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THE ROLE OF RECOGNITION 
IN PLANT DISEASEl 

J. M. Daly 

Department of Agricultural Biochemistry, University of Nebraska, Lincoln, Nebraska 
68583-0718 

INTRODUCTION 

As noted by Sequeira (110,111), the term recognition has become very popular 
in the literature of host-pathogen interactions over the last ten years. Despite 
recent facile usage, its meaning is not always clear to me. Recognition is 
defined by Clarke & Knox (16) as the "initial event in cell-cell communication 
that elicits a defined biochemical, physiological, or morphological response. " 
This requires the not-so-easy task of defining "initial event" and "communica
tion" with precise chemical or physical mechanisms. For pathologists, Se
queira (110) has provided a more restricted meaning: "An early specific event 
that triggers a rapid, overt response by the host, either facilitating or impeding 
further growth of the pathogen." 

The word specific in this definition is the key to both the current popularity of 
the term and the recent appearance of models of host-pathogen interactions 
predicated on recognition phenomena. It is trite to repeat, but any chemical or 
physical theory of disease reaction (resistance or susceptibility) must account 
for the specificity of that reaction (19). In molecular terms, it also should be 
consistent with the mode of inheritance of the reaction (18). In recent years, the 
latter requirement has entailed, for many workers, allegiance with Flor's 
gene-for-gene concept (43), as further amplified by the considerations of 
Person (102), Day (27), Ellingboe (40, 41), and Sidhu (114) . The genetic data, 
although complete for only a relative small number of plant diseases (19), is 
generally interpreted to mean that the product of a host resistance gene interacts 
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biochemically with the product of an avirulence gene of the pathogen. The lack 
of either product, or both, results in susceptibility. In this view, the unique 
biochemical determinants of disease reaction are for resistance (incompatibil
ity) (13, 38, 40, 41). 

Unfortunately, none of the current biochemical or physiological explana
tions of disease resistance accounts satisfactorily for specificity. For example, 
accumulation of phytoalexins can be induced by a wide range of biotic and 
abiotic factors in a single host. Further, phytoalexins do not show the requisite 
specific toxicity toward pathogens. Possible exceptions to this may be found in 
instances where specificity lies at the host genus or family level and pathogens 
are tolerant in vitro (125), at least, to phytoalexins of the host. Finally, it seems 
clear that phytoalexin biosynthesis, as with other secondary metabolites, is 
under multigenic control. Thus, there is a need to search for an initial event 
(recognition) in pathogenesis, involving unique molecular species, that fur
nishes a signal (communication) for a biochemical response that in itself may 
be quite general. 

CURRENT MODELS 

Current discussions of recognition adhere to the above interpretation of the 
molecular genetics of resistance . In a simple model suggested by Ellingboe 
(40, 41), a specific host polypeptide interacts with one from an avirulent 
pathogen to form a dimer that then causes an incompatible response. This has 
the virtue of invoking direct products of genes in the complementary gene-for
gene system required by Flor's hypothesis, but leaves the task of detecting the 
dimer and understanding the chemical basis of its action: for example, in 
causing the hypersensitive response associated with-but not necessarily 
causally related to (19, 95)-resistance in many diseases. 

Models suggested in the literature (1, 14, 68) provide additional, often 
elaborate (14), details. These theoretical models are derived largely from 
studies of animal systems and the details vary somewhat depending on the plant 
disease under consideration and the particular expertise of the investigator. The 
following elements appear common to them. 

1. The sensing organelles are excitable membranes, particularly the plasma 
membrane because it is a likely point of primary physical contact of host and 
pathogen or of pathogen-produced metabolites. For bacterial diseases, the 
sensing system may be the cell wall itself. 

2. The chemical sensing devices are surface carbohydrates and/or integral 
membrane proteins or glycoproteins. Glycoproteins are especially appeal
ing in this connection because of their role in animal cell recognition and the 
fact that carbohydrate residues may encode for different types of biological 
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information than do amino acid residues. In recent years, plant lectins have 

been studied with increasing, and perhaps uncritical, frequency. Lectins 

discriminate among sugar haptens and "recognize" blood group antigens, 

but this probably is incidental to their function, if any, in plants. 

3. A complementary (in a stereochemical or lock-and-key sense) pathogen 

molecule binds to the sensor transmitting a signal to the cytoplasm. Prefer

ably, the pathogen molecule is a primary gene product, in strict adherence to 
Flor's gene-for-gene hypothesis. 

4. The signal initiates metabolic responses leading to restriction of the 
pathogen. 

Sequeira's use of the term recognition (110) allows for the possibility that the 

event triggered by initial recognition facilitates development of the pathogen 

rather than restriction or death of the pathogen. This might be considered an 
extension of the concept of self-recognition (11, 12), as opposed to the idea of 

recognition of non-self that is implicit in the immune response of higher 

animals and in the model given above for plant disease resistance. As discussed 
elsewhere (21), a priori choice between recognition of non-self and self for a 

particular disease should be avoided because such a decision may limit ex

perimental protocols. A primary purpose here will be to examine both possibili

ties. 
The concepts of recognition discussed above are variants or extensions of 

common chemical principles of cellular biology that are ingrained in our 
thinking. All cellular activity requires complementary chemical recognition at 

the metabolic level. Enzyme-substrate specificity, enzyme regulation by low 

molecular weight effectors, hormones, and secondary messengers are common 
examples where specific functional groups or stereochemistry dictates the 

direction and extent of cellular response to internal and external stimuli. There 

is no mystery about the fundamental principles that underlie recognition, 

although there may be in its application to cell-to-cell communication. 
This review has three purposes: to examine selected biological phenomena 

outside the usual realm of plant pathology for precedents; to summarize recent 

data on plant diseases that suggest cell curface recognition; and to discuss other 
potential recognition devices for disease reaction. 

BIOLOGICAL PRECEDENTS " 

Many of the examples of recognition are, described for animal systems, involv
ing behavioral details with which I am not familiar. Therefore, the following 

comments are restricted first to phenomena, particularly pathologic processes, 
that bear on the biochemical validity of models for recognition in plant disease. 
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Second, two important plant systems that can be related to disease resistance 
will be discussed. 

Biochemical Evidence 

The most direct documentation of surface chemistry that may be involved with 
recognition, particularly the role of carbohydrates, is with animal cells (45). 
This is at least partially owing to the fact that the structure of the plasma 
membrane of animal cells is well understood and its properties are consistent 
with a role in recognition. It exhibits functional asymmetry in that carbohydrate 
moieties of component gangliosides are located on the external face. In addi
tion, glycoproteins are integral membrane constituents. Structural details have 
been provided in a recent book (116). 

Enzymes capable of transducing external signals also appear to be compo
nents of this membrane. Adenylate cyclase, responsible for the synthesis of the 
"second messenger," cyclic adenosine monophosphate (AMP), is one example 
(108). In the presence of guanosine triphosphate (GTP), several glycoprotein 
hormones activate membrane-bound adenylate cyclase, but not through direct 
binding to the catalytic protein itself. Rather, cyclase activation results from 
hormone binding to an additional regulatory membrane protein that then binds 

GTP, causing stimulation of cyclase activity. Hydrolysis of GTP turns off the 
cyclase. It is not yet established whether carbohydrate moieties are involved in 
the binding of the hormones. 

A clearer instance of the importance of surface carbohydrates in triggering 
pathological cellular response is the binding of cholera toxin by the external 
monosialoganglioside , GMI (98). Binding of toxin leads, as with the glycopro
tein hormones, to stimulation of adenyl ate cyclase and an increase in cellular 
levels of cyclic AMP, which in tum results in accelerated leakage of ions, 
particularly chloride, accompanied by water flux. 

Cholera toxin consists of two proteins associated by noncovalent bonding (A 
= 28,000 daltons; B = 56,000 daltons) (98, 116). Protein B is involved only 
with binding to GMI on the cell surface; it does not itself cause biochemical 
damage in target cells. Protein A is an enzyme capable of stimulating adenyl ate 
cyclase in the presence of nicotinamide adenine dinucleotide (NAD), cleaving 
the latter and transferring the adenosine diphosphate (ADP)-ribose product to 
the GTP-binding regulatory subunit of the cyclase. ADP-ribosylation modifies 
the regulatory subunit so that activating GTP is not hydrolyzed, leaving the 
cyclase in a persistently "turned-on" or unregulated state. The B protein 
appears only to facilitate the entry of the toxic A protein into the membrane (98, 
116). 

Several other bacterial toxins have functionally equivalent A and B subunit 
organization. In the case of diptheria toxin, the A protein also catalyzes NAD 
cleavage, but this results in inhibition of cellular protein synthesis by ADP-
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ribosylation of the elongation factor protein (EF2) of ribosomes (116). Interes
tingly, the highly toxic plant lectins, abrin and ricin, appear to act in a very 
similar fashion, including functional separation in these proteins of a binding 
domain and an enzymatic domain. In these cases, binding facilitates membrane 
transport rather than acting as a transducer of an external signal, as can be 
argued for adenylate cyclase activation by hormones. In either event, it is 
obvious that surface biochemistry is crucial for the toxic cellular response. 

Analogies from Plant Systems 

A major stimulus for much of the current interest in recognition and plant 
disease was the observation by Bohlool & Schmidt (7) that soybean seed lectin 
agglutinated 22 out of 25 nodulating strains of Rhizobium japonicum. Certain
ly, their research drew attention to possible functions of lectins that until then 
had been curiosities, although diagnostically useful, in animal systems. Results 
subsequently obtained by Dazzo, Brill, and associates witl1 R. trifoli on clover 
(28, 29) have been consistent with the notion that surface root lectins bind 
bacteria by complementary surface molecules as an essential and specific first 
step during infection in this symbiotic association. Despite (or perhaps because 
of) the extensive research on the topic, a number of current problems recently 
reviewed by Bauer (5, 6) and Vance (124) must be considered. The most 
prominent are: 

1. The correlations between binding to host lectin and nodulation usually are 
not perfect. It is possible that failure to get complete correlations is a result 
of the lack of formation of complementary binding molecules by certain 
strains under standard cultural conditions (l09). 

2. Most of the early studies employed seed lectin, but it has been difficult to 
establish the presence of lectin in roots, although such evidence is available 
for some clover (29) and soybean (47) cultivars. In contrast, a number of 
soybean varieties lacked lectin, but still nodulated effectively (105). 

3. Binding of heterologous Rhizobia to roots is not an infrequent occurrence 
(5). 

These uncertainties need to be resolved unambiguously, and they may have 
technical requirements, such as improvements in the isolation and detection of 
lectins. They illustrate, however, a major problem with correlative evidence 
(18). The single exception is a glaring one. Bauer (6) has suggested that binding 
per se does not impart specificity, as suggested by Dazzo (28), but may reside 
in one of several "signal-response" steps (perhaps involving lectins) during the 
progress of infection. 

Development of the structurally and biochemically complex nodule requires 
coordinated interplay between host and symbiont, regulated by signals between 
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them. Failure to send a signal or to respond by either host or symbiont could 
abort nodulation. This type of regulation has been suggested for obligate 
parasitism (18, 20). As noted elsewhere (21), it is interesting that the primary 
thrust of biochemical investigations of symbiotic systems has been a search for 
factors promoting compatibility rather than incompatibility. Yet, as Vance has 
reemphasized (124), on the surface the processes of nodulation and disease 
share common principles. 

A second plant system providing some precedent for recognition models in 
plant diseases is pollen-style interaction. The subject has been reviewed (16, 
99), including an excellent comparison by Bushnell (13) of the genetics and 
physiology of disease and of self-sterility. Unlike the situation in legume
Rhizobia interaction, there is a wealth of genetic information on pollen-style 
interaction; and Bushnell concludes that there is sufficient analogy to merit 
consideration of the principles involved (13). As with Flor's concept for host 
resistance, pollen-style incompatibility is governed by a dominant locus with 
several alleles. Unlike Flor's results, which indicated distinct but com
plementary nonallelic loci in the pathogen, incompatibility appears to occur 
when style and pollen share the same dominant allele. It has been generally 
assumed that an inhibitory or "oppositional" (99) event prevents fertilization. 
As early as 1929, East proposed (39) an "antibody-antigen" interaction that 
initiated the oppositional effect, and in the mid-1960s Lewis suggested (81), as 
for host-parasite interactions (40), that a polypeptide produced by both style 
and pollen forms a dimer that initiates incompatibility. Biochemically, howev
er, such a model presents problems because, unlike the situation in disease, 
identical alleles in pollen and style should produce identical polypeptides, and 
the formation of a dimer should not require interaction between two cells once 
the gene is expressed. f!owever, there is an abundance of surface molecules 
that might serve in recognition (16). 

One form of self-sterility, gametophytic incompatibility, is expressed by the 
failure of the pollen tube to grow completely down the style, but the chemical 
determinants for failure are not clear. The extent of tube growth represents a 
continuum of development. Presumably influenced by the genetic data, the 
great majority of scientists assume an oppositional effect rather than a com
plementary one in which growth of the tube is dependent on the active support 
of stylar tissues . 

Mulcahy & Mulcahy recently have proposed a somewhat different com
plementary system, termed the heterosis model (99), based on a significant 
departure in the interpretation of genetic control of the phenomenon. Rather 
than a single dominant gene, they postulate a "supergene" consisting of several 
loci acting in concert. The loci may or may not be closely linked. It is further 
assumed that the loci of the supergene, which can be of any number (four are 
used in the simplest example), consist of at least one dominant and several 
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deleterious recessive alleles. When pollen and style genotypes are paired, 
complementary recessive alleles are postulated to cause inhibition of tube 

growth, while complementary dominant alleles are neutral for growth. Howev
er, the combination of a dominant and a recessive locus would promote growth 
(heterosis). The sum of negative and positive (heterotic) combinations estab
lishes the extent of pollen tube development. To greatly simplify their detailed 
arguments, a pollen genome of Abcd and a stylar genome of aaBBccdd would 
permit tube growth but Abcd and AAbbccdd would not. That is, the first case 

has heterozygous growth-promoting genetic elements (Aa, Bb), the second has 

none. 
The underlying biochemical events can be thought of as being similar to 

those involved in the development of any normal tissue, but cell surface 
recognition need not be invoked as the major determinant for incompatibility. 
This particular hypothesis has been detailed in order to illustrate that the same 
set of genetic data can yield several sorts of genetic interpretations, and with 
quite different biochemical mechanisms. Such a model might have bearing on 
host-parasite interactions because, like self-sterility, resistance and susceptibil
ity in certain diseases, such as rusts, are exhibited as a continuum of host
pathogen reactions (18). 

WALL AND CELL SURFACE COMPONENTS IN 
HOST -PATHOGEN INTERACTIONS 

The discussion that follows is limited primarily to research on host-pathogen 
systems on which there has been some sustained research effort and thus where 
there is additional information on various aspects (cytology, physiology, genet

ics) of pathogenesis. Isolated reports bearing on recognition, or those involving 
fungi or bacteria that are not pathogens, are abundant; but it is often difficult to 
place them in suitable context. 

Adherence of Bacteria to Hosts 

Attachment of Agrobacterium tumefaciens to a specific wound site has been 
suggested as an essential prerequisite for tumor formation induced in the host 
by passage of the Ti plasmid into cells. The evidence is based largely on the 
inhibition of tumor formation by cell walls and cell wall fractions (83). Virulent 
bacteria have been observed (91, 92) to attach more readily than avirulent 
strains and are subsequently enveloped by fibrils of their own elaboration that 
entrap additional bacteria. This suggests that only virulent bacteria may pro
duce a specific factor involved with attachment, but the chemical nature of the 
factor is as yet unknown. 

Rao et al (107) have reported that pectins from various sources, as well as 
polygalacturonic acid (PGA) polymers, are inhibitors of tumorogenesis in 
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Pinto bean leaves, with PGA the most effective. Methylation of PGA appears 
to reduce its inhibitory action, providing potential explanations for the lack of 
tumorogenesis in transformed cells and embryonic tissues of host plants (84). 
Pueppke & Benny (104) have been able to confirm the inhibitory effects of 
pectins and PGA with a potato tuber assay but observed no significant differ
ences caused by the extent of methylation, even though the same bacterial 
strain was used in both laboratories. In addition, they have been unable to show 
an inhibitory effect on tumorogenesis by bacterial lipopolysaccharide (LPS) as 
reported earlier with the Pinto bean assay (107, 134), even when LPS was 
supplied (104) in great excess relative to the amount of LPS in the bacterial 
inoculum. Unless resolved, the differences in behavior in the two assay 
systems suggest the absence of a common type of attachment. This is surprising 
given the ubiquitous pathogenicity of Agrobacterium on dicot hosts. Further, 
Matthysse et al (93), using a filtration assay to estimate unattached bacteria 
(91), found that attachment, followed by fibril formation, occurred with 
isolated carrot cell protoplasts treated to prevent cell wall regrowth. Kinetical
ly, the binding was indistinguishable from that to intact carrot cells, but 
whether nascent polysaccharide chains were present on the membranes was not 
determined. Arivulent bacteria did not attach to protoplasts and PGA did not 
cause inhibition of binding by virulent bacteria. 

Thus, the mechanism of attachment is at present uncertain. Pueppke et al 
(105) found that 22 strains of A. tumefaciens did not bind flourescein labeled 
lectin. However, labelled concanavalin A bound to 2 oncogenic and I non
oncogenic strains of the 22 tested (106). 

The binding of bacteria to the walls of resistant plants has been a controver
sial subject. Goodman et al (54) described a sequence of events, including fibril 
formation, that is similar to that for A. tumefaciens but with a non-pathogen, 
Pseudomonas pisi, inoculated into leaves of tobacco. Sequeira et al (112) 
reported that avirulent or incompatible P. solanacearum strains had a similar 
sequence in the same host species but virulent bacteria were not observed to 
attach. Hildebrand et al (63) have argued that these results may arise as an 
artefact of preparation for electron microscopy. Compatible infections usually 
lead to water soaking of tissues, and it was suggested that incompatible bacteria 
could be entrapped at air-water interfaces created in resistant tissues with less 
intercellular fluid. 

To provide more direct evidence for binding, Sequeira & Graham (113) 
investigated agglutination of virulent and avirulent Pseudomonas sola
nacearum strains by lectin from host potato. The correlations were excellent: 
34 avirulent strains were agglutinated and 55 virulent strains only weakly or not 
at all. Further, the lack of agglutination of virulent bacteria was correlated with 
the presence of extracellular polysaccharide (EPS) that, when removed by 
washing, resulted in agglutination . Direct binding of flourescein- Iabelled lectin 
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to virulent cells was established and was prevented by chitin oligomers, in 
keeping with the hapten specificity of potato lectin. In addition, immuno
flourescent staining revealed lectin in the mesophyll cell walls in potato and 
tobacco (77). The overall results strongly suggest a glycoprotein-carbohydrate 
recognition process in this disease. 

Surprisingly, further purification of potato lectin (78) resulted in successive 
loss of agglutinating activity and led to the discovery of a distinct hydroxypro
line-rich glycoprotein (HRGP) bacterial agglutinin in the lectin preparation. 
HRGP does not have hemagglutin activity characteristic of lectins, suggesting 
that binding is not hapten mediated. Mellon & Helgeson (96) have extracted a 
similar HRGP from tobacco suspension cells that also binds to the avirulent 
strain B-1 of Pseudomonas solanacearum, but not to the virulent strain K-60. 
Tobacco HRGP agglutinated both virulent and avirulent strains of Phyto
phthora parasitica. Although 34 potential haptens were tested, no soluble 
carbohydrates prevented agglutination, but high ionic strength media did. 
These results imply a charge-dependent surface binding. If the results can be 
extended to the HRPG isolated from potato, which is very basic (78), the 
pathological significance of binding may have to be reexamined. HRGP are 
present widely, if not universally, in higher plants and would not be expected to 
play a significant role in host specificity. However, bacterial lipopolysacchar
ide may be an important component of host-pathogen interactions (55), since 
by itself it appears to induce a resistance response. 

Spore Agglutination Factors 

Kojima & Uritani (72, 128) reported the ability of plant extracts to preferential
ly agglutinate spores of non-pathogenic strains of Ceratocystis Jimbriata. 
Sweet potato tuber extracts agglutinated spores of C. Jimbriata strains attacking 
coffee, prune, cacao, oak, taro, and almond, but not the compatible sweet 
potato stain. Extracts from taro and cucumber showed similar, but not perfect, 
correlations of agglutination and incompatibility. Extracts from kidney bean 
exhibited strong correlations with disease reaction; spores of three non
pathogenic strains were agglutinated, but not those of four compatible ones 
(72). Unfortunately, these most interesting combinations apparently have not 
been studied further. Rather, attention has focused on factors in sweet potato 
and to some extent taro root (66). 

A glycoprotein-like factor was isolated from sweet potato (73, 74) that 
required Ca, Mn, Ni, and Mg for agglutinating activity, but the activity was not 
specific. Spores of all strains, including sweet potato, were equally affected. 
The factor also agglutinated rabbit erythrocytes. However, unidentified com
pounds of low molecular weight partially restored the differential effect pre
viously described (73). An apparently different spore agglutinin was described 
more recently (71). It is composed mainly of galacturonic acid (50%) along 
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with other minor sugars, contains less than 1% N, and agglutinated all blood 
group types of human erythrocytes, suggesting that sugar hapten recognition is 
not involved. Ca ions were required for all agglutinating activities. Unlike 
previous observations (73, 74), there were no differential effects with unger
minated spores of C. Jimbriata pathogenic strains. At pH 6.5, germinated 
spores of the sweet potato and almond strains were not agglutinated; the others 
were and to somewhat different degrees. At 5. 5 and 7. 5 pH even the germi
nated spores of the sweet potato strains were agglutinated (71). Demonstration 
of selective agglutination thus requires rather specific conditions (pH and Ca) 
that were not observed earlier. Whether these conditions occur during infection 
is not known. A similar factor for germinated spores has been isolated from taro 
tuber (66) and is pH- , but apparently not Ca- , dependent. Treatment of 
germinated spores with pronase, phospholipase D, and macerozyme reduced 
differential activity, suggesting an action on cell surfaces. At present, it is 
difficult to sort out the important factors in this phenomenon. 

Induction of Phytoalexins 

On the assumption that phytoalexin accumulation is a valid index of resistance, 
a number of studies relating to recognition have been described from several 
laboratories. Research in the laboratory of Peter Albersheim (2--4) has resulted 
in the demonstration of glyceollin accumulation in soybean cotyledons treated 
with polysaccharide fractions isolated from culture filtrates or extracted from 
cell walls of Phytophthora megasperma var. glycinea (Pmg) (in the older 
literature var. sojae). The fractions were effective over a similar range of 
concentrations of applied carbohydrate, presumably because they share a 
common component, most likely the glucan moeity subsequently purified. An 
interesting observation (3), as yet unamplified, was that a-methyl-D-manno
pyranoside at a ratio of 20: 1 by weight inhibited phytoalexin accumulation by 
90%, but the corresponding glycosides of galactose or glucose had little or no 
effect. However, a-methyl-D-glucopyranoside prevented the inhibitory effect 
of a-methyl-D-mannose (3). 

These studies are a good example of the potential for the induction of cellular 
responses by cell surface interactions mediated by carbohydrates. Unfortunate
ly, in this instance there was little specificity associated with either the host 
response or the cell wall composition of the fungus. Races 1, 2, and 3 of Pmg 
yielded nearly identical polysaccharide fractions with quantitatively indistin
guishable biological responses (3). Fraction I from race I significantly in
creased the phenylalamine lyase (PAL) activity in suspension cell cultures of 
the cultivars Harosoy and Harosoy 63, which are incompatible and compatible 
to race 1, respectively. In addition, fraction I stimulated PAL in parsley and 
sycamore cell cultures (3). The finding that phytoalexin accumulation was 
identical with fraction I alone or in the presence of a compatible or incompatible 
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race, but had no effect on disease reaction, is unexpected but has a profound, 
although generally unacknowledged, bearing on the role of phytoalexins in 
resistance responses. 

More recently, Wade & Albersheim (128) described the isolation of gly
coproteins (approximately 80% protein and 20% carbohydrate) from culture 
filtrates that appeared to exhibit race specificity in the Pmg-soybean system. 
Preparations from incompatible races protected susceptible plants from infec
tion by compatible races when applied prior to inoculation at dosages of 10-100 
j.1g/ml. Carbohydrate analysis indicated apparently significant differences in 
the proportions of mannose, glucose, and galactosamine of glycoproteins from 
races I, 2 and 3 (128), implying that the specificity of the response may lie at 
least partially in the carbohydrate components. Although the relative percen
tages of component carbohydrates generally were similiar to those in some 
earlier fractions causing phytoalexin accumulation, accumulation did not occur 
with these glycoproteins. However, a later report by Desjardins et al (30) found 
a lack of protection with the same glycoproteins. The reason for the negative 
findings is obscure, but it was suggested to result from variation in seed lots or 
from unknown microclimatic factors during assay (30). Further research on the 
system clearly is important. A related observation arises from the work of 
Ziegler & Pontzen (142), who reported that purified extracellular invertase of 
Pmg race I suppresses glyceollin accumulation in compatible, but not in 
incompatible, cultivars . Invertase from race 3, compatible with the three 
cultivars tested, inhibited glyceollin accumulation in all three cultivars. In all 
instances, glyceollin accumulation was non-specifically induced by a glucan 
isolated with methods very similar to those of Keen & Legrand (69) discussed 
below. The unusual choice of invertase in these experiments stems from the 
earlier work of Zeigler & Albersheim (141), which describes differences in the 
carbohydrate composition of invertases isolated from culture fluids from races 
I, 2, and 3 of Pmg. The protocol as described (141) does not permit a 
distinction between differences resulting from true genomic differences or from 
differences arising from culture variability. The ratios of mannose to glucosa
mine are quite different in the preparations of Zeigler & Pontzen (race 1, 18: 1; 
race 3, 21: I) than in invertases prepared by Zeigler & Albersheim (Race I, 
7.6: 1; race 3, 3.1: I). Such large differences in supposedly identical molecules 
raise questions about the importance of carbohydrate composition in these 
phenomena. 

In contrast to the reports of non-specific induction of phytoalexin accumula
tion in soybean, there are several reports of specific accumulation. Low 
molecular weight fractions were prepared from Pmg by Keen in 1975 (67), but 
the observations have not been amplified and were not discussed in a recent 
review (68). Bruegger & Keen (10) subsequently extracted the cellular en
velopes of Pseudomonas glycinea from several races using sodium dodecyl 



284 DALY 

sulfate and obtained glycoprotein-containing fractions that caused apparently 
specific accumulation in incompatible hosts. The number of critical compari
sons was limited and the correlations were not perfect. For example, solubil
ized envelope preparation from race 1 induced 19 j-lM glyceollin on Harosoy 
(incompatible) and 7.3 j-lM on compatible Acme. Preparations from race 6 
induced 14. 6  j-lM on incompatible Harosoy, but only 3.6 j-lM on Acme, which 
also is incompatible to race 6. Acme haq appreciably lower response to 
envelope preparations from races 2 and 4 than did Harosoy, but both cultivars 
are compatible with these races. Thus, it is unwise to generalize in this instance 
until more data, amenable to statistical analysis, are available. The use of 
concentration units (j-lM) stems from tj:le procedure of measuring only the 
glyceollin apparently diffusing onto the tissue surface, a departure from usual 
procedures. Presumably this estimates only the activity induced in cells in 
contact with macromolecules. Nonetheless, knowledge of the tissue concentra
tions is of great interest and would be instructive in relation to other studies. 

Keen & Legrand (69) extracted Pmg cell walls with methods (42) chosen to 
preserve glycosyl-protein bonds. Indirect evidence was presented to show that 
the preparations were cell-surface glycoprotein and the importance of the sugar 
residues was emphasized by the loss of activity ip inducing glyceollin accu
mulation after periodate oxidations. Unlike the glycan elicitor reported by 
Albersheim and colleagues, amounts in the rapg� of 1-5 mg/ml, rather than 
fJ-g/ml, were required for activity. Although the appropriate comparison was 
shown with replicated trials for a single preparation on paired compatible and 
incompatible cultivars (e.g. race 1 fractions on Harosoy and Harosoy 63), the 
variation is high. On the average, compatible lines produced lower amounts of 
glyceollin than did treated incompatible hosts. As noted by the authors, 
considerable variation could be expected to arise from several factors, but 
increased replication obviously is desirable. One puzzling aspect of the speci
ficity claimed in these studies is that Zeigler & Pontzen (142) used nearly 
identical procedures with Pmg walls, but tpey resulted in a preparation from 
race 1 that was used routinely by them to induce glyceollin production in both 
compatible and incompatible cultivars. Zeigler & Pontzen extracted Pmg walls 
with 0.2 M NaOH, as originally recommended by Falcone & Nickerson (42), 
plus 5 mM dithiothreitol, rather than only 0.1 NaOH used by Keen & Legrand 
(69). Certainly the difference in extractants might account for the differences in 
a very important biological property, but it does point out the need for care in 
describing protocols in order to reduce some of the existing controversy over 
results on this host-parasite system. Finally, Gibson et al (51) have reported 
higher amounts of soybean agglutinin in a resistant cultivar, but a total of only 
two cultivars was examined. 

Hadwiger & Loschke (60) have reviewed experiments purporting to show 
that the common fungal polysaccharide chitosan is an important component in 
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the response of pea to Fusarium solani f. sp. phaseoli, a non-pathogen, when 
contrasted with the pathogen F. solani f. sp. pisi (58). Chitosan is a non
specific inducer of the phytoalexin pisatin in pea pods (57, 100). It is also an 
effective inhibitor of the development of infection propagules of F. solani, 
since 62 j.Lg/ml is completely inhibitory for 24 hours and 125 j.Lg/ml for 66 
hours (57). Hadwiger & Beckman (57) present a table indicating that treatment 
with chitosan at the time of inoculation leads to a resistant, rather than a 
susceptible, reaction at seven days. These results, however, were obtained by 
application of 10 mg/ml chitosan, far above the amount required to inhibit 
propagule development for nearly three days (57). 

It is difficult to explain specificity in terms of a very common fungal wall 
component that acts independently to induce resistance and to inhibit fungal 
growth, since compatible and incompatible races both have chitosan. Hadwiger 
& Line (59) have reported an accumulation of chitosan in tips of the terminal 
growth of Puccinia striiformis. where presumably it might act to induce 
resistance and simultaneously regulate or inhibit fungal growth. However, this 
is clearly a secondary event in resistance. It should be noted, however, that both 
chitin and chitosan content vary with development of rust fungi. Polymeric 
forms of glycosamine were not detected in the spores of the rust fungi, but 
could be detected in germ tubes on the surface of inoculated leaves (94). During 
the first four days of infection, additional polymeric glucosamine could not be 
detected chemically (94). 

In an interesting approach to understanding resistance to F. solani f. sp. 
phaseoli by peas, Wagoner et al (129) labelled polypeptides in vivo and 
recorded 21 proteins that increased 4-8 hours after inoculation with incompati
ble F. solani f. sp. phaseoli and with chitosan treatment. Surprisingly, the same 
patterns were observed with compatible f. sp. pisi. Translation of mRNA 
isolated from the tissue appeared to result in the same polypeptide patterns 
(129). At 24-96 hours, these patterns persisted with both incompatible f. sp. 
phaseoli and with chitosan treatment, but the compatible Fusarium-pea com
bination had additional polypeptides that did not appear to be the result of 
pathogen polypeptide synthesis (62). Because it had been concluded from early 
work (61) with inhibitors of protein and RNA synthesis that significant events 
in pathogenesis involved enzyme synthesis only in resistant tissues 4-8 hours 
after inoculation, these results were not expected. 

Obviously, these studies are in a beginning stage. The techniques may not 
resolve polypeptides uniquely associated with resistance. If the gene-for-gene 
concept is applicable to this system, it is difficult to ascribe pathological 
significance to the large number of polypeptides found to increase in both 
compatible and incompatible hosts. Young et al (139, 140) reported that 
chitosan, along with other polycations and polyanions, caused leakage of 
calcium from cell walls, but that only polycations such as chitosan affected 
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membrane properties. The general nature of the responses they observed with 
polycations indicates that the effect of chitosan is chemicaily non-specific. The 
results on polypeptide synthesis in the early stages of infection can be inter
preted best as a general cellular response to any biological or chemical irritant 
(19), followed by the induction of compatible response in susceptible tissue 
(18). The initial cellular response need not be an active resistance. 

Suppressors of Resistance 

Work by Varns & Kuc [summarized in reference (127)] show that cell walls of 
compatible and incompatible races of Phytophthora infestans contain compo
nents that non-specifically induce phytoalexin accumulation in potato tissues. 
It now appears that at least part of this activity of wall fractions may be due to 
the presence of the potent lipid elicitors, arachidonic and iecosapentaenoic 
acids (8). It is interesting that these compounds do not appear to be active on 
soybean tissues. 

Doke (32) obtained a high molecular weight fraction from zoospores that, 
when applied to tubers of compatible potato cultivars 18 hours before inocula
tion with an incompatible race, markedly reduced the browning characteristic 
of the hypersensitive response. Garas et al (48) extended these observations to 
mycelial wall preparations and showed suppression of phytoalexin accumula
tion induced by infection with the incompatible race or by elicitors prepared 
from Phytophthora walls. Suppression of rishitin and lubimin was not com
plete. The most effective treatment caused approximately 85% suppression of 
rishitin in one experiment, while iIi the same test lubimin accumulation was not 
suppressed at all. The suppressors consisted of anionic (containing phosphate) 
and non-ionic glucans with B-l,3 and B-l,6 linkages (33). The degree of 
polymerization was approximately 20 for both glucans obtained from zoo
spores and from mycelium of races 1234 and 4 (33). As with Doke's original 
work, effective protection appeared to require application several hours before 
inoculation. Mixing glucans with elicitor had little effect on inducing activity 
(33). As noted by the authors (33), studies with additional race and host 
combinations are needed before a role for the glucans can be determined. 

Doke & Tomiyama (34) extended these observations with protoplasts, not 
tuber slices, prepared from nine potato cultivars and with glucans obtained 
from seven races, using induction of abnormal protoplast changes by cell wall 
fractions from Phytophthora as an index. There was a tendency for glucans 
from compatible races to prevent cell damage, but the amounts of glucan 
applied were quite high (10 mg/ml) and protection was never better than 
52-53%. 

Macromolecules in Other Host-Parasite Systems 

Dow & Callow (35) could not confirm an earlier report that glycoproteins 
produced in culture by strains of Cladosporium fulvum specifically damaged 
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incompatible tomato hosts. DeWit & Spikman (31) have found that intercellu
lar fluids of compatible tomato contain materials, not yet characterized in 
detail, that cause necrosis only on incompatible uninfected tomato cultivars. 
Such materials apparently are not found or produced in culture. Failure to find 
similar materials in infected, incompatible tissue may merely be the result of 
the development of a smaller amount of infected tissue after inoculation, thus 
limiting detection. Whether they are pathogen- or host-produced is unknown; if 
the latter, what function they play in resistance is uncertain. 

Comments 

The current evidence for specific recognition involving high molecular weight 
components is quite limited, perhaps as a consequence of experimental difficul
ties. In general, the preparations of active species in most cases are relatively 
crude; this may cause "masking" of any molecular species with requisite high 
selectivity and innate activity. One disturbing aspect of the current literature is 
the extremely large dosages applied for most bioassays. A concentration of 1 
mg/ml of mycelial wall fragments or glycoprotein represents a considerable 
amount of wall or cell membranes, if one considers that an incompatible 
reaction in a natural infection is caused by a microscopic mass of fungal hyphae 
or bacterial cells. In most cases, it is difficult to determine from the protocol 
what the relationship is between the weights of materials applied and the weight 
of pathogen from which it is obtained, an absolutely necessary consideration if 
the results are to be validated biologically. 

For the obvious reason of saving time and space, there is an increasing 
tendency to study recognition with laboratory procedures that may or may not 
be a true reflection of disease resistance. It is still an open question whether 
phytoalexins are effective in resistance or whether their production is a general 
symptom of cellular stress. The observed lack of specificity in some of the 
experiments described above (and probably in many unpublished ones) may 
have their origins, not in the lack of purity of fractions, but in the nature of the 
assay (phytoalexins, hypersensitive response, etc). It is also true, however, that 
obtaining a positive correlation between specificity and a chemical response of 
tissue in such experiments is an acceptable proof for the role of that particular 
response in nature. For completeness, however, it should be accompanied by 
sound biological proof that resistance indeed has been induced in tissues when 
treatment is followed by inoculation with a compatible pathogen. The most 
convincing proof would be based on application of the inducer at or, better, 
SUbsequent to inoculation of the compatible host. Prior treatment may result in 
non-specific inhibition arising from cellular injury (19). It is important to 
comment that the glucan elicitor isolated from Pmg by Albersheim and col
leagues will protect compatible soybeans when they are pretreated with it, but 
not when applied at inoculation. Remarkably, phytoalexin production is nearly 
identical in incompatible and compatible combinations when glucan is supplied 
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at the time of inoculation. Although the results can be interpreted in a number of 
ways (3), they serve as a reminder that acceptance of a recognition mechanism 
requires relating the mechanism to all of the disease syndrome, not an isolated 
process of it. 

Verification of positive findings by other independent scientists is limited. 
The establishment of sound scientific principles requires independent con
firmation by repetition of key experiments or by subsequent convincing ampli
fication of results, and there are surprisingly few reports of either type. 

Host-Selective Toxins 

The existence of host-selective or specific toxins was first established clearly 
approximately 35 years ago in the case of Helminthosporium victorae attacking 
oats with the Victoria gene for resistance to crown rust (victorin or HV-toxin). 
In recent years, the number of diseases in which host-selective toxins (HST) 
appear to be involved has expanded to about fifteen. Several books (23, 36) and 
reviews (24, 52, 88) summarize recent advances in this field. 

The taxonomic distribution of affected hosts includes both dicots and mono
cots, but it is important to note that the pathogens involved are primarily species 
of Alternaria affecting dicots and H elminthosporium affecting monocots. Why 
this is so is not clear. It may indicate the evolution of a unique mode of 
pathogenesis by these fungal species. If this is the case, their importance for 
discussion of recognition phenomena in plant diseases is of limited value. 
However, it is possible that the current imbalance in favor of these two species 
is merely the outcome of the general protocol that has been used to establish the 
production of toxins by microorganisms: the testing of culture medium in vitro. 
Alternaria and H elminthosporium may be metabolically unusual in their ability 
to synthesize in vitro the same metabolites that are important in vivo. The 
amount of toxin produced must be sufficient to be detectable above the 
background levels of non-specific toxicants, primarily common products of 
secondary metabolism. All HST purified so far have remarkable innate toxic
ity, nearly always between 1 and 10 ng/ml, which facilitates detection in 
dilutions of crude culture filtrates. It is the author's opinion that with the 
marked improvement in separation techniques in recent years, it will soon be 
possible to extend the list to other genera, even in the case of compounds of 
much lower specific toxicity. With better analytical and separation techniques, 
it may also be possible to examine infected tissue directly, rather than rely on 
the ability of fungi to produce HST under artificial conditions, as is now the 
case. 

Past research on HST has been handicapped by the absence of knowledge 
about their structure and hence their purity. The first plausible structure of an 
HST, from A. mali affecting pear, was deduced in 1975. Between 1979 and 
1983, however, structures of five more have been elucidated [see (88) for a 



RECOGNITION IN PLANT DISEASE 289 

concise summary]. As a consequence, some of the earlier notions about their 
biological significance and mode of action may have to be reconsidered, but 
now it is possible to begin to understand the chemical features of these toxins 
that govern specificity. 

Earlier work had suggested that peptide bonds might be a common feature of 
host-specific toxins. The HST of A. mali is a mixture of cyclic depsipeptides 
(Figure 1), but only the HST of H. carbonum has a true peptide structure 
(Figure 2). The latter contains an unusual amino acid, 2-amino-8-oxo-9,10 
epoxydecanoic acid (AOE). In the case of the HST fromH. carbonum, there is 
only a single molecular species for which there are three possible arrangements 
of the constituent amino acids (Figure 3). In the first published description, 
Liesch et al (82) concluded, on the basis of mass spectra, that HC-toxin was 
represented by structure III. Independently and by different methods, joint 
research at Nebraska and Purdue universities also established the presence of 
the unusual amino acid AOE. However, on the basis of peptic digests, and 
especially a novel mass spectral technique, Pope et al (103) and Gross et al (56) 
demonstrated unequivocally that the structure shown as I in Figure 3 is correct. 
A third group at Cornell (131) also reached the same conclusion. 

AOE is present in three other antibiotic cyclic tetrapeptides produced by 
species of the fungi Petreilla (the antibiotic WF-3161) (122), Diheterospora 
(chlamydocin) (17), and Clyindrocladium (Cyl-2) (64). Like HC-toxin, 
chlamydocin contains proline, while WF-3161 and Cyl-2 have the related 
pipecolinic acid, indicating similar pathways of biosynthesis. Only HC-toxin 
contains alanine (Figure 2). All three antibiotics have antitumor activity, and 
the antibiotic properties of chlamydocin are lost if the terminal epoxide ring of 
AOE (Figure 3) is destroyed (17). 

II R= H 

m R=OH 

Figure 1 A .  mali toxin affecting apple (121). In order of toxicity the three natural analogs are: 

Am-toxin I, R-l OCH3 X = CH2, AM-Toxin III, R = -OH, X = CH2; AM-Toxin II, R = -4, X 
= CH2. Other substitutions at these positions were much less active (121). 
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He - TOXIN 
Figure 2 H. carbonum toxin affecting corn (15, 82, 103). 

The importance of the epoxy group in HC-toxin toxicity to susceptible plants 
was demonstrated convincingly with the isolation by Cuiffetti et al (15) of an 
"inactive conversion" product that differs only from the active form by the 
opening of the epoxy ring (Figures 2,3) to produce hydroxyl groups at carbons 
9 and 10. Detailed analysis of nuclear magnetic spectra failed to show any other 

spectral differences between active and inactive forms, indicating no change in 
conformation of the peptide (15) ring. The inactive species did not protect 
against, or compete with, the active toxin. Walton & Earle (130) also believe 
that the epoxide group is important for toxicity, but their evidence is not 
definitive. The inactive conversion product appears to represent (103) approx
imately 40% of the toxin purified by Walton et al (131). Treatment of this 
preparation with 1.0 Hel in methanol inactivated the toxin completely (130). 
This treatment does cause opening of the epoxy ring, but it apparently produces 
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Figure 3 Three possible arrangements of amino acids in He-toxin. Structure ill is correct for the 
natural toxin (56, 103. 131). 
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a mixture of six compounds and other important changes in the peptide ring. 
Nuclear magnetic resonance spectra bearing on this point were not obtained 
(130). 

It should be kept in mind in this and subsequent discussion that specificity 
and toxicity may not be necessarily the same. The epoxy group of HC-toxin 
clearly is important for toxicity, but specificity may reside in other functional 
groups of the molecule. It would be of great interest to compare the three 
similar cyclic peptides from other fungi on com varieties resistant and suscepti
ble to H. carbonum. along with possible synthetic variants (i.e. structures II. 
III, Figure 3) of He toxin itself. 

Unlike AM- and HC-toxins ,  the other structurally characterized HST lack 
peptide bonds. They are structurally quite diverse and appear to be ordinary 
products of secondary metabolism. Three examples are shown in Figure 4. 

Again unlike HC-toxin, the other HST consist of several distinct molecular 
species (Figures 1, 4). Although distinct species could be artifacts of isolation, 
the nature of the variation observed is consistent with variation arising from 
biosynthesis. In either event, their existence provides a starting point for 
analysis of structure-specificity relationships. 

Three analogs of AM-toxin (Figure 1) are found naturally, but AM-toxin I is 
approximately 10 times more active than II, with AM-III of intermediate 
inactivity. Laboratory syntheses ( 121) provided a number of variations from 
the structure of AM-I but none was even as active as AM-II. Similarly, the 
toxin of H. sacchari consists of three isomeric forms involving unsaturation at 
carbon 4 of the sesquiterpene ring (Figure 4, middle), as reported by Macko et 
al (89. 90). Duvick et al (37) have shown that the most abundant isomer. C 
(Figure 4), is approximately 6 and 9 times more toxic than isomers B and A 
respectively, and can account for nearly all the specific toxicity observed in 
culture filtrates. Reduction of the methylene group at carbon 12 of the side 
chain of isomer C leads to two forms of the isomer due to differences in planar 
orientation of the methyl group so formed at carbon 12. One form is nearly as 
active as the original isomer C, the other appears to be non-toxic (37a). 
Unfortunately, the absolute configurations have not been established. 

These findings indicate quite nicely that very subtle structural changes in 
HS-toxin cause marked difference in toxicity. Just as interesting are the 
activities of lower homologs found in culture filtrates and arising by loss of 1, 
2, or 3 galactose (86, 89, 90) units by the action of an extracellular galactosi
dase (87), which randomly cleaves the B-galactofuranosyl linkages of the 
disaccharides attached to the sesquiterpene ring (Figure 4). Homologs lacking 
1, 2, or 3 galactose units (designated HS3, HS2, or HS. respectively) (37, 88) 
are nontoxic to susceptible sugar cane (37, 86). A brief report (85) indicated 
that they protected tissue from damage by active toxin. Duvick et al (37) 
showed that the molar ratio of protectant to toxin required to give nearly 
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Figure 4 Chemical features of three HST. Top: the four main components of toxin from H. 
maydis race T affecting com with Texas male sterile cytoplasm (75); middle: toxin from H. 
sacchari attacking sugar cane (89, 90); bottom: toxin from A. alternaria f. sp. lycopersici affecting 
sugar cane (9, 53). The individual components of HmT - and AAL-toxins are all equally toxic and 
specific. 
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complete protection was 50: 1, 6:2, and 15: 1 for HS 1 ,  HS2, and HS3• Since the 
lower homologs are biologically active as protectants, although non-toxic, the 
results can be interpreted to mean that the sesquiterpene ring functions in 
binding while the toxicity may lie with the galactofuranose groups. Contrary to 
previous reports (117), a-galactopyranosides were not effective as protectants 
even at a molar ratio as high 500: 1 (37), but B-galactofuranosides were (37a). 
The requirement of four galactofuranosyl residues for toxicity is emphasized by 
the finding that another component obtained from culture filtrates possesses an 
additional glucosyl residue as a terminus of each of the galactose disaccharides. 
Only slightly toxic, if at all (37), this compound does not protect against toxin. 
These structural constraints on toxicity suggest that HS-toxin probably interacts 
with a chemically distinct host at a well-defined locus of small molecular 
dimensions. 

HmT-toxin from H. maydis race T consists of approximately 10 linear 
polyketols (75, 76), varying in length of the odd-numbered carbon chains 
(C35-C45) and in the degree of reduction for a given chain length. Four of the 
individual species (C39 and C41 chain lengths, Figure 4) constitute 70-90% of 
various preparations of toxin. In contrast to AM- and HS-toxins, all compo
nents of this toxin appear to possess equal toxicity and specificity. In the 
original report, Kono & Daly (75) noted that the chain lengths approximated 
the width of a lipid bilayer and length might be important for activity. 

The unrelated fungus, Phyllosticta maydis (PM), produces a toxin of similar 
specificity toward corn with Texas male sterile (TMS) cytoplasm. Recent 
studies by Danko et al (26) have shown that this toxin comprises 12-15 linear 
B-ketoalcohols, of which the four most abundant are shown in Figure 5. These 
are shorter in length (C33 and C35) and have different oxygen functions when 
compared to Hmt-toxin (Figure 4). 

C15-C25 analogs of Hmt-toxin synthesized by Suzuki et al (118) were shown 
to possess specific toxicity but at lower molar concentrations (119). Subse
quently, a C4 1 analog (118) was found to have toxicity identical to native 
HmT-toxin. Suprisingly, it was about 300 times more active than the C25 
analog (118). These results reinforce the notion that chain length is of consider
able importance in toxicity and specificity. 

It is somewhat surprising , therefore, that each PM-toxin component is as 
toxic, perhaps more so (26), as the components of Hmt-toxin, despite the fact 
that they have shorter chain lengths and fewer oxygen functions (Figures 4, 5). 
However, construction of space-filling models suggested a common base for 
their toxic and selective activity. The common features are illustrated in Figure 
6 .  When the molecules are aligned, it can be seen that the oxygen functions of 
PM-toxin A are spaced identically with HmT-toxin 2 (Figure 1) and with the 
synthetic C4 1 analog prepared by Suzuki ( l18). Only two sets of the oxygen 
functions of the leak patent and shorter C25 can be aligned with HMT -toxin 
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Figure 5 The chemical structures of toxin from Phyllosticta maydis specifically affecting com 
with Texas male sterile cytoplasm (26). 

(Figure 6). Thus, it appears that a minimum of four, but perhaps three, 
precisely-spaced sets of two B oxygen functions are required for specificity and 
high toxicity in causing damage to com with Texas male sterile cytoplasm. 

Host Components 

The precise interaction of most HST with host components is as yet unknown. 
Because (with some exceptions) HST cause a rapid leakage of solutes from 
sensitive cells, it has been generally believed that interaction with plasma 
membranes occurs (50). However, mitochondria (91) are likely targets of 
Hmt-toxin in vivo but may not be the only organelles to be affected (22, 118) .  
The results described above for HMT and PM-toxins are suggestive of a distinct 
molecular architecture in sensitive mitochondria. There is evidence for the 
presence in sensitive mitochrondria of a polypeptide absent in mitochrondria 
obtained from resistant corn (44). However, direct evidence that this 
polypeptide interacts with Hmt-toxin is lacking. The findings with HS-toxin 
and its protective analogs also are suggestive of a unique host toxin receptor 
capable of interacting with toxin. Although a specific binding protein in 
membranes of susceptible sugar cane has been claimed for HS-toxin (117), the 
data supporting the claim are not experimentally satisfactory (24). Atte�pts to 
duplicate these results by Lesney et al (80) have not been successful. 

Unlike nearly all other HST, AAL-toxin (Figure 4) does not cause ion 
leakage, but its necrotic effects can be prevented by L-aspartate and by orotate, 
suggesting that aspartate carbonoyl-transferase (ACTase), a key enzyme in 
arginine and pyrimidine biosynthesis, might be affected. ACTase [an allosteric 
enzyme modulated by the feedback inhibitor uridine monophosphate (UMP)] 
was isolated by McFarland and Gilchrist [summarized in (52)] from genetically 
homozygous susceptible or resistant tomato. The enzymes from the two culti-
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Figure 6 Comparison of chemical structures of a component of PM- and HmT-toxins, plus two 
synthetic analogs of the latter. Note the positioning of oxygen functions of each. See text for details. 

vars appeared to have identical physical and kinetic properties in the absence of 
AAL-toxin . Kinetic analysis (52) revealed that, in the presence of UMP, 
AAL-toxin acted as a potent synergist for regulatory inhibition by UMP, 
particularly with the ACTase from the susceptible genotype. It is postulated 
that, in vivo, the synergist effect would result in nearly complete loss of 
ACTase activity in susceptible plants , even at UMP concentrations that by 
themselves would be non-inhibitory (52). This view of the mode of action of 
HST is a radical departure from earlier views that focused on membrane 
functions rather than cytosolic metabolism. 

Comments 

In evaluating the data obtained with HST, it can be argued that they represent 
special cases of a specific disease reaction and therefore of recognition. It is 
also true, however, that pathogenesis in these diseases does not differ marked
ly , if at all, from pathogenesis in diseases for which recognition is postulated to 
require surface macromolecules . In common with many diseases , host resis
tance apparently is determined by single genes that most often are dominant. 
Further, production of HST is inherited as a single trait in the few cases for 
which sound genetic data are available. With H. maydis race T, the single gene 
control of toxin production studied by Tegtmeier et al (120) appears to be 
absolute (no detectable toxin) and is inherited as a dominant or co-dominant 
genetic factor (79) , although the gene functions as a gene for virulence rather 
than avirulence. 

In instances of dominant genes for host resistance in diseases involving HST, 
there are several possible biochemical explanations for resistance that need to 
be investigated because they have direct bearing on the meaning of dominance 
or recessiveness in models of host-pathogen interaction. The simplest explana-
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tion is that susceptible hosts have a gene product with which toxin interacts, 
while resistant hosts lack such a product. Sound experimental evidence for this 
still is lacking. 

Alternatively, resistance might result from host destruction or modification 
of HST, while susceptible tissues lack such ability. This implies an active gene 
product for resistance rather than the absence of a product. The reverse may 
occur; chemical activation of HST in susceptible hosts may be accomplished by 
an active gene product. Similar reasoning can be applied to several other 
potential mechanisms, i. e. ability or inability to transport HST to sensitive 
cellular sites. Finally, Wheeler'S self-repair (24, 135, 136) hypothesis should 
be considered in examining these problems. Wheeler suggests that both resis
tant and susceptible hosts possess sites of equal sensitivity, but resistant hosts 
have a capacity for metabolic recovery from an initial biochemical lesion. 

These hypotheses are a reminder that we have insufficient biochemical 
evidence to attempt assessment of the significance of dominant or recessive 
inheritance of disease reaction with HST. All scenarios are biochemically 
feasible, but it has not been possible to test the alternatives experimentally until 
recently, when knowledge of the structure was obtained. Likewise, it is unclear 
what single gene control of toxin production in the pathogen signifies. An 
examination of the structures of HST indicates that they are typical products of 
secondary metabolism and thus require several distinct enzymatic steps. It is 
possible that a terminal step in synthesis may require a unique enzyme that 
would be coded by a single gene, biologically identified as a virulence gene. 
Much of our thinking about these problems is conditioned by the notion that 
HST have been produced in very small amounts and perhaps represent mere 
aberrants of fungal metabolism. This is not the case for HMT-toxin, which is 
recoverable to the extent of 2-3% of the mycelial dry weight (120) and thus is 
not a minor metabolite. Likewise, it is not unusual (S. Him, H. W. Knoche, 
unpublished data) to obtain 30-50 mg of He-toxin in pure form from a liter of 
culture. To understand genetic control of virulence factors will require a 
knowledge of biosynthetic pathways, a task for the future. 

DISCUSSION 

The available literature indicates clearly that macromolecules obtained from 
microbial cell walls or membranes are capable of effecting biochemical re
sponses in plant cells similar to the responses found in incompatible disease 
reactions. There is only limited evidence, with little or no independent verifica
tion, that such molecules serve as a means of special recognition between hosts 
and their pathogens in determining incompatibility. Cell surface or wall mole
cules of pathogens may function in adherence to host cells, but adherence per se 
has not yet been proven to trigger either compatible or incompatible host 
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responses. Even if the most optimistic reports are fully accepted, the results 
obtained with wall-derived inducers of incompatible responses contain inherent 
paradoxes. The surfaces of Phytophthora megasperma var. glycinea appear to 
possess both specific (69) and non-specific (2) information for phytoalexin 
accumulation. Galactosamine polymers such as chitin or chitosan (60) un
doubtedly are present in both compatible and incompatible fungi. Without 
major qualification, it appears that any wall macromolecules containing specif
ic information relating to resistance must normally operate against a backdrop 
of non-specific "noise" generated by non-specific wall components that could 
be appreciable in terms of phytoalexin accumulation. Either the non-specific 
inducers are "masked" in native walls or the amounts are much less than the 
amounts (or the accessibility) of the specific inducers. An alternative is that 
non-specific wall components activate a general resistance response that is 
suppressed by other race-specific wall components as suggested by the work of 
Doke and colleagues (33). If so, compatibility, not incompatibility (1, 40, 68), 
would seem to be the unique aspect under genetic control by the host and the 
pathogen. Underlying all such hypotheses is the assumption that the observed 
responses (phytoalexin accumulation, hypersensitive reaction, etc) constitute a 
true resistance mechanism and are not merely symptoms of stress with no 
functional role in disease reaction (21). 

On the other hand, a reasonable case can be constructed for low molecular 
weight compounds as devices for recognition in some diseases . HST fulfill the 
basic requirements for recognition. They cause very rapid initial responses that 
determine the subsequent outcome of host reaction. In certain cases (HV - and 
AM-toxin), evidence has been presented (101, 138) that HST are prerequisites 
for disease to occur. Toxin-less strains do not develop on host tissue and the 
inoculum of pathogenic strains contains detectable toxin. In other cases (Hmt
and HS-toxin), initial colonization of both resistant and susceptible host tissue 
occurs; the toxin functions to increase host damage and presumably permits 
much more extensive pathogen colonization in susceptible plants . As Wheeler 
has pointed out (136), much additional work is required to fully assess the role 
of HST in pathogenesis. 

In common with other models of recognition, it has been generally believed 
that HST interacts with a constitutive gene product of the cell surface, probably 
a membrane protein as suggested for HV-toxin (56) and the toxin of Periconia 
circinata (49). However, the recent work by Wolpert & Dunkle (137) indicates 
that the latter toxin acts in the cytoplasm and causes alteration of gene expres
sion in susceptible sorghum tissues. Several proteins, but particularly a 16 K 
dalton protein apparently with four subunits, were selectively synthesized 
within six hours after toxin treatment of susceptible sorghum roots. The role of 
the proteins is unknown, but since protection from toxin was afforded by 
cycloheximide (137), they may be responsible for the development of cellular 
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damage . The effects of AAL-toxin on ACT-ase (52) and Hmt-toxin on 
mitochrondria (97) show that HST are not limited to interaction at cell surfaces .  
Obviously, these targets are a normal part o f  cellular metabolism, not unique 
proteins designed only for the recognition of pathogens , as most speCUlation 
about recognition implies. 

It is obviously unwise to generalize about mechanisms of recognition in plant 
disease from the relatively few known examples of HST. It can not be over
emphasized, however, that work on toxins is in its infancy . The establishment 
of HST as factors in certain diseases has been dependent on techniques 
weighted toward isolation of a single chemical entity possessing both high 
specificity and high toxicity. By analogy with toxin affecting animals, low 
molecular weight non-toxic metabolites conferring specificity may act syner
gistically with non-specific toxins, for example, by altering uptake by host 
cells. Systematic exploration of such possibilities lies in the future . 

In any event, the existence of HST raises the question of whether recognition 
in plant disease requires cell surface mechanisms such as those currently in 
vogue for animal cells. Animal cells are not encumbered by a cell wall . The 
presence of the wall around plant cells has limited knowledge about the 
composition and asymmetry of the plant plasma membrane. Because there is a 
rigid wall, the membrane may be different organizationally from animal cell 
membranes and not designed to serve primarily as an information-transducing 
organelle, or at least not to the same extent. The existence of plasmodesmata in 
plants provides a device, perhaps a superior one, for cell-to-cell communica
tion. In keeping with the current concepts of recognition in animal systems, it is 
interesting that the majority of animal messenger hormones are polypeptides, 
while there are no known polypeptides hormones of plants . As with toxins, 
plant hormones are diverse in structure and of low molecular :.veight. Further, 
evidence for hormone binding by plants organelles has been difficult to obtain. 
The surface processes observed in the complex immune response of animals, 
which require several specialized cells, may not be appropriate as a response to 
infection by a totipotent plant cell . 

Cell-surface recognition may be appropriate for plant disease, however, if it 
conforms with the biological patterns of diseases for which it is invoked. 
Current models generally envision a single yes-orono, all-or-none signal trans
duction; either compatibility or incompatibility is the result of the message. 
Although useful for building theoretical models,  there are several problems in 
general application. 

To illustrate the difficulties, the events underlying compatibility and incom
patibility are quite different for biotrophic (rusts, mildews) and necrogenic 
(Septoria, Helminothosporium) disease of wheat leaves. For biotrophic dis
eases, compatibility is a useful term to describe infection of susceptible hosts, 
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but obviously the events are different than with a necrotic leaf spot where 
"compatibility" results in more tissue damage than with incompatibility. If 
resistance is the unique aspect of host-pathogen interactions (40, 41) ,  it seems 
necessary that at least two sorts of sensing components , one for biotrophic and 
one for necrogenic responses, would be necessary on the cell surface. The 

genetic basis of resistance for each necrogenic or biotrophic disease is differ
ent. When one considers the number of such diseases on wheat, and especially 

the pathogenic strains within a single disease, the packaging and maintenance 
of all the necessary information at the host interface is a considerable task, 

although not impossible. Similar considerations (133) apply to molecules , not 

necessarily at the surface, but uniquely fabricated for incompatibility such as 
with the dimer hypothesis or suppressor molecules . 

A second complication is that plant disease reaction most frequently is not a 
yes-or-no situation. As noted earlier (21), there is a dearth of requisite quantita
tive data for necrogenic diseases that relate pathogen growth to biochemical 
processes at various stages in resistant and susceptible hosts. For biotrophic 
diseases, a considerable literature indicates that the initial histological events 
are similar for extended periods, up to 72 hours with rust fungi (91, 115). 
Further, even with incompatible reactions, growth can continue for a number of 
days. These facts suggest that surface recognition, if it occurs in these diseases, 

develops during pathogenesis and does not involve a constitutive signal. 
Additionally, the variability in plant disease reaction, even in instances of 

single gene control ,  must be accommodated in any theory of recognition. The 

influence of environmental variables on disease development can be rational
ized by assuming that control by environment occurs during subsequent cyto

plasmic events, not during the initial signal at the surface. If so, is surface 

signal transduction of prime importance then? The explanation is difficult to 
apply in instances where environmentally caused variability in disease reaction 

is associated only with certain genes for resistance, such as the temperature
sensitive Sr6 allele for stern rust resistance ( 1 8) .  As a consequence of a study of 
the role of environment on the infection of soybean by Phytophthora rnegasper
rna f. sp. giycinea, Ward & Buzzel (132) were moved to note: "The assumption 

that recognition is for incompatibility would lead to the conceptually difficult 
conclusion that dark grown plants specifically cause these races to lose their 
ability to produce the appropriate race specific molecule,  that light restores it 
and that elevated temperature again destroys it, provided also that the plants are 

wounded." 
The most logical systems for elucidating the chemical basis of recognition is 

with biotrophic diseases, particularly of cereals, which exhibit high specificity 
in host-pathogen interaction. Preliminary attempts to detect single polypeptides 
corresponding to specific genes for resistance in the host (46) or avirulence 
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genes of races of lUst (65) have not been successful.  the problems may lie in a 
lack of resolution with techniques available, although the basic assumptions , 
derived from theoretical genetic models, may be questioned . 

Unfortunately , the theoretical genetic models deal in disease reaction in 
terms of absolute values of R (resistance) or S (susceptibility), but the symbols 
do not acknowledge the range of phenotypes encountered in each reaction 
class. In stem rust of wheat, for example, resistant reactions consist of four 
classes: 0 (immune), 1, and 2. Biologically speaking, there is a larger gap 
between the immune reaction and infection type 2 of resistance than between 
resistance (infection type 2) and susceptibility (infection type 3). For genetic 
purposes, these considerations perhaps are minor, but in biochemical studies 
they cannot be ignored. Although grouped into a single reaction class (R), there 
obviously are significant biochemical differences between an immune reaction 
and an infection type 2. To illustrate the importance of these differences for 
studies of recognition, let us assume that macromolecules have been obtained 
from host or pathogen combinations characterized by an infection type 2 but are 
capable of inducing only an immune reaction. Despite the fact that a resistance 
response is induced, it would lack the requisite biological specificity to be 
meaningful as a device for recognition . 

In short, a basic problem with current genetic and recognition models is that 
they are static, without the known plasticity of natural disease reaction. They 
do not acknowledge the existing phenotypic variability nor do they satisfactori
ly account for the continuum of host-pathogen reaction types observed in many 
diseases. The current models are also cumbersome in that it seems necessary to 
postulate the existence of a basic host-pathogen compatibility upon which is 
superimposed a set of independent genetic factors for resistance to individual 
races or strains (40, 41) or a set of additional genes and products for suppression 
of a general host response. 

For me, two sets of genetic information seem redundant. High specificity 
can be achieved with biological economy if genes for basic compatibility 
produce enzymes that are regulatory or allosteric. At critical stages of pathogen 
development (recognized as infection types) , an additional biochemical proc
ess is activated to permit continued development of the pathogen and of disease 

( 18). With regulatory enzymes, activation could entail low molecular weight 
effectors from the pathogen. Cessation of development at any stage (manifesta
tion of resistance) could result from: (a) the presence of a variant or a host gene 
product that can not be regulated, or (b) the lack of production of appropriate 
effectors from the pathogen. A similar model can be constructed if an active 
mechanism for resistance determines the outcome of infection. 

Whether such possibilities are consistent with the dominant or recessive 
character of inheritance is a moot point at this stage in our biochemical 
understanding of gene expression in higher plants, particularly for disease 
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reaction . There are several observations that indicate expression of genes for 
disease resistance may be complex. A recent study by Knott (70), for example, 
indicates that Sr6 allele, effective against races 56 and 15B-l  of wheat stem 
rust, when introduced into four susceptible wheat cultivars is inherited (a) as a 
dominant gene against both races in two of the crosses, (b) as dominant against 
15B- l and recessive against race 56 in the third cross,  and (c) as a recessive 
against both races in the fOJ.lrth cross .  Similar results have been obtained with 
genes for leaf rust resistance in wheat (38). It is also difficult to explain the 

so-called mesothetic reaction in rust disease, in which a single leaf will support 
the entire range of compatible and incompatible infection types . 

Regulatory enzymes suggest one possible way by which normal metabolism 
can be altered to account for disease reaction. They are macromolecules 
normally present in higher plant cells and impose no extra load on the existing 
genetic or metabolic machinery . Only minor modification of an effector bind
ing site , perhaps the substitution of a single amino acid residue, can alter their 
regulatory capacity but not necessarily their innate capacity to carry out 
important functional reactions in normal uninfected cells. This has the impor
tant consequence that only minor changes in DNA sequences can lead to large 
effects on disease reaction . Further, the nature of the altered DNA sequences 
need not necessarily be the same for individual cultivars . 

SUMMARY 

Evidence that surface macromolecules mediate specific recognition by signal 
transduction at host-pathogen interfaces in plant disease is as yet limited. Most 

investigations of the phenomenon have been designed with the assumption that 
incompatibility, and not compatibility, is the disease reaction that requires 
specific recognition. On the other hand, chemically defined, low molecular 
weight pathogen products (host-selective toxins) have been identified that 
fulfill the biological and chemical expectations for specific recognition. In 
some instances, they have cytoplasmic targets and affect host metabolism 
without cell surface signal transduction. Further, disease reaction in these cases 
is that of susceptibility , not resistance. 

There is a question, therefore, of whether some of the current widely-held 
assumptions about the basic events in resistance, and their genetic control , are 
valid. Rather than the static, all-or-none models for recognition and disease 
resistance that now are in vogue, it may be more germane to examine models in 
whieh metabolic regulation , for compatibility as well as for incompatibility , 
determines the outcome of microbial infection of higher plants. Specific 
pathogen effectors, either negative (i.e. toxins) or positive (i. e. growth reg
ulants), acting to alter the rates of basic metabolism controlled by host gene
products (enzymes) would be consistent with the inherent variation of disease 
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reaction due to environment. Such models would also account for the range of 

reaction encountered within broad classes of compatibility or incompatibility. 
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