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Abstract

We derive the numerical value of the fine structure constant α in purely number-theoretic terms, under the
assumption that in a system of charges between two parallel conducting plates, the Casimir energy and the mutual
Coulomb interaction energy agree.

In 1916, based on Michelson and Morley’s precise measurement of the hydrogen atom spectrum [1], Arnold
Sommerfeld extended the Bohr model to include elliptical orbits and relativistic dependence of mass on velocity,
introducing the term α for the fine-structure constant [2]. While the first physical interpretation of α was as the ratio
of the velocity of the electron in the first circular orbit of the relativistic Bohr atom to the speed of light in a vacuum,
the physical interpretations of α have widened greatly since that time.

As a dimensionless constant which does not appear to be directly related to any mathematical constants, the
fine-structure constant has long fascinated physicists. Arthur Eddington argued that the value could be “obtained by
pure deduction” and he related it to the Eddington number, his estimate of the number of protons in the universe [3],
conjecturing in 1929 that α = 1/137 precisely [4]. Wolfgang Pauli reportedly collaborated with psychoanalyst Carl
Jung on the possible significance of α−1 [5], and Max Born is said to have believed that if the value of α were different,
“our task to disentangle the natural laws would be hopelessly difficult” [6]. By the 1940s, however, experimental values
for α−1 deviated sufficiently from 137 to refute Eddington’s argument [7]. Richard Feynman, one of the originators of
the theory of quantum electrodynamics (QED), referred to the fine-structure constant in these terms:

There is a most profound and beautiful question associated with the observed coupling constant, e –
the amplitude for a real electron to emit or absorb a real photon. It is a simple number that has been
experimentally determined to be close to 0.08542455. (My physicist friends won’t recognize this number,
because they like to remember it as the inverse of its square: about 137.03597 with about an uncertainty
of about 2 in the last decimal place. It has been a mystery ever since it was discovered more than fifty
years ago, and all good theoretical physicists put this number up on their wall and worry about it.)
Immediately you would like to know where this number for a coupling comes from: is it related to pi or
perhaps to the base of natural logarithms? Nobody knows. It’s one of the greatest damn mysteries of
physics: a magic number that comes to us with no understanding by man. You might say the “hand of
God” wrote that number, and “we don’t know how He pushed his pencil.” We know what kind of a dance
to do experimentally to measure this number very accurately, but we don’t know what kind of dance to
do on the computer to make this number come out, without putting it in secretly! [8]

In this note, we will argue that (modulo a clearly stated and reasonable hypothesis), the theoretical value of the
inverse of the fine structure constant is given by the expression:

α−1 =
6

ζ(−3) · π2
·
(

2

5
(1 +

√
2− 2

√
3)− 2

3
π − 6 log 2 + 2 log(1 +

√
2) + 12 log(1 +

√
3)− 4 log(2 +

√
3)

)
where ζ(−3) = 1/120 based on the analytic continuation of the Riemann zeta function to negative values.
∗See http://transdiscipline.com
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Figure 1: Two parallel plates.

Imagine two parallel, square conducting plates that are aligned so that they
form opposite faces of a rectangular parallelopiped. The separation between
the plates is a > 0. Each of the two plates has sides of length ` = na, where n
is a positive integer. For purposes of analysis, we mark out an n × n grid on
each plate, forming n2 subsquares, with each subsquare having sides of length
a. Now each pair of corresponding marked subsquares (on the two respective
plates) define opposite faces of a cube C ∼= [0, a]3 having volume a3. There are
n2 such cubes which, together, fill the space between the plates. The system
is illustrated in Figure 1.

We assume the charge on the electron is −e.
Imagine that each of the aforementioned n2 cubes contains both one negative

charge (−e) and one positive charge (e). More specifically, suppose that each of
the two charges has been uniformly distributed across the cube without mutual
annihilation. In the Semi-Classical Model (SCM), smearing −e across a cube
ensures that each point (x, y, z) is associated with a charge density

ρ−(x, y, z) = −e/a3.

Similarly, smearing +e across a cube ensures that each point (x′, y′, z′) within it is associated with a charge density

ρ+(x′, y′, z′) = +e/a3.

In the SCM, charges −e and +e are not associated with any spin.
The mutual Coulomb interaction energy E for the aforementioned system of charges between two plates is

calculated as follows: For point charges, it can be shown that E is the sum of mutual interaction energies of distinct
pairs of charges. In the system being discussed, each of the n2 cubes has a charge +e and a charge −e smeared across
it. Consider the positive charge distribution inside one particular cube, C0. This can be paired with (i) the negative
charge distribution inside the same cube C0, or (ii) the positive charge distributed inside a different cube C1; or (iii)
the negative charge distribution inside a different cube C1. The contributions of the pairings of type (ii) and (iii)
mutually cancel within the calculation of E. The interaction energy E thus reduces to n2 times U , where U is the
mutual interaction energy of the positive and negative charge distributions inside a single cube. It is straightforward
to see that

U = − 1

4πε0
·
( e
a3

)2
·

a∫
x=0

a∫
y=0

a∫
z=0

a∫
x′=0

a∫
y′=0

a∫
z′=0

dx · dy · dz · dx′ · dy′ · dz′√
(x− x′)2 + (y − y′)2 + (z − z′)2

(1)

where ε0 is the absolute dielectric permittivity of classical vacuum. All variables in Equation (1) are in SI units, i.e.
U is in Joules, a is in meters, e is in Coulombs, and ε0 is in C2m−1J−1. Performing a change of variables x = au,
y = av, z = aw, x′ = au′, y = av′, and z = aw′, the mutual interaction energy can be re-expressed as follows

U = − 1

4πε0
· e

2

a
·

1∫
u=0

1∫
v=0

1∫
w=0

1∫
u′=0

1∫
v′=0

1∫
w′=0

du · dv · dw · du′ · dv′ · dw′√
(u− u′)2 + (v − v′)2 + (w − w′)2

(2)

The value of the 6-dimensional integral appearing in (2) is known as ∆3(−1) in prior work on “box integrals”1 by
Bailey, Borwein, and Crandall [9]. Indeed, the closed form value of ∆3(−1) is known:

∆3(−1) =
2

5
(1 +

√
2− 2

√
3)− 2

3
π − 6 log 2 + 2 log(1 +

√
2) + 12 log(1 +

√
3)− 4 log(2 +

√
3) (3)

≈ 1.882312644389660160105600838868367587849 . . .

It follows that

U = − 1

4πε0
· e

2

a
·∆3(−1) (4)

and so

E = −n
2

a
· 1

4πε0
· e2 ·∆3(−1) (5)

1This cited work generalizes hypercube line picking and the derivation of Robbin’s constant, and is not to be confused with the “box
integrals” of particle physics.
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Separately, we know that the Casimir energy due to quantum fluctuations of the electromagnetic ground state between
two parallel plates of area A and separation a is (in the limit A→∞) given by

ECasimir = −}c · π
2

6
· ζ(−3) · 1

a3
·A (6)

where ζ(−3) = 1/120 based on the analytic continuation of the Riemann zeta function to negative values of the
argument. In the system being discussed A = a2n2, and so, by substituting this into expression (6) we conclude that
in our system

ECasimir = −n
2

a
· }cπ

2

720
(7)

Let us hypothesize that in the limit of large n, the mutual interaction energy of positive and negative charge
distributions in our system is equal to the Casimir energy. From this hypothesis that ECasimir = E, it follows that

−n
2

a
· }cπ

2

720
= −n

2

a
· 1

4πε0
· e2 ·∆3(−1) (8)

wherein n2/a 6= 0 cancels on both sides. From the equality (8), we may deduce the inverse of the fine structure
constant directly:

α−1
def
=

4πε0}c
e2

(9)

=
6 ·∆3(−1)

ζ(−3) · π2
(10)

=
6

ζ(−3) · π2
·
(

2

5
(1 +

√
2− 2

√
3)− 2

3
π − 6 log 2 + 2 log(1 +

√
2) + 12 log(1 +

√
3)− 4 log(2 +

√
3)

)
(11)

≈ 137.3170644824394164743863149718495268383 . . . (12)

The 2018 CODATA [10] experimental value for α−1 is 137.035999084(21), which is ≈ 0.2% lower than our closed
form derivation in (12). Theoretical explanations of the 0.2% divergence will be given in a subsequent article (see
acknowledgements section below for details).
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