0, C̃(Bc)

}
= πR (j)λC (Bc | K0, j)
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and

P
{
R̃j = 1, C̃(Bc)

}
= λC (Bc | ∅, j)− πR (j)λC (Bc | K0, j) ,

where

λC (Bc | S, j) =
∏
k′∈Bc

{
1− πC (k′)

(1− pjk′)I(k′∈S)

} ∏
k′∈B̄c

πC (k′)

(1− pjk′)I(k′∈S)
,

B̄c = K0 \ Bc and products taken over {k′ ∈ ∅} are understood to be equal to

1. Therefore, equation (B.2.5) becomes

P

(
Rj = 1,

K∑
k′=1

Ck′ = 0

)

=
K∑
c=0

∑
B∈Bc

[
(1− Sp:R) (1− Se:C)c (Sp:C)

K−c πR (j)λC (B | K0, j)+

Se:R (1− Se:C)c (Sp:C)
K−c {λC (B | ∅, j)− πR (j)λC (B | K0, j)}

]
=

K∑
c=0

∑
B∈Bc

{
(1− Se:R − Sp:R) (1− Se:C)c (Sp:C)

K−c πR (j)λC (B | K0, j)+

Se:R (1− Se:C)c (Sp:C)
K−c λC (B | ∅, j)

}
=

K∑
c=0

∑
B∈Bc

{γ0 (c,K)λC (B | ∅, j) + γ1 (c,K)πR (j)λC (B | K0, j)} , (B.2.6)

where γ0 (c,K) = Se:R (1− Se:C)c (Sp:C)K−c and γ1 (c,K) = (1− Se:R − Sp:R)×

(1− Se:C)c (Sp:C)K−c.

The third probability in equation (B.2.1) is found in a similar manner as

the second probability. De�ne Ar, for r = 1, 2, ..., J , to be the set of all

r-combinations of J0 = {1, 2, ..., J}, and let A0 = ∅. We de�ne

λR (Ar | S, j) =
∏
j′∈Ar

{
1− πR (j′)

(1− pj′k)I(j′∈S)

} ∏
j′∈Ār

πR (j′)

(1− pj′k)I(j′∈S)
,

where Ār = J0 \ Ar and products taken over {j′ ∈ ∅} are understood to be
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equal to 1. Then, the third probability in equation (B.2.1) becomes

P

(
J∑

j′=1

Rj′ = 0, Ck = 1

)

=
J∑

r=0

∑
A∈Ar

{γ2 (r, J)λR (A | ∅, k) + γ3 (r, J)λR (A | J0, k) πC (k)} ,

where γ2 (r, J) = Se:C (1− Se:R)r (Sp:R)J−r and γ3 (r, J) = (1− Se:C − Sp:C)×

(1− Se:R)r (Sp:R)J−r. This follows from equation (B.2.6) by treating the rows

as columns and vice versa. This completes the derivation of E (Tjk) in equation

(B.2.1).

B.2.2. Accuracy measures

We now present derivations for the pooling sensitivity and pooling speci-

�city. Let Se:I (Sp:I) represent the sensitivity (speci�city) for individual test-

ing. Let Yjk denote the test outcome for individual Ijk based on individual

testing and let I+
jk (I−jk) denote the event that individual Ijk is classi�ed as

positive (negative) by the group testing algorithm. De�ne the pooling sen-

sitivity to be PS
Ijk
e = P

(
I+
jk

∣∣∣ Ỹjk = 1
)
and the pooling speci�city to be

PS
Ijk
p = P

(
I−jk

∣∣∣ Ỹjk = 0
)
.

B.2.2.1. Pooling Sensitivity

For array testing without master pooling, individual Ijk is classi�ed as positive

if its corresponding row and/or column tests are positive and the individual
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test is positive. Then, the pooling sensitivity is

PS
Ijk
e = P

(
I+
jk

∣∣∣ Ỹjk = 1
)

= P
(
Yjk = 1, Rj = 1, Ck = 1

∣∣∣ Ỹjk = 1
)

+ (B.2.7)

P

(
Yjk = 1, Rj = 1,

K∑
k′=1

Ck′ = 0

∣∣∣∣∣ Ỹjk = 1

)
+ (B.2.8)

P

(
Yjk = 1,

J∑
j′=1

Rj′ = 0, Ck = 1

∣∣∣∣∣ Ỹjk = 1

)
. (B.2.9)

If Ỹjk = 1, then R̃j = 1 and C̃k = 1. This fact, together with the conditional

independence assumption, implies that equation (B.2.7) is

P
(
Yjk = 1, Rj = 1, Ck = 1

∣∣∣ Ỹjk = 1
)

= P
(
Yjk = 1

∣∣∣ Ỹjk = 1
)
P
(
Rj = 1

∣∣∣ Ỹjk = 1
)
P
(
Ck = 1

∣∣∣ Ỹjk = 1
)

= Se:ISe:RSe:C .

Similarly, the probability in equation (B.2.8) can be written as

P

(
Yjk = 1, Rj = 1,

K∑
k′=1

Ck′ = 0

∣∣∣∣∣ Ỹjk = 1

)

= Se:ISe:RP

(
K∑

k′=1

Ck′ = 0

∣∣∣∣∣ Ỹjk = 1

)
.

McMahan et al. (2012b) showed that the probability on the right-hand side of

this expression can be written as

P

(
K∑

k′=1

Ck′ = 0

∣∣∣∣∣ Ỹjk = 1

)
= (1− Se)

∏
k′ 6=k

P (Ck′ = 0) ,
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where P (Ck′ = 0) = 1− Se − (1− Se − Sp) πC (k′). Allowing the sensitivities

and speci�cities to di�er across stages of testing, we can write

P

(
K∑

k′=1

Ck′ = 0

∣∣∣∣∣ Ỹjk = 1

)
= (1− Se:C)

∏
k′ 6=k

P (Ck′ = 0) ,

where P (Ck′ = 0) = 1 − Se:C − (1− Se:C − Sp:C) πC (k′). Therefore, equation

(B.2.8) can be written as

P

(
Yjk = 1, Rj = 1,

K∑
k′=1

Ck′ = 0

∣∣∣∣∣ Ỹjk = 1

)

= Se:ISe:R (1− Se:C)
∏
k′ 6=k

P (Ck′ = 0) . (B.2.10)

Finally, equation (B.2.9) can be written as

P

(
Yjk = 1,

J∑
j′=1

Rj′ = 0, Ck = 1

∣∣∣∣∣ Ỹjk = 1

)

= Se:ISe:C (1− Se:R)
∏
j′ 6=j

P (Rj′ = 0) ,

where P (Rj′ = 0) = 1 − Se:R − (1− Se:R − Sp:R) πR (j′). This follows from

equation (B.2.10) by treating the rows as columns and vice versa. Combining

these results, we obtain

PS
Ijk
e = Se:ISe:RSe:C + Se:ISe:R (1− Se:C)

∏
k′ 6=k

P (Ck′ = 0) +

Se:ISe:C (1− Se:R)
∏
j′ 6=j

P (Rj′ = 0)
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= Se:I

{
Se:RSe:C + Se:R (1− Se:C)

∏
k′ 6=k

P (Ck′ = 0) +

Se:C (1− Se:R)
∏
j′ 6=j

P (Rj′ = 0)

}
.

B.2.2.2. Pooling Speci�city

We now turn to the derivation of the pooling speci�city, PS
Ijk
p . By de�nition,

PS
Ijk
p = P

(
I−jk

∣∣∣ Ỹjk = 0
)

= 1− P
(
I+
jk

∣∣∣ Ỹjk = 0
)
, (B.2.11)

where

P
(
I+
jk

∣∣∣ Ỹjk = 0
)

= P
(
Yjk = 1, Rj = 1, Ck = 1

∣∣∣ Ỹjk = 0
)

+ (B.2.12)

P

(
Yjk = 1, Rj = 1,

K∑
k′=1

Ck′ = 0

∣∣∣∣∣ Ỹjk = 0

)
+ (B.2.13)

P

(
Yjk = 1,

J∑
j′=1

Rj′ = 0, Ck = 1

∣∣∣∣∣ Ỹjk = 0

)
. (B.2.14)

Using the conditional independence assumption, McMahan et al. (2012b)

showed that equation (B.2.12) can be written as

P
(
Yjk = 1, Rj = 1, Ck = 1

∣∣∣ Ỹjk = 0
)

= P
(
Yjk = 1

∣∣∣ Ỹjk = 0
)
P
(
Rj = 1, Ck = 1

∣∣∣ Ỹjk = 0
)

= (1− Sp:I)P
(
Rj = 1, Ck = 1

∣∣∣ Ỹjk = 0
)
.
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Using the Law of Total Probability, McMahan et al. (2012b) also showed that

P
(
Rj = 1, Ck = 1

∣∣∣ Ỹjk = 0
)

=
1∑

r=0

1∑
c=0

{
P
(
R̃j = r, C̃k = c

∣∣∣ Ỹjk = 0
)
×

P
(
Rj = 1, Ck = 1

∣∣∣ R̃j = r, C̃k = c, Ỹjk = 0
)}

.

Allowing the sensitivities and speci�cities to di�er across stages of testing, it

can be shown that

P
(
Rj = 1, Ck = 1

∣∣∣ Ỹjk = 0
)

= (1− Sp:R) (1− Sp:C)P
(
R̃j = 0

∣∣∣ Ỹjk = 0
)
P
(
C̃k = 0

∣∣∣ Ỹjk = 0
)

+

Se:R (1− Sp:C)P
(
R̃j = 1

∣∣∣ Ỹjk = 0
)
P
(
C̃k = 0

∣∣∣ Ỹjk = 0
)

+

Se:C (1− Sp:R)P
(
R̃j = 0

∣∣∣ Ỹjk = 0
)
P
(
C̃k = 1

∣∣∣ Ỹjk = 0
)

+

Se:RSe:CP
(
R̃j = 1

∣∣∣ Ỹjk = 0
)
P
(
C̃k = 1

∣∣∣ Ỹjk = 0
)
.

Expressions for the probabilities consisting only of R̃j and C̃k conditioned on

Ỹjk do not change from those already given inMcMahan et al. (2012b). After

extensive algebra, equation (B.2.12) becomes

P
(
Yjk = 1, Rj = 1, Ck = 1

∣∣∣ Ỹjk = 0
)
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= (1− Sp:I)

[
(1− Sp:R) (1− Sp:C)

πR (j) πC (k)

(1− pjk)2 +

Se:R (1− Sp:C)

{
πC (k)

1− pjk
− πR (j) πC (k)

(1− pjk)2

}
+

Se:C (1− Sp:R)

{
πR (j)

1− pjk
− πR (j) πC (k)

(1− pjk)2

}
+

Se:RSe:C

{
1− πR (j)

1− pjk
− πC (k)

1− pjk
+
πR (j) πC (k)

(1− pjk)2

}]
.

Using conditional independence, we can write equation (B.2.13) as

P

(
Yjk = 1, Rj = 1,

K∑
k′=1

Ck′ = 0

∣∣∣∣∣ Ỹjk = 0

)

= P
(
Yjk = 1

∣∣∣ Ỹjk = 0
)
P

(
Rj = 1,

K∑
k′=1

Ck′ = 0

∣∣∣∣∣ Ỹjk = 0

)

= (1− Sp:I)P

(
Rj = 1,

K∑
k′=1

Ck′ = 0

∣∣∣∣∣ Ỹjk = 0

)
.

Conditioning on the true statuses of the rows and columns, McMahan et al.

(2012b) showed that

P

(
Rj = 1,

K∑
k′=1

Ck′ = 0

∣∣∣∣∣ Ỹjk = 0

)

=
1∑

r̃=0

K∑
c=0

∑
B∈Bc

P
{
Rj = 1, C (B0)

∣∣∣ R̃j = r̃, C̃ (B) , Ỹjk = 0
}
×

P
{
R̃j = r̃, C̃ (B)

∣∣∣ Ỹjk = 0
}
.

Allowing the sensitivities and speci�cities to di�er across stages of testing, it

can be shown that

P
{
Rj = 1, C (B0)

∣∣∣ R̃j = 0, C̃ (Bc) , Ỹjk = 0
}
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= (1− Sp:R) (1− Se:C)c (Sp:C)K−c

and

P
{
Rj = 1, C (B0)

∣∣∣ R̃j = 1, C̃ (Bc) , Ỹjk = 0
}

= Se:R (1− Se:C)c (Sp:C)K−c .

This allows us to rewrite

P

(
Rj = 1,

K∑
k′=1

Ck′ = 0

∣∣∣∣∣ Ỹjk = 0

)

=

K∑
c=0

∑
B∈Bc

[
(1− Sp:R) (1− Se:C)c (Sp:C)

K−c P
{
R̃j = 0, C̃ (B)

∣∣∣ Ỹjk = 0
}
+

Se:R (1− Se:C)c (Sp:C)
K−c P

{
R̃j = 1, C̃ (B)

∣∣∣ Ỹjk = 0
}]

.

Expressions for the probabilities consisting only of R̃j and C̃ (B) conditioned

on Ỹjk do not change from those already given in McMahan et al. (2012b).

Therefore, after extensive algebra, we can write equation (B.2.13) as

P

(
Yjk = 1, Rj = 1,

K∑
k′=1

Ck′ = 0

∣∣∣∣∣ Ỹjk = 0

)

= (1− Sp:I)
K∑
c=0

∑
B∈Bc

{
γ0 (c,K)λC (B | {k} , j) +

γ1 (c,K)
πR (j)

1− pjk
λC (B | K0, j)

}
, (B.2.15)

where γ0 (c,K) and γ1 (c,K) were previously de�ned in the derivations for

E (Tjk). In a similar manner, equation (B.2.14) can be expressed as

P

(
Yjk = 1,

J∑
j′=1

Rj′ = 0, Ck = 1

∣∣∣∣∣ Ỹjk = 0

)
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= (1− Sp:I)
J∑

r=0

∑
A∈Ar

{
γ2 (r, J)λR (A | {j} , k) +

γ3 (r, J)λR (A | J0, k)
πC (k)

1− pjk

}
,

where γ2 (r, J) and γ3 (r, J) were previously de�ned in the derivations for

E (Tjk). This follows from equation (B.2.15) by treating the rows as columns

and vice versa. Combining the expressions for (B.2.12), (B.2.13), and (B.2.14),

we have

P
(
I+
jk

∣∣∣ Ỹjk = 0
)

= (1− Sp:I)

[
(1− Sp:R) (1− Sp:C)

πR (j) πC (k)

(1− pjk)2 +

Se:R (1− Sp:C)

{
πC (k)

1− pjk
− πR (j) πC (k)

(1− pjk)2

}
+

Se:C (1− Sp:R)

{
πR (j)

1− pjk
− πR (j) πC (k)

(1− pjk)2

}
+

Se:RSe:C

{
1− πR (j)

1− pjk
− πC (k)

1− pjk
+
πR (j) πC (k)

(1− pjk)2

}
+

K∑
c=0

∑
B∈Bc

{
γ1 (c,K) πR (j)λC (B | K0, j)

1− pjk
+

γ0 (c,K)λC (B | {k} , j)
}

+

J∑
r=0

∑
A∈Ar

{
γ3 (r, J)λR (A | J0, k) πC (k)

1− pjk
+

γ2 (r, J)λR (A | {j} , k)

}]
. (B.2.16)

The �nal expression for PS
Ijk
p follows from equation (B.2.16) substituted into

equation (B.2.11).
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The pooling positive and negative predictive values are de�ned as

PPPV Ijk = P
(
Ỹjk = 1

∣∣∣ I+
jk

)
and PNPV Ijk = P

(
Ỹjk = 0

∣∣∣ I−jk), respec-
tively. Expressions for the pooling predictive values follow directly from

McMahan et al. (2012b, p. 798).

B.3. Array testing with master pooling

We closely follow the work of Kim et al. (2007) to derive the operating char-

acteristics for array testing with master pooling. Their derivations assume

that pi = p for all individuals in the algorithm and that diagnostic accuracy

is the same across stages of testing. We generalize their derivations to allow

for heterogeneous risk probabilities pi, for individuals i = 1, ..., I, and to allow

for unequal sensitivity and unequal speci�city values across stages of testing.

For consistency in the group testing literature, we adhere to the notation in

McMahan et al. (2012b) whenever possible.

Consider an array with J > 1 rows and K > 1 columns, and denote the

individual assigned to the (j, k) cell as Ijk, for j = 1, ..., J and k = 1, ..., K. In

array testing with master pooling, we �rst test a master group of size J×K be-

fore testing rows and columns, and �nally proceed to individual testing. Recall

that Yjk, Rj, and Ck denote the test outcome of the individual test, row test,

and column test corresponding to individual Ijk, respectively. Similarly, Ỹjk,

R̃j, and C̃k denote the true status of individual Ijk, the jth row, and the kth

column. We again make the assumption that test outcomes are conditionally

independent given the true statuses. Also recall that Se:R (Sp:R), Se:C (Sp:C),

and Se:I (Sp:I) represent the sensitivity (speci�city) for row, column, and indi-

vidual testing, respectively.
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B.3.1. Expected number of tests

Let the number of tests required to decode the full array be T = T0 + T1 + T2,

where T0 = 1 corresponds to testing the master group, T1 corresponds to

possible row and column testing, and T2 corresponds to possible individual

testing. Let X0 be a random variable that equals 1 if the master group tests

positive and 0 otherwise, such that T1 = JKX0 and E (T1) = JK×P (X0 = 1).

De�ne X̃0 as the true status of the master group. Let Se:M (Sp:M) represent the

sensitivity (speci�city) for the master group. The probability that the master

group tests positive can be written as

P (X0 = 1) = P
(
X0 = 1, X̃0 = 0

)
+ P

(
X0 = 1, X̃0 = 1

)
= P

(
X0 = 1

∣∣∣ X̃0 = 0
)
P
(
X̃0 = 0

)
+

P
(
X0 = 1

∣∣∣ X̃0 = 1
)
P
(
X̃0 = 1

)
= (1− Sp:M)

∏
j,k

(1− pjk) + Se:M

{
1−

∏
j,k

(1− pjk)

}
.

Thus, the expected number of tests corresponding to possible row and column

testing is

E (T1) = JK

[
(1− Sp:M)

∏
j,k

(1− pjk) + Se:M

{
1−

∏
j,k

(1− pjk)

}]
.

This leads to an expression for the expected number of tests for the whole

array,
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E(T ) = 1 + (J +K)

[
(1− Sp:M)

∏
j,k

(1− pjk) +

Se:M

{
1−

∏
j,k

(1− pjk)

}]
+
∑
j,k

E(T2jk),

where T2jk represents the number of tests required to classify Ijk after the

initial stage of testing (i.e., master group test) and the second stage of testing

(i.e., row and column tests). Using the classi�cation methodology provided by

Kim et al. (2007), T2jk can be written as

T2jk =



1 if X0 = 1, Rj = 1 and Ck = 1

1 if X0 = 1, Rj = 1 and
∑
Ck = 0

1 if X0 = 1,
∑
Rj = 0 and Ck = 1

0 otherwise.

Then, for the two-dimensional array testing algorithm with master pooling,

E(T2jk) = P (X0 = 1, Rj = 1, Ck = 1) +

P

(
X0 = 1, Rj = 1,

∑
k

Ck = 0

)
+

P

(
X0 = 1,

∑
j

Rj = 0, Ck = 1

)
. (B.3.1)

The �rst probability in equation (B.3.1) can be written as

P (X0 = 1, Rj = 1, Ck = 1)
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= P

(
X0 = 1, Rj = 1, Ck = 1, X̃0 = 0, R̃j = 0, C̃k = 0

)
+

P
(
X0 = 1, Rj = 1, Ck = 1, X̃0 = 1, R̃j = 0, C̃k = 0

)
+

P
(
X0 = 1, Rj = 1, Ck = 1, X̃0 = 1, R̃j = 1, C̃k = 0

)
+

P
(
X0 = 1, Rj = 1, Ck = 1, X̃0 = 1, R̃j = 0, C̃k = 1

)
+

P
(
X0 = 1, Rj = 1, Ck = 1, X̃0 = 1, R̃j = 1, C̃k = 1

)
= P

(
X0 = 1, Rj = 1, Ck = 1

∣∣∣ X̃0 = 0, R̃j = 0, C̃k = 0
)
×

P
(
X̃0 = 0, R̃j = 0, C̃k = 0

)
+

P
(
X0 = 1, Rj = 1, Ck = 1

∣∣∣ X̃0 = 1, R̃j = 0, C̃k = 0
)
×

P
(
X̃0 = 1, R̃j = 0, C̃k = 0

)
+

P
(
X0 = 1, Rj = 1, Ck = 1

∣∣∣ X̃0 = 1, R̃j = 1, C̃k = 0
)
×

P
(
X̃0 = 1, R̃j = 1, C̃k = 0

)
+

P
(
X0 = 1, Rj = 1, Ck = 1

∣∣∣ X̃0 = 1, R̃j = 0, C̃k = 1
)
×

P
(
X̃0 = 1, R̃j = 0, C̃k = 1

)
+

P
(
X0 = 1, Rj = 1, Ck = 1

∣∣∣ X̃0 = 1, R̃j = 1, C̃k = 1
)
×

P
(
X̃0 = 1, R̃j = 1, C̃k = 1

)

Using the conditional independence assumption, we can write

P (X0 = 1, Rj = 1, Ck = 1)

= (1− Sp:M) (1− Sp:R) (1− Sp:C)×

P
(
X̃0 = 0, R̃j = 0, C̃k = 0

)
+ (B.3.2)

Se:M (1− Sp:R) (1− Sp:C)P
(
X̃0 = 1, R̃j = 0, C̃k = 0

)
+ (B.3.3)

Se:MSe:R (1− Sp:C)P
(
X̃0 = 1, R̃j = 1, C̃k = 0

)
+ (B.3.4)

Se:M (1− Sp:R)Se:CP
(
X̃0 = 1, R̃j = 0, C̃k = 1

)
+ (B.3.5)

Se:MSe:RSe:CP
(
X̃0 = 1, R̃j = 1, C̃k = 1

)
(B.3.6)
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The jth row and kth column have only individual Ijk in common. Under

the assumption that the individual statuses are independent, R̃j and C̃k are

also independent, conditional on Ỹjk. Recall that if any row or column tests

positive, X̃0 = 1. Then, we can write

P
(
X̃0 = 1, R̃j = 1, C̃k = 1

)
= P

(
R̃j = 1, C̃k = 1

)
,

P
(
X̃0 = 1, R̃j = 0, C̃k = 1

)
= P

(
R̃j = 0, C̃k = 1

)
,

and

P
(
X̃0 = 1, R̃j = 1, C̃k = 0

)
= P

(
R̃j = 1, C̃k = 0

)
.

Each of these three probabilities were derived in McMahan et al. (2012b, p.

2 in the web appendix). Next, we'll consider the probability expression in

equation (B.3.3). In order to have X̃0 = 1, at least one individual in the array

must be truly positive. In this probability expression, we have the added

requirement that the truly positive individual(s) is not located in the jth row

or the kth column. Then, we can write equation (B.3.3) as

P
(
X̃0 = 1, R̃j = 0, C̃k = 0

)
= P

(
X̃0 = 1

)
−
{
P
(
R̃j = 1, C̃k = 0

)
+

P
(
R̃j = 0, C̃k = 1

)
+ P

(
R̃j = 1, C̃k = 1

)}
=

{
1− P

(
X̃0 = 0

)}
− P

(
R̃j = 1, C̃k = 0

)
−

P
(
R̃j = 0, C̃k = 1

)
− P

(
R̃j = 1, C̃k = 1

)
.
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De�ne πM = P
(
X̃0 = 0

)
=
∏J

j′=1

∏K
k′=1 (1− pj′k′). Then, using substitution

and some algebraic manipulation, we can write

P
(
X̃0 = 1, R̃j = 0, C̃k = 0

)
=

πR (j) πC (k)

1− pjk
− πM .

Note that X̃0 = 0 if all individuals in the array are truly negative and, hence,

all rows and columns are truly negative. Then, the probability expression in

equation (B.3.2) is

P
(
X̃0 = 0, R̃j = 0, C̃k = 0

)
= P

(
X̃0 = 0

)
= πM .

Combining these �ve probability expressions, we get

P (X0 = 1, Rj = 1, Ck = 1)

= (1− Sp:M) (1− Sp:R) (1− Sp:C) πM +

Se:M (1− Sp:R) (1− Sp:C)

{
πR (j) πC (k)

1− pjk
− πM

}
+

Se:MSe:R (1− Sp:C)

{
πC (k)− πR (j)πC (k)

1− pjk

}
+

Se:M (1− Sp:R)Se:C

{
πR (j)− πR (j) πC (k)

1− pjk

}
+

Se:MSe:RSe:C

{
1− πR (j)− πC (k) +

πR (j)πC (k)

1− pjk

}
.

Next, we consider the second probability in equation (B.3.1). To �nd this

probability, recall that the master group must test positive (X0 = 1) in order

for row/column testing to occur. Using the Law of Total Probability and the

notation presented in Section B.2, we can write

P

(
X0 = 1, Rj = 1,

K∑
k′=1

Ck′ = 0

)
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=

1∑
r̃=0

1∑
c̃1=0

...

1∑
c̃K=0

{
P

(
Rj = 1,

K⋂
k=1

{Ck = 0}

∣∣∣∣∣ X0 = 1, R̃j = r̃,

K⋂
k=1

{
C̃k = c̃k

})
×

P

(
X0 = 1

∣∣∣∣∣ R̃j = r̃,

K⋂
k=1

{
C̃k = c̃k

})
P

(
R̃j = r̃,

K⋂
k=1

{
C̃k = c̃k

})}
.

Using the de�nitions of C̃ (B) and C (B) in Section B.2, this probability can

be written as

P

(
X0 = 1, Rj = 1,

K∑
k′=1

Ck′ = 0

)

=
1∑

r̃=0

K∑
c=0

∑
B∈Bc

[
P
{
Rj = 1, C (B0)

∣∣∣ X0 = 1, R̃j = r̃, C̃ (B)
}
×

P
{
X0 = 1

∣∣∣ R̃j = r̃, C̃ (B)
}
P
{
R̃j = r̃, C̃ (B)

}]
. (B.3.7)

Since a master group must test positive for a row to be tested, we have

P
{
Rj = 1, C (B0)

∣∣∣ X0 = 1, R̃j = 0, C̃ (Bc)
}

= P
{
Rj = 1, C (B0)

∣∣∣ R̃j = 0, C̃ (Bc)
}

and

P
{
Rj = 1, C (B0)

∣∣∣ X0 = 1, R̃j = 1, C̃ (Bc)
}

= P
{
Rj = 1, C (B0)

∣∣∣ R̃j = 1, C̃ (Bc)
}
.

Derivations for both of these resulting probability expressions were shown in

Section B.2.1. Note that P
{
Rj = 1, C (B0)

∣∣∣ R̃j = 1, C̃ (B0)
}

= 0 because we

cannot have a truly positive row when all columns are truly negative.

From Section B.2, we recall that

P
{
R̃j = 0, C̃ (Bc)

}
= πR (j)λC (Bc | K0, j)
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and

P
{
R̃j = 1, C̃ (Bc)

}
= λC (Bc | ∅, j)− πR (j)λC (Bc | K0, j) . (B.3.8)

Now, we consider the �middle� probability expression in equation (B.3.7). We

have two cases:

1. When c = 0,

P
{
X0 = 1

∣∣∣ R̃j = 0, C̃ (B0)
}

= P
(
X0 = 1

∣∣∣ X̃0 = 0
)

= 1− P
(
X0 = 0

∣∣∣ X̃0 = 0
)

= 1− Sp:M

and

P
{
X0 = 1

∣∣∣ R̃j = 1, C̃ (B0)
}

= 0.

2. When c = 1, ..., K (i.e., at least one column in the array is truly positive),

we see that

P
{
X0 = 1

∣∣∣ R̃j = 0, C̃ (Bc)
}

= P
(
X0 = 1

∣∣∣ X̃0 = 1
)

= Se:M

and

P
{
X0 = 1

∣∣∣ R̃j = 1, C̃ (Bc)
}

= P
(
X0 = 1

∣∣∣ X̃0 = 1
)

= Se:M .

Substituting back into equation (B.3.7), we get

P

(
X0 = 1, Rj = 1,

K∑
k′=1

Ck′ = 0

)
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=
K∑
c=0

∑
B∈Bc

[
(1− Sp:R) (1− Se:C)c (Sp:C)K−c×

P
{
X0 = 1

∣∣∣ R̃j = 0, C̃ (B)
}
πR (j)λC (B | K0, j) +

Se:R (1− Se:C)c (Sp:C)K−c P
{
X0 = 1

∣∣∣ R̃j = 1, C̃ (B)
}
×

{λC (B | ∅, j)− πR (j)λC (B | K0, j)}
]
.

After extensive algebra, we can write the second probability in equation (B.3.1)

as

P

(
X0 = 1, Rj = 1,

K∑
k′=1

Ck′ = 0

)

= (1− Sp:M − Se:M) (1− Sp:R) (Sp:C)K πR (j)λC (B0 | K0, j) +

Se:M

K∑
c=0

∑
B∈Bc

{γ0 (c,K)λC (B | ∅, j) +

γ1 (c,K) πR (j)λC (B | K0, j)} , (B.3.9)

where γ0 (c,K) and γ1 (c,K) are as de�ned in Section B.2.

In a similar manner, the third probability in equation (B.3.1) can be ex-

pressed as

P

(
X0 = 1,

J∑
j′=1

Rj′ = 0, Ck = 1

)

= Se:M

J∑
r=0

∑
A∈Ar

{γ2 (r, J)λR (A | ∅, k) +

γ3 (r, J)πC (k)λR (A | J0, k)} ,

where γ2 (r, J) and γ3 (r, J) are as de�ned in Section B.2. This follows from

equation (B.3.9) by treating the rows as columns and vice versa. This com-

pletes the derivation of E (T2jk) in equation (B.3.1).
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B.3.2. Accuracy measures

Recall from Section B.2 that I+
jk

(
I−jk
)
denotes the event that individual Ijk is

classi�ed as positive (negative) by the group testing algorithm.

B.3.2.1. Pooling sensitivity

For array testing with master pooling, individual Ijk is classi�ed as positive if

the master group test is positive, the corresponding row and/or column tests

are positive, and the individual test is positive. Then, the pooling sensitivity

is

PS
Ijk
e = P

(
I+
jk

∣∣∣ Ỹjk = 1
)

= P
(
X0 = 1, Rj = 1, Ck = 1, Yjk = 1

∣∣∣ Ỹjk = 1
)
+ (B.3.10)

P

(
X0 = 1, Rj = 1,

K∑
k′=1

Ck = 0, Yjk = 1

∣∣∣∣∣ Ỹjk = 1

)
+ (B.3.11)

P

X0 = 1,

J∑
j′=1

Rj = 0, Ck = 1, Yjk = 1

∣∣∣∣∣∣ Ỹjk = 1

 . (B.3.12)

If Ỹjk = 1, then R̃j = 1, C̃k = 1, and X̃0 = 1. This fact, together with the

conditional independence assumption, implies that equation (B.3.10) is

P
(
X0 = 1, Rj = 1, Ck = 1, Yjk = 1

∣∣∣ Ỹjk = 1
)

= P
(
X0 = 1

∣∣∣ Ỹjk = 1
)
P
(
Rj = 1

∣∣∣ Ỹjk = 1
)
×

P
(
Ck = 1

∣∣∣ Ỹjk = 1
)
P
(
Yjk = 1

∣∣∣ Ỹjk = 1
)

= Se:MSe:RSe:CSe:I .
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Similarly, equation (B.3.11) can be written as

P

(
X0 = 1, Rj = 1,

K∑
k′=1

Ck = 0, Yjk = 1

∣∣∣∣∣ Ỹjk = 1

)

= P
(
X0 = 1

∣∣∣ Ỹjk = 1
)
P
(
Rj = 1

∣∣∣ Ỹjk = 1
)
×

P

(
K∑

k′=1

Ck = 0

∣∣∣∣∣ Ỹjk = 1

)
P
(
Yjk = 1

∣∣∣ Ỹjk = 1
)

= Se:MSe:RSe:IP

(
K∑

k′=1

Ck = 0

∣∣∣∣∣ C̃k = 1

)
.

Because Ck is independent of Ck′ for all k 6= k′, we can write

P

(
K∑

k′=1

Ck = 0

∣∣∣∣∣ C̃k = 1

)
= P

(
K⋂
k=1

{Ck = 0}

∣∣∣∣∣ C̃k = 1

)

= P
(
Ck = 0

∣∣∣ C̃k = 1
)
P

(⋂
k′ 6=k

{Ck = 0}

)
= (1− Se:C)

∏
k′ 6=k

P (Ck′ = 0) ,

where P (Ck′ = 0) was derived in Section B.2 to allow for unequal sensitivities

and unequal speci�cities across stages of testing. Therefore, equation (B.3.11)

can be written as

P

(
X0 = 1, Rj = 1,

K∑
k′=1

Ck = 0, Yjk = 1

∣∣∣∣∣ Ỹjk = 1

)
= Se:MSe:RSe:I (1− Se:C)

∏
k′ 6=k

P (Ck′ = 0) . (B.3.13)

Finally, equation (B.3.12) can be written as

P

(
X0 = 1,

J∑
j′=1

Rj = 0, Ck = 1, Yjk = 1

∣∣∣∣∣ Ỹjk = 1

)
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= Se:MSe:CSe:I (1− Se:R)
∏
j′ 6=j

P (Rj′ = 0) .

This follows from equation (B.3.13) by treating the rows as columns and vice

versa. Combining these results, we obtain

PS
Ijk
e = Se:MSe:RSe:CSe:I + Se:MSe:RSe:I (1− Se:C)

∏
k′ 6=k

P (Ck′ = 0) +

Se:MSe:CSe:I (1− Se:R)
∏
j′ 6=j

P (Rj′ = 0)

= Se:MSe:I

{
Se:RSe:C + Se:R (1− Se:C)

∏
k′ 6=k

P (Ck′ = 0) +

Se:C (1− Se:R)
∏
j′ 6=j

P (Rj′ = 0)

}
.

B.3.2.2. Pooling speci�city

We now turn to the derivation of the pooling speci�city, PS
Ijk
p . By de�nition,

PS
Ijk
p = P

(
I−jk

∣∣∣ Ỹjk = 0
)

= 1− P
(
I+
jk

∣∣∣ Ỹjk = 0
)
,

where

P
(
I+
jk

∣∣∣ Ỹjk = 0
)

= P
(
X0 = 1, Rj = 1, Ck = 1, Yjk = 1

∣∣∣ Ỹjk = 0
)

+ (B.3.14)

P

(
X0 = 1, Rj = 1,

K∑
k′=1

Ck = 0, Yjk = 1

∣∣∣∣∣ Ỹjk = 0

)
+ (B.3.15)

P

(
X0 = 1,

J∑
j′=1

Rj = 0, Ck = 1, Yjk = 1

∣∣∣∣∣ Ỹjk = 0

)
. (B.3.16)
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Using the conditional independence assumption, equation (B.3.14) can be writ-

ten as

P
(
X0 = 1, Rj = 1, Ck = 1, Yjk = 1

∣∣∣ Ỹjk = 0
)

= P
(
Yjk = 1

∣∣∣ Ỹjk = 0
)
P
(
X0 = 1, Rj = 1, Ck = 1

∣∣∣ Ỹjk = 0
)

= (1− Sp:I)P
(
X0 = 1, Rj = 1, Ck = 1

∣∣∣ Ỹjk = 0
)
. (B.3.17)

Using the Law of Total Probability, the probability expression on the right-

hand side of equation (B.3.17) can be written as

P
(
X0 = 1, Rj = 1, Ck = 1

∣∣∣ Ỹjk = 0
)

= P
(
X0 = 1, Rj = 1, Ck = 1

∣∣∣ X̃0 = 0, R̃j = 0, C̃k = 0, Ỹjk = 0
)
×

P
(
X̃0 = 0, R̃j = 0, C̃k = 0

∣∣∣ Ỹjk = 0
)

+

P
(
X0 = 1, Rj = 1, Ck = 1

∣∣∣ X̃0 = 1, R̃j = 0, C̃k = 0, Ỹjk = 0
)
×

P
(
X̃0 = 1, R̃j = 0, C̃k = 0

∣∣∣ Ỹjk = 0
)

+

P
(
X0 = 1, Rj = 1, Ck = 1

∣∣∣ X̃0 = 1, R̃j = 1, C̃k = 0, Ỹjk = 0
)
×

P
(
X̃0 = 1, R̃j = 1, C̃k = 0

∣∣∣ Ỹjk = 0
)

+

P
(
X0 = 1, Rj = 1, Ck = 1

∣∣∣ X̃0 = 1, R̃j = 0, C̃k = 1, Ỹjk = 0
)
×

P
(
X̃0 = 1, R̃j = 0, C̃k = 1

∣∣∣ Ỹjk = 0
)

+

P
(
X0 = 1, Rj = 1, Ck = 1

∣∣∣ X̃0 = 1, R̃j = 1, C̃k = 1, Ỹjk = 0
)
×

P
(
X̃0 = 1, R̃j = 1, C̃k = 1

∣∣∣ Ỹjk = 0
)
.

Recall that X̃0 = 0 if all individuals in the array are truly negative and, hence,

all rows and columns are truly negative. Additionally, X̃0 = 1 if at least one
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row or at least one column is truly positive. Then, we have

P
(
X0 = 1, Rj = 1, Ck = 1

∣∣∣ Ỹjk = 0
)

= P
(
X0 = 1

∣∣∣ X̃0 = 0
)
P
(
Rj = 1

∣∣∣ R̃j = 0
)
×

P
(
Ck = 1

∣∣∣ C̃k = 0
)
P
(
X̃0 = 0

∣∣∣ Ỹjk = 0
)

+

P
(
X0 = 1

∣∣∣ X̃0 = 1
)
P
(
Rj = 1

∣∣∣ R̃j = 0
)
P
(
Ck = 1

∣∣∣ C̃k = 0
)
×

P
(
X̃0 = 1, R̃j = 0, C̃k = 0

∣∣∣ Ỹjk = 0
)

+

P
(
X0 = 1

∣∣∣ X̃0 = 1
)
P
(
Rj = 1

∣∣∣ R̃j = 1
)
P
(
Ck = 1

∣∣∣ C̃k = 0
)
×

P
(
R̃j = 1

∣∣∣ Ỹjk = 0
)
P
(
C̃k = 0

∣∣∣ Ỹjk = 0
)

+

P
(
X0 = 1

∣∣∣ X̃0 = 1
)
P
(
Rj = 1

∣∣∣ R̃j = 0
)
P
(
Ck = 1

∣∣∣ C̃k = 1
)
×

P
(
R̃j = 0

∣∣∣ Ỹjk = 0
)
P
(
C̃k = 1

∣∣∣ Ỹjk = 0
)

+

P
(
X0 = 1

∣∣∣ X̃0 = 1
)
P
(
Rj = 1

∣∣∣ R̃j = 1
)
P
(
Ck = 1

∣∣∣ C̃k = 1
)
×

P
(
R̃j = 1

∣∣∣ Ỹjk = 0
)
P
(
C̃k = 1

∣∣∣ Ỹjk = 0
)

= (1− Sp:M) (1− Sp:R) (1− Sp:C)P
(
X̃0 = 0

∣∣∣ Ỹjk = 0
)

+

Se:M (1− Sp:R) (1− Sp:C)P
(
X̃0 = 1, R̃j = 0, C̃k = 0

∣∣∣ Ỹjk = 0
)

+

Se:MSe:R (1− Sp:C)
{

1− P
(
R̃j = 0

∣∣∣ Ỹjk = 0
)}
×

P
(
C̃k = 0

∣∣∣ Ỹjk = 0
)

+

Se:M (1− Sp:R)Se:CP
(
R̃j = 0

∣∣∣ Ỹjk = 0
)
×{

1− P
(
C̃k = 0

∣∣∣ Ỹjk = 0
)}

+

Se:MSe:RSe:C

{
1− P

(
R̃j = 0

∣∣∣ Ỹjk = 0
)}
×{

1− P
(
C̃k = 0

∣∣∣ Ỹjk = 0
)}

. (B.3.18)

Expressions for P
(
R̃j = 0

∣∣∣ Ỹjk = 0
)

and P
(
C̃k = 0

∣∣∣ Ỹjk = 0
)

were pre-

sented by McMahan et al. (2012b) and utilized in derivations presented in
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Section B.2. Recall that πM = P
(
X̃0 = 0

)
=
∏

j′,k′ (1− pj′k′). Then, we have

P
(
X̃0 = 0

∣∣∣ Ỹjk = 0
)

=
P
(
X̃0 = 0, Ỹjk = 0

)
P
(
Ỹjk = 0

) =
P
(
X̃0 = 0

)
P
(
Ỹjk = 0

) =
πM

1− pjk
.

For the remaining probability expression in equation (B.3.18), Bayes' theorem

allows us to write

P
(
X̃0 = 1, R̃j = 0, C̃k = 0

∣∣∣ Ỹjk = 0
)

=
P
(
X̃0 = 1, R̃j = 0, C̃k = 0

)
P
(
Ỹjk = 0

∣∣∣ X̃0 = 1, R̃j = 0, C̃k = 0
)

P
(
Ỹjk = 0

)
=

P
(
X̃0 = 1, R̃j = 0, C̃k = 0

)
P
(
Ỹjk = 0

) .

From Section B.2, we have

P
(
X̃0 = 1, R̃j = 0, C̃k = 0

)
=

πR (j) πC (k)

1− pjk
− πM .

Thus, we can write

P
(
X̃0 = 1, R̃j = 0, C̃k = 0

∣∣∣ Ỹjk = 0
)

=
P
(
X̃0 = 1, R̃j = 0, C̃k = 0

)
P
(
Ỹjk = 0

)
=

1

1− pjk

{
πR (j) πC (k)

1− pjk
− πM

}
=

πR (j) πC (k)

(1− pjk)2 − πM
1− pjk

.
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Substituting back into the probability expression on the right-hand side of

equation (B.3.17), we get

P
(
X0 = 1, Rj = 1, Ck = 1

∣∣∣ Ỹjk = 0
)

= (1− Sp:M) (1− Sp:R) (1− Sp:C)
πM

1− pjk
+

Se:M (1− Sp:R) (1− Sp:C)

{
πR (j) πC (k)

(1− pjk)2 − πM
1− pjk

}
+

Se:MSe:R (1− Sp:C)

{
πC (k)

1− pjk
− πR (j) πC (k)

(1− pjk)2

}
+

Se:M (1− Sp:R)Se:C

{
πR (j)

1− pjk
− πR (j) πC (k)

(1− pjk)2

}
+

Se:MSe:RSe:C

{
1− πR (j)

1− pjk
− πC (k)

1− pjk
+
πR (j)πC (k)

(1− pjk)2

}
.

Thus, equation (B.3.14) can be written as

P
(
X0 = 1, Rj = 1, Ck = 1, Yjk = 1

∣∣∣ Ỹjk = 0
)

= (1− Sp:I)

[
(1− Sp:M) (1− Sp:R) (1− Sp:C)

πM
1− pjk

+

Se:M (1− Sp:R) (1− Sp:C)

{
πR (j) πC (k)

(1− pjk)2 − πM
1− pjk

}
+

Se:MSe:R (1− Sp:C)

{
πC (k)

1− pjk
− πR (j) πC (k)

(1− pjk)2

}
+

Se:M (1− Sp:R)Se:C

{
πR (j)

1− pjk
− πR (j) πC (k)

(1− pjk)2

}
+

Se:MSe:RSe:C

{
1− πR (j)

1− pjk
− πC (k)

1− pjk
+
πR (j) πC (k)

(1− pjk)2

}]
.
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Using conditional independence, we can write equation (B.3.15) as

P

(
X0 = 1, Rj = 1,

K∑
k′=1

Ck′ = 0, Yjk = 1

∣∣∣∣∣ Ỹjk = 0

)

= P
(
Yjk = 1

∣∣∣ Ỹjk = 0
)
P

(
X0 = 1, Rj = 1,

K∑
k′=1

Ck′ = 0

∣∣∣∣∣ Ỹjk = 0

)

= (1− Sp:I)P

(
X0 = 1, Rj = 1,

K∑
k′=1

Ck′ = 0

∣∣∣∣∣ Ỹjk = 0

)
.

Conditioning on the true statuses of the rows and columns, the probability

expression on the right-hand side becomes

P

(
X0 = 1, Rj = 1,

K∑
k′=1

Ck′ = 0

∣∣∣∣∣ Ỹjk = 0

)

=
1∑

r̃=0

K∑
c=0

∑
B∈Bc

P
{
Rj = 1, C (B0)

∣∣∣ X0 = 1, R̃j = r̃, C̃ (B) , Ỹjk = 0
}
×

P
(
X0 = 1

∣∣∣ R̃j = r̃, C̃ (B) , Ỹjk = 0
)
×

P
(
R̃j = r̃, C̃ (B)

∣∣∣ Ỹjk = 0
)
. (B.3.19)

Note that

P
{
Rj = 1, C (B0)

∣∣∣ X0 = 1, R̃j = 0, C̃ (Bc) , Ỹjk = 0
}

= P
{
Rj = 1, C (B0)

∣∣∣ R̃j = 0, C̃ (Bc) , Ỹjk = 0
}

and

P
{
Rj = 1, C (B0)

∣∣∣ X0 = 1, R̃j = 1, C̃ (Bc) , Ỹjk = 0
}

= P
{
Rj = 1, C (B0)

∣∣∣ R̃j = 1, C̃ (Bc) , Ỹjk = 0
}
.
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Expressions for both of these probabilities were provided in Section B.2. Ex-

pressions for the probabilities consisting only of R̃j and C̃ (B) conditioned on

Ỹjk are the same as those given by McMahan et al. (2012b). Now, we con-

sider the �middle� probability expression in equation (B.3.19). We have two

di�erent cases:

1. When c = 0, we have

P
{
X0 = 1

∣∣∣ R̃j = 0, C̃ (B0) , Ỹjk = 0
}

= P
(
X0 = 1

∣∣∣ X̃0 = 0
)

= 1− Sp:M

and

P
{
X0 = 1

∣∣∣ R̃j = 1, C̃ (B0) , Ỹjk = 0
}

= 0.

2. When c = 1, ..., K (i.e., at least one column in the array is truly positive),

we see that

P
(
X0 = 1

∣∣∣ R̃j = 0, C̃ (Bc) , Ỹjk = 0
)

= P
(
X0 = 1

∣∣∣ X̃0 = 1
)

= Se:M

and

P
(
X0 = 1

∣∣∣ R̃j = 1, C̃ (Bc) , Ỹjk = 0
)

= P
(
X0 = 1

∣∣∣ X̃0 = 1
)

= Se:M .
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Substituting back into equation (B.3.19) and performing a signi�cant amount

of algebraic manipulation gives us

P

(
X0 = 1, Rj = 1,

K∑
k′=1

Ck′ = 0

∣∣∣∣∣ Ỹjk = 0

)

= (1− Sp:M) (1− Sp:R) (Sp:C)K
πR (j)

1− pjk
λC (B0 | K0, j) +

Se:M

K∑
c=1

∑
B∈Bc

{
γ0 (c,K)λC (B | {k} , j) +

γ1 (c,K)
πR (j)

1− pjk
λC (B | K0, j)

}
,

where γ0 (c,K) and γ1 (c,K) are as de�ned previously. Then, the expression

for equation (B.3.15) is

P

(
X0 = 1, Rj = 1,

K∑
k′=1

Ck′ = 0, Yjk = 1

∣∣∣∣∣ Ỹjk = 0

)

= (1− Sp:I)

[
(1− Sp:M) (1− Sp:R) (Sp:C)K

πR (j)

1− pjk
λC (B0 | K0, j) +

Se:M

K∑
c=1

∑
B∈Bc

{
γ0 (c,K)λC (B | {k} , j) +

γ1 (c,K)
πR (j)

1− pjk
λC (B | K0, j)

}]
. (B.3.20)

In a similar manner, equation (B.3.16) can be written as

P

(
X0 = 1,

J∑
j′=1

Rj′ = 0, Ck = 1, Yjk = 1

∣∣∣∣∣ Ỹjk = 0

)
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= (1− Sp:I)

[
(1− Sp:M) (Sp:R)J (1− Sp:C)λR (A0 | J0, k)

πC (k)

1− pjk
+

Se:M

J∑
r=1

∑
A∈Ar

{
γ2 (r, J)λR (A | {j} , k) +

γ3 (r, J)λR (A | J0, k)
πC (k)

1− pjk

}]
,

where γ2 (r, J) and γ3 (r, J) are as previously de�ned. This follows from equa-

tion (B.3.20) by treating the rows as columns and vice versa. This concludes

the derivations for PS
Ijk
p .
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Appendix C

R function documentation

This appendix contains important parts of the documentation for the

binGroup2 package. Included are 1) the help page for the package as a

whole, 2) the index of available functions, and 3) the help documents for

the opChar1(), opChar2(), OTC1(), and OTC2() functions.



binGroup2 {binGroup2} R Documentation 

binGroup2: Identification and Estimation 
using Group Testing 

Description 

Methods for the group testing identification and estimation problems. 

Details 

Methods for identification of positive items in group testing designs: Operating characteristics (e.g., 
expected number of tests) are calculated for commonly used hierarchical and array-based algorithms. 
Optimal testing configurations for an algorithm can be found as well. Please see Hitt et al. (2019) for 
specific details. 

Methods for estimation and inference for proportions in group testing designs: For estimating one 
proportion or the difference of proportions, confidence interval methods are included that account for 
different pool sizes. Functions for hypothesis testing of proportions, calculation of power, and calculation 
of the expected width of confidence intervals are also included. Furthermore, regression methods and 
simulation of group testing data are implemented for simple pooling, halving, and array testing designs. 

The binGroup2 package is based upon the binGroup package that was originally designed for the 

group testing estimation problem. Over time, additional functions for estimation and for the group testing 
identification problem were included. Due to the diverse styles resulting from these additions, we have 

created binGroup2 as a way to unify functions in a coherent structure and incorporate additional 

functions for identification. The name “binGroup” originates from the assumption in basic estimation for 
group testing that the number of positive groups has a binomial distribution. While more advanced 

estimation methods no longer make this assumption, we continue with the binGroup name for 

consistency. 

Bilder (2019a,b) provide introductions to group testing. These papers and additional details about group 

testing are available at http://chrisbilder.com/grouptesting. 

This research was supported by the National Institutes of Health under grant R01 AI121351. 

Identification 

The binGroup2 package focuses on the group testing identification problem using hierarchical and array-
based group testing algorithms. 

The OTC1 function implements a number of group testing algorithms, described in Hitt et al. (2019), 

which calculate the operating characteristics and find the optimal testing configuration over a range of 
possible initial group sizes and/or testing configurations (sets of subsequent group sizes). 

The OTC2 function does the same with a multiplex assay that tests for two diseases. 



The operatingCharacteristics1 (opChar1) and operatingCharacteristics2(opChar2) functions 

calculate operating characteristics for a specified testing configuration with assays that test for one and 
two diseases, respectively. 

These functions allow the sensitivity and specificity to differ across stages of testing. This means that the 
accuracy of the diagnostic test can differ for stages in a hierarchical testing algorithm or between 
row/column testing and individual testing in an array testing algorithm. 

Estimation 

The binGroup2 package also provides functions for estimation and inference for proportions in group 
testing designs. 

The propCI function calculates the point estimate and confidence intervals for a single proportion from 

group testing data. The propDiffCI function does the same for the difference of proportions. A number of 

confidence interval methods are available for groups of equal or different sizes. 

The gtWidth function calculates the expected width of confidence intervals in group testing. 

The gtTest function calculates p-values for hypothesis tests of single proportions. ThegtPower function 

calculates power to reject a hypothesis. 

The designPower function iterates either the number of groups or group size in a one-parameter group 

testing design until a pre-specified power level is achieved. The designEstfunction finds the optimal 

group size corresponding to the minimal mean-squared error of the point estimator. 

The gtReg function implements regression methods and the gtSim function simulates group testing data 

for simple pooling, halving, and array testing designs. 
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Examples 

# Estimated running time for all examples was calculated  

#   using a computer with 16 GB of RAM and one core of  

#   an Intel i7-6500U processor. Please take this into  

#   account when interpreting the run times given. 

 

# 1) Identification using hierarchical and array-based group testing  

#   algorithms with an assay that tests for one disease. 

 

# 1.1) Find the optimal testing configuration over a range of initial  

#   group sizes, using informative three-stage hierarchical testing, where  

#   p denotes the overall prevalence of disease; 

#   Se denotes the sensitivity of the diagnostic test;  

#   Sp denotes the specificity of the diagnostic test; 

#   group.sz denotes the range of initial pool sizes for consideration; and 

#   obj.fn specifies the objective functions for which to find results. 

 

# This example takes approximately 25 seconds to run. 

 

set.seed(1002) 

results1 <- OTC1(algorithm="ID3", p=0.01, Se=0.95, Sp=0.95,  

                 group.sz=3:30, obj.fn=c("ET", "MAR"), alpha=2) 

summary(results1) 

 

# 1.2) Find the optimal testing configuration using non-informative 

# array testing without master pooling. 

# The sensitivity and specificity differ for row/column testing and  

#   individual testing. 

 

# This example takes approximately 15 seconds to run. 

 

results2 <- OTC1(algorithm="A2", p=0.05, Se=c(0.95, 0.99),  



                 Sp=c(0.95, 0.98), group.sz=3:20, obj.fn=c("ET", "MAR")) 

summary(results2) 

 

# 1.3) Calculate the operating characteristics using informative 

#   two-stage hierarchical (Dorfman) testing, implemented via the  

#   pool-specific optimal Dorfman (PSOD) method described in  

#   McMahan et al. (2012a). 

# Hierarchical testing configurations are specified by a matrix  

#   in the hier.config argument. The rows of the matrix correspond  

#   to the stages of the hierarchical testing algorithm, the columns  

#   correspond to the individuals to be tested, and the cell values  

#   correspond to the group number of each individual at each stage. 

config.mat <- matrix(data=c(rep(1, 5), rep(2, 4), 3, 1:10),  

                     nrow=2, ncol=10, byrow=TRUE) 

set.seed(8791) 

results3 <- opChar1(algorithm="ID2", p=0.02, Se=0.95, Sp=0.99,  

                    hier.config=config.mat, alpha=0.5) 

summary(results3) 

 

# 1.4) Calculate the operating characteristics using non-informative 

#   four-stage hierarchical testing.  

config.mat <- matrix(data=c(rep(1, 15), rep(c(1, 2, 3), each=5),  

                            rep(1, 3), rep(2, 2), rep(3, 3), rep(4, 2),  

                            rep(5, 4), 6, 1:15),  

                     nrow=4, ncol=15, byrow=TRUE) 

results4 <- opChar1(algorithm="D4", p=0.008, Se=0.96, Sp=0.98,  

                    hier.config=config.mat, a=c(1, 4, 6, 9, 11, 15)) 

summary(results4) 

 

 

# 2) Identification using hierarchical and array-based group testing  

#   algorithms with a multiplex assay that tests for two diseases. 

 

# 2.1) Find the optimal testing configuration using non-informative  

#   two-stage hierarchical testing, given 

#   p.vec, a vector of overall joint probabilities of disease;  

#   Se, a vector of sensitivity values for each disease; and  

#   Sp, a vector of specificity values for each disease.  

# Se and Sp can also be specified as a matrix, where one value  

#   is specified for each disease at each stage of testing. 

results5 <- OTC2(algorithm="D2", p.vec=c(0.90, 0.04, 0.04, 0.02),  

                 Se=c(0.99, 0.99), Sp=c(0.99, 0.99), group.sz=3:50) 

summary(results5) 

 

# 2.2) Calculate the operating characteristics for informative 

#   five-stage hierarchical testing, given 

#   alpha.vec, a vector of shape parameters for the Dirichlet distribution;  

#   Se, a matrix of sensitivity values; and  

#   Sp, a matrix of specificity values. 

Se <- matrix(data=rep(0.95, 10), nrow=2, ncol=5, byrow=TRUE) 

Sp <- matrix(data=rep(0.99, 10), nrow=2, ncol=5, byrow=TRUE) 

config.mat <- matrix(data=c(rep(1, 24), rep(1, 18), rep(2, 6),  

                            rep(1, 9), rep(2, 9), rep(3, 4), 4, 5,  

                            rep(1, 6), rep(2, 3), rep(3, 5), rep(4, 4),  

                            rep(5, 3), 6, rep(NA, 2), 1:21, rep(NA, 3)),  

                     nrow=5, ncol=24, byrow=TRUE) 

results6 <- opChar2(algorithm="ID5", alpha=c(18.25, 0.75, 0.75, 0.25), 



                    Se=Se, Sp=Sp, hier.config=config.mat) 

summary(results6) 

 

# 3) Estimation of the overall disease prevalence and calculation  

#   of confidence intervals. 

 

# 3.1) Suppose 3 groups out of 24 test positively.  

#   Each group has a size of 7. 

propCI(x=3, m=7, n=24, ci.method="CP") 

propCI(x=3, m=7, n=24, ci.method="Blaker") 

propCI(x=3, m=7, n=24, ci.method="score") 

propCI(x=3, m=7, n=24, ci.method="soc") 

 

# 3.2) Consider the following situation: 

#   0 out of 5 groups test positively with groups  

#   of size 1 (individual testing),  

#   0 out of 5 groups test positively with groups of size 5, 

#   1 out of 5 groups test positively with groups of size 10,  

#   2 out of 5 groups test positively with groups of size 50 

propCI(x=c(0,0,1,2), m=c(1,5,10,50), n=c(5,5,5,5),  

       pt.method="Gart", ci.method="skew-score") 

        

# 4) Estimate a group testing regression model. 

 

# 4.1) Fit a group testing regression model with  

#   simple pooling using the "hivsurv" dataset. 

data(hivsurv) 

fit1 <- gtReg(type="sp", formula = groupres ~ AGE + EDUC.,  

              data = hivsurv, groupn = gnum, sens = 0.9,  

              spec = 0.9, method = "Xie") 

summary(fit1) 

 

# 4.2) Simulate data for the halving protocol, and  

#   fit a group testing regression model. 

set.seed(46) 

gt.data <- gtSim(type="halving", par=c(-6, 0.1),  

                 gshape=17, gscale=1.4, size1=1000,  

                 size2=5, sens=0.95, spec=0.95) 

fit2 <- gtReg(type="halving", formula=gres~x,  

              data=gt.data, groupn=groupn, subg=subgroup, 

              retest=retest, sens=0.95, spec=0.95,  

              start=c(-6, 0.1), trace=TRUE) 

summary(fit2) 

 

# This example takes approximately 20 seconds to run. 

# 4.3) Simulate data in 5x6 array testing form, and  

#   fit a group testing regression model. 

set.seed(9128) 

array.sim <- gtSim(type="array", par=c(-7, 0.1),  

                   size1=c(5,6), size2=c(4,5), sens=0.95, spec=0.95) 

set1 <- array.sim$dframe 

 

fit3 <- gtReg(type="array",  

              formula=cbind(col.resp, row.resp)~x,  

              data=set1, coln=coln, rown=rown,  

              arrayn=arrayn, sens=0.95, spec=0.95,  

              tol=0.005, n.gibbs=2000, trace=TRUE) 



summary(fit3) 
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binGroup2  binGroup2: Identification and Estimation using Group Testing 

designEst  
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designPower  
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operatingCharacteristics1  
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operatingCharacteristics2  
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OTC1 

Find the optimal testing configuration for group testing algorithms that use a 
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OTC2 
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predict.gtReg  Predict method for group testing regression model fits 

print.designPower  Print method for objects of class "designPower" 

print.gtTest Print method for objects of class "gtTest" 

print.propCI  Print method for objects of class "propCI" 

print.propDiffCI Print method for objects of class "propDiffCI" 

print.summary.gtReg  Print method for 'summary.gtReg' 

propCI  Confidence intervals for one proportion in group testing 

propDiffCI Confidence intervals for the difference of proportions in group testing 

Sterrett  Summary measures for Sterrett algorithms 

summary.gtReg  Summary method for group testing regression model fits 

summary.opChar  Summary method for operating characteristics results 

summary.OTC  Summary method for optimal testing configuration results 

 



operatingCharacteristics1 {binGroup2} R Documentation 

Calculate operating characteristics for 
group testing algorithms that use a single-
disease assay 

Description 

Calculate operating characteristics, such as the expected number of tests, for a specified testing 
configuration using non-informative and informative hierarchical and array-based group testing 
algorithms. Single-disease assays are used at each stage of the algorithms. 

Usage 

operatingCharacteristics1( 

  algorithm, 

  p = NULL, 

  probabilities = NULL, 

  Se = 0.99, 

  Sp = 0.99, 

  hier.config = NULL, 

  rowcol.sz = NULL, 

  alpha = 2, 

  a = NULL, 

  print.time = TRUE, 

  ... 

) 

 

opChar1( 

  algorithm, 

  p = NULL, 

  probabilities = NULL, 

  Se = 0.99, 

  Sp = 0.99, 

  hier.config = NULL, 

  rowcol.sz = NULL, 

  alpha = 2, 

  a = NULL, 

  print.time = TRUE, 

  ... 

) 

Arguments 

algorithm character string defining the group testing algorithm to be used. Non-informative 

testing options include two-stage hierarchical ("D2"), three-stage hierarchical ("D3"), 

four-stage hierarchical ("D4"), square array testing without master pooling ("A2"), and 

square array testing with master pooling ("A2M"). Informative testing options include 



two-stage hierarchical ("ID2"), three-stage hierarchical ("ID3"), four-stage 

hierarchical ("ID4"), and square array testing without master pooling ("IA2"). 

p overall probability of disease that will be used to generate a vector/matrix of individual 
probabilities. For non-informative algorithms, a homogeneous set of probabilities will 

be used. For informative algorithms, the expectOrderBeta function will be used to 

generate a heterogeneous set of probabilities. Further details are given under 

'Details'. Either p or probabilities should be specified, but not both. 

probabilities a vector of individual probabilities, which is homogeneous for non-informative testing 
algorithms and heterogeneous for informative testing algorithms. 

Either p or probabilities should be specified, but not both. 

Se a vector of sensitivity values, where one value is given for each stage of testing (in 
order). If a single value is provided, sensitivity values are assumed to be equal to this 
value for all stages of testing. Further details are given under 'Details'. 

Sp a vector of specificity values, where one value is given for each stage of testing (in 
order). If a single value is provided, specificity values are assumed to be equal to this 
value for all stages of testing. Further details are given under 'Details'. 

hier.config a matrix specifying the configuration for a hierarchical testing algorithm. The rows 
correspond to the stages of testing, the columns correspond to each individual to be 
tested, and the cell values specify the group number of each individual at each stage. 
Further details are given under 'Details'. For array testing algorithms, this argument 
will be ignored. 

rowcol.sz the row/column size for array testing algorithms. For hierarchical testing algorithms, 
this argument will be ignored. 

alpha a shape parameter for the beta distribution that specifies the degree of heterogeneity 
for the generated probability vector (for informative testing only). 

a a vector containing indices indicating which individuals to calculate individual 

accuracy measures for. If NULL, individual accuracy measures will be displayed for all 

individuals in the algorithm. 

print.time a logical value indicating whether the length of time for calculations should be printed. 
The default is TRUE. 

... arguments to be passed to the expectOrderBeta function, which generates a 

vector of probabilities for informative testing algorithms. Further details are given 
under 'Details'. 

Details 

This function computes the operating characteristics for group testing algorithms with an assay that tests 
for one disease, as described in Hitt et al. (2019). 

Available algorithms include two-, three-, and four-stage hierarchical testing and array testing with and 
without master pooling. Both non-informative and informative group testing settings are allowed for each 
algorithm, except informative array testing with master pooling is unavailable because this method has 
not appeared in the group testing literature. Operating characteristics calculated are expected number of 
tests, pooling sensitivity, pooling specificity, pooling positive predictive value, and pooling negative 
predictive value for each individual. 



For informative algorithms where the p argument is specified, the expected value of order statistics from a 

beta distribution are found. These values are used to represent disease risk probabilities for each 

individual to be tested. The beta distribution has two parameters: a mean parameter p (overall disease 

prevalence) and a shape parameter alpha(heterogeneity level). Depending on the specified p, alpha, 

and overall group size, simulation may be necessary to generate the vector of individual probabilities. 

This is done using expectOrderBeta and requires the user to set a seed to reproduce results. 

Informative two-stage hierarchical (Dorfman) testing is implemented via the pool-specific optimal Dorfman 
(PSOD) method described in McMahan et al. (2012a), where the greedy algorithm proposed for PSOD is 
replaced by considering all possible testing configurations. Informative array testing is implemented via 
the gradient method (the most efficient array design), where higher-risk individuals are grouped in the left-
most columns of the array. For additional details on the gradient arrangement method for informative 
array testing, see McMahan et al. (2012b). 

The sensitivity/specificity values are allowed to vary across stages of testing. For hierarchical testing, a 
different sensitivity/specificity value may be used for each stage of testing. For array testing, a different 
sensitivity/specificity value may be used for master pool testing (if included), row/column testing, and 
individual testing. The values must be specified in order of the testing performed. For example, values are 
specified as (stage 1, stage 2, stage 3) for three-stage hierarchical testing or (master pool testing, 
row/column testing, individual testing) for array testing with master pooling. A single sensitivity/specificity 
value may be specified instead. In this situation, sensitivity/specificity values for all stages are assumed to 
be equal. 

The matrix specified by hier.config defines the hierarchical group testing algorithm for Iindividuals. 

The rows of the matrix correspond to the stages s=1,...,S in the testing algorithm, and the columns 
correspond to individuals i=1,...I. The cell values within the matrix represent the group number of 
individual i at stage s. For three-stage, four-stage, and non-informative two-stage hierarchical testing, the 
first row of the matrix consists of all ones. This indicates that all individuals in the algorithm are tested 
together in a single group in the first stage of testing. For informative two-stage hierarchical testing, the 
initial group (block) is not tested. Thus, the first row of the matrix consists of the group numbers for each 
individual in the first stage of testing. For all hierarchical algorithms, the final row of the matrix denotes 
individual testing. Individuals who are not tested in a particular stage are represented by "NA" (e.g., an 
individual tested in a group of size 1 in the second stage of testing would not be tested again in a third 
stage of testing). It is important to note that this matrix represents the testing that could be performed if 
each group tests positively at each stage prior to the last. For more details on this matrix (called a group 
membership matrix), see Bilder et al. (2019). 

For array testing without master pooling, the rowcol.sz specified represents the row/column size for 

initial (stage 1) testing. For array testing with master pooling, the rowcol.sz specified represents the 

row/column size for stage 2 testing. This is because the master pool size is the overall array size, given 
by the square of the row/column size. 

The displayed overall pooling sensitivity, pooling specificity, pooling positive predictive value, and pooling 
negative predictive value are weighted averages of the corresponding individual accuracy measures for 
all individuals within the initial group (or block) for a hierarchical algorithm, or within the entire array for an 
array-based algorithm. Expressions for these averages are provided in the Supplementary Material for 
Hitt et al. (2019). These expressions are based on accuracy definitions given by Altman and Bland 
(1994a, 1994b). 

The operatingCharacteristics1 function accepts additional arguments, namely num.sim, to be 

passed to the expectOrderBeta function, which generates a vector of probabilities for informative 

group testing algorithms. The num.sim argument specifies the number of simulations from the beta 

distribution when simulation is used. By default, 10,000 simulations are used. 



Value 

A list containing: 

algorithm the group testing algorithm used for calculations. 

prob the probability of disease or the vector of individual probabilities, as specified by the user. 

alpha level of heterogeneity for the generated probability vector (for informative testing only). 

Se the vector of sensitivity values for each stage of testing. 

Sp the vector of specificity values for each stage of testing. 

Config a list specifying elements of the specified testing configuration, which may include: 

Stage1 
group size for the first stage of hierarchical testing, if applicable. 

Stage2 
group sizes for the second stage of hierarchical testing, if applicable. 

Stage3 
group sizes for the third stage of hierarchical testing, if applicable. 

Block.sz 
the block size/initial group size for informative Dorfman testing, which is not tested. 

pool.szs 
group sizes for the first stage of testing for informative Dorfman testing. 

Array.dim 
the row/column size for array testing. 

Array.sz 
the overall array size for array testing (the square of the row/column size). 

p.vec the sorted vector of individual probabilities, if applicable. 

p.mat the sorted matrix of individual probabilities in gradient arrangement, if applicable. Further 
details are given under 'Details'. 

ET the expected testing expenditure to decode all individuals in the algorithm; this includes all 
individuals in all groups for hierarchical algorithms or in the entire array for array testing. 

value the value of the expected number of tests per individual. 

Accuracy a list containing: 

Individual 

a matrix of accuracy measures for each individual specified in a. The rows 

correspond to each unique set of accuracy measures in the algorithm. Individuals 
with the same set of accuracy measures are displayed together in a single row of the 
matrix. The columns correspond to the pooling sensitivity, pooling specificity, pooling 
positive predictive value, pooling negative predictive value, and the indices for the 
individuals in each row of the matrix. 

Overall 
a matrix of overall accuracy measures for the algorithm. The columns correspond to 
the pooling sensitivity, pooling specificity, pooling positive predictive value, and 
pooling negative predictive value for the overall algorithm. Further details are given 
under 'Details'. 



Note 

This function returns the pooling positive and negative predictive values for all individuals even though 
these measures are diagnostic specific; e.g., the pooling positive predictive value should only be 
considered for those individuals who have tested positive. 

Additionally, only stage dependent sensitivity and specificity values are allowed within the program (no 
group within stage dependent values are allowed). See Bilder et al. (2019) for additional information. 

Author(s) 

Brianna D. Hitt 
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See Also 

Other operating characteristic functions: Sterrett(), halving(),operatingCharacteristics2() 

Examples 

# Calculate the operating characteristics for non-informative 

#   two-stage hierarchical (Dorfman) testing. 

config.mat <- matrix(data = c(rep(1, 10), 1:10),  

                     nrow = 2, ncol = 10, byrow = TRUE) 

opChar1(algorithm="D2", p=0.05, Se=0.99, Sp=0.99,  

        hier.config=config.mat) 

opChar1(algorithm="D2", p=0.05, Se=0.99, Sp=0.99,  

        hier.config=config.mat, a=c(1,4), print.time=FALSE) 

 

# Calculate the operating characteristics for informative 

#   two-stage hierarchical (Dorfman) testing. 

# A vector of individual probabilities is generated using 

#   the expected value of order statistics from a beta 

#   distribution with p = 0.01 and a heterogeneity level 



#   of alpha = 0.5. 

config.mat <- matrix(data = c(rep(1:3, each = 10), 1:30),  

                     nrow = 2, ncol = 30, byrow = TRUE) 

set.seed(52613) 

opChar1(algorithm="ID2", p=0.01, Se=0.95, Sp=0.95,  

        hier.config=config.mat, alpha=0.5, num.sim=10000) 

# Equivalent code using a heterogeneous vector of  

#   probabilities 

set.seed(52613) 

probs <- expectOrderBeta(p=0.01, alpha=0.5, grp.sz=30) 

opChar1(algorithm="ID2", probabilities=probs, Se=0.95, Sp=0.95,  

        hier.config=config.mat) 

 

# Calculate the operating characteristics for 

#   non-informative three-stage hierarchical testing. 

config.mat <- matrix(data = c(rep(1, 18), rep(1:3, each = 5),  

                              rep(4, 3), 1:18),  

                    nrow = 3, ncol = 18, byrow = TRUE) 

opChar1(algorithm="D3", p=0.001, Se=0.95, Sp=0.95,  

        hier.config=config.mat) 

opChar1(algorithm="D3", p=0.001, Se=c(0.95, 0.95, 0.99),  

        Sp=c(0.96, 0.96, 0.98), hier.config=config.mat) 

 

# Calculate the operating characteristics for  

#   informative three-stage hierarchical testing,  

#   given a heterogeneous vector of probabilities. 

config.mat <- matrix(data = c(rep(1, 6), rep(1:2, each = 3),  

                              1:6), nrow = 3, ncol = 6,  

                     byrow = TRUE) 

set.seed(52613) 

opChar1(algorithm="ID3",  

         probabilities=c(0.012, 0.014, 0.011, 0.012, 0.010, 0.015),  

         Se=0.99, Sp=0.99, hier.config=config.mat,  

         alpha=0.5, num.sim=5000) 

 

# Calculate the operating characteristics for  

#   non-informative four-stage hierarchical testing. 

config.mat <- matrix(data = c(rep(1, 12), rep(1, 8),  

                              rep(2, 2), 3, 4, rep(1, 5),  

                              rep(2, 3), 3, 4, rep(NA, 2),  

                              1:8, rep(NA, 4)), nrow = 4,  

                     ncol = 12, byrow = TRUE) 

opChar1(algorithm="D4", p=0.041, Se=0.99, Sp=0.90,  

        hier.config=config.mat) 

         

# Calculate the operating characteristics for  

#   informative four-stage hierarchical testing.  

# A vector of individual probabilities is generated using 

#   the expected value of order statistics from a beta 

#   distribution with p = 0.041 and a heterogeneity level 

#   of alpha = 0.5. 

config.mat <- matrix(data = c(rep(1, 12), rep(1, 8),  

                              rep(2, 2), 3, 4, rep(1, 5),  

                              rep(2, 3), 3, 4, rep(NA, 2),  

                              1:8, rep(NA, 4)), nrow = 4,  

                     ncol = 12, byrow = TRUE) 

set.seed(5678) 



opChar1(algorithm="ID4", p=0.041, Se=0.99, Sp=0.90, 

        hier.config=config.mat, alpha=0.5) 

 

# Calculate the operating characteristics for 

#   non-informative array testing without master pooling. 

opChar1(algorithm="A2", p=0.005, Se=c(0.95, 0.99),  

        Sp=c(0.95, 0.99), rowcol.sz=8, a=1) 

 

# Calculate the operating characteristics for  

#   informative array testing without master pooling. 

# A vector of individual probabilities is generated using 

#   the expected value of order statistics from a beta 

#   distribution with p = 0.03 and a heterogeneity level 

#   of alpha = 2. 

set.seed(1002) 

opChar1(algorithm="IA2", p=0.03, Se=0.95, Sp=0.95, 

         rowcol.sz=8, alpha=2, a=1:10) 

 

# Calculate the operating characteristics for  

#   non-informative array testing with master pooling. 

opChar1(algorithm="A2M", p=0.02, Se=c(0.95,0.95,0.99),  

        Sp=c(0.98,0.98,0.99), rowcol.sz=5) 
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operatingCharacteristics2 {binGroup2} R Documentation 

Calculate operating characteristics for 
group testing algorithms that use a 
multiplex assay for two diseases 

Description 

Calculate operating characteristics, such as the expected number of tests, for a specified testing 
configuration using non-informative and informative hierarchical and array-based group testing 
algorithms. Multiplex assays for two diseases are used at each stage of the algorithms. 

Usage 

operatingCharacteristics2( 

  algorithm, 

  p.vec = NULL, 

  probabilities = NULL, 

  alpha = NULL, 

  Se, 

  Sp, 

  hier.config = NULL, 

  rowcol.sz = NULL, 

  ordering = matrix(data = c(0, 1, 0, 1, 0, 0, 1, 1), nrow = 4, ncol = 2), 

  a = NULL, 

  print.time = TRUE, 

  ... 

) 

 

opChar2( 

  algorithm, 

  p.vec = NULL, 

  probabilities = NULL, 

  alpha = NULL, 

  Se, 

  Sp, 

  hier.config = NULL, 

  rowcol.sz = NULL, 

  ordering = matrix(data = c(0, 1, 0, 1, 0, 0, 1, 1), nrow = 4, ncol = 2), 

  a = NULL, 

  print.time = TRUE, 

  ... 

) 

Arguments 

algorithm character string defining the group testing algorithm to be used. Non-informative 

testing options include two-stage hierarchical ("D2"), three-stage hierarchical ("D3"), 

four-stage hierarchical ("D4"), five-stage hierarchical ("D5"), square array testing 



without master pooling ("A2"), and square array testing with master pooling ("A2M"). 

Informative testing options include two-stage hierarchical ("ID2"), three-stage 

hierarchical ("ID3"), four-stage hierarchical ("ID4"), and five-stage hierarchical 

("ID5") testing. 

p.vec vector of overall joint probabilities. The joint probabilities are assumed to be equal for 
all individuals in the algorithm (non-informative testing only). There are four joint 
probabilities to consider: p_00, the probability that an individual tests negative for 
both diseases; p_10, the probability that an individual tests positive only for the first 
disease; p_01, the probability that an individual tests positive only for the second 
disease; and p_11, the probability that an individual tests positive for both diseases. 

The joint probabilities must sum to 1. Only one of p.vec, probabilities, 

or alpha should be specified. 

probabilities matrix of joint probabilities for each individual, where rows correspond to the four joint 
probabilities and columns correspond to each individual in the algorithm. Only one 
of p.vec, probabilities, or alpha should be specified. 

alpha a vector containing positive shape parameters of the Dirichlet distribution (for 
informative testing only). The vector will be used to generate a heterogeneous matrix 
of joint probabilities for each individual. The vector must have length 4. Further details 

are given under 'Details'. Only one of p.vec, probabilities, or alpha should be 

specified. 

Se matrix of sensitivity values, where one value is given for each disease (or infection) at 
each stage of testing. The rows of the matrix correspond to each disease k=1,...,K, 
and the columns of the matrix correspond to each stage of testing s=1,...,S. If a 
vector of K values is provided, the sensitivity values associated with disease k are 
assumed to be equal to the kth value in the vector for all stages of testing. Further 
details are given under 'Details'. 

Sp a matrix of specificity values, where one value is given for each disease (or infection) 
at each stage of testing. The rows of the matrix correspond to each disease k=1,...,K, 
and the columns of the matrix correspond to each stage of testing s=1,...,S. If a 
vector of K values is provided, the specificity values associated with disease k are 
assumed to be equal to the kth value in the vector for all stages of testing. Further 
details are given under 'Details'. 

hier.config a matrix specifying the configuration for a hierarchical testing algorithm. The rows 
correspond to the stages of testing, the columns correspond to each individual to be 
tested, and the cell values specify the group number of each individual at each stage. 
Further details are given under 'Details'. For array testing algorithms, this argument 
will be ignored. 

rowcol.sz the row/column size for array testing algorithms. For hierarchical testing algorithms, 
this argument will be ignored. 

ordering a matrix detailing the ordering for the binary responses of the diseases. The columns 
of the matrix correspond to each disease and the rows of the matrix correspond to 
each of the 4 sets of binary responses for two diseases. This ordering is used with 
the joint probabilities. The default ordering is (p_00, p_10, p_01, p_11). 

a a vector containing indices indicating which individuals to calculate individual 

accuracy measures for. If NULL, individual accuracy measures will be displayed for all 

individuals in the algorithm. 

print.time a logical value indicating whether the length of time for calculations should be printed. 

The default is TRUE. 



... additional arguments to be passed to functions for hierarchical testing with multiplex 
assays for two diseases. 

Details 

This function computes the operating characteristics for standard group testing algorithms with a multiplex 
assay that tests for two diseases. Calculations for hierarchical group testing algorithms are performed as 
described in Bilder et al. (2019) and calculations for array-based group testing algorithms are performed 
as described in Hou et al. (2019). 

Available algorithms include two-, three-, four-, and five-stage hierarchical testing and array testing with 
and without master pooling. Both non-informative and informative group testing settings are allowed for 
hierarchical algorithms. Only non-informative group testing settings are allowed for array testing 
algorithms. Operating characteristics calculated are expected number of tests, pooling sensitivity, pooling 
specificity, pooling positive predictive value, and pooling negative predictive value for each individual. 

For informative algorithms where the alpha argument is specified, a heterogeneous matrix of joint 

probabilities for each individual is generated using the Dirichlet distribution. This is done 

using rBeta2009::rdirichlet and requires the user to set a seed to reproduce results. See Bilder et 

al. (2019) for additional details on the use of the Dirichlet distribution for this purpose. 

The sensitivity/specificity values are allowed to vary across stages of testing. For hierarchical testing, a 
different sensitivity/specificity value may be used for each stage of testing. For array testing, a different 
sensitivity/specificity value may be used for master pool testing (if included), row/column testing, and 
individual testing. The values must be specified in the order of the testing performed. For example, values 
are specified as (stage 1, stage 2, stage 3) for three-stage hierarchical testing or (master pool testing, 
row/column testing, individual testing) for array testing with master pooling. A vector 
of K sensitivity/specificity values may be specified, and sensitivity/specificity values for all stages of 
testing are assumed to be equal. The first value in the vector will be used at each stage of testing for the 
first disease, and the second value in the vector will be used at each stage of testing for the second 
disease. 

The matrix specified by hier.config defines the hierarchical group testing algorithm for Iindividuals. 

The rows of the matrix correspond to the stages s=1,...,S in the testing algorithm, and the columns 
correspond to individuals i=1,...I. The cell values within the matrix represent the group number of 
individual i at stage s. For three-stage, four-stage, five-stage, and non-informative two-stage hierarchical 
testing, the first row of the matrix consists of all ones. This indicates that all individuals in the algorithm 
are tested together in a single group in the first stage of testing. For informative two-stage hierarchical 
testing, the initial group (block) is not tested. Thus, the first row of the matrix consists of the group 
numbers for each individual in the first stage of testing. For all hierarchical algorithms, the final row of the 
matrix denotes individual testing. Individuals who are not tested in a particular stage are represented by 
"NA" (e.g., an individual tested in a group of size 1 in the second stage of testing would not be tested 
again in a third stage of testing). It is important to note that this matrix represents the testing that could be 
performed if each group tests positively at each stage prior to the last. For more details on this matrix 
(called a group membership matrix), see Bilder et al. (2019). 

For array testing without master pooling, the rowcol.sz specified represents the row/column size for 

initial (stage 1) testing. For array testing with master pooling, the rowcol.sz specified represents the 

row/column size for stage 2 testing. This is because the master pool size is the overall array size, given 
by the square of the row/column size. 

The displayed overall pooling sensitivity, pooling specificity, pooling positive predictive value, and pooling 
negative predictive value are weighted averages of the corresponding individual accuracy measures for 



all individuals within the initial group (or block) for a hierarchical algorithm, or within the entire array for an 
array-based algorithm. Expressions for these averages are provided in the Supplementary Material for 
Hitt et al. (2019). These expressions are based on accuracy definitions given by Altman and Bland 
(1994a, 1994b). 

Value 

A list containing: 

algorithm the group testing algorithm used for calculations. 

prob.vec the vector of joint probabilities provided by the user, if applicable (for non-informative 
algorithms only). 

joint.p the matrix of joint probabilities for each individual provided by the user, if applicable. 

alpha.vec the alpha vector provided by the user, if applicable (for informative algorithms only). 

Se the matrix of sensitivity values for each disease at each stage of testing. 

Sp the matrix of specificity values for each disease at each stage of testing. 

Config a list specifying elements of the specified testing configuration, which may include: 

Stage1 
group size for the first stage of hierarchical testing, if applicable. 

Stage2 
group sizes for the second stage of hierarchical testing, if applicable. 

Stage3 
group sizes for the third stage of hierarchical testing, if applicable. 

Stage4 
group sizes for the fourth stage of hierarchical testing, if applicable. 

Block.sz 
the block size/initial group size for informative Dorfman testing, which is not tested. 

pool.szs 
group sizes for the first stage of testing for informative Dorfman testing. 

Array.dim 
the row/column size for array testing. 

Array.sz 
the overall array size for array testing (the square of the row/column size). 

p.mat the matrix of joint probabilities for each individual in the algorithm. Each row corresponds to 
one of the four joint probabilities. Each column corresponds to an individual in the testing 
algorithm. 

ET the expected testing expenditure for the OTC. 

value the value of the expected number of tests per individual. 

Accuracy a list containing: 

Disease 1 Individual 
a matrix of accuracy measures, pertaining to the first disease, for each individual 

specified in a. The rows correspond to each unique set of accuracy measures in the 

algorithm. Individuals with the same set of accuracy measures are displayed 
together in a single row of the matrix. The columns correspond to the pooling 



sensitivity, pooling specificity, pooling positive predictive value, pooling negative 
predictive value, and the indices for the individuals in each row of the matrix. 
Individual accuracy measures are not displayed for array testing algorithms. 

Disease 2 Individual 
a matrix of accuracy measures, pertaining to the second disease, for each individual 

specified in a. The rows correspond to each unique set of accuracy measures in the 

algorithm. Individuals with the same set of accuracy measures are displayed 
together in a single row of the matrix. The columns correspond to the pooling 
sensitivity, pooling specificity, pooling positive predictive value, pooling negative 
predictive value, and the indices for the individuals in each row of the matrix. 
Individual accuracy measures are not displayed for array testing algorithms. 

Overall 
a matrix of overall accuracy measures for the algorithm. The rows correspond to 
each disease. The columns correspond to the pooling sensitivity, pooling specificity, 
pooling positive predictive value, and pooling negative predictive value for the overall 
algorithm. Further details are given under 'Details'. 

Note 

This function returns the pooling positive and negative predictive values for all individuals even though 
these measures are diagnostic specific; e.g., the pooling positive predictive value should only be 
considered for those individuals who have tested positive. 

Additionally, only stage dependent sensitivity and specificity values are allowed within the program (no 
group within stage dependent values are allowed). See Bilder et al. (2019) for additional information. 

Author(s) 

This function was written by Brianna D. Hitt. It calls ET.all.stages.new and PSePSpAllStages, 

which were originally written by Christopher Bilder for Bilder et al. (2019), and ARRAY, which was 

originally written by Peijie Hou for Hou et al. (2020). The 

functions ET.all.stages.new, PSePSpAllStages, and ARRAY were obtained 

from http://chrisbilder.com/grouptesting. Minor modifications were made to the functions for inclusion in 
the binGroup2 package. 

References 

Altman, D., Bland, J. (1994). “Diagnostic tests 1: Sensitivity and specificity.” BMJ, 308, 1552. 

Altman, D., Bland, J. (1994). “Diagnostic tests 2: Predictive values.” BMJ, 309, 102. 

Bilder, C., Tebbs, J., McMahan, C. (2019). “Informative group testing for multiplex assays.”Biometrics, 75, 
278–288. doi: 10.1111/biom.12988. 

Hitt, B., Bilder, C., Tebbs, J., McMahan, C. (2019). “The objective function controversy for group testing: 
Much ado about nothing?” Statistics in Medicine, 38, 4912–4923. doi: 10.1002/sim.8341. 

Hou, P., Tebbs, J., Wang, D., McMahan, C., Bilder, C. (2020). “Array testing with multiplex assays.” To 
appear in Biostatistics. 



McMahan, C., Tebbs, J., Bilder, C. (2012a). “Informative Dorfman Screening.” Biometrics, 68, 287–296. 
doi: 10.1111/j.1541-0420.2011.01644.x. 

See Also 

Other operating characteristic functions: Sterrett(), halving(),operatingCharacteristics1() 

Other multiplex testing functions: OTC2() 

Examples 

# Calculate the operating characteristics for  

#   non-informative two-stage hierarchical  

#   (Dorfman) testing. 

config.mat <- matrix(data = c(rep(1, 24), 1:24),  

                     nrow = 2, ncol = 24, byrow = TRUE) 

Se <- matrix(data=c(0.95, 0.95, 0.95, 0.95), 

             nrow=2, ncol=2, 

             dimnames=list(Infection=1:2, Stage=1:2)) 

Sp <- matrix(data=c(0.99, 0.99, 0.99, 0.99), 

             nrow=2, ncol=2, 

             dimnames=list(Infection=1:2, Stage=1:2)) 

opChar2(algorithm="D2", p.vec=c(0.90, 0.04, 0.04, 0.02), 

         Se=Se, Sp=Sp, hier.config=config.mat) 

opChar2(algorithm="D2", p.vec=c(0.90, 0.04, 0.04, 0.02), 

         Se=Se, Sp=Sp, hier.config=config.mat, a=c(1, 13, 24),  

         print.time = FALSE) 

                             

# Calculate the operating characteristics for informative  

#   two-stage hierarchical (Dorfman) testing. 

# A matrix of joint probabilities for each individual is  

#   generated using the Dirichlet distribution. 

config.mat <- matrix(data = c(rep(1, 5), rep(2, 4), 3, 1:9, NA),  

                     nrow = 2, ncol = 10, byrow = TRUE) 

Se <- matrix(data=c(0.95, 0.95, 0.99, 0.99), 

             nrow=2, ncol=2, 

             dimnames=list(Infection=1:2, Stage=1:2)) 

Sp <- matrix(data=c(0.96, 0.96, 0.98, 0.98), 

             nrow=2, ncol=2, 

             dimnames=list(Infection=1:2, Stage=1:2)) 

set.seed(8791) 

opChar2(algorithm="ID2", alpha=c(18.25, 0.75, 0.75, 0.25), 

         Se=Se, Sp=Sp, hier.config=config.mat) 

# Equivalent code using a heterogeneous matrix of joint 

#   probabilities for each individual 

set.seed(8791) 

p.unordered <- t(rBeta2009::rdirichlet(n = 10,  

                            shape = c(18.25, 0.75, 0.75, 0.25))) 

p.ordered <- p.unordered[, order(1 - p.unordered[1,])] 

opChar2(algorithm="ID2", probabilities=p.ordered, 

        Se=Se, Sp=Sp, hier.config=config.mat) 

          

# Calculate the operating characteristics for  

#   non-informative three-stage hierarchical testing. 

config.mat <- matrix(data = c(rep(1, 10), rep(1, 5),  



                              rep(2, 4), 3, 1:9, NA),  

                     nrow = 3, ncol = 10, byrow = TRUE) 

Se <- matrix(data=rep(0.95, 6), nrow=2, ncol=3, 

             dimnames=list(Infection=1:2, Stage=1:3)) 

Sp <- matrix(data=rep(0.99, 6), nrow=2, ncol=3, 

             dimnames=list(Infection=1:2, Stage=1:3)) 

opChar2(algorithm="D3", p.vec=c(0.95, 0.02, 0.02, 0.01), 

         Se=Se, Sp=Sp, hier.config=config.mat) 

opChar2(algorithm="D3", p.vec=c(0.95, 0.02, 0.02, 0.01), 

         Se=Se, Sp=Sp, hier.config=config.mat, a=c(1, 6, 10)) 

     

# Calculate the operating characteristics for informative  

#   three-stage hierarchical testing.  

# A matrix of joint probabilities for each individual is  

#   generated using the Dirichlet distribution. 

config.mat <- matrix(data = c(rep(1, 15),  

                              rep(c(1, 2, 3), each = 5), 1:15),  

                     nrow = 3, ncol = 15, byrow = TRUE) 

Se <- matrix(data=rep(0.95, 6), nrow=2, ncol=3, 

             dimnames=list(Infection=1:2, Stage=1:3)) 

Sp <- matrix(data=rep(0.99, 6), nrow=2, ncol=3, 

             dimnames=list(Infection=1:2, Stage=1:3)) 

opChar2(algorithm="ID3", alpha=c(18.25, 0.75, 0.75, 0.25), 

         Se=Se, Sp=Sp, hier.config=config.mat) 

          

# Calculate the operating characteristics for  

#   non-informative four-stage hierarchical testing.  

config.mat <- matrix(data = c(rep(1, 12), rep(1, 6), rep(2, 6),  

                              rep(1, 4), rep(2, 2), rep(3, 3),  

                              rep(4, 3), 1:12),  

                     nrow = 4, ncol = 12, byrow = TRUE) 

Se <- matrix(data=rep(0.95, 8), nrow=2, ncol=4, 

             dimnames=list(Infection=1:2, Stage=1:4)) 

Sp <- matrix(data=rep(0.99, 8), nrow=2, ncol=4, 

             dimnames=list(Infection=1:2, Stage=1:4)) 

opChar2(algorithm="D4", p.vec=c(0.92, 0.05, 0.02, 0.01), 

         Se=Se, Sp=Sp, hier.config=config.mat) 

 

# Calculate the operating characteristics for informative  

#   five-stage hierarchical testing.  

# A matrix of joint probabilities for each individual is  

#   generated using the Dirichlet distribution. 

config.mat <- matrix(data = c(rep(1, 20), rep(1, 10), rep(2, 10), 

                              rep(c(1, 2, 3, 4), each = 5),  

                              rep(1, 3), rep(2, 2), rep(3, 3),  

                              rep(4, 2), rep(5, 3), rep(6, 2), 

                              rep(7, 3), rep(8, 2), 1:20),  

                     nrow = 5, ncol = 20, byrow = TRUE) 

Se <- matrix(data=rep(0.95, 10), nrow=2, ncol=5, 

             dimnames=list(Infection=1:2, Stage=1:5)) 

Sp <- matrix(data=rep(0.99, 10), nrow=2, ncol=5, 

             dimnames=list(Infection=1:2, Stage=1:5)) 

opChar2(algorithm="ID5", alpha=c(18.25, 0.75, 0.75, 0.25), 

        Se=Se, Sp=Sp, hier.config=config.mat) 

 

# Calculate the operating characteristics for  

#   non-informative array testing without master pooling. 



Se <- matrix(data=rep(0.95, 4), nrow=2, ncol=2, 

             dimnames=list(Infection=1:2, Stage=1:2)) 

Sp <- matrix(data=rep(0.99, 4), nrow=2, ncol=2, 

             dimnames=list(Infection=1:2, Stage=1:2)) 

opChar2(algorithm="A2", p.vec=c(0.90, 0.04, 0.04, 0.02), 

         Se=Se, Sp=Sp, rowcol.sz=12) 

                   

# Calculate the operating characteristics for  

#   non-informative array testing with master pooling. 

Se <- matrix(data=rep(0.95, 6), nrow=2, ncol=3, 

             dimnames=list(Infection=1:2, Stage=1:3)) 

Sp <- matrix(data=rep(0.99, 6), nrow=2, ncol=3, 

             dimnames=list(Infection=1:2, Stage=1:3)) 

opChar2(algorithm="A2M", p.vec=c(0.90, 0.04, 0.04, 0.02), 

         Se=Se, Sp=Sp, rowcol.sz=10) 
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OTC1 {binGroup2} R Documentation 

Find the optimal testing configuration for 
group testing algorithms that use a single-
disease assay 

Description 

Find the optimal testing configuration (OTC) using non-informative and informative hierarchical and array-
based group testing algorithms. Single-disease assays are used at each stage of the algorithms. 

Usage 

OTC1( 

  algorithm, 

  p = NULL, 

  probabilities = NULL, 

  Se = 0.99, 

  Sp = 0.99, 

  group.sz, 

  obj.fn = c("ET", "MAR"), 

  weights = NULL, 

  alpha = 2, 

  trace = TRUE, 

  print.time = TRUE, 

  ... 

) 

Arguments 

algorithm character string defining the group testing algorithm to be used. Non-informative 

testing options include two-stage hierarchical ("D2"), three-stage hierarchical ("D3"), 

square array testing without master pooling ("A2"), and square array testing with 

master pooling ("A2M"). Informative testing options include two-stage hierarchical 

("ID2"), three-stage hierarchical ("ID3"), and square array testing without master 

pooling ("IA2"). 

p overall probability of disease that will be used to generate a vector/matrix of individual 
probabilities. For non-informative algorithms, a homogeneous set of probabilities will 

be used. For informative algorithms, the expectOrderBeta function will be used to 

generate a heterogeneous set of probabilities. Further details are given under 

'Details'. Either p or probabilities should be specified, but not both. 

probabilities a vector of individual probabilities, which is homogeneous for non-informative testing 
algorithms and heterogeneous for informative testing algorithms. 

Either p or probabilities should be specified, but not both. 

Se a vector of sensitivity values, where one value is given for each stage of testing (in 
order). If a single value is provided, sensitivity values are assumed to be equal to this 



value for all stages of testing. Further details are given under 'Details'. 

Sp a vector of specificity values, where one value is given for each stage of testing (in 
order). If a single value is provided, specificity values are assumed to be equal to this 
value for all stages of testing. Further details are given under 'Details'. 

group.sz a single group size or range of group sizes for which to calculate operating 
characteristics and/or find the OTC. The details of group size specification are given 
under 'Details'. 

obj.fn a list of objective functions which are minimized to find the OTC. The expected 

number of tests per individual, "ET", will always be calculated. Additional options 

include "MAR" (the expected number of tests divided by the expected number of 

correct classifications, described in Malinovsky et al. (2016)), and "GR" (a linear 

combination of the expected number of tests, the number of misclassified negatives, 
and the number of misclassified positives, described in Graff & Roeloffs (1972)). See 
Hitt et al. (2019) for additional details. The first objective function specified in this list 
will be used to determine the results for the top configurations. Further details are 
given under 'Details'. 

weights a matrix of up to six sets of weights for the GR function. Each set of weights is 
specified by a row of the matrix. 

alpha a shape parameter for the beta distribution that specifies the degree of heterogeneity 
for the generated probability vector (for informative testing only). 

trace a logical value indicating whether the progress of calculations should be printed for 

each initial group size provided by the user. The default is TRUE. 

print.time a logical value indicating whether the length of time for calculations should be printed. 
The default is TRUE. 

... arguments to be passed to the expectOrderBeta function, which generates a 

vector of probabilities for informative testing algorithms. Further details are given 
under 'Details'. 

Details 

This function finds the OTC for group testing algorithms with an assay that tests for one disease and 
computes the associated operating characteristics, as described in Hitt et al. (2019). 

Available algorithms include two- and three-stage hierarchical testing and array testing with and without 
master pooling. Both non-informative and informative group testing settings are allowed for each 
algorithm, except informative array testing with master pooling is unavailable because this method has 
not appeared in the group testing literature. Operating characteristics calculated are expected number of 
tests, pooling sensitivity, pooling specificity, pooling positive predictive value, and pooling negative 
predictive value for each individual. 

For informative algorithms where the p argument is specified, the expected value of order statistics from a 

beta distribution are found. These values are used to represent disease risk probabilities for each 

individual to be tested. The beta distribution has two parameters: a mean parameter p (overall disease 

prevalence) and a shape parameter alpha(heterogeneity level). Depending on the specified p, alpha, 

and overall group size, simulation may be necessary to generate the vector of individual probabilities. 

This is done using expectOrderBeta and requires the user to set a seed to reproduce results. 



Informative two-stage hierarchical (Dorfman) testing is implemented via the pool-specific optimal Dorfman 
(PSOD) method described in McMahan et al. (2012a), where the greedy algorithm proposed for PSOD is 
replaced by considering all possible testing configurations. Informative array testing is implemented via 
the gradient method (the most efficient array design), where higher-risk individuals are grouped in the left-
most columns of the array. For additional details on the gradient arrangement method for informative 
array testing, see McMahan et al. (2012b). 

The sensitivity/specificity values are allowed to vary across stages of testing. For hierarchical testing, a 
different sensitivity/specificity value may be used for each stage of testing. For array testing, a different 
sensitivity/specificity value may be used for master pool testing (if included), row/column testing, and 
individual testing. The values must be specified in order of the testing performed. For example, values are 
specified as (stage 1, stage 2, stage 3) for three-stage hierarchical testing or (master pool testing, 
row/column testing, individual testing) for array testing with master pooling. A single sensitivity/specificity 
value may be specified instead. In this situation, sensitivity/specificity values for all stages are assumed to 
be equal. 

The value(s) specified by group.sz represent the initial (stage 1) group size for hierarchical testing and 

the row/column size for array testing. For informative two-stage hierarchical testing, 

the group.sz specified represents the block size used in the pool-specific optimal Dorfman (PSOD) 

method, where the initial group (block) is not tested. For more details on informative two-stage 
hierarchical testing implemented via the PSOD method, see Hitt et al. (2019) and McMahan et al. 
(2012a). 

If a single value is provided for group.sz with array testing or non-informative two-stage hierarchical 

testing, operating characteristics will be calculated and no optimization will be performed. If a single value 

is provided for group.sz with three-stage hierarchical or informative two-stage hierarchical, the OTC will 

be found over all possible configurations. If a range of group sizes is specified, the OTC will be found over 
all group sizes. 

In addition to the OTC, operating characteristics for some of the other configurations corresponding to 
each initial group size provided by the user will be displayed. These additional configurations are only 
determined for whichever objective function ("ET", "MAR", or "GR") is specified first in the function call. If 
"GR" is the objective function listed first, the first set of corresponding weights will be used. For algorithms 
where there is only one configuration for each initial group size (non-informative two-stage hierarchical 
and all array testing algorithms), results for each initial group size are provided. For algorithms where 
there is more than one possible configuration for each initial group size (informative two-stage 
hierarchical and all three-stage hierarchical algorithms), two sets of configurations are provided: 1) the 
best configuration for each initial group size, and 2) the top 10 configurations for each initial group size 

provided by the user. If a single value is provided for group.szwith array testing or non-informative two-

stage hierarchical testing, operating characteristics will not be provided for configurations other than that 

specified by the user. Results are sorted by the value of the objective function per individual, value. 

The displayed overall pooling sensitivity, pooling specificity, pooling positive predictive value, and pooling 
negative predictive value are weighted averages of the corresponding individual accuracy measures for 
all individuals within the initial group (or block) for a hierarchical algorithm, or within the entire array for an 
array-based algorithm. Expressions for these averages are provided in the Supplementary Material for 
Hitt et al. (2019). These expressions are based on accuracy definitions given by Altman and Bland 
(1994a, 1994b). Individual accuracy measures can be calculated using 

the operatingCharacteristics1(opChar1) function. 

The OTC1 function accepts additional arguments, namely num.sim, to be passed to 

the expectOrderBeta function, which generates a vector of probabilities for informative group testing 

algorithms. The num.sim argument specifies the number of simulations from the beta distribution when 

simulation is used. By default, 10,000 simulations are used. 



Value 

A list containing: 

algorithm the group testing algorithm used for calculations. 

prob the probability of disease or the vector of individual probabilities, as specified by the 
user. 

alpha level of heterogeneity for the generated probability vector (for informative testing only). 

Se the vector of sensitivity values for each stage of testing. 

Sp the vector of specificity values for each stage of testing. 

opt.ET, 

opt.MAR, 

opt.GR 

a list of results for each objective function specified by the user, containing: 

OTC 
a list specifying elements of the optimal testing configuration, which may 
include: 

Stage1 
group size for the first stage of hierarchical testing, if applicable. 

Stage2 
group sizes for the second stage of hierarchical testing, if applicable. 

Block.sz 
the block size/initial group size for informative Dorfman testing, which is not 
tested. 

pool.szs 
group sizes for the first stage of testing for informative Dorfman testing. 

Array.dim 
the row/column size for array testing. 

Array.sz 
the overall array size for array testing (the square of the row/column size). 

p.vec 
the sorted vector of individual probabilities, if applicable. 

p.mat 
the sorted matrix of individual probabilities in gradient arrangement, if 
applicable. Further details are given under 'Details'. 

ET 
the expected testing expenditure to decode all individuals in the algorithm; this 
includes all individuals in all groups for hierarchical algorithms or in the entire 
array for array testing. 

value 
the value of the objective function per individual. 

Accuracy 
a matrix of overall accuracy measures for the algorithm. The columns 
correspond to the pooling sensitivity, pooling specificity, pooling positive 
predictive value, and pooling negative predictive value for the overall 
algorithm. Further details are given under 'Details'. 

Configs a data frame containing results for the best configuration for each initial group size 
provided by the user. The columns correspond to the initial group size, configuration (if 
applicable), overall array size (if applicable), expected number of tests, value of the 



objective function per individual, pooling sensitivity, pooling specificity, pooling positive 
predictive value, and pooling negative predictive value. No results are displayed if a 

single group.sz is provided. Further details are given under 'Details'. 

Top.Configs a data frame containing results for some of the top configurations for each initial group 
size provided by the user. The columns correspond to the initial group size, 
configuration, expected number of tests, value of the objective function per individual, 
pooling sensitivity, pooling specificity, pooling positive predictive value, and pooling 
negative predictive value. No results are displayed for non-informative two-stage 
hierarchical testing or for array testing algorithms. Further details are given under 
'Details'. 

Note 

This function returns the pooling positive and negative predictive values for all individuals even though 
these measures are diagnostic specific; e.g., the pooling positive predictive value should only be 
considered for those individuals who have tested positive. 

Additionally, only stage dependent sensitivity and specificity values are allowed within the program (no 
group within stage dependent values are allowed). See Bilder et al. (2019) for additional information. 

Author(s) 

Brianna D. Hitt 
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Other OTC functions: OTC2() 

Examples 

# Estimated running time for all examples was calculated  

#   using a computer with 16 GB of RAM and one core of  

#   an Intel i7-6500U processor. Please take this into  

#   account when interpreting the run times given. 

 

# Find the OTC for non-informative 

#   two-stage hierarchical (Dorfman) testing. 

OTC1(algorithm="D2", p=0.05, Se=0.99, Sp=0.99,  

     group.sz=3:100, obj.fn=c("ET", "MAR"),  

     trace=TRUE, print.time=TRUE) 

 

# Find the OTC for informative two-stage hierarchical  

#   (Dorfman) testing. 

# A vector of individual probabilities is generated using 

#   the expected value of order statistics from a beta 

#   distribution with p = 0.01 and a heterogeneity level 

#   of alpha = 0.5. 

# This example takes approximately 2.5 minutes to run. 

 

set.seed(52613) 

OTC1(algorithm="ID2", p=0.01, Se=0.95, Sp=0.95, group.sz=50, 

     obj.fn=c("ET", "MAR", "GR"), 

     weights=matrix(data=c(1, 1, 10, 10, 0.5, 0.5), 

     nrow=3, ncol=2, byrow=TRUE), alpha=0.5,  

     trace=FALSE, print.time=TRUE, num.sim=10000) 

 

# Find the OTC over all possible testing configurations  

#   for non-informative three-stage hierarchical testing  

#   with a specified group size. 

OTC1(algorithm="D3", p=0.001, Se=0.95, Sp=0.95, group.sz=18, 

     obj.fn=c("ET", "MAR", "GR"), 

     weights=matrix(data=c(1, 1), nrow=1, ncol=2, byrow=TRUE),  

     trace=FALSE, print.time=FALSE) 

 

# Find the OTC for non-informative three-stage  

#   hierarchical testing. 

# This example takes approximately 20 seconds to run. 

 

OTC1(algorithm="D3", p=0.06, Se=0.90, Sp=0.90, 

     group.sz=3:30, obj.fn=c("ET", "MAR", "GR"), 

     weights=matrix(data=c(1, 1, 10, 10, 100, 100), 

     nrow=3, ncol=2, byrow=TRUE)) 

 

# Find the OTC over all possible configurations 

#   for informative three-stage hierarchical testing  

#   with a specified group size and a heterogeneous  

#   vector of probabilities. 

set.seed(1234) 

OTC1(algorithm="ID3",  

     probabilities=c(0.012, 0.014, 0.011, 0.012, 0.010, 0.015),  

     Se=0.99, Sp=0.99, group.sz=6, obj.fn=c("ET","MAR","GR"),  

     weights=matrix(data=c(1, 1), nrow=1, ncol=2, byrow=TRUE),  



     alpha=0.5, num.sim=5000, trace=FALSE) 

 

# Calculate the operating characteristics for  

#   non-informative array testing without master pooling  

#   with a specified array size. 

OTC1(algorithm="A2", p=0.005, Se=0.95, Sp=0.95, group.sz=8, 

     obj.fn=c("ET", "MAR"), trace=FALSE) 

 

# Find the OTC for informative array testing without 

#   master pooling. 

# A vector of individual probabilities is generated using 

#   the expected value of order statistics from a beta 

#   distribution with p = 0.03 and a heterogeneity level 

#   of alpha = 2. The probabilities are then arranged in 

#   a matrix using the gradient method. 

# This example takes approximately 30 seconds to run. 

 

set.seed(1002) 

OTC1(algorithm="IA2", p=0.03, Se=0.95, Sp=0.95, 

     group.sz=3:20, obj.fn=c("ET", "MAR", "GR"), 

     weights=matrix(data=c(1, 1, 10, 10, 100, 100),  

                    nrow=3, ncol=2, byrow=TRUE), alpha=2) 

 

# Find the OTC for non-informative array testing 

#   with master pooling. 

# This example takes approximately 20 seconds to run. 

 

OTC1(algorithm="A2M", p=0.02, Se=0.90, Sp=0.90, 

     group.sz=3:20, obj.fn=c("ET", "MAR", "GR"), 

     weights=matrix(data=c(1, 1, 10, 10, 0.5, 0.5, 2, 2, 100, 100,  

                           10, 100), nrow=6, ncol=2, byrow=TRUE)) 
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OTC2 {binGroup2} R Documentation 

Find the optimal testing configuration for 
group testing algorithms that use a 
multiplex assay for two diseases 

Description 

Find the optimal testing configuration (OTC) using non-informative and informative hierarchical and array-
based group testing algorithms. Multiplex assays for two diseases are used at each stage of the 
algorithms. 

Usage 

OTC2( 

  algorithm, 

  p.vec = NULL, 

  probabilities = NULL, 

  alpha = NULL, 

  Se, 

  Sp, 

  ordering = matrix(data = c(0, 1, 0, 1, 0, 0, 1, 1), nrow = 4, ncol = 2), 

  group.sz, 

  trace = TRUE, 

  print.time = TRUE, 

  ... 

) 

Arguments 

algorithm character string defining the group testing algorithm to be used. Non-informative 

testing options include two-stage hierarchical ("D2"), three-stage hierarchical ("D3"), 

square array testing without master pooling ("A2"), and square array testing with 

master pooling ("A2M"). Informative testing options include two-stage hierarchical 

("ID2") and three-stage hierarchical ("ID3") testing. 

p.vec vector of overall joint probabilities. The joint probabilities are assumed to be equal for 
all individuals in the algorithm (non-informative testing only). There are four joint 
probabilities to consider: p_00, the probability that an individual tests negative for 
both diseases; p_10, the probability that an individual tests positive only for the first 
disease; p_01, the probability that an individual tests positive only for the second 
disease; and p_11, the probability that an individual tests positive for both diseases. 

The joint probabilities must sum to 1. Only one of p.vec, probabilities, 

or alpha should be specified. 

probabilities matrix of joint probabilities for each individual, where rows correspond to the four joint 
probabilities and columns correspond to each individual in the algorithm. Only one 

of p.vec, probabilities, or alpha should be specified. 



alpha vector containing positive shape parameters of the Dirichlet distribution (for 
informative testing only). The vector will be used to generate a heterogeneous matrix 
of joint probabilities for each individual. The vector must have length 4. Further details 

are given under 'Details'. Only one of p.vec, probabilities, or alpha should be 

specified. 

Se matrix of sensitivity values, where one value is given for each disease (or infection) at 
each stage of testing. The rows of the matrix correspond to each disease k=1,...,K, 
and the columns of the matrix correspond to each stage of testing s=1,...,S. If a 
vector of K values is provided, the sensitivity values associated with disease k are 
assumed to be equal to the kth value in the vector for all stages of testing. Further 
details are given under 'Details'. 

Sp matrix of specificity values, where one value is given for each disease (or infection) at 
each stage of testing. The rows of the matrix correspond to each disease k=1,...,K, 
and the columns of the matrix correspond to each stage of testing s=1,...,S. If a 
vector of K values is provided, the specificity values associated with disease k are 
assumed to be equal to the kth value in the vector for all stages of testing. Further 
details are given under 'Details'. 

ordering matrix detailing the ordering for the binary responses of the diseases. The columns of 
the matrix correspond to each disease and the rows of the matrix correspond to each 
of the 4 sets of binary responses for two diseases. This ordering is used with the joint 
probabilities. The default ordering is (p_00, p_10, p_01, p_11). 

group.sz single group size or range of group sizes for which to calculate operating 
characteristics and/or find the OTC. The details of group size specification are given 
under 'Details'. 

trace a logical value indicating whether the progress of calculations should be printed for 

each initial group size provided by the user. The default is TRUE. 

print.time a logical value indicating whether the length of time for calculations should be printed. 

The default is TRUE. 

... additional arguments to be passed to functions for hierarchical testing with multiplex 
assays for two diseases. 

Details 

This function finds the OTC for standard group testing algorithms with a multiplex assay that tests for two 
diseases and computes the associated operating characteristics. Calculations for hierarchical group 
testing algorithms are performed as described in Bilder et al. (2019) and calculations for array-based 
group testing algorithms are performed as described in Hou et al. (2019). 

Available algorithms include two- and three-stage hierarchical testing and array testing with and without 
master pooling. Both non-informative and informative group testing settings are allowed for hierarchical 
algorithms. Only non-informative group testing settings are allowed for array testing algorithms. Operating 
characteristics calculated are expected number of tests, pooling sensitivity, pooling specificity, pooling 
positive predictive value, and pooling negative predictive value for each individual. 

For informative algorithms where the alpha argument is specified, a heterogeneous matrix of joint 

probabilities for each individual is generated using the Dirichlet distribution. This is done 

using rBeta2009::rdirichlet and requires the user to set a seed to reproduce results. See Bilder et 

al. (2019) for additional details on the use of the Dirichlet distribution for this purpose. 



The sensitivity/specificity values are allowed to vary across stages of testing. For hierarchical testing, a 
different sensitivity/specificity value may be used for each stage of testing. For array testing, a different 
sensitivity/specificity value may be used for master pool testing (if included), row/column testing, and 
individual testing. The values must be specified in the order of the testing performed. For example, values 
are specified as (stage 1, stage 2, stage 3) for three-stage hierarchical testing or (master pool testing, 
row/column testing, individual testing) for array testing with master pooling. A vector 
of K sensitivity/specificity values may be specified, and sensitivity/specificity values for all stages of 
testing are assumed to be equal. The first value in the vector will be used at each stage of testing for the 
first disease, and the second value in the vector will be used at each stage of testing for the second 
disease. 

The value(s) specified by group.sz represent the initial (stage 1) group size for hierarchical testing and 

the row/column size for array testing. If a single value is provided for group.szwith two-stage 

hierarchical or array testing, operating characteristics will be calculated and no optimization will be 

performed. If a single value is provided for group.sz with three-stage hierarchical, the OTC will be found 

over all possible configurations with this initial group size. If a range of group sizes is specified, the OTC 
will be found over all group sizes. 

In addition to the OTC, operating characteristics for some of the other configurations corresponding to 
each initial group size provided by the user are displayed. For algorithms where there is only one 
configuration for each initial group size (non-informative two-stage hierarchical and all array testing 
algorithms), results for each initial group size are provided. For algorithms where there is more than one 
possible configuration for each initial group size (informative two-stage hierarchical and all three-stage 
hierarchical algorithms), two sets of configurations are provided: 1) the best configuration for each initial 
group size, and 2) the top 10 configurations for each initial group size provided by the user. If a single 

value is provided for group.sz with array testing or non-informative two-stage hierarchical testing, 

operating characteristics will not be provided for configurations other than that specified by the user. 
Results are sorted by the value of the objective function per individual, value. 

The displayed overall pooling sensitivity, pooling specificity, pooling positive predictive value, and pooling 
negative predictive value are weighted averages of the corresponding individual accuracy measures for 
all individuals within the initial group (or block) for a hierarchical algorithm, or within the entire array for an 
array-based algorithm. Expressions for these averages are provided in the Supplementary Material for 
Hitt et al. (2019). These expressions are based on accuracy definitions given by Altman and Bland 
(1994a, 1994b). Individual accuracy measures can be calculated using 

the operatingCharacteristics2(opChar2) function. 

Value 

A list containing: 

algorithm the group testing algorithm used for calculations. 

prob.vec the vector of joint probabilities provided by the user, if applicable (for non-informative 
algorithms only). 

joint.p the matrix of joint probabilities for each individual provided by the user, if applicable. 

alpha.vec the alpha vector provided by the user, if applicable (for informative algorithms only). 

Se the matrix of sensitivity values for each disease at each stage of testing. 

Sp the matrix of specificity values for each disease at each stage of testing. 

opt.ET a list containing: 



OTC 
a list specifying elements of the optimal testing configuration, which may include: 

Stage1 
group size for the first stage of hierarchical testing, if applicable. 

Stage2 
group sizes for the second stage of hierarchical testing, if applicable. 

Block.sz 
the block size/initial group size for informative Dorfman testing, which is not 
tested. 

pool.szs 
group sizes for the first stage of testing for informative Dorfman testing. 

Array.dim 
the row/column size for array testing. 

Array.sz 
the overall array size for array testing (the square of the row/column size). 

p.mat 
the matrix of joint probabilities for each individual in the algorithm. Each row 
corresponds to one of the four joint probabilities. Each column corresponds to an 
individual in the testing algorithm. 

ET 
the expected testing expenditure for the OTC. 

value 
the value of the expected number of tests per individual. 

Accuracy 
the matrix of overall accuracy measures for the algorithm. The rows correspond to 
each disease. The columns correspond to the pooling sensitivity, pooling 
specificity, pooling positive predictive value, and pooling negative predictive value 
for the overall algorithm. Further details are given under 'Details'. 

Configs a data frame containing results for the best configuration for each initial group size 
provided by the user. The columns correspond to the initial group size, configuration (if 
applicable), overall array size (if applicable), expected number of tests, value of the 
objective function per individual, and accuracy measures for each disease. Accuracy 
measures include the pooling sensitivity, pooling specificity, pooling positive predictive 
value, and pooling negative predictive value. No results are displayed if a 

single group.sz is provided. Further details are given under 'Details'. 

Top.Configs a data frame containing results for some of the top configurations for each initial group 
size provided by the user. The columns correspond to the initial group size, configuration, 
expected number of tests, value of the objective function per individual, and accuracy 
measures for each disease. Accuracy measures include the pooling sensitivity, pooling 
specificity, pooling positive predictive value, and pooling negative predictive value. No 
results are displayed for non-informative two-stage hierarchical testing or for array testing 
algorithms. Further details are given under 'Details'. 

Note 

This function returns the pooling positive and negative predictive values for all individuals even though 
these measures are diagnostic specific; e.g., the pooling positive predictive value should only be 
considered for those individuals who have tested positive. 



Additionally, only stage dependent sensitivity and specificity values are allowed within the program (no 
group within stage dependent values are allowed). See Bilder et al. (2019) for additional information. 

Author(s) 

This function was written by Brianna D. Hitt. It calls ET.all.stages.new and PSePSpAllStages, 

which were originally written by Christopher Bilder for Bilder et al. (2019), and ARRAY, which was 

originally written by Peijie Hou for Hou et al. (2020). The 

functions ET.all.stages.new, PSePSpAllStages, and ARRAY were obtained 

from http://chrisbilder.com/grouptesting. Minor modifications were made to the functions for inclusion in 
the binGroup2 package. 
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See Also 

Other OTC functions: OTC1() 

Other multiplex testing functions: operatingCharacteristics2() 

Examples 

# Estimated running time for all examples was calculated  

#   using a computer with 16 GB of RAM and one core of  

#   an Intel i7-6500U processor. Please take this into  

#   account when interpreting the run times given. 

 

# Find the OTC for non-informative two-stage  

#   hierarchical (Dorfman) testing 

Se <- matrix(data = c(0.95, 0.95, 0.99, 0.99), nrow = 2, ncol = 2, 

             dimnames = list(Infection = 1:2, Stage = 1:2)) 

Sp <- matrix(data = c(0.96, 0.96, 0.98, 0.98), nrow = 2, ncol = 2, 

             dimnames = list(Infection = 1:2, Stage = 1:2)) 

OTC2(algorithm = "D2", p.vec=c(0.90, 0.04, 0.04, 0.02), 

     Se = Se, Sp = Sp, group.sz = 3:30) 



 

# Find the OTC over all possible testing configurations  

#   for informative two-stage hierarchical (Dorfman)  

#   testing with a specified group size. 

# A matrix of joint probabilities for each individual is  

#   generated using the Dirichlet distribution. 

# This examples takes approximately 25 seconds to run. 

Se <- matrix(data = rep(0.95, 4), nrow = 2, ncol = 2, 

             dimnames = list(Infection = 1:2, Stage = 1:2)) 

Sp <- matrix(data = rep(0.99, 4), nrow = 2, ncol = 2, 

             dimnames = list(Infection = 1:2, Stage = 1:2)) 

 

set.seed(1002) 

OTC2(algorithm = "ID2", alpha=c(18.25, 0.75, 0.75, 0.25), 

     Se = Se, Sp = Sp, group.sz = 10:20) 

      

# Find the OTC for non-informative three-stage  

#   hierarchical testing. 

# This example takes approximately 1 minute to run. 

Se <- matrix(data = rep(0.95, 6), nrow = 2, ncol = 3, 

             dimnames = list(Infection = 1:2, Stage = 1:3)) 

Sp <- matrix(data = rep(0.99, 6), nrow = 2, ncol = 3, 

             dimnames = list(Infection = 1:2, Stage = 1:3)) 

 

OTC2(algorithm = "D3", p.vec=c(0.95, 0.02, 0.02, 0.01), 

     Se = Se, Sp = Sp, group.sz = 3:20) 

      

# Find the OTC over all possible configurations  

#   for informative three-stage hierarchical  

#   testing with a specified group size  

#   and a heterogeneous matrix of joint  

#   probabilities for each individual.  

set.seed(8791) 

Se <- matrix(data = rep(0.95, 6), nrow = 2, ncol = 3, 

             dimnames = list(Infection = 1:2, Stage = 1:3)) 

Sp <- matrix(data = rep(0.99, 6), nrow = 2, ncol = 3, 

             dimnames = list(Infection = 1:2, Stage = 1:3)) 

p.unordered <- t(rBeta2009::rdirichlet(n = 12,  

                            shape = c(18.25, 0.75, 0.75, 0.25))) 

p.ordered <- p.unordered[, order(1 - p.unordered[1,])] 

OTC2(algorithm="ID3", probabilities = p.ordered, 

         Se=Se, Sp=Sp, group.sz = 12,  

         trace=FALSE, print.time=FALSE) 

                             

# Find the OTC for non-informative array testing  

#   without master pooling. 

Se <- matrix(data = rep(0.95, 4), nrow = 2, ncol = 2, 

             dimnames = list(Infection = 1:2, Stage = 1:2)) 

Sp <- matrix(data = rep(0.99, 4), nrow = 2, ncol = 2, 

             dimnames = list(Infection = 1:2, Stage = 1:2)) 

OTC2(algorithm = "A2", p.vec=c(0.90, 0.04, 0.04, 0.02), 

     Se = Se, Sp = Sp, group.sz = 3:12) 

                   

# Find the OTC for non-informative array testing  

#   with master pooling. 

Se <- matrix(data = rep(0.95, 6), nrow = 2, ncol = 3, 

             dimnames = list(Infection = 1:2, Stage = 1:3)) 



Sp <- matrix(data = rep(0.99, 6), nrow = 2, ncol = 3, 

             dimnames = list(Infection = 1:2, Stage = 1:3)) 

OTC2(algorithm = "A2M", p.vec=c(0.90, 0.04, 0.04, 0.02), 

     Se = Se, Sp = Sp, group.sz = 10,  

     trace=FALSE, print.time=FALSE) 
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Appendix D

Operating characteristics for informative two-stage

hierarchical testing

In Appendix B, we presented derivations of operating characteristics for S-

stage hierarchical testing with the exception of informative two-stage hierar-

chical testing. In this section, we provide derivations for the expected number

of tests and accuracy measures for informative two-stage hierarchical testing.

While this dissertation focuses on the implementation of this algorithm via the

pool-speci�c optimal Dorfman (PSOD) method described in McMahan et al.

(2012a), the derivations presented here are easily generalizable to other infor-

mative two-stage hierarchical algorithms presented in McMahan et al. (2012a).

McMahan et al. (2012a) presented derivations of operating characteristics

for informative two-stage hierarchical testing. The authors make the assump-

tion that the sensitivity and speci�city are not dependent on group size and

use the same diagnostic accuracy for both stages of the testing algorithm.

In the derivations presented here, we allow unequal sensitivity and unequal

speci�city values across stages of testing. For consistency in the group testing

literature and associated R functions, we use the same notation and derivation

path as McMahan et al. (2012a) whenever possible.
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D.1. Expected number of tests

Consider an initial block of size N individuals to be tested for a disease. As

in McMahan et al. (2012a), we initially assume that the true probabilities for

each individual are known. The individuals are ordered from lowest to highest

probability of disease and divided into groups of size cj, j = 1, ..., J , so that

group Pj contains the cj lowest risk individuals which remain after constructing

the �rst j − 1 groups. Let Ij(k) denote the kth ordered individual in the jth

group, for j = 1, ..., J and k = 1, ..., cj, with corresponding probabilities pj(k).

Further, let Gj = 1 (0) denote the positive (negative) test result and let

G̃j = 1(0) denote the positive (negative) true status of the jth group. If

Gj = 0, all individuals in the corresponding group are declared negative. If

Gj = 1, individuals in the corresponding group are individually retested in

the second and �nal stage of testing. De�ne Se:1 = P
(
Gj = 1

∣∣∣ G̃j = 1
)
and

Sp:1 = P
(
Gj = 0

∣∣∣ G̃j = 0
)
as the test sensitivity and the test speci�city

corresponding to the group tests performed in the �rst stage of the algorithm.

We still assume that the sensitivity and speci�city are not dependent on cj.

The probability the jth group is truly positive is

P
(
G̃j = 1

)
= 1−

cj∏
k=1

(
1− pj(k)

)
.

Using the Law of Total Probability, McMahan et al. (2012a) expressed the
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probability of the jth group testing positive as

P (Gj = 1) = P
(
Gj = 1

∣∣∣ G̃j = 0
)
P
(
G̃j = 0

)
+

P
(
Gj = 1

∣∣∣ G̃j = 1
)
P
(
G̃j = 1

)
= Se + (1− Se − Sp)

cj∏
k=1

(
1− pj(k)

)
.

Substituting Se:1 (Sp:1) for Se (Sp) in the above expression, we can write

P (Gj = 1) = Se:1 + (1− Se:1 − Sp:1)

cj∏
k=1

(
1− pj(k)

)
. (D.1.1)

Let TPj
denote the number of tests needed to identify all positive individuals

in group Pj. If cj > 1, then P
(
TPj

= 1
)

= P (Gj = 0) and P
(
TPj

= cj + 1
)

=

P (Gj = 1). If cj = 1, then P
(
TPj

= 1
)

= 1. Using these facts, McMahan

et al. (2012a) expressed the expected number of tests for a block of size N as

E (T ) =
J∑

j=1

E
(
TPj

)
= J +

J∑
j=1

cjI (cj > 1)P (Gj = 1) , (D.1.2)

where I (·) represents the indicator function. Substituting equation (D.1.1)

into equation (D.1.2) gives

E (T ) = J +
J∑

j=1

cjI (cj > 1)

{
Se:1 + (1− Se:1 − Sp:1)

cj∏
k=1

(
1− pj(k)

)}
.
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D.2. Accuracy measures

Let Yj(k) denote the second-stage test outcome and Ỹj(k) denote the true

status of individual Ij(k), so that P
(
Ỹj(k) = 1

)
= pj(k). As in McMahan

et al. (2012a), we adopt the assumption that true individual statuses are

independent random variables. De�ne Se:2 = P
(
Yj(k) = 1

∣∣∣ Ỹj(k) = 1
)
and

Sp:2 = P
(
Yj(k) = 0

∣∣∣ Ỹj(k) = 0
)

as the test sensitivity and the test speci-

�city corresponding to the individual testing conducted in the second stage

of the algorithm. Let I+
j(k)

(
I−j(k)

)
denote the event that individual Ij(k) is

classi�ed as positive (negative) by the PSOD algorithm. The pooling sen-

sitivity for individual Ij(k) is the probability of a correct positive diagnosis,

PS
Ij(k)
e = P

(
I+
j(k)

∣∣∣ Ỹj(k) = 1
)
. The pooling speci�city for individual Ij(k) is

the probability of a correct negative diagnosis, PS
Ij(k)
p = P

(
I−j(k)

∣∣∣ Ỹj(k) = 0
)
.

We derive expressions for PS
Ij(k)
e and PS

Ij(k)
p when cj > 1, and we assume that

the diagnostic test results are independent, conditional on the true status of

the group (or individual) being tested (McMahan et al., 2012a). Additional

discussion of the conditional independence assumption is available in Litvak

et al. (1994).

D.2.1. Pooling sensitivity

For informative Dorfman testing, individual Ij(k) is categorized as positive

when both its group test and individual test are positive. McMahan et al.

(2012a) showed that an individual's pooling sensitivity can be rewritten as

PS
Ij(k)
e = P

(
Gj = 1

∣∣∣ Ỹj(k) = 1
)
P
(
Yj(k) = 1

∣∣∣ Gj = 1, Ỹj(k) = 1
)

= S2
e .
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This derivation uses the conditional independence assumption previously men-

tioned in Section D.1 to result in the product of the sensitivities at each stage

of the algorithm. Allowing for Se to di�er across the stages of the algorithm,

the pooling sensitivity simply becomes

PS
Ij(k)
e = Se:1Se:2.

D.2.2. Pooling speci�city

We now consider the pooling speci�city. Individual Ij(k) can be categorized as

negative in two situations: 1) its group test is negative, or 2) its group test is

positive but its individual test is negative. McMahan et al. (2012a) expressed

the pooling speci�city for an individual as

PS
Ij(k)
p = P

(
Gj = 0

∣∣∣ Ỹj(k) = 0
)

+

P
(
Gj = 1, Yj(k) = 0

∣∣∣ Ỹj(k) = 0
)
. (D.2.1)

Using the Law of Total Probability, McMahan et al. (2012a) wrote the �rst

term in equation (D.2.1) as

P
(
Gj = 0

∣∣∣ Ỹj(k) = 0
)

= P
(
Gj = 0

∣∣∣ G̃j = 0
)
P
(
G̃j = 0

∣∣∣ Ỹj(k) = 0
)

+

P
(
Gj = 0

∣∣∣ G̃j = 1
)
P
(
G̃j = 1

∣∣∣ Ỹj(k) = 0
)
.

Using the de�nitions for Se:1 and Sp:1, we can write

P
(
Gj = 0

∣∣∣ Ỹj(k) = 0
)
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= Sp:1

{
1− P

(
G̃j = 1

∣∣∣ Ỹj(k) = 0
)}

+

(1− Se:1)P
(
G̃j = 1

∣∣∣ Ỹj(k) = 0
)

Sp:1 + (1− Se:1 − Sp:1)P
(
G̃j = 1

∣∣∣ Ỹj(k) = 0
)
. (D.2.2)

Note that P
(
G̃j = 1

∣∣∣ Ỹj(k) = 0
)
represents the probability that at least one

individual in the jth group, other than the kth ordered individual, is truly

positive. This can be written as

P
(
G̃j = 1

∣∣∣ Ỹj(k) = 0
)

= 1−
∏

k′∈A(k)
j

(
1− pj(k′)

)
, (D.2.3)

where A
(k)
j = {1, ..., k − 1, k + 1, ..., cj}. Substituting equation (D.2.3) into

equation (D.2.2) gives

P
(
Gj = 0

∣∣∣ Ỹj(k) = 0
)

= Sp:1 + (1− Se:1 − Sp:1)

1−
∏

k′∈A(k)
j

(
1− pj(k′)

)
= (1− Se:1)− (1− Se:1 − Sp:1)

∏
k′∈A(k)

j

(
1− pj(k′)

)
. (D.2.4)

McMahan et al. (2012a) expressed the second term in equation (D.2.1) as

P
(
Gj = 1, Yj(k) = 0

∣∣∣ Ỹj(k) = 0
)

= P
(
Gj = 1

∣∣∣ Ỹj(k) = 0
)
P
(
Yj(k) = 0

∣∣∣ Gj = 1, Ỹj(k) = 0
)
.
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Allowing for unequal sensitivity and unequal speci�city values across stages of

testing, we can write

P
(
Gj = 1, Yj(k) = 0

∣∣∣ Ỹj(k) = 0
)

= P
(
Gj = 1

∣∣∣ Ỹj(k) = 0
)
Sp:2

= Sp:2

{
P
(
Gj = 1

∣∣∣ G̃j = 0
)
P
(
G̃j = 0

∣∣∣ Ỹj(k) = 0
)

+

P
(
Gj = 1

∣∣∣ G̃j = 1
)
P
(
G̃j = 1

∣∣∣ Ỹj(k) = 0
)}

= Sp:2

[
(1− Sp:1)

{
1− P

(
G̃j = 1

∣∣∣ Ỹj(k) = 0
)}

+

Se:1P
(
G̃j = 1

∣∣∣ Ỹj(k) = 0
)]

= Sp:2

[
(1− Sp:1)− (1− Se:1 − Sp:1)P

(
G̃j = 1

∣∣∣ Ỹj(k) = 0
)]
.

Substituting equation (D.2.3) into the above equation gives

P
(
Gj = 1, Yj(k) = 0

∣∣∣ Ỹj(k) = 0
)

= Sp:2

(1− Sp:1)− (1− Se:1 − Sp:1)×

1−
∏

k′∈A(k)
j

(
1− pj(k′)

)


= Se:1Sp:2 + (1− Se:1 − Sp:1)Sp:2

∏
k′∈A(k)

j

(
1− pj(k′)

)
. (D.2.5)
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Substituting equations (D.2.4) and (D.2.5) into equation (D.2.1), we get

PS
Ij(k)
p = (1− Se:1)− (1− Se:1 − Sp:1)

∏
k′∈A(k)

j

(
1− pj(k′)

)
+

Se:1Sp:2 + (1− Se:1 − Sp:1)Sp:2

∏
k′∈A(k)

j

(
1− pj(k′)

)

= 1− (1− Sp:2)

Se:1 +

(1− Se:1 − Sp:1)
∏

k′∈A(k)
j

(
1− pj(k′)

) .

The pooling positive predictive value is de�ned as PPPV Ij(k) =

P
(
Ỹj(k) = 1

∣∣∣ I+
j(k)

)
and the pooling negative predictive value is de�ned as

PNPV Ij(k) = P
(
Ỹj(k) = 0

∣∣∣ I−j(k)

)
. Expressions for these values follow from

those given in McMahan et al. (2012a).
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