
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Faculty Publications in the Biological Sciences Papers in the Biological Sciences 

1982 

THE ECOLOGY OF MUTUALISM THE ECOLOGY OF MUTUALISM 

Douglas H. Boucher 

Sam James 

Kathleen H. Keeler 

Follow this and additional works at: https://digitalcommons.unl.edu/bioscifacpub 

 Part of the Biology Commons 

This Article is brought to you for free and open access by the Papers in the Biological Sciences at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications in the 
Biological Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/bioscifacpub
https://digitalcommons.unl.edu/bioscipapers
https://digitalcommons.unl.edu/bioscifacpub?utm_source=digitalcommons.unl.edu%2Fbioscifacpub%2F782&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=digitalcommons.unl.edu%2Fbioscifacpub%2F782&utm_medium=PDF&utm_campaign=PDFCoverPages


Ann. Rev. Ecol. Syst. 1982. 13:315-47 
Copyright © 1982 by Annual Reviews Inc. All rights reserved 

THE ECOLOGY OF 

MUTUALISM 

Douglas H. Boucher 

Departement des sciences biologiques, Universite du Quebec It Montreal, C. P. 
8888, Succ. A, Montreal, Quebec, Canada H3C 3P8 

Sam James 

Department of Ecology and Evolutionary Biology, University of Michigan, Ann 
Arbor, Michigan, USA 48109 

Kathleen H. Keeler 

School of Life Sciences, University of Nebraska, Lincoln, Nebraska, USA 68588 

INTRODUCTION 

Elementary ecology texts tell us that organisms interact in three fundamen­
tal ways, generally given the names competition, predation, and mutualism. 
The third member has gotten short shrift (264), and even its name is not 
generally agreed on. Terms that may be considered synonyms, in whole or 
part, are symbiosis, commensalism, cooperation, protocooperation, mutual 
aid, facilitation, reciprocal altruism, and entraide. We use the term mutual­
ism, defined as "an interaction between species that is beneficial to both," 
since it has both historical priority (31 1 )  and general currency. Symbiosis 
is "the living together of two organisms in close association," and modifiers 
are used to specify dependence on the interaction (facultative or obligate) 
and the range of species that can take part (oligophilic or po/yphilic). We 
make the normal apologies concerning forcing continuous variation and 
diverse interactions into simple dichotomous classifications, for these and 
all subsequent definitions. 

Thus mutualism can be defined, in brief, as a +1+ interaction, while 
competition, predation, and commensalism are respectively -1-, -1+, and 
+10. There remains, however, the question of how to define "benefit to the 
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species" without evoking group selection. Two definitions have coexisted 
for decades. In one, benefit is defined on the individual level, in terms of the 
relative fitness of organisms that do and do not participate in the interac­
tion. This definition seems particularly appropriate for questions of evolu­
tion, but is inadequate when considering population-level phenomena 
involving a balance of positive and negative fitnesses. For example, many 
frugivorous animals destroy some of the seeds they consume and disperse 
others; the net result of these individual predations and mutualisms may be 
either an increase or a decrease in the plant population. The second defini­
tion considers this population-level effect, and is the definition tacitly as­

sumed in applying models such as Lotka-Volterra equations to mutualism 
(as well as competition and predation). Thus the individual-level definition 
uses change in the fitness, WI of individuals of species 1 when they interact 
with individuals of species 2, while the population-level definition uses the 
change in dNI/dt, the growth rate of population 1 ,  as N2 changes. We will 
not attempt to enshrine one or the other of these definitions. 

We cover first direct mutualism, in which the two species interact physi­
cally, and then indirect mutualism, in which each species benefits from the 
other's presence but there is no direct contact. Direct mutualisms are di­
vided into symbiotic and nonsymbiotic mutualism, using physiological inte­
gration as the basic criterion. This approach is artificial but convenient. It 
has little general usefulness: other divisions of mutualism (289) do not align 
neatly on a symbiotic/nonsymbiotic dichotomy. Although exceptions 
abound, symbiotic mutualisms tend to be coevolved and obligate, while 
facultative mutualisms are frequently nonsymbiotic and not coevolved. 

Using these definitions, we start with two observations. On the one hand, 
an enormous number of ecologically and economically important interac­
tions, found throughout the biosphere, would seem to be mutualistic. On 
the other hand, few studies have actually demonstrated increases in either 
fitness or population growth rate by both of the species in an interaction. 
Interactions have generally been shown to be mutualisms by describing 
what is exchanged. Mutualism may be everywhere, but its existence remains 
practically unproven. 

HISTORY 

The history of the study of mutualism by ecologists is akin to Sherlock 
Holmes's case of the barking dog, in which the point of interest was that 
the dog did not in fact bark. It is notable that despite promising early 
beginnings and wide recognition of mutualistic interactions, ecologists have 
devoted little time and energy to this subject (264). 
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Although discussions of the subject of mutualism typically start with 
DeBary's book on symbiosis (69), apparently the first use of the term 
"mutualism" is in Pierre van Beneden's 1875 book Les Commensaux et les 
Parasites (311), published simultaneously in German and English (as Ani­
mal Parasites and Mess-Mates). This was a popular work, and van Beneden 
was perhaps the foremost Belgian biologist of his time, with a bibliography 
ranging from worms to whales (172). In his youth he was active in the 
revolution of 1830 , which won Belgian independence. He became celebrated 
in later years for his parasitological work, on which Les Commensaux et les 
Parasites concentrates. But he felt that since, in addition to parasites, "we 
find others who mutually provide each other services, it would be most 
unflattering to call them all parasites or commensals. We consider it fairer 
to call them Mutualists, and thus mutualism takes its place beside com­
mensalism and parasitism" [(27); italics in original]. The capitalization of 
"Mutualists" is probably an indirect reference to the "Mutualite" societies 
organized by workers in France and Belgium to support each other finan­
cially, and indeed analogies to human society are common throughout the 
book. 

Only two years later, van Beneden's definitions were critically discussed 
by Alfred Espinas in a doctoral thesis at the University of Paris entitled 
Des SocMtes Animales. This work, which shocked the university authorities 
by discussing the philosophy of Auguste Comte, "whom no one at that time 
dared to mention" (80), is concerned with the question "what is the essence 
of society?" Espinas discusses mutualism in a chapter on "Accidental soci­
eties between animals of different species: Parasites, Commensals, Mutual­
ists." The treatment concentrates on domestication as one kind of 
mutualism, but also discusses such relationships as tick-birds and rhinocer­
oses, mixed species bird flocks, and ant-aphid associations. 

By 1893 the subject was sufficiently developed to deserve a review article 
in the American Naturalist by Roscoe Pound (250). Pound recognized most 
of the major kinds of mutualism we study today, including pollination, 
legume root-nodulation, and various animal examples. By the turn of the 
century one could count literally hundreds of articles on one mutualism or 
another (273). More importantly, there seems to have been a general recog­
nition of the fundamental similarity of interactions ranging from mycor­
rhizae to cleaner-fish. 

The analogy of mutualism to cooperation in human society, never absent 
in previous work, was made a political issue in 1902 with the publication 
of Mutual Aid: A Factor in Evolution, by the anarchist Peter Kropotkin 
(178). This best-selling work was a rebuttal of the Social Darwinists and 
cited examples of cooperation in the natural world, to counter the conten­
tion that nature proved the inevitability of cutthroat competition. With 
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Kropotkin's book, mutualism became well known in lay society, and it 
continued to be discussed among biologists in the following decades. But 
in comparison to the rapid growth of the rest of ecology in the 20th century 
(76, 340), mutualism lost ground. While the construction of a theoretical 
base for studies of competition and predation in the 1920s and 1930s gave 
these subjects a strong boost, (93, 94, 194,277, 318) the theoretical work 
of Kostitzin on mutualism (177) was amost totally ignored. 

Kostitzin led a fascinating life (276, 277): After fighting in the Russian 
Revolutions of 1905 and 1917, he became head of the Soviet Union's 
Geophysics Institute. In the mid-1920s he moved to France, where he lived 
till his death in 1963. He collaborated with Vito Volterra, and published on 
topics ranging from single-species population dynamics to glaciation and 
the evolution of the atmosphere. 

Mutualism figures prominently in the work of Warder C. Allee, a Quaker 
and pacifist, who wrote extensively on human and animal cooperation and 
coauthored the textbook Principles of Animal Ecology (6). This work was 
for many years the fundamental text in animal ecology, and it devotes 
considerably more space to mutualism than most contemporary ecology 
books. Yet it revealed the lack of progress made since the 19th century. 
Allee et al's collection of examples is longer than Pound's, their presenta­
tion of the analogy between natural mutualisms and cooperation in human 
society is subtler than Kropotkin's, but the treatment contains little that is 
new. 

Only in the 1970s has mutualism finally begun to compete with other 
interactions as a subject for ecologists' consideration. To judge by citations, 
their work has relied little on that of their predecessors; during the period 
1965-1979, van Beneden's book was cited almost exclusively by parasitolo­
gists, Kropotkin's mostly by social scientists and sociobiologists (often 
unfavorably), and Pound's article hardly at all (145). Interestingly, several 
recent theoretical treatments of mutualism have depicted it by means of the 
same graph, though with little cross-referencing (41,84, 139,213,288,315, 
316). Mutualism's time seems finally to have arrived. 

Two points emerge from this brief historical survey: the lack of interest 
in mutualism among ecologists for most of the 20th century, and the in­
volvement of many of those who did study it with what at the time were 
left-wing causes. We suggest as an hypothesis for historians of science that 
mutualism has been avoided during most of the 20th century because of its 
association with left-wing politics (perhaps especially with Kropotkin). 

DIRECT MUTUALISM 

Mutualisms have long been seen as exchanges of benefits, of which one can 
identify a few main types: (a) nutritional: either the breakdown of com­
pounds by digestion for the partner, or supply of growth factors or nutrients 
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by synthesis or concentration; (b) supply of energy, generally from photo­
synthesis; (c) protection, either from environmental variation or from ene­
mies; and (d) transport, either from unsuitable to suitable environments or 
by dispersal of gametes or propagules. Symbiotic mutualists generally ex­
change the first two services, sometimes the third, and rarely the fourth. 
Nonsymbiotic mutualisms can involve all four. 

Symbiotic Mutualisms 

TYPES Most symbiotic mutualisms involve the supply of energy from one 
partner to the other, whether autotroph to heterotroph (284) or between 
heterotrophs (e.g. gut microbes). A number of benefits may be provided in 
exchange: (a) breakdown of compounds, facilitating digestion; (b) supply 
or concentration of nutrients; (c) environmental constancy; and (d) biolu­
minescence. 

Gut flora are involved in breaking down cellulose and related substances 
in mutualism with many vertebrates (134, 136), as well as with termites 
(304) and other arthropods (51, 291). Urea is broken down and its nitrogen 
recycled by rumen bacteria (134) and by the fungal components of some 
lichens (4). Toxic secondary plant compounds are also degraded in caeca 
and rumens by microbial symbionts (134). 

The synthesis of compounds, including vitamins and amino acids, is 
performed by gut microbes in numerous associations (12, 48, 51, 77, 123, 
134, 174). Ruminant microbes, and those in other animals, synthesize all 
of the B-complex vitamins, vitamin K, and the sulfur-containing amino 
acids. The breakdown of urea results in ammonia and carbon dioxide, and 
the ammonia is used by the bacteria to make amino acids, which are later 
obtained by the animal (134). Similar activities take place in lichens in 
which ammonia is incorporated by algae into amino acids and vitamins, and 
vitamins are secreted by the algae (4). An endozoic alga has been found to 
be the major source of fatty acids to its host flatworm, in a case in which 
the flatworm has lost the ability to synthesize these substances (215). My­
corrhizal fungi also produce growth factors, in this case plant hormones 
(42). 

Symbiotic nitrogen fixation is known to take place in root nodules of 
leguminous plants (31, 71, 228, 256, 339) and in some nonlegumes (38, 53, 
267, 303). In the legumes, the bacteria of the genus Rhizobium are the 
endosymbionts, and in the others, Actinomycetes, except for a recently 
discovered Rhizobium-Ulmaceae association (23, 308, 309). Blue-green al­
gae fix nitrogen in both roots and above-ground parts of other woody plants, 
such as cycads, Gunnera, and various Rubiaceae (256). Symbiotic nitrogen 
fixation has also been discovered in lichens whose algal components are 
blue-green algae (4, 216), sphagnum moss (107), aquatic ferns (197), grasses 
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(43, 227), sponges (333), sea urchins (112), shipworms (55), arid termites 
(25, 44). A disadvantage is that the cost of nitrogen to a plant with sym­
bionts is greater than to a plant that acquires nitrogen in the form of nitrate 
(113). 

Mutualisms involving the concentrating of nutrients include mycorrhizae 
and a few other instances involving algae and bacteria. Mycorrhizal fungi 
can take up nutrients at low concentrations, improve water uptake, and 
confer resistance to pathogens upon their hosts (42, 62, 87, 146, 147, 257). 
Plants benefit most when soil nutrient concentrations are low. In some 
circumstances, normally mutualistic fungi can be parasitic, and in rare 
instances of high phosphate levels the increased uptake caused by mycor­
rhizae can cause phosphate poisoning (42). Nutrient uptake by endozoic 
algae has been found in coral zooxanthellae, which take up ammonia from 
seawater (222), and in green hydra, whose bacterial symbionts increase 
uptake of phosphate from the medium (332). Endozoic algae in general take 
up waste products from their hosts and use them for their own growth. In 
corals, nitrogenous wastes have been traced from zooplankton to polyp to 
algae, in what constitutes a recycling of nutrients within the association 
(224, 248). Leaf-cutting ants (Attini), macrotermitine termites, and a vari­
ety of beetles culture fungi (20, 21, 92, 255, 327, 337). They feed, protect, 
and distribute the fungus, consuming parts of it (which are often specialized 
for the purpose) in return. The fungi seem in many cases to be incapable 
of independent existence. These interactions are best considered symbiotic 
even though the fungi are external to the ants and physically encountered 
by them only during culture: They share the colony's nest, and the bio­
chemical and behavioral interactions are complex (255, 337). 

Green plants are also "fed" by ants that inhabit the plant and bring debris 
into their nests, which decomposes and is available for uptake by the plant 
(140, 141, 146, 265). In "ant-gardens," the ants place the plants' seeds in 
their nests, where they germinate and take up nutrients from the nest wall 
(173). In at least one species, when the ants are absent the plant stops 
producing the food bodies on which the ants feed (266). 

The provision of a constant environment, or a place in which to lead a 
sheltered existence, is found in mutualisms involving endozoic algae and in 
lichens. Endozoic algae generally have thinner cell walls than free-living 
algae, a characteristic that may be due to the physical protection gained by 
living within another organism (201, 294). Similarly, the algae found in 
lichens are frequently unable to survive where the lichen is found growing, 
suggesting that living with fungi improves resistance to injury and desicca­
tion (4). There are trade-offs, however; symbiotic species of algae grow more 
slowly when inside animals than when cultured in vitro, and more slowly 
still than nonsymbiotic species (324). 
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Symbioses with bioluminescent microorganisms are found in a variety of 
animals (126, 207, 226). While bioluminescence may have originated as an 
oxygen detoxification system (207), it now has a wide variety of functions, 
including prey attraction, protection, communication, and mate attraction. 
In many cases the function is not yet understood. This is thus a "grab-bag" 
category in which many different benefits share a common biochemistry. 

EVOLUTION The evolution of symbiotic mutualisms is generally thought 
to begin through proximity of the organisms involved. We discuss how 
associations are initiated, what sorts of adjustments and adaptations must 
be made en route to mutualism, and the selective pressures for these 
changes. 

Parasitism is one possible starting point (271, 274, 327). In this case the 
problem of first infection has been· taken care of, and one needs only to 
consider how parasitism could change to mutualism. A model system is the 
experimental demonstration of reduction of virulence of a bacterial infec­
tion of an Amoeba, which ultimately became dependent on the bacteria 
(160). Reduction of detrimental effects of the parasite on the host must be 
accompanied by development of host dependency on the parasite, which is 
already dependent on the host. Scott (274, 275) gives two routes to the 
evolution of dependence. The first is through a parasite-relationship of low 
virulence in which the parasite leaks nutrients, increasing host survival and 
thus its own fitness. Alternatively, an increase in ecologically imposed 
limitations, which the parasite helps overcome, can select for closer depen­
dence. 

Ingestion as a starting point is thought to be appropriate for mutualisms 
involving algae, gut microbes, and some eukaryotic organelles (205, 206, 
207). Selection pressure for resistance to digestion would be strong, and the 
ingesting animal would have to develop a means of recognizing the alga as 
a nonfood item, and also as nonforeign. Carbohydrate diffusion from the 
alga would place some value on retention of the intact alga. Another neces­
sary alteration is the regulation of growth rates of the algae (223). Currently 
algae are found in vacuoles or in the cytoplasm, and some are reduced to 
little more than chloroplasts (283, 325). 

In cases starting as symbiotic commensalisms, the evolution of mutual­
ism may proceed by the commensal's providing some benefit that would be 
selected for if it increased the host's chances of survival and/or decreased 
the likelihood of the host's attempting to get rid of the commensal. Alterna­
tively, a change in ecological circumstances or the presence of an ecological 
opportunity could transform the relationship into a mutualism if the com­
mensal happens to render the host better able to survive or take advantage 
of the situation. 
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A driving force behind the evolution of symbiotic mutualisms is ex­
pressed by Dubos & Kessler (73), who argue that as more needs of the 
association are met by the combined abilities of the mutualists, the intensity 
of competition on those partners from ecologically similar species will 
diminish. This proceeds by selection of one symbiont to increase its fitness 
through changes that increase the fitness of the other symbiont. 

Nonsymbiotic Mutualisms 
Nonsymbiotic mutualisms are those in which the two species are physically 
unconnected. While there may be some physiological habituation to the 
mutualist, as in the anemone-dwelling fishes (89), there are no directphysio­
logical links. Various mutualisms involving ants, including myrmecophytes 
and the leaf-cutter ant-fungus relationship, offer ample material for argu­
ments about classification; having considered nutritional aspects above, we 
deal with protection in this section. 

TRANSPORT Pollination and dispersal have enjoyed a recent surge of 
interest and have accumulated a large literature to which we cannot do 
justice in the scope of this paper (but see reviews by Howe, Regal, and 
Dressler in this volume). Both involve the transport of particles involved 
in reproduction, and for both there are nonmutualistic alternatives. In both 
interactions, transport is effected in exchange either for some sugar-rich 
substance (nectar, ovarian tissue of fruits) or the consumption of some of 
the particles to be transported (pollen, nuts). In the case of pollination, in 
which the "target" area is very limited, the transport will generally be either 
successful or totally unsuccessful. In dispersal, on the other hand, the 
difference between outcomes is not as absolute, and the target is large and 
diffuse (328). Finally, both interactions are important to the genetic struc-
ture of the population. 

. 

Pollination by mutualism with animals is critical to sexual reproduction 
in the majority of flowering plants. The advantage of the mutualistic solu­
tion may be reduced pollen waste, longer transport, or increased probability 
of success at low density (290). After initiation with insect species in the 
Coleoptera and Diptera, the mutualism has been developed in several other 
orders, most notably the Hymenoptera (110, 127, 129, 158,252,297). There 
is a variety of vertebrates involved, including birds, bats, monkeys (148), 
lemurs (293), rodents (331) and other mammals. 

Dispersal of seeds, fungal spores (19, 88, 95, 210), and other propagules 
may not be as critical as pollination; offspring could simply grow up beneath 
their parent and replace it. However, dispersal would appear to offer the 
(seldom proven) advantages of colonization of other sites, increased out­
crossing, and escape from predators (124, 125, 231, 243). Since some of 
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those predators may be the dispersers themselves, the interaction can shift 
between mutualism and predation depending on plant and predator/dis­
perser densities (39). Many animal taxa act as dispersers, including 
birds, (135, 200), bats (85), large mammals (159), ants (22, 30, 66, 119, 124, 
125, 133, 195, 231, 253, 298), Drosophila (95), beetles (19), tortoises (262), 
and fish (105). 

PROTECTION Protection from predators, parasites, diseases, toxins 
(161), and occasionally competitors is provided by many organisms. The 
other partner may be animal or plant, and may provide food (sensu lata), 
reciprocal protection, housing, or some combination. 

Ant-plant protective mutualisms range from symbiotic obligate systems 
in which the plants house and feed the ants [e.g. Acacia (24, 149); Cecropia 
(150)] to housing ants without food provided [e.g. rubiaceous myrmeco­
phytes (29, 140, 141); Barteria (154)] and food provided without nest sites 
[chiefly extrafloral nectar-producing species (27, 82, 342)]. In all cases, 
aggressive and predatory ant behavior serves to reduce damage to the plant 
(26, 27, 28, 35, 70, 132, 141, 143, 149, 150, 154, 163, 165, 167, 168, 171, 
176, 229, 239). 

Ants and other insects are also mutualists with some herbivorous and 
sap-feeding insects, the ants providing protection in return for honeydew, 
a sugary secretion t!xtruded through the anus or glands (1, 2, 9, 46, 130, 241, 
270, 323). Homoptera and Lepidoptera seem to be the main taxa involved. 
Related mutualisms are some cases of phoresy in which insects transport 
other insects or mites on their backs. The "riders" are brought to sources 
of food and in return may protect the insects against parasites (336). Similar 
benefits may occur with nest-sharing insects (337). 

There are numerous examples of protection mutualisms among marine 
animals, including burrow-sharing by gobies and shrimp (89, 111, 192), 
anemones living on crab shells (15, 269), and cleaning mutualisms (77, 83, 
106, 131, 188, 190, 191, 193, 282). Both the goby-shrimp and crab-anemone 
mutualisms allow the partners to occupy areas they otherwise could not (89, 
269). Cleaning interactions are a set of potential mutualisms that have been 
a matter of some controversy (131, 190, 191, 193, 282). Cleaners are known 
from a variety of marine habitats, and there are many species apparently 
adapted to the role. Their removal only sometimes has negative effects on 
the host fishes. Losey (193) questions the mutualistic nature of some clean­
ing re1ationships, noting that parasite load shows little correlation to ten­
dency to solicit cleaning, and that scales and mucus are also taken by 
cleaner fishes. 

Other interactions involve mutual protection, which may appear as a 
simple consequence of living together. Protection against starfish predation 
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is provided to corals, scallops, and clams by xanthid crabs, sponges, and 
diverse epibionts, respectively (36, 102, 313). The epibionts and sponges are 
in tum less vulnerable to predation, and the crabs gain both protection and 
energy-rich mucus. Further benefits are provided in the mutualism between 
sea-anemones and the fish (Amphiprion) that live inside them (89, 208). The 
anemone gains protection, food, and is cleansed of waste and necrotic 
tissues, while the fish is protected and suffers less parasitism and disease. 
In other invertebrates, such protection mutualisms can help species in 
competition for space as well (52, 232). This aid can allow both partners 
to extend their habitat ranges, and also, for example, permits the bryozoan 
Cel/eporia to dominate the community, which it does not do in the absence 
of the mutualistic hydroid Zanclea (232). 

Both increased food and protection may be involved in mixed-species 
aggregations; but, which is more important, and indeed the mutualistic 
character of the phenomenon itself, are controversial. Mixed aggregation is 
known in delphinid whales (61,245), fishes (192), birds (58, 90, 2 17, 2 18, 
221), sea urchins (74) and terrestrial mammals (11, 32). The two principal 
hypotheses rel .. ting to the formation of heterospecific groups are that they 
enjoy an increased efficiency of foraging and that they are better able to to 
detect and avoid predators. Bird flocks have been the most thoroughly 
studied. 

Increased foraging efficiency by flocking has been proposed by Moynihan 
(220) and Cody (59). Flocking tends to occur when food availability is low 
(59, 217). However, individual birds in flocks spend less time watching and 
more time feeding, suggesting that protection from predators is the primary 
reason for flocking, and improved feeding is a secondary consequence (104, 
181). The theories of Vine (317) and Hamilton (118) show that individuals 
can reduce their chances of being eaten if they cluster together. This helps 
explain the origin of flocking for predator avoidance but not its specifically 
mutualistic (multi-species) nature. The motivation for mixed grouping is 
vaguer for monkeys than for birds. Mixed troops of monkeys travel and feed 
together (32), and the different species recognize one another's alarm calls 
(209). Baboons and impalas or bushbucks benefit from each other's presence 
by mutual recognition of alarm calls (11, 78, 321). In association, the 
impalas enter types of vegetation they do not use when unaccompanied by 
baboons (78). 

APPARENT PREDATION A third class of nonsymbiotic mutualism, 
somewhat miscellaneous and in many cases speculative, consists of appar­
ently predatory interactions in which the "prey" actually benefits. Porter 
(247) has shown that some algae absorb phosphorus from the gut of zoo­
plankton as they are "eaten" and usually pass through unharmed; similar 
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benefits may occur in copepods (79). Enhanced availability of nutrients to 
plants upon grazing has been suggested by Owen & Wiegert (235, 236) and 
by Stenseth (292), while growth-enhancing factors in grasshopper and bison 
saliva have been studied with mixed results (75, 128). Grazers may also 
retard succession and thus preserve the plants of the successional stages 
they prefer (56, 301). 

Other predators may reduce allocation of resources to offspring unlikely 
to survive and thus make their prey more efficient in reproduction (310). 
Similarly, herbivores may change the growth patterns of their prey and 
possibly decrease vulnerability to physical damage (281). As these cases 
indicate, what is now a mutualism may have arisen from some adaptation 
of the prey to predation, which makes it inefficient when the predator is 
absent. But whatever the origin, the interaction must be seen as mutualistic 
if fitness and/or population growth are reduced without it. The same princi­
ples apply to nontrophic interactions that appear to be +/-, such as cow­
birds' laying eggs in other birds' nests or epiphytes weighing down trees' 
branches: The negative impact may be exceeded by benefits such as parasite 
removal (285, 286) or nitrogen fixation and trapping of nutrients the tree 
can use (225). These cases, while often speculative, are fundamentally simi­
lar to those of pollen-feeding pollinators or nut-consuming dispersers: There 
is a balance of positive and negative effects on the "prey" that may shift with 
environmental conditions (39, 341). 

THEORIES OF MUTUALISM 

Ecological theory about mutualism, excluding Kostitzin's book (177), dates 
only from the last decade, and has been directed at two main questions: 
(a) When will mutualisms develop (note that we do not say "evolve") and 
in what sorts of species and environments will they be found? (b) When will 
a community involving mutualists persist (again, we do not say "be sta­
ble")? 

Excluding theories concerning indirect mutualism, to be dealt with in a 
later section, four kinds of model can be distinguished: (a) those of individ­
ual selection, which are often of a cost-benefit type; (b) population dynamics 
models, with two, three, or many species; (c) models of shifts of interactions 
from mutualistic to predatory or competitive; and finally (d) the "keystone 
mutualist" concept. 

Individual selection models (13, 170,249, 271, 335, 336), though different 
in details, come to similar conclusions. They generally find that intimacy 
or symbiosis favors mutualism because the number of competitors receiving 
benefits is restricted. However, Wilson's (336) model shows that mutualism 
can evolve even with large trait groups. Roughgarden (271) and Keeler 



326 BOUCHER, JAMES & KEELER 

(170) each find that major fitness gains are critical. Axelrod & Hamilton 
(13) do not consider games with differing payoffs (the equivalent of changes 
in fitness), but it seems clear that even within the "prisoner's dilemma" 
payoff matrix the greater the reward for mutual cooperation relative to 
noncooperation the more likely is cooperation. Mutualism is expected when 
it is valuable [e.g. protection in areas of high predation pressure (15), 
nodulation under competition for soil nitrogen (40)] and when it is cheap 
and efficient [e.g. extrafloral nectaries when ants and sunlight are abundant 
(170)]. What is still lacking is a theory that will predict when mutualistic 
solutions are preferred to nonmutualistic ones, assuming both are possible 
(but see 113, 260). 

The population dynamics models, most starting from Lotka-Volterra 
competition theory and reversing the sign of the coefficients, are to some 
extent replies to the early contention that mutualism has a destabilizing 
effect on communities (211, 212, 213) and therefore should be rare. It has 
been shown that mutualism can be stabilized by a variety of means: strong 
negative density-dependence (103, 116, 183, 249, 315), curvilinearities (3, 
116, 213, 288, 315, 329), frequency dependence ( 183), or predation (125). 
Furthermore, mutualism demonstrates situations in which models without 
either stable or feasible equilibrium points nevertheless have both species 
persisting indefinitely (315). Thus the criteria for stability, though widely 
used, are probably irrelevant to existence in the real world (315), and even 
highly unstable models with both mutualism and positive density-depend­
ence may be biologically reasonable (D. H. Boucher, in preparation). Lotka­
Volterra models also indicate that mutualisms with stable equilibria tend 
to show out-of-phase oscillations (100). 

Post, Travis & DeAngelis have shown how the mathematical theory of 
M-matrixes can be used to examine communities in which all the interac­
tions are mutualistic (68, 249, 305, 306). This theory may prove useful­
even though communities of even three species in which all interactions are 
mutualistic are probably rare-since the theory also applies to communities 
with certain combinations of mutualistic and competitive interaction. 

Other theories of mutualism are less mathematical. Boucher (39) has 
developed a graphic model of seed consumption to predict the population 
densities at which mutualism will turn into predation; the model success­
fully predicts the relative densities of nut-producing trees. Gilbert's concept 
of a "keystone mutualist" (98) whose demise would produce major shifts 
in community structure is analogous to the earlier "keystone predator" idea 
of Paine (237). 

Indeed, one approach to generating predictions about the effect of mutu­
alism would be simply to reverse predictions concerning predators or com­
petitors. For example, if removal of a predator on a competitively dominant 
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species should decrease diversity, removal of its mutualist should increase 
it. Mutualism theory is still at a stage in which simple modifications of 
competition and predation models may provide unexpected insights. 

We can also suggest several questions about mutualism that theorists 
have not considered. When will mutualisms tend to be asymmetric or 
symmetric (46)? If one mutualist can interact with each of two others, when 
will the two "compete" for it, and how? When will the fitness and popula­
tion-dynamics definitions of mutualisms conflict (288)? Finally, theory that 
gives quantitative predictions about mutualism is almost totally lacking. 
Theoretically, the field is wide open. 

THE DISTRIBUTION OF MUTUALISM 

There are clear differences among communities in the abundances of some 
mutualisms. For example, angiosperms of tropical rainforests and tropical 
deciduous forests are almost entirely animal-pollinated (162), while the 
dominant species of temperate deciduous forests are wind-pollinated (= 

nonmutualist). Desert and tundra have numerous animal-pollinated species 
(81), while temperate grasslands, frequently 90% graminoids by canopy 
coverage, have little animal pollination. Boreal forests are similarly domi­
nated by wind-pollinated trees. Comparable patterns hold for seed dis­
persal. 

Myrmecophytes-plants inhabited by ants-appear to be confined to the 
tropics (29, 141, 149, 150). Janzen (149) found ant-acacias to be limited by 
the length of the dry season; a healthy ant colony required continuous leaf 
production by the plant. There are other peculiar patterns: Both ants and 
acacias are numerous and important in Australia, but ant-inhabited acacias 
do not occur there (132). 

Ant-plant mutualism at extrafloral nectaries, while having many of the 
same properties, is much less specialized and more widespread. Both tem­
perate and tropical plants are known to possess extraflora1 nectaries (27, 
166, 342). Existing data are incomplete but suggest that the majority of such 
species are tropical. Keeler (170) has recently summarized the data on cover 
by plants with extrafloral nectaries; it ranges from nearly 100% to zero but 
a temperate-tropical comparison would be premature. Most studies (27, 
164, 166, 170) have found positive correlations between abundance of extra­
floral nectaries and ant abundance at the site. 

Ant dispersal of seeds is widespread, but some regions [e.g. Australia (30, 
66)] are particularly rich. Beattie & Culver (22) found a significant correla­
tion between the number of species with ant-dispered seeds and ant abun­
dance at West Virginia sites, but cover by myrmecochorous plants was 
independent of ant abundance. Although myrmecochory is best known in 
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temperate plants, several tropical myrmecochores have recently been re­
ported (133, 195), suggesting that current biogeographic information is 
incomplete. 

Similar temperate-tropical differences show up for other mutualisms. 
Cleaner-fish mutualisms, fungus-gardening invertebrates, and symbiotic 
corals seem to be confined to the tropics. Nitrogen-fixing mutualisms, on 
the other hand, seem to contradict the pattern, with actinomycete­
nodulated plants being rather boreal and the most tropical of the legume 
subfamilies (Caesalpinoideae) having only about one fourth of its genera 
known to nodulate. The proportions for the more temperate Papilionoidae 
and Mimosoideae are about 90% (7). 

Mutualisms thus seem more prominent in tropical communities (213), 
although there are some major exceptions. However, there are several prob­
lems in interpreting this trend ecologically. There are major phylogenetic 
influences, and the mutualisms are by no means independent. [To add 
another example, Gilbert (97) notes the inverse correlation of ant-plant and 
ant-insect protection mutualisms.] Most fundamentally, the data in most 
cases are absolute abundances and not proportions. While mutualism in­
creases toward the equator, so do species richness, productivity, biomass, 
and perhaps predation pressure. Thus without data on proportions of taxa 
or individuals that are mutualistic, we can say little. 

Two other claims have been made concerning the distribution of mutu­
alisms: that they require environmental stability (91, 261), and that they 
allow survival in marginal habitats (187). The apparent contradiction is 
somewhat reconciled by the fact that the lirst claim applies more to nonsym­
biotic mutualisms and the second to symbioses. It is true that many plant 
colonists of disturbed areas do not form relationships with mycorrhizal 
fungi (146, 147), and many weedy plants are selling or apomictic (122). 
However, light-gap species are frequently mutualistic (26, 230, 299). 

It has also been suggested that mutualisms will allow survival in marginal 
habitats. The nutritional aspect is of greatest ecological importance here, 
with the mutualistic association better able to survive in nutrient-poor 
habitats (187) and on lower quality diets than the same species living 
separately. This can be thought of as an example of division of labor, with 
the elimination of redundant metabolic pathways within the association. 
The association is like a microcosm, having its own nutrient cycling mecha­
nisms, which tend to keep essentials within the system rather than let them 
flow through in an unrestricted fashion. Consequently, the mutualists are 
able to thrive in circumstances, such as the nutrient-poor waters of tropical 
and subtropical seas or the poor soils of tropical rain forests, where nutrient 
loss is a severe problem (8). 
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Whatever the patterns of distribution, there is no doubt that mutualisms 
are important to the organization of many communities and the diversity 
of many taxa. Prime examples are the angiosperms, whose diversity and 
dominance expanded in tandem with those of their pollinators and, to a 
lesser extent, their dispersers (50, 108, 242, 259, 290). The result has been 
a hundred-fold increase in vascular plant richness since the early Creta­
ceous (50), as well as major radiations among insects, particularly Hyme­
noptera. Mycorrhizae may have been involved in another major 
evolutionary event, the invasion of the land by plants (246), and the diver­
sity of modem fungi owes a great deal to mycorrhizal and lichenous taxa 
(4). The existence of coral reefs depends both on endozoic algae (238, 248, 
294) and on protection mutualisms (102), while the large herbivores of 
grasslands generally depend on ruminant bacteria to maintain their high 
densities in these cellulose-rich habitats (202). Deep-sea vent communities 
may also depend on mutualism (57). 

All these arguments for the importance of mutualism in ecosystems as 
we know them seem a bit trivial when we tum our attention to the likeli­
hood that eukaryotic cells are the descendants of intracellular symbi­
onts (205, 206, 207, 326). The serial endosymbiosis theory holds that 
mitochondria, chloroplasts, and other organelles are derived from 
symbiotic prokaryotes. Recent discoveries lending credence to this the­
ory are reviewed by Whatley et al (326), Margulis (207), and Taylor 
(295). 

Mutualisms are known in all kingdoms of organisms, and there is a 
tendency for the partners to come from different kingdoms (45). This is 
particularly true for obligate and symbiotic mutualisms, and may simply be 
a reflection of nutritional complementarity. Some taxa seem particularly 
likely to enter into mutualisms-e.g. Nostoc, Tfebouxia, Symbiodinium, 
and Chlorella (207), and at a higher level, ants, coelenterates, and legumes. 
Some taxa participate in several mutualisms simultaneously: Acacia collin­
s;;, for example, has pollination by bees, dispersal by birds, protection by 
ants, and probably mycorrhizae and Rhizobium nodules (and is also a 
weedy species). 

THE NUMBER OF PARTNERS 

Three sorts of specificity can be distinguished in examining the interaction 
of a mutualist with its partners-the numbers of species, of individuals, and 
of genomes involved. Each of these raises different questions, and all three 
are different from the questions of obligacy and symbiosis. However, certain 
correlations seem to emerge. 
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We call the interaction of a single pair of species "monophily." An 
example is the pollination of Yucca glauca by Tegeticula yuccasella (5, 
251). "Oligophily" is the presence of a few species in each role-say less 
than five. Examples of this interaction are found in, for example, curved­
beak hummingbirds and the specialized flowers they pollinate. Finally, 
"polyphilic" mutualisms involve multiple taxa simultaneously--e.g. yellow 
composites and their pollinators (flies, bees, butterflies). 

Many of the most celebrated mutualisms are monophilic: in pollination 
[Yucca (5, 251), figs and fig wasps (128, 158), solitary bees and their hosts 
(81, 152, 244)]; ant-plant protection mutualisms [Barteria and Pachysima 
(154), Cecropia and Azteca (150)]; nutritive mutualisms [Atta and its fungi 
(255, 337), fungus-gardening beetles (21), at least some lichens (206), in­
vertebrate-alga interactions (207, 222)], and others. Monophily is often 
hard to understand: Two species with clearly separate genomes (jumping 
genes notwithstanding) and independent evolutionary histories interact co­
operatively. When monophily is obligate and symbiotic, the two species are 
often considered as one. Certainly, the pair ceases to have two sets of 
interactions: Interaction with one species requires interaction with the 
other. These are the species for which high evolutionary risk has long been 
proclaimed. They have given up their "freedom" and depend, evolutionarily 
and ecologically, on the presence of a species whose genome evolves inde­
pendently. They cannot exchange genes with it, are subject to its mutability 
or lack of mutability, and must endure situations imperiling its survival. 
Selection will occur, of course, but the mutualist is a victim of the fitness 
of its partner, rather than a direct participant. 

The conventional wisdom about monophilic obligate mutualists given 
above is an overstatement, of course. Species generally lumber along with 
numerous incomplete adaptations to today's unreliable environment, only 
indifferently adapted to any particular danger. Perhaps mutualistic interde­
pendence does not engender major risks very often; whether it raises the 
risks of extinction over the long run is also unclear. Investigation of the 
population dynamics of a monophilic mutualism as compared to oligophilic 
congeners would be informative. 

Monophilic facultative mutualisms are unknown to us. A self-compatible 
and self-fertilizing Yucca would constitute one, if such a plant existed. Since 
such things are by no means impossible, but only unknown, we conclude 
that they are selected against, perhaps for the reasons mentioned above. 
There are also mutualisms in which only two species interact at a given site 
but the pairs may vary. For example, Acacia collinsii forms ant-acacias with 
Pseudomyrmex belti, P. jerruginea, and P. nigrophilosa in western Costa 
Rica (149). On an individual level this might be considered monophilic, but 
on the population level it is certainly oligophilic. 
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Oligophilic mutualists would appear to have the "best of both worlds." 
Oligophily is the compromise between the risks entailed by specialization 
and the inefficiency of generalist interactions; it is common in both faculta­
tive and obligate, symbiotic and nonsymbiotic mutualisms. Much of polli­
nation falls into this category, as well as many mycorrhizal associations, 
nitrogen-fixation, and mixed feeding flocks of birds. 

Polyphilic obligate symbiotic mutualism is rare. Invertebrate interactions 
with Chiarella may qualify (101, 189, 307); but the taxonomy of symbiotic 
algae is extremely difficult, so these results may change. Most mutualist taxa 
are probably polyphilic facultative mutualists, simply because these broad 
interactions encompass so many species. Generalist pollination, extrafloral 
nectaries (163, 171), myrmecochory and other animal dispersal of seeds 
(200, 243), vesicular-arbuscular mychorrhizae (204), and vertebrates and 
their gut flora are examples. Obligate mutualism would appear to operate 
differently from facultative mutualism, with the former tending to be mono­
philic or oligophilic, the latter oligophilic or polyphilic. Judging from the 
abundance of different types, it would seem that facultative mutualisms are 
readily established between species but that significant coevolution is rare. 
The mutualisms remain casual and generalized. In a few cases, coevolution 
leads to major fitness gains for the partners, perhaps followed by obligacy 
and/or symbiosis. 

This view is quite different from the one given previously, which sug­
gested that symbiotic mutualism evolves from intimate interactions that are 
parasitic or commensal. It seems likely that both processes have occurred. 
Perhaps detailed comparison of the (presumed) histories of a variety of 
mutualisms would tell us about the conditions selecting for symbiosis. 

In order to take full advantage of the opportunities available once the 
partnership is established, the interacting species must have solved the 
critical problems of (a) one mutualism and two sets of limiting factors and 
(b) finding the partner. Often the first problem is solved by the establish­
ment of the interaction itself. It is also frequently solved by symbiosis: 
Living together, both species have the same set of experiences, even if they 
do not necessarily react similarly. Thus the symbiotic pair, confronted with 
the predator of one, is jointly faced with producing antipredator defenses 
or perishing. The nonsymbiont, on the other hand (imagine a pollinator), 
may return to find its partner devoured. The problem of finding the partner 
can also be solved by symbiosis: Putting both mutualists into each propa­
gule (whether calf or hydra bud) is an efficient way to maintain the mutual­
ism. Consequently, many (but not all) "highly successful" mutualists are 
symbiotic. 

The numbers of individuals with which one partner is mutualistic ranges 
from one to millions (158). Wilson (336) has discussed this in the light of 
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"the classical group selection problem," that of the mutualist's helping its 
competitors as well as itself. Competition for mutualism has been found 
both within and between species (2, 175, 319), and the within-species com­
petition would seem a major obstacle for the evolution of mutualism. Wil­
son shows that spatial heterogeneity of interaction (demes structured into 
trait-groups) can provide a solution; Pbst et al's (249) model of mutualist­
commensalist competition gives the same sort of result. 

The ratio of numbers of individuals of the two species interacting is an 
important consideration, particularly in symbiosis, and it would seem that 
the optimum ratio would not necessarily be the same for both species. 
Synchronization of reproduction can be seen as a way to maintain a more 
or less constant ratio (205, 223), but little is known about how such ratios 
vary or the role of conflicts in them. 

Symbiotic mutualisms tend to create new "organisms" with two or more 
distinct genomes, and the cellular endosymbiosis theory suggests that all 
eukaryotes are such organisms (207). The dependency involved if the sym­
biosis is obligate implies that coordination between genomes, with elimina­
tion of redundancy, should be beneficial to the association; but this would 
seem to conflict with a strict "selfish gene" view. Some examples of coordi­
nation are elegant; for example, legbemoglobin in Rhibozium nodules is 
synthesized partly on the bacterial template (heme) and partly on the plant 
template (globin) (63). Furthermore, the structure of leghemoglobin is re­
markably similar to those of animal hemoglobins. Such· cases of mutualism 
may provide useful tests for theories of genetic selfishness. 

FORMATION AND BREAKDOWN 

While some mutualisms are undoubtedly highly coevolved (5, 96, 141, 149, 
158, 215, 224, 251, 255, 266), and past (and the present) authors have 
emphasized evolutionary processes, mutualisms can easily be formed with­
out evolution (157). Species may be preadapted to forming a new mutualism 
through traits presumably evolved with different partners elsewhere; e.g. 
the extraDoral nectaries of introduced Vida in California attract the intro­
duced ant Iridomyrmex (176), and cattle egrets pick ticks off deer (117). 
However, other apparent mutualisms have been observed to develop rapidly 
with little preadaptation [e.g. dogs and langurs (280), amoebae and bacteria 
(160)]. Given the facultative, polyphilic nature of many mutualisms, it 
would be an error always to interpret them in coevolutionary terms. 

Once a mutualism exists, it is subject to "parasitism" in two senses. First, 
the association may provide a novel resource on which to prey, such as root 
nodules or Acacia thorns. Second, either partner, or a third species, may 
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take one of the benefits normally provided, without giving anything in 
return. Nectar-robbing insects (18, 19, 81, 144), ants preying on their aphids 
(323), cleaner-fish biting their "hosts" (106), and unaggressive ants inhabit­
ing acacias (149) are just a few examples. Acacia-ants may take nectar from 
other sources (169), indicating the beginnings of either breakdown of the 
mutualism or oligophily. Invasion of islands, in which one partner may be 
left behind, often leads to the loss of coevo1ved traits (155, 263). 

Extinction of one partner ought to have drastic effects on the other if 
there has been substantial coevolution; by the same token, it may result in 
rapid extinction of the partner and thus leave little evidence behind. In fact, 
despite the potential importance of this phenomenon (98), few good cases 
are known (296, but see 234). Loss of a substantial seed disperser commu­
nity may simply result in new dispersers' taking over (159). Neither highly 
obligate nor highly facultative mutualisms are likely to give good evidence 
of extinction caused by loss of mutualist. 

INDIRECT MUTUALISM 

Several recent theoretical studies (180, 184, 185, 314, 320, 335, 336) have 
indicated that species that never come into physical contact may neverthe­
less positively affect each other's fitnesses or population growth rates. Data 
sustain these assertions in a substantial number of cases. Nevertheless, most 
of the following "indirect mutualisms" should be seen as speculative, inter­
esting, and perhaps indicative of the need to revise accepted views of com­
munities (261, 336). 

Consumer-Resource 
Using MacArthur's (198) consumer-resource equations, Levine (184) and 
Vandermeer (314) have shown how two consumers, by reducing competi­
tion and preventing competitive exclusion among the resources they eat, can 
benefit each other. This type of mutualism is a consequence of the interac­
tion of two well-accepted ecological phenomena: competition, which can 
lead to reduced niche overlap (14, 34, 120, 138, 175, 198, 199, 213, 219, 240, 
254, 312, 329, 330), and the keystone predator effect (60, 65, 99, 121, 122, 
151, 182, 329). An intriguing aspect of this mutualism is that it follows 
directly from competition and predation. Thus it should be taken seriously 
by ecologists who believe competition and predation to be important in 
structuring communities. 

An obvious consequence of the model of Levine (184) is that indirect 
mutualism is unlikely to occur in adjacent trophic levels. Plants' resources 
do not compete, therefore the plants are not able to engage in this kind of 
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mutualism, and are more likely to be in competition with one another. 
Herbivores could be indirect mutualists, but this would mean that the 
animals which feed on those herbivores would not be. 

A promising system for the verification of a case of indirect mutualism 
exists in sUbalpine ponds in Colorado (72). The distribution of a midge larva 
(Chaoborus) in these ponds has been shown to depend on the presence of 
a larval salamander (Ambystoma), apparently through interactions between 
the large and small species of Daphnia, which are eaten by Ambystoma and 
Chaoborus, respectively. Large Daphnia were present in small numbers and 
small Daphnia in large numbers in ponds where the salamander lived. Since 
absence of salamanders is correlated with absence of small Daphnia, midges 
can only survive in ponds inhabitated by salamanders. Up to this point, the 
system appears to fit the requirements for indirect mutualism outlined 
above: The two consumers have different feeding habits and the resource 
species probably compete for food (both Daphnia are herbivores). To dem­
onstrate mutualism it remains to manipulate population densities of all four 
species in controlled conditions. 

Possible consumer-resource indirect mutuaIisms also exist among terres­
trial herbivores. Two herbivorous rodents studied by Cameron (54) were 
subjected to removal experiments. Results indicated a mutualistic relation­
ship, as survivorship and reproduction were lower in both experimental 
populations than in control populations, but the mechanism was not deter­
mined. On the Serengeti plain in Africa, where wildebeest, Thompson's 
gazelle, and zebra are the large herbivores, there is another possible case of 
indirect mutualism. Stomach contents indicate a dietary separation among 
the three (114). Thompson's gazelles prefer to feed in areas where wilde­
beest have grazed one month previously, since these regions have greater 
plant biomass (202). No data on the effects of gazelle grazing on the quan­
tity of grasses to be eaten by wildebeest are available. This appears to be 
a promising case, but the full story is not yet told. 

Enemies ' Enemies 
Indirect mutualism may also occur among competing species, as shown by 
Lawlor (180). If species A competes with B, and B with C, the net interac­
tion between A and C may be mutualistic, and the principle can be general­
ized to multispecies communities. Lawlor's (180) analysis of niche overlap 
matrixes for bird communities indicates such mutualism, and Seifert & 
Seifert (278) found mutualisms in Heliconia bract invertebrate communities 
through removal experiments. The principle of "two negatives may create 
a positive" can be extended to communities containing any kind of interac­
tion, using Levins's loop analysis techniques (185). Here again, species with 
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no direct interaction may affect each other's growth rates positively. The 
method is particularly powerful in that it generates testable predictions 
using only knowledge of the signs of interactions. 

Friends' Friends 

The reverse of the above situation can also exist: if A and C are both 
mutualistic with B, A and C can benefit each other indirectly. This possibil­
ity, which also can be derived from loop analysis, is indicated in a number 
of pollination systems. Mimicry among flowers in limited populations, such 
as those found in alpine areas, could enlarge the population size perceived 
by pollinators. This has been proposed by Macior (203) for a number of 
sympatric, synchronously blooming species that resemble one another and 
share a pollinator. Several SUbalpine species in Colorado, all of which are 
pollinated by butterflies, share an ultraviolet reflectance pattern (322). 
Brown & Kodric-Brown (49) have described a system in which seven spe­
cies with flowers similar in appearance place pollen on different parts of the 
pollinators, in this case humingbirds. If mimicry did not occur, constant 
pollinators would switch from rare species to rare species upon perceiving 
that each is insufficiently rewarding, until they landed on a common species 
with which they would stay, to the detriment of the rare species (37). Some 
pollen is wasted when pollinators move between mimics, but this may favor 
a plant more than not being visited at all. 

While competition for pollinators is thought to explain divergent flower­
ing times (219, 319), the consequences of divergence may be a form of 
indirect mutualism (16, 1 8, 272). This has been demonstrated by Waser & 

Real (320) on the same species studied in the competition experiments of 
Waser (319). When the number of flowers on the early-flowering species was 
reduced, the seed set of the later-flowering species declined. In the short run, 
this works in one direction, to the benefit of the later-flowering species. In 
the long view, both species support the pollinator population, and it is 
reasonable to hypothesize that removing either species will reduce future 
pollination by reducing the resources available to the pollinators. While the 
above example is from the temperate zone, the phenomenon may be wide­
spread; Schemske (272) describes "pollinator sharing" in tropical herbs. 
The general principle is that the increase in pollination must outweigh the 
loss of pollen in interspecific transfers. Mutualist maintenance over longer 
periods or in higher densities than would occur if fewer mutualistic species 
were present may indeed apply to many other systems (18, 147). 

This raises another question: When does sharing a mutualist result in 
competition and when does it result in indirect mutualism among the 
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sharers? Either is possible; and at present we have little knowledge, either 
theoretical or empirical, with which to answer. 

Not all the interactions in a "friends' friend" mutualism need be positive. 
Somewhat more complicated cases are found when ant protection of aphids 
also results in protection of the plants on which they feed (214). The 
important point is that the ants protect the plant and the plant indirectly 
(via the aphid) feeds the ants. One could extend this to systems in which 
the ants simply prey on insects found on the plant and thus protect it, 
without any direct mutualism between ant and herbivore at all. This results 
in "green islands" of protected plants in the vicinity of wood ant nests (179). 
Indeed Price et al (251a) suggest that the role of plant defenses is often 
indirect, through making herbivores more vulnerable to predation and 
parasitism; thus "Enemies should be considered as mutualists with plants." 

Protection without Interaction 
A final class of indirect mutualism involves species whose interactions with 
third species tend to reduce predation on each other. The third species may 
be a predator whose rate of predation on each of two prey is reduced when 
both are present. This may be due to such phenomena as Mullerian mimicry 
or predator satiation (153). It may also result from chemical protection, 
such as in the "plant defense guilds" proposed by Atsatt & O'Dowd (10). 
In all these cases, a simple safety-in-numbers (whatever the species to which 
the "numbers" belong) is all that is necessary to produce indirect mutualism 
by reducing the probability that a given prey individual is eaten. 

A more complicated situation is described by Lubchenco (196) in rocky 
intertidal communities. A green crab eats young periwinkles, which fed 
upon the alga Enteromorpha. Enteromorpha provides good cover for the 
crabs, hiding them from gulls. Where periwinkles are not held in check, the 
alga Chondrus becomes dominant, but crabs cannot hide well in this alga. 
There is no known direct interaction of crab and Enteromorpha, so this is 
an indirect mutualism. 

While we have no reason to believe that new evolutionary theories will 
be necessary to explain the evolution of any kind of indirect mutualism, it 
is appropriate to point out the work of Wilson in this connection (335, 336). 
Wilson's model depends on the existence of spatial variation within commu­
nities and thus differential feedback through loops of interactions. This 
condition satisfied, two genotypes may be differently affected by their in­
teractions with other elements of the community. Thus species or genotypes 
can be selected to increase the abundance of other species or genotypes if 
this brings positive feedback. Clearly, this could result in the evolution of 
indirect mutualisms, and in simulations it produces many mutualistic in-
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teractions (336). The question that remains is whether Wilson's model 
accounts for anything existing in the real world. This brings us back to the 
need for more information on the abundance of mutualistic interactions, 
particularly those that appear to be coincidental or the outcome of evolution 
driven by other processes. 

FUTURE DIRECTIONS 

Different approaches to ecology have emphasized different interactions and 
levels of organization. Ecosystem studies tend to look at the interconnected­
ness of the species in a community with respect to their roles in energy flow 
and nutrient cycles. This emphasizes wholeness and beneficial relationships, 
or at least takes a positive view of negative interactions as part of ecosystem 
functioning. The other major school of thought in ecology is much more 
individualistic in approach and has risen to preeminence with the decline 
of the "community as superorganism" view. After a period of being hauled 
out of the past and held up as a bad example of scientific practice, the 
organismic school has been given a tentative pardon in a commentary by 
Richardson (261). Richardson proposes that the organismic view is sup­
ported by evidence of the existence of "multispecies group mutualisms," or 
of species that play a key role in giving a community its distinctness. It 
remains to be seen whether future work on mutualism will help to reconcile 
the organismic and individualistic views. When some workers see mutual­
ism as an integrating mechanism for whole communities (261, 336), and 
others view it as the endpoint of a "mutually exploitative arms race" (67), 
there is obviously a philosophical gap of some size to be bridged. 

What is clear is that the study of mutualism has made major advances 
in just the past decade. Theorists have successfully defended mutualism 
against the charges of being destabilizing (211, 212) and group-selectionist 
(333), while field studies have shown it to be widespread and important to 
many population and community characteristics (17, 33, 85, 96, 108, 109, 
115, 152, 244, 258, 287, 300, 327, 337, 338). Given the importance of many 
mutualisms to human welfare (40, 51, 87, 98, 134, 136, 204, 210, 256, 339), 
not to mention their elegance and beauty, we can only hope that the rapid 
growth of interest in mutualism will continue. 
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