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This dissertation focuses on the Hadamard well-posedness of two nonlinear structure

acoustic models, each consisting of a semilinear wave equation defined on a smooth

bounded domain Ω ⊂ R3 strongly coupled with a Berger plate equation acting only

on a flat portion of the boundary of Ω. In each case, the PDE is of the following

form: 

utt −∆u+ g1(ut) = f(u) in Ω× (0, T ),

wtt + ∆2w + g2(wt) + ut|Γ = h(w) in Γ× (0, T ),

u = 0 on Γ0 × (0, T ),

∂νu = wt on Γ× (0, T ),

w = ∂νΓ
w = 0 on ∂Γ× (0, T ),

(u(0), ut(0)) = (u0, u1), (w(0), wt(0)) = (w0, w1),

where the initial data reside in the finite energy space, i.e.,

(u0, u1) ∈ H1
Γ0

(Ω)× L2(Ω) and (w0, w1) ∈ H2
0 (Γ)× L2(Γ).

The chief assumption of the first model is in taking f(u) = −u|u|p−1, i.e., f is

a restoring source, where p ≥ 1 is arbitrary. A standard Galerkin approximation



scheme is used to establish a rigorous proof of the existence of local weak solutions.

In addition, under some conditions on the parameters in the system, it is shown that

such solutions exist globally in time and depend continuously on the initial data.

For the second model, f is taken to be an energy building source, and in particular

it is allowed to have a supercritical exponent, in the sense that its associated Nemytskii

operators is not locally Lipschitz from H1
Γ0

(Ω) into L2(Ω). By employing nonlinear

semigroups and the theory of monotone operators, several results on the existence

of local and global weak solutions are obtained. Moreover, it is proven that such

solutions depend continuously on the initial data, and uniqueness is obtained in two

different scenarios.
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Chapter 1

Introduction

The focus of this dissertation is on the analysis of the standard Structure Acoustic

Model with the addition of nonlinear source and damping terms. While classical lin-

ear models are more understood, many questions regarding nonlinear models remain

unanswered. In particular, answering questions regarding the well-posedness of such

models has been the driving force, and the work that follows addresses conditions for

existence and uniqueness of local solutions, global solutions, and continuous depen-

dence of solutions on the initial data.

The structure-acoustic model under consideration is comprised of a semilinear

wave equation defined on a bounded smooth domain Ω in R3 coupled strongly with

Euler-Bernoulli’s plate equation acting only on Γ, a flat subset of R2, where Γ is a

portion of the boundary of Ω. This kind of model arises in the context of modeling

gas pressure in an acoustic chamber which is surrounded by a combination of rigid

and elastic walls. Γ in this case is the elastic wall and we additionally define a surface

Γ0 to be the rigid wall. In particular, note that ∂Ω = Γ ∪ Γ0. A general illustration

of Ω, Γ, and Γ0 is provided in Figure 1.1.
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The pressure in the chamber is described by the solution to a wave equation, while

vibrations of the elastic wall are described by the solution to a plate equation. One

is also often interested in making sense of the acoustic pressure as it appears on the

elastic wall, and in fact this acoustic pressure term is the trace of the time derivative

of the solution to the wave equation.

Two distinct iterations of this model will be examined, one containing an energy

restoring source on the acoustic medium of arbitrary order (Chapter 2), and one with

a wave source of bad sign up to supercritical order (Chapter 3).

1.1 Literature Overview

Structural acoustic interaction models have rich history. These models are well known

in both the physical and mathematical literature and go back to the canonical models

considered in [11, 35]. In the context of stabilization and controllability of structural

acoustic models there is a very large body of literature. We refer the reader to the
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monograph by Lasiecka [41] which provides a comprehensive overview and quotes

many works on these topics. Other related contributions worthy of mention include

[2, 3, 4, 5, 17, 29, 30, 40].

However, the presence of nonlinear damping has been recognized in the literature

as a source of many technical difficulties. Over the years, there has been some novel

progress in this area, particularly for wave equations influenced by nonlinear damping

[26, 27, 42, 50]. In [28], Georgiev and Todorova considered a semilinear wave equation

with frictional damping and a subcritical source term. The paper [28] provided the

local and global solvability of the equation, and also provided a blow up result which

ignited considerable interest in the area. For structural acoustic we mention the work

by Chueshov et al [20, 21, 22, 23, 24].

Consequent results on wave equations with subcritical sources were established in

[1, 18, 49, 52, 58]. We also would like to mention the works [8, 9, 10] on wave equations

influenced by degenerate damping and source terms. Well-posedness results for wave

equations with supercritical sources include the breakthrough papers by Bociu and

Lasiecka [13, 14] and the papers on systems of wave equations [31, 32, 33]. For

other related results on wave equations involving supercritical sources we mention

[34, 37, 38, 47, 48] and the references therein.

In this dissertation two iterations of the Structure Acoustic model are examined.

In the first, we follow an approach similar to Lions [45] to establish the existence of

local weak solutions. For the case of a critical source acting on the wave equation, we

prove such solutions depend continuously on the initial data, and so these solutions

are unique in the finite energy space. In the second, we use the powerful theory

of monotone operators and nonlinear semigroups (Kato’s Theorem [6, 55]). Our

strategy is similar to the one used by Bociu [12] and our proofs draw substantially

from important ideas in [13, 14, 33].
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1.2 The Principal Model

In this dissertation, we study a structure acoustic model influenced with nonlinear

forces. Precisely, we study the coupled system of PDEs:



utt −∆u+ g1(ut) = f(u) in Ω× (0, T ),

wtt + ∆2w + g2(wt) + ut|Γ = h(w) in Γ× (0, T ),

u = 0 on Γ0 × (0, T ),

∂νu = wt on Γ× (0, T ),

w = ∂νΓ
w = 0 on ∂Γ× (0, T ),

(u(0), ut(0)) = (u0, u1), (w(0), wt(0)) = (w0, w1),

(1.2.1)

where the initial data reside in the finite energy space, i.e.,

(u0, u1) ∈ H1
Γ0

(Ω)× L2(Ω) and (w0, w1) ∈ H2
0 (Γ)× L2(Γ).

In this model, Ω ⊂ R3 is a smooth, bounded, open, connected domain with

boundary ∂Ω = Γ0 ∪ Γ, where Γ0 and Γ are two disjoint, open, connected sets of

positive Lebesgue measure. Moreover, Γ is a flat portion of the boundary of Ω and is

referred to as the elastic wall. The part Γ0 of the boundary ∂Ω describes a rigid wall,

while the coupling takes place on the flexible wall Γ. Models such as (1.2.1) arise in

the context of modeling gas pressure in an acoustic chamber Ω which is surrounded by

a combination of rigid and flexible walls. The pressure in the chamber is described by

the solution to a wave equation, while vibrations of the flexible wall are described by

the solution to a Berger plate equation. We refer the reader to [25] and the references

quoted therein for more details on the Berger model.
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The nonlinearities f and h represent interior sources acting on the wave and plate

equations respectively. In addition, the system is influenced by two other competing

forces, namely g1(ut) and g2(wt) representing frictional damping terms acting on the

wave and plate equations, respectively. The vectors ν and νΓ denote the outer normals

to Γ and ∂Γ; respectively.

1.3 Notation

Throughout the work the following notational conventions for Lp space norms and

standard inner products will be used:

||u||p = ||u||Lp(Ω), (u, v)Ω = (u, v)L2(Ω),

|u|p = ||u||Lp(Γ), (u, v)Γ = (u, v)L2(Γ).

We also use the notation γu to denote the trace of u on Γ and we write d
dt

(γu(t)) as

γut or γu′. Occasionally, we also use the notation u|Γ to mean γu. As is customary,

C shall always denote a positive constant which may change from line to line.

Further, we put

H1
Γ0

(Ω) = {u ∈ H1(Ω) : u|Γ0 = 0}.

It is well-known that the standard norm ‖u‖H1
Γ0

(Ω) is equivalent to ‖∇u‖2. Thus, we

put:

‖u‖H1
Γ0

(Ω) := ‖∇u‖2 , (u, v)H1
Γ0

(Ω) = (∇u,∇v)Ω.

For a similar reason, we put:

‖w‖H2
0 (Γ) = |∆w|2 , (w, z)H2

0 (Γ) = (∆w,∆z)Γ.
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For convenience and brevity, we shall frequently use the notation:

‖u‖1,Ω = ‖∇u‖2 , ‖w‖2,Γ = |∆w|2 .

Relevant to this work we define the Banach space X and its norm by:

X = H1
Γ0

(Ω) ∩ Lp+1(Ω), ‖u‖X = ‖∇u‖2 + ‖u‖p+1.

With Y is a Banach space, we denote the duality pairing between the dual space Y ′

and Y by 〈ψ, y〉Y ′,Y , or simply by 〈·, ·〉. That is,

〈ψ, y〉 = ψ(y) for y ∈ Y, ψ ∈ Y ′.

The following Sobolev imbeddings will be used often without mention:



H1−ε(Ω) ↪→ L
6

1+2ε (Ω) for ε ∈ [0, 1],

H1−ε(Ω)
γ→ H

1
2
−ε(Γ) ↪→ L

4
1+2ε (Γ) for ε ∈ [0, 1

2
],

H1(Γ) ↪→ Lq(Γ) for all 1 ≤ q <∞.

Finally, we remind the reader with the following interpolation inequality:

‖u‖2
Hθ(Ω) ≤ ε ‖u‖2

1,Ω + C(ε, θ) ‖u‖2
2 , (1.3.1)

for all 0 ≤ θ < 1 and ε > 0.
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Chapter 2

Energy Restoring Source

2.1 The Model

In this iteration of the model, further assume the following on (1.2.1) that: f(u) =

−u|u|p−1, g1(ut) = 0, and g2(wt) = wt. This yields the following system of PDEs:



utt −∆u+ |u|p−1u = 0 in Ω× (0, T ),

wtt + ∆2w + wt + ut|Γ = h(w) in Γ× (0, T ),

u = 0 on Γ0 × (0, T ),

∂νu = wt on Γ× (0, T ),

w = ∂νΓ
w = 0 on ∂Γ× (0, T ),

(u(0), ut(0)) = (u0, u1), (w(0), wt(0)) = (w0, w1),

(2.1.1)

where the initial data still reside in the finite energy space, i.e.,

u0 ∈ H1
Γ0

(Ω) ∩ Lp+1(Ω), u1 ∈ L2(Ω), and (w0, w1) ∈ H2
0 (Γ)× L2(Γ).



8

The sign of f(u) creates what is referred to in the literature as an energy restoring

source, and in this chapter it will be taken to be of arbitrary power.

2.2 Main Results

Throughout this chapter, we study (2.1.1) under the following general assumptions:

Assumption 2.2.1. We assume that the sources in (2.1.1) are R-valued functions

satisfying:

� 1 ≤ p <∞,

� h ∈ C1(R) such that |h′(u)| ≤ C(|u|q−1 + 1) with 1 ≤ q <∞.

Remark 2.2.2. As the following bounds will be used often throughout the chapter it

is worthy of note that the above assumption implies that


∣∣∣|u|p−1u− |v|p−1v

∣∣∣ ≤ C(|u|p−1 + |v|p−1)|u− v|,

|h(u)| ≤ C(|u|q + 1), |h(u)− h(v)| ≤ C(|u|q−1 + |v|q−1 + 1)|u− v|.

4

We begin by introducing the definition of a suitable weak solution for (2.1.1).

Definition 2.2.3. A pair of functions (u,w) is said to be a weak solution of (2.1.1)

on the interval [0, T ] provided:

(i) u ∈ Cw([0, T ];X), ut ∈ Cw([0, T ];L2(Ω)),

(ii) w ∈ Cw([0, T ];H2
0 (Γ)), wt ∈ Cw([0, T ];L2(Γ)),

(iii) (u(0), ut(0)) = (u0, u1) ∈ H1
Γ0

(Ω)× L2(Ω),
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(iv) (w(0), wt(0)) = (w0, w1) ∈ H2
0 (Γ)× L2(Γ),

(v) The functions u and v satisfy the following variational identities for all t ∈ [0, T ]:

(ut(t), φ(t))Ω − (u1, φ(0))Ω −
∫ t

0

(ut(τ), φt(τ))Ωdτ

+

∫ t

0

(∇u(τ),∇φ(τ))Ωdτ −
∫ t

0

(wt(τ), γφ(τ))Γdτ

+

∫ t

0

∫
Ω

|u(τ)|p−1u(τ)φ(τ)dxdτ = 0, (2.2.1)

(wt(t) + γu(t), ψ(t))Γ − (w1 + γu(0), ψ(0))Γ −
∫ t

0

(wt(τ), ψt(τ))Γdτ

−
∫ t

0

(γu(τ), ψt(τ))Γdτ +

∫ t

0

(∆w(τ),∆ψ(τ))Γdτ

+

∫ t

0

(wt(τ), ψ(τ))Γdτ =

∫ t

0

∫
Γ

h(w(τ))ψ(τ)dΓdτ, (2.2.2)

for all test functions φ ∈ Cw([0, T ];X) with φt ∈ L2(0, T ;L2(Ω)), and ψ ∈

Cw ([0, T ];H2
0 (Γ)) with ψt ∈ L2(0, T ;L2(Γ)).

Remark 2.2.4. In Definition 2.2.3 above, Cw([0, T ];X) denotes the space of weakly

continuous (often called scalarly continuous) functions from [0, T ] into a Banach space

X. That is, for each u ∈ Cw([0, T ];X) and f ∈ X ′ the map t 7→ 〈f, u(t)〉X′,X is

continuous on [0, T ]. 4

Our principal result is the existence of local solutions of problem (2.1.1) in the fol-

lowing sense.

Theorem 2.2.5. Under the validity of Assumption 2.2.1, problem (2.1.1) possesses

a local weak solution, (u,w), in the sense of Definition 2.2.3 on a non-degenerate

interval [0, T ], where T depends upon the initial positive energy E (0) (where E (t) is
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defined below). Furthermore, if in addition 1 ≤ p ≤ 3, then the said solution (u,w)

satisfies the following energy identity for all t ∈ [0, T ]:

E (t) +

∫ t

0

|wt(τ)|22 dτ = E (0) +

∫ t

0

∫
Γ

h(w)wtdΓdτ, (2.2.3)

where

E (t) =
1

2

(
‖ut(t)‖2

2 + ‖∇u(t)‖2
2 + |wt(t)|22 + |∆w(t)|22

)
+

1

p+ 1
‖u(t)‖p+1

p+1. (2.2.4)

If p > 3, then the solution (u,w) satisfies the energy inequality:

E (t) +

∫ t

0

|wt(τ)|22 dτ ≤ E (0) +

∫ t

0

∫
Γ

h(w)wtdΓdτ a.e. [0, T ]. (2.2.5)

Equivalently, (2.2.5) can also be written as

E(t) +

∫ t

0

|wt(τ)|22 dτ ≤ E(0) a.e. [0, T ], (2.2.6)

with E(t) = E (t) −
∫

Γ
H(w(t))dΓ, where H is the primitive of h, i.e., H(w) =∫ w

0
h(s)ds.

Although the source term acting on the plate equation can have a “bad” sign which

may cause blow up in finite time, our next result states that solutions established by

Theorem 2.2.5 are indeed global solutions, provided the plate source term is essentially

linear.

Theorem 2.2.6. In addition to Assumption 2.2.1, assume q = 1. Then any solution

(u,w) furnished by Theorem 2.2.5 is a global weak solution and the existence time T

may be taken arbitrarily large.
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Theorem 2.2.7. In addition Assumption 2.2.1, assume p ≤ 3 and

U0 = (u0, w0, u1, w1) ∈ H is an initial data with a corresponding weak solution (u,w)

of (2.1.1), where H = H1
Γ0

(Ω)×H2
0 (Γ)×L2(Ω)×L2(Γ). If Un

0 = (un0 , w
n
0 , u

n
1 , w

n
1 ) is a

sequence of initial data such that Un
0 −→ U0 in H, as n −→∞, then the corresponding

weak solutions (un, wn) with initial data Un
0 satisfy:

(un, wn, unt , w
n
t ) −→ (u,w, ut, wt) in L∞(0, T ;H), as n −→∞,

where 0 < T <∞ is chosen to be independent of n ∈ N.

Corollary 2.2.8. In addition to Assumptions 2.2.1, assume p ≤ 3. Then, weak

solutions of (2.1.1) (in the sense of Definition 2.2.3) are unique.

2.3 Existence of Local Solutions

2.3.1 Approximate solutions

We begin by selecting a sequence {ej}∞1 ⊂ X = H1
Γ0

(Ω)∩Lp+1(Ω) with the following

properties:



e1, · · · , eN are linearly independent for every N ∈ N, and

The set of all finite linear combinations of the form:{∑N
j=1 cjej : cj ∈ R, N ∈ N

}
is dense in X.

(2.3.1)

Let B = ∆2 with its domain D(B) = H4(Γ) ∩ H2
0 (Γ). It is well known that B is

positive, self-adjoint, and B is the inverse of a compact operator. Moreover, B has the

infinite sequence of positive eigenvalues {µn : n ∈ N} and a corresponding sequence

of eigenfunctions {σn : n ∈ N} which can be normalized to form an orthonormal
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basis for H2
0 (Γ) while remaining an orthogonal basis for L2(Γ). In particular it is well

known that the standard inner product (w, z)H2
0 (Γ) is equivalent to (∆w,∆z)Γ, and

in turn |∆w|2 is equivalent to the standard norm on H2
0 (Γ). Thus, we put:

(w, z)H2
0 (Γ) = (∆w,∆z)Γ, ‖w‖H2

0 (Γ) = |∆w|2. (2.3.2)

For given initial data (u0, u1) ∈ H1
Γ0

(Ω) × L2(Ω) we can find for each N ∈ N

sequences of real numbers {u0
N,j}∞N,j=1, {u1

N,j}∞N,j=1 such that


∑N

j=1 u
0
N,jej → u0 strongly in X, as N →∞,

∑N
j=1 u

1
N,jej → u1 strongly in L2(Ω), as N →∞.

(2.3.3)

Similarly, for given initial data (w0, w1) ∈ H2
0 (Γ) × L2(Γ), we may find sequences of

scalars {w0
j = (∆w0,∆σj)Γ : j ∈ N} and {w1

j = 1
|σj |2 (w1, σj)Γ : j ∈ N} such that


∑N

j=1 w
0
jσj → w0 strongly in H2

0 (Γ) as N →∞,

∑N
j=1 w

1
jσj → w1 strongly in L2(Γ), as N →∞.

(2.3.4)

We now seek to construct a sequence of approximate solutions in the form


uN(x, t) =

∑N
j=1 uN,j(t)ej(x),

wN(x, t) =
∑N

j=1wN,j(t)σj(x),

(2.3.5)
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that satisfy the system of ODEs:


(u′′N , ej)Ω + (∇uN ,∇ej)Ω − (w′N , γej)Γ +

∫
Ω
|uN |p−1uNejdx = 0,

(w′′N , σj)Γ + (∆wN ,∆σj)Γ + (w′N , σj)Γ + (γu′N , σj)Γ =
∫

Γ
h(wN)σjdΓ,

(2.3.6)

with initial data 
uN,j(0) = u0

N,j, u
′
N,j(0) = u1

N,j,

wN,j(0) = w0
j , w

′
N,j(0) = w1

j .

(2.3.7)

where j = 1, . . . , N .

We note here that (2.3.6)–(2.3.7) is an initial-value problem for a second order 2N ×

2N system of ordinary differential equations with continuous nonlinearities in the

unknown functions uN,j and wN,j and their time derivatives. Therefore, it follows

from the Cauchy-Peano theorem that for every N ≥ 1, (2.3.6)–(2.3.7) has a solution

uN,j, wN,j ∈ C2([0, TN ]), j = 1, . . . N , for some TN > 0.

2.3.2 A priori estimates

We aim to demonstrate that each of the approximate solutions (uN , wN) exists on a

non-degenerate interval [0, T ], where T is independent of N .

Proposition 2.3.1. Each approximate solution (uN , wN) exists on a non-degenerate

interval [0, T ], where T depends on the initial positive energy E (0) and other generic

constants. Further, the sequences of approximate solutions {uN}∞1 and {wN}∞1 satisfy
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{uN}∞1 is a bounded sequence in L∞(0, T ;X), (2.3.8a)

{u′N}∞1 is a bounded sequence in L∞(0, T ;L2(Ω)), (2.3.8b)

{wN}∞1 is a bounded sequence in L∞(0, T ;H2
0 (Γ)), (2.3.8c)

{w′N}∞1 is a bounded sequence in L∞(0, T ;L2(Γ)). (2.3.8d)

Proof. Multiplying the first equation of (2.3.6) by u′N,j and summing over j = 1, . . . , N ,

we obtain

1

2

d

dt

(
‖u′N(τ)‖2

2 + ‖∇uN(τ)‖2
2

)
− (w′N(τ), u′N(τ))Γ

+

∫
Ω

|uN(τ)|p−1uN(τ)u′N(τ)dx = 0, (2.3.9)

for each τ ∈ [0, TN ]. Similarly, multiplying the second equation of (2.3.6) by w′N,j and

summing over j = 1, ..., N , one has

1

2

d

dt

(
|w′N(τ)|22 + |∆wN(τ)|22

)
+ (u′N(τ), w′N(τ))Γ + |w′N(τ)|22

=

∫
Γ

h(wN(τ))w′N(τ)dΓ, (2.3.10)

for each τ ∈ [0, TN ].

By adding (2.3.9) and (2.3.10) and integrating with respect to τ over [0, t], we

obtain

EN(t) +

∫ t

0

|w′N(τ)|22dτ = EN(0) +

∫ t

0

∫
Γ

h(wN(τ))w′N(τ)dΓdτ, (2.3.11)
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where EN(t) is the positive energy of the system given by:

EN(t) =
1

2

(
‖u′N(t)‖2

2 + ‖∇uN(t)‖2
2 + |w′N(t)|22 + |∆wN(t)|22

)
+

1

p+ 1
‖uN(t)‖p+1

p+1. (2.3.12)

Let us note here that due to the strong convergence in (2.3.3) and (2.3.4), EN(0) ≤

C for some positive constant C independent of N , but depends upon E (0). In order

to produce a suitable bound on EN(t) we shall estimate the term involving h(wN) as

follows. By the assumption imposed on h, we have

∣∣∣∣∫
Γ

h(wN(τ))wN(τ)′dΓ

∣∣∣∣ ≤ C
∣∣∣|wN(τ)|q + 1

∣∣∣
2
|w′N(τ)|2

≤ C
(
|wN |2q2q + |w′N |22 + 1

)
≤ C1

(
|∆wN |2q2 + |w′N |22 + 1

)
, (2.3.13)

where we have used Hölder’s and Young’s inequalities, and the positive constant C1

in (2.3.13) is independent of N .

Combining (2.3.11) and (2.3.13) yields:

EN(t) +

∫ t

0

|w′N(τ)|22dτ ≤ C + C1

∫ t

0

(
|∆wN(τ)|2q2 + |w′N(τ)|22 + 1

)
dτ

≤ C + C1

∫ t

0

(EN(τ) + 1)q dτ. (2.3.14)

By putting yN(t) = 1 + EN(t), then (2.3.14) yields

yN(t) ≤ C + C1

∫ t

0

yN(τ)qdτ. (2.3.15)

If q = 1, then it follows by Gronwall’s inequality that yN(t) ≤ CeC1t, for all t ≥ 0 and



16

all N ∈ N. However, if q > 1, then by using a standard comparison theorem, (2.3.15)

yields that yN(t) ≤ z(t), where z(t) = (C1−q − C1(q − 1)t)
−1
q−1 is the solution of the

Volterra integral equation

z(t) = C + C1

∫ t

0

z(τ)qdτ. (2.3.16)

Although z(t) blows up in finite time, nonetheless, there exists a time 0 < T < TN

depending on q and E (0) such that yN(t) ≤ z(t) ≤ C0 for all t ∈ [0, T ], where C0 is

independent of N , but depending on q and E (0). Hence, for all N ≥ 1 and any q ≥ 1,

one has yN(t) ≤ C0 for all t ∈ [0, T ], establishing the proposition.

An immediate consequence of Proposition 2.3.1 along with the Banach-Alaoglu theo-

rem and the well-known Aubin-Lions-Simon Compactness Theorem (e.g., [15, Thm.

II.5.16]) is the following:

Corollary 2.3.2. For all sufficiently small ε > 0 there exists a function u and a

subsequence of {uN} (still denoted by {uN}) such that

uN → u weak∗ in L∞(0, T ;X), (2.3.17a)

u′N → u′ weak∗ in L∞(0, T ;L2(Ω)), (2.3.17b)

wN → w weak∗ in L∞(0, T ;H2
0 (Γ)), (2.3.17c)

w′N → w′ weak∗ in L∞(0, T ;L2(Γ)), (2.3.17d)

uN → u strongly in C([0, T ];H1−ε(Ω)), (2.3.17e)

wN → w strongly in C([0, T ];H1
0 (Γ)), (2.3.17f)

γuN → γu strongly in C([0, T ];L
4

1+2ε (Γ)). (2.3.17g)

for all ε ∈ (0, 1
2
].
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2.3.3 Passage to the limit and verification of (2.2.1)

We begin by considering the wave portion of (2.3.6), and after integrating over [0, t],

we obtain:

(u′N(t), ej)Ω − (u′N(0), ej)Ω +

∫ t

0

(∇uN(τ),∇ej)Ωdτ −
∫ t

0

(w′N(τ), γej)Γdτ

+

∫ t

0

∫
Ω

|uN(τ)|p−1uN(τ)ejdxdτ = 0, (2.3.18)

where j = 1, ..., N .

We first note that (2.3.17b) implies that

(u′N(t), ej)Ω −→ (u′(t), ej)Ω weak∗ in L∞(0, T ). (2.3.19)

Also, from (2.3.17a) we see

uN −→ u weak∗ in L∞(0, T ;H1
Γ0

(Ω)) =
(
L1(0, T ; (H1

Γ0
(Ω))′

)′
,

and as a result we conclude that:

(∇uN(τ),∇ej)Ω −→ (∇u(τ),∇ej)Ω weak∗ in L∞(0, T ). (2.3.20)

Since ej ∈ X and by the continuity of the trace map H1
Γ0

(Ω)
γ→ L4(Γ), then it follows

from (2.3.17d) that

(w′N(τ), γej)Γ −→ (w′(τ), γej)Γ weak∗ in L∞(0, T ). (2.3.21)
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Proposition 2.3.3. On a subsequence, which is still labeled as {uN}∞1 , we have:

|uN |p−1uN −→ |u|p−1u weakly in L
p+1
p (Ω× (0, T )). (2.3.22)

Proof. By invoking (2.3.17e), then there is a subsequence, labeled as {uN}∞N=1, such

that uN −→ u pointwise a.e. in Ω × (0, T ), which implies that |uN |p−1uN →

|u|p−1u pointwise a.e. in Ω × (0, T ). Since the sequence {uN}∞N=1 is bounded

L∞(0, T ;Lp+1(Ω)) from Proposition 2.3.1, and so {|uN |p−1uN}∞N=1 is bounded in

L
p+1
p (Ω× (0, T )). Then, (2.3.22) follows immediately from a standard result in anal-

ysis.

Remark 2.3.4. Proposition 2.3.3 easily implies the following convergence:

∫ t

0

∫
Ω

|uN(τ)|p−1uN(τ)ejdxdτ

−→
∫ t

0

∫
Ω

|u(τ)|p−1u(τ)ejdxdτ, for t ∈ [0, T ]. (2.3.23)

4

By noting that χ[0,t] ∈ L1(0, T ) for t ∈ [0, T ], and recalling the strong convergence

of u′N(0) in (2.3.3), then by combining (2.3.19)-(2.3.23), we are justified in passing to

the limit in (2.3.18) to obtain:

(u′(t), ej)Ω − (u1, ej)Ω +

∫ t

0

(∇u(τ),∇ej)Ωdτ −
∫ t

0

(w′(τ), γej)Γdτ

+

∫ t

0

∫
Ω

|u(τ)|p−1u(τ)ejdxdτ = 0, (2.3.24)

where (2.3.24) is valid for all j ∈ N and a.e. t ∈ [0, T ].

Now, for any φ ∈ X, there exists a sequence φk =
∑k

j=1 ak,jej which converges to φ

strongly in X. By linearity, one can replace ej in (2.3.24) with φk, and then pass to
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the limit as k →∞ to obtain:

(u′(t), φ)Ω − (u1, φ)Ω +

∫ t

0

(∇u(τ),∇φ)Ωdτ −
∫ t

0

(w′(τ), γφ)Γdτ

+

∫ t

0

∫
Ω

|u(τ)|p−1u(τ)φdxdτ = 0, (2.3.25)

for all φ ∈ X and a.e. t ∈ [0, T ].

Before proceeding further, we pause to verify that u′′ has the desired additional

regularity.

Lemma 2.3.5. The limit function u identified in Corollary (2.3.2) verifying identity

(2.3.25) satisfies u′′ ∈ L∞(0, T ;X ′).

Proof. Let us first note the inclusions X ⊂ L2(Ω) ⊂ X ′, where the injections are

continuous with dense ranges. In addition,

〈f, φ〉X′,X = (f, φ)Ω, for all f ∈ L2(Ω) and all φ ∈ X.

Thus, given any φ ∈ X we obtain from (2.3.25) that

〈u′(t), φ〉X′,X = (u′(t), φ)Ω = (u1, φ)Ω −
∫ t

0

(∇u(τ),∇φ)Ωdτ

+

∫ t

0

(w′(τ), γφ)Γdτ −
∫ t

0

∫
Ω

|u(τ)|p−1u(τ)φdxdτ, (2.3.26)

wherein it is clear from (2.3.26) that 〈u′(t), φ〉X′,X coincides with an absolutely con-

tinuous function on [0, T ] with

〈u′′(t), φ〉X′,X =
d

dt
(u′(t), φ)Ω =− (∇u(t),∇φ)Ω + (w′(t), γφ)Γ

−
∫

Ω

|u(t)|p−1u(t)φdx. (2.3.27)
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By employing Hölder’s inequality and the Sobolev Imbedding Theorem, we obtain

|〈u′′(t), φ〉X′,X | ≤ |(∇u(t),∇φ)Ω|+ |(w′(t), γφ)Γ|+
∫

Ω

|u(t)|p|φ|dx

≤ ‖∇u(t)‖2‖∇φ‖2 + |w′(t)|2|γφ|2 + ‖u(t)‖pp+1‖φ‖p+1

≤ C
(
‖∇u(t)‖2 + |w′(t)|2 + ‖u(t)‖pp+1

)
‖φ‖X . (2.3.28)

By the regularity enjoyed by u and w as stated in Corollary 2.3.2, we conclude that

u′′ ∈ L∞(0, T ;X ′).

2.3.4 Proper verification of (2.2.1)

We now must show that the limit function u satisfies the variational identity (2.2.1)

which permits time dependent test functions. By a density arguemnt as in [48, Prop.

A.1] it can be shown that the regularity afforded by Lemma 2.3.5 implies the follow-

ing: For any test function φ ∈ Cw([0, T ];X) with φt ∈ L2(0, T ;L2(Ω)), the function

(u′(t), φ(t))Ω coincides with an absolutely continuous function on [0, T ] and one has

the following product rule in the distributional sense:

d

dt
(u′(t), φ(t))Ω = 〈u′′(t), φ(t)〉X′,X + (u′(t), φ′(t))Ω. (2.3.29)

With this at hand and noting that the function φ in (2.3.25) is time independent, we

may express (2.3.25) equivalently as

∫ t

0

〈u′′(τ), φ〉X′,Xdτ +

∫ t

0

(∇u(τ),∇φ)Ωdτ −
∫ t

0

(w′(τ), γφ)Γdτ

+

∫ t

0

∫
Ω

|u(τ)|p−1u(τ)φdxdτ = 0, (2.3.30)

for all φ ∈ X.
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As each term in (2.3.30) is absolutely continuous we may differentiate in time

and then replace φ with φ(τ) where the time dependent test function φ(τ) satisfying

φ ∈ Cw([0, T ];X) with φt ∈ L2(0, T ;L2(Ω)). Integrating the resulting identity on [0, t]

and again utilizing the product rule (2.3.29) we obtain the desired identity, namely:

∫ t
0 〈u
′′(τ),φ(τ)〉X′,X dτ︷ ︸︸ ︷

(ut(t), φ(t))Ω − (u1, φ(0))Ω −
∫ t

0

(u′(τ), φ′(τ))Ω dτ +

∫ t

0

(∇u(τ),∇φ(τ))Ωdτ

−
∫ t

0

(w′(τ), γφ(τ))Γdτ +

∫ t

0

∫
Ω

|u(τ)|p−1u(τ)φ(τ)dxdτ = 0, (2.3.31)

which is exactly (2.2.1), i.e., the limit function u satisfies the variational identity

(3.2.2) in Definition 3.2.3.

2.3.5 Passage to the limit and verification of (2.2.2)

Upon integrating the plate equation in (2.3.6) on [0, t], we obtain:

(w′N(t), σj)Γ − (w′N(0), σj)Γ +

∫ t

0

(w′N(τ), σj)Γdτ + (γuN(t), σj)Γ

− (γuN(0), σj)Γ +

∫ t

0

(∆wN(τ),∆σj)Γdτ =

∫ t

0

∫
Γ

h(wN(τ))σjdΓdτ, (2.3.32)

for all j = 1, . . . , N . It follows easily from (2.3.17c)-(2.3.17g) that:



(w′N(t), σj)Γ −→ (w′(t), σj)Γ weak∗ in L∞(0, T )

(∆wN(τ),∆σj)Γ −→ (∆w(τ),∆σj)Γ weak∗ in L∞(0, T )

(wN(t), σj)Γ −→ (w(t), σj)Γ strongly in C([0, T ]),

(γuN(t), σj)Γ −→ (γu(t), σj)Γ strongly in C([0, T ]).

(2.3.33)
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for all j ∈ N.

For the source term in (2.3.32), we show that

∫
Γ

h(wN(τ))σjdΓ −→
∫

Γ

h(w(τ))σjdΓ strongly in C([0, T ]), as N →∞, (2.3.34)

for all j ∈ N. Indeed, for all τ ∈ [0, T ] we have

∣∣∣ ∫
Γ

h(wN(τ))σjdΓ−
∫

Γ

h(w(τ))σjdΓ
∣∣∣

≤ C

∫
Γ

(|wN(τ)|q−1 + |w(τ)|q−1 + 1)|wN(τ)− w(τ)||σj|dΓ

≤ C(|wN(τ)|q−1
6(q−1) + |w(τ)|q−1

6(q−1) + 1)|wN(τ)− w(τ)|2|σj|3

≤ C sup
τ∈[0,T ]

|∇wN(τ)−∇w(τ)|2 → 0, as N →∞, (2.3.35)

where we have used in (2.3.35) Hölder’s inequality, the Sobolev Imbedding Theorem,

and (2.3.17f). Therefore, (2.3.34) follows.

By noting that χ[0,t] ∈ L1(0, T ) for t ∈ [0, T ], the strong convergences in (2.3.3)-

(2.3.4), and using convergences in (2.3.33)- (2.3.34), we can now pass to the limit as

N →∞ in (2.3.32) to obtain the identity:

(w′(t), σj)Γ − (w1, σj)Γ +

∫ t

0

(w′(τ), σj)Γdτ + (γu(t), σj)Γ

− (γu0, σj)Γ +

∫ t

0

(∆w(τ),∆σj)Γdτ =

∫ t

0

∫
Γ

h(w(τ))σjdΓdτ, (2.3.36)

for all j ∈ N and a.e. [0,T].
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Since {σn : n ∈ N} is an orthonormal basis for H2
0 (Γ), then (2.3.36) yields:

(w′(t) + γu(t), η)Γ − (w1 + γu0, η)Γ +

∫ t

0

(w′(τ), η)Γdτ

+

∫ t

0

(∆w(τ),∆η)Γdτ =

∫ t

0

∫
Γ

h(w(τ))ηdΓdτ, (2.3.37)

for all η ∈ H2
0 (Γ) and a.e. t ∈ [0, T ].

Before proceeding further, we pause briefly to verify that d
dt

(w′+γu) has a desired

additional regularity. Namely, we have the following.

Lemma 2.3.6. The limit functions u and w identified in Corollary (2.3.2) verifying

identity (2.3.37) satisfies d
dt

(
w′ + γu

)
∈ L∞(0, T ;H−2(Γ)).

Proof. In what follows, we shall use the notation 〈·, ·〉 to denote the duality pairing

between H−2(Ω) and H2
0 (Ω). We first note that H2

0 (Γ) ⊂ L2(Γ) ⊂ H−2(Γ), where the

injections are continuous with dense ranges. In addition,

〈f, η〉 = (f, η)Γ, for all f ∈ L2(Γ) and all η ∈ H2
0 (Γ).

So, for any η ∈ H2
0 (Γ) we obtain from (2.3.37) that

〈w′(t) + γu(t), η〉 = (w′(t) + γu(t), η)Γ = (w1 + gu0, η)Γ −
∫ t

0

(w′(τ), η)Γdτ

−
∫ t

0

(∆w(τ),∆η)Γdτ +

∫ t

0

∫
Γ

h(w(τ))ηdΓdτ. (2.3.38)

It is evident from (2.3.38) that 〈w′(t) + γu(t), η〉 coincides with an absolutely contin-

uous function on [0, T ] with

d

dt
(w′(t) + γu(t), η)Γ = −(w′(t), η)Γ − (∆w(t),∆η)Γ +

∫
Γ

h(w(t))ηdΓ, (2.3.39)
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for almost all t ∈ [0, T ]. In particular, one has

∣∣∣〈 d
dt

(w′(t) + γu(t)), η〉
∣∣∣ ≤ |w′(t)|2|η|2 + |∆w(t)|2|∆η|2 + C

∫
Γ

(|w(t)|q + 1)|η|dΓ

≤ C
(
|w′(t)|2 + |∆w(t)|2 + |∆w(t)|q2 + 1

)
|∆η|2, (2.3.40)

for all η ∈ H2
0 (Γ) and for almost all t ∈ [0, T ]. By the regularity enjoyed by w as

stated in Corollary 2.3.2, we conclude that d
dt

(w′ + γu) ∈ L∞(0, T ;H−2(Γ)).

2.3.6 Proper verification of (2.2.2)

We now must show that the limit function w satisfies the variational identity (2.2.2)

which permits time dependent test functions. Again, by using [48, Prop. A.1] it

can be shown that the regularity afforded by Lemma 2.3.6 implies the following:

For any test function ψ ∈ Cw ([0, T ];H2
0 (Γ)) with ψt ∈ L2(0, T ;L2(Γ)), the function

(w′(t) + γu(t), ψ(t))Γ coincides with an absolutely continuous function on [0, T ] and

one has the following product rule in the distributional sense:

d

dt
(w′(t) + γu(t), ψ(t))Γ = 〈 d

dt
(w′(t) + γu(t)), ψ(t)〉+ (w′(t) + γu(t), ψ′(t))Γ.

(2.3.41)

With the validity of (2.3.41) and noting that the function η in (2.3.37) is time inde-

pendent, we may express (2.3.37) equivalently as

∫ t

0

〈 d
dτ

(w′(τ) + γu(τ)), η〉dτ +

∫ t

0

(w′(τ), η)Γdτ

+

∫ t

0

(∆w(τ),∆η)Γdτ =

∫ t

0

∫
Γ

h(w(τ))ηdΓdτ, (2.3.42)

for all η ∈ H2
0 (Γ) and all t ∈ [0, T ].
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As each term in (2.3.42) is absolutely continuous we may differentiate in time

and then replace η with ψ(τ) where the time dependent test function ψ(τ) satisfying

ψ ∈ Cw ([0, T ];H2
0 (Γ)) with ψt ∈ L2(0, T ;L2(Γ)). Upon integrating the resulting

identity on [0, t] and again utilizing the product rule (2.3.41) we obtain the desired

identity, namely:

∫ t
0 〈

d
dτ

(w′(τ)+γu(τ)),ψ(t)〉dτ︷ ︸︸ ︷
(wt(t) + γu(t), ψ(t))Γ − (w1 + γu(0), ψ(0))Γ −

∫ t

0

(wt(τ) + γu(τ), ψt(τ))Γdτ

+

∫ t

0

(∆w(τ),∆ψ(τ)Γdτ +

∫ t

0

(wt(τ), ψ(τ)Γdτ =

∫ t

0

∫
Γ

h(w(τ))ψ(τ)dΓdτ, (2.3.43)

which is precisely (2.2.2).

2.3.7 Additional regularity of solutions

In order to complete the proof of the existence statement of Theorem 2.2.5, we need

to verify that the limit functions u and w identified in Corollary 2.3.2 satisfy the

additional regularity as stated in of Definition 2.2.3. For this purpose, we shall use a

well-known result which often attributed to Lions and Magenes, as in [46, Lem. 8.1].

Proposition 2.3.7. Up to possible modification on a set of measure zero, the limit

functions u and w identified in Corollary 2.3.2 satisfy:


u ∈ Cw([0, T ];X), ut ∈ Cw([0, T ];L2(Ω)),

w ∈ Cw([0, T ];H2
0 (Γ)), wt ∈ Cw([0, T ];L2(Γ)).

(2.3.44)

Proof. As the proofs of both parts in (2.3.44) are similar, we only present the proof

of the second statement. We note here that H2
0 (Γ) ⊂ L2(Γ) ⊂ H−2(Γ) where the
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injections are continuous with dense ranges, then by [46, Lem. 8.1, p. 275]

L∞(0, T ;H2
0 (Γ)) ∩ Cw([0, T ];L2(Γ)) = Cw([0, T ];H2

0 (Γ)). (2.3.45)

Since we know w ∈ L∞(0, T ;H2
0 (Γ)) and wt ∈ L∞(0, T ;L2(Γ)), then after a possible

modification on a set of measure zero, w ∈ C([0, T ];L2(Γ)). It follows from (2.3.45)

that w ∈ Cw([0, T ];H2
0 (Γ)).

Also, we recall from Lemma 2.3.6 that d
dt

(w′ + γu) ∈ L∞(0, T ;H−2(Γ)) and since

w′+ γu ∈ L∞(0, T ;L2(Γ)), then up to possible modification on a set of measure zero,

we conclude that w′+γu ∈ C([0, T ];H−2(Γ)). However, we know from (2.3.17g) that

γu ∈ C([0, T ];L2(Γ)), and so it must be the case that wt ∈ C([0, T ];H−2(Γ)). Hence,

by a similar reasoning as in (2.3.45) above, it follows that wt ∈ Cw([0, T ];L2(Γ)),

completing the proof.

2.3.8 Hidden regularity of ut|Γ×(0,t)

We first note that u satisfies the problem:



utt −∆u+ |u|p−1u = 0 in Ω× (0, T ),

u = 0 on Γ0 × (0, T ),

∂νu = wt on Γ× (0, T ),

(u(0), ut(0)) = (u0, u1) ∈
(
H1

Γ0
(Ω) ∩ Lp+1(Ω)

)
× L2(Ω),

(2.3.46)

where wt ∈ Cw([0, T ];L2(Γ)) is the solution of the plate equation in (3.1.1) which is

regarded as a boundary feedback for u.

We define the Dirichlét-Neumann map: R : Hs(Γ) −→ Hs+ 3
2 (Ω) ∩H1

Γ0
(Ω); s ≥ 0
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by:

q = Rp ⇐⇒ q is the weak solution of the problem


∆q = 0 in Ω,

q = 0 on Γ0,

∂νq = p on Γ.

(2.3.47)

It is well-known that R is continuous from Hs(Γ) to Hs+ 3
2 (Ω) ∩ H1

Γ0
(Ω), for s ≥ 0

(see for instance Lasiecka and Triggiani [43, 44]). We also introduce the Dirichlét-

Neumann Laplacian: A = −∆ : D(A) ⊂ L2(Ω) −→ L2(Ω), with its domain D(A) =

{u ∈ H2(Ω) : u|Γ0 = 0, ∂νu|Γ = 0}. In addition, recall the sine and cosine operators

S(t) and C(t) associated with A. Specifically, S(t), C(t) : L2(Ω) → L2(Ω) which are

given by S(t) = A−1/2 sin(A1/2t) and C(t) = cos(A1/2t), t ≥ 0. We refer the reader to

[43, 44]) for more details on the sine and cosine operators.

With these operators at hand, then u must satisfy the integral equation:

u(t) = C(t)u0 + S(t)u1 + (Kf)(t) + (Lwt)(t), (2.3.48)

where f(u(τ)) = −|u(τ)|p−1u(τ) and



S(t)u1 =
∫ t

0
C(τ)u1dτ,

(Kf)(t) =
∫ t

0
S(t− τ)f(u(τ))dτ,

(Lwt)(t) =
∫ t

0
AS(t− τ)Rwt(τ)dτ.

Our goal in this section is to obtain better regularity for ut|Γ×(0,t)
than what has been

stated in Lemma 2.3.6. In order to do so, we restrict the values of p to the range 1 ≤

p ≤ 3. Since we already know that u ∈ Cw([0, T ];H1
Γ0

(Ω)) and ut ∈ Cw([0, T ];L2(Ω)),
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then it follows easily that f(u) ∈ H1(0, T ;L2(Ω)), for 1 ≤ p ≤ 3. Then, by Corollary

5.3 in [44] it follows that


(Kf) ∈ C([0, T ], D(A)),

d
dt

(Kf) ∈ C([0, T ], H1(Ω))).

In particular, one has

γ ◦ (
d

dt
(Kf)) ∈ C([0, T ], H1/2(Γ))). (2.3.49)

On the other hand, by the recent results by Triggiani (see Theorem 1.1 in [57], see

also [56] for similar results), and since we already know that wt ∈ Cw([0, T ];L2(Γ)),

then the best trace regularity of Lwt on Σ is given by:

Lwt|Σ ∈ H1/3(Σ), where Σ = Γ× (0, T ).

Therefore,

(
d

dt
Lwt)|Σ ∈ H−2/3(Σ). (2.3.50)

In view of (2.3.49)-(2.3.50) and the well-known properties of C(t) and S(t) [43, 44, 57],

then by assuming u0 = u1 = 0; or else assume u0 ∈ H1
Γ0

(Ω) ∩H1+θ(Ω), u1 ∈ Hθ(Ω),

for some θ > 0, then it follows from (2.3.48) that the best hidden regularity of ut on

Σ is:

ut|Σ ∈ H−2/3(Σ). (2.3.51)
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Moreover, the action of ut|Γ×(0,t)
on a test function ψ, (where ψ is as described in

Definition 2.2.3), is given by:

〈ut|Γ×(0,t)
, ψ〉 = (γu(t), ψ(t))Γ − (γu(0), ψ(0))Γ −

∫ t

0

(γu(τ), ψt(τ))Γdτ, (2.3.52)

where the terms on the right hand side of (2.3.52) are precisely the corresponding

terms appearing in (2.2.2) (see Definition 2.2.3).

We emphasize here that the regularity obtained in (2.3.50) for ut|Σ is achieved

with the additional assumptions:


1 ≤ p ≤ 3,

u0 = u1 = 0, or u0 ∈ H1
Γ0

(Ω) ∩H1+θ(Ω), u1 ∈ Hθ(Ω), for some θ > 0.

(2.3.53)

2.4 Energy Identity and Energy Inequality

This section is devoted to derive the energy identity (2.2.3) in Theorem 2.2.5 in the

case 1 ≤ p ≤ 3. One is tempted to test (2.2.1) with ut and (2.2.2) with wt, and carry

out standard calculations to obtain energy identity. However, this procedure is only

formal, since ut and wt are not regular enough and cannot be used as test functions in

(2.2.1) and (2.2.2). In order to overcome this technicality we shall use the difference

quotients Dhu and Dhw and their well-known properties that appeared in [39] and

later in [33, 52, 54]. We remind the reader that the space X = H1
Γ0

(Ω)∩Lp+1(Ω) will

be replaced simply by X = H1
Γ0

(Ω), since 1 ≤ p ≤ 3 in this section. Properties of the

Difference Quotient for general Banach Spaces are outlined in the Appendix.
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2.4.1 Proof of Energy Identity

Throughout the proof, we fix t ∈ (0, T ) and let (u,w) be a weak solution of the system

(2.1.1) on [0, T ] in the sense of Definition 2.2.3. Recall the regularity of u and w,

namely: u ∈ Cw([0, T ];H1
Γ0

(Ω)), ut ∈ Cw([0, T ];L2(Ω)), w ∈ Cw([0, T ];H2
0 (Γ)), and

wt ∈ Cw([0, T ];L2(Γ)). As such, we can define the difference quotient Dhu(τ) on [0, t]

as in (A.0.1), i.e., Dhu(τ) = 1
2h

[ue(τ +h)−ue(τ −h)], where ue(τ) extends u(τ) from

[0, t] to R as in (A.0.2); and with a similar definition of the difference quotient Dhw(τ)

on [0, t]. In what follows, we may abuse notation by writing u(τ), w(τ) in place of

ue(τ), we(τ), and in particular we remind the reader here that u′(τ) = w′(τ) = 0

outside the segment [0, t].

We aim to first show that Dhu(τ) and Dhw(τ) satisfy the required regular-

ity conditions to be suitable test functions in Definition 2.2.3. Indeed, since u ∈

Cw([0, t];H1
Γ0

(Ω)) and w ∈ Cw([0, t];H2
0 (Γ)), then clearly

Dhu ∈ Cw([0, t];H1
Γ0

(Ω)) and Dhw ∈ Cw([0, t];H2
0 (Γ)). (2.4.1)

In addition, for 0 < h < t
2

we note:

(Dhu)t(τ) =



1
2h

[ut(τ + h)− ut(τ − h)], if h < τ < t− h,

− 1
2h
ut(τ − h), if t− h < τ < t,

1
2h
ut(τ + h), if 0 < τ < h,

with a similar definition for (Dhw)t(τ).
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Since ut ∈ Cw([0, t];L2(Ω)) and wt ∈ Cw([0, t];L2(Γ)), then it follows that:

(Dhu)t ∈ L2(0, t;L2(Ω)) and (Dhw)t ∈ L2(0, t;L2(Γ)). (2.4.2)

Thus, (2.4.1)-(2.4.2) show thatDhu andDhw satisfy the required regularity conditions

to be suitable test functions in Definition 2.2.3. Therefore, by taking φ = Dhu in

(2.2.1) and ψ = Dhw in (2.2.2), we obtain (the variable τ is being suppressed within

the following integrals):

(ut(t), Dhu(t))Ω − (u1, Dhu(0))Ω −
∫ t

0

(ut, (Dhu)t)Ωdτ +

∫ t

0

(∇u,∇Dhu)Ωdτ

−
∫ t

0

(wt, γDhu)Γdτ +

∫ t

0

∫
Ω

|u|p−1uDhudxdτ = 0, (2.4.3)

(wt(t) + γu(t), Dhw(t))Γ − (w1 + γu(0), Dhw(0))Γ −
∫ t

0

(wt, (Dhw)t)Γdτ

−
∫ t

0

(γu, (Dhw)t)Γdτ +

∫ t

0

(∆w,∆Dhw)Γdτ +

∫ t

0

(wt, Dhw)Γdτ

=

∫ t

0

∫
Γ

h(w)DhwdΓdτ. (2.4.4)

We now justify passing to the limit as h −→ 0 in (2.4.3)-(2.4.4) as follows:

By using Proposition A.0.4 with Y = Z = L2(Ω), then as h→ 0,


Dhu −→ ut in L2(Ω× (0, t)),

Dhw −→ wt in L2(Γ× (0, t)).

(2.4.5)

Since u, ut ∈ Cw([0, t];L2(Ω)) and w, wt ∈ Cw([0, t];L2(Γ)), then as h → 0, it
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follows from (A.0.6) that

Dhu(0) −→ 1

2
ut(0) and Dhu(t) −→ 1

2
ut(t) weakly in L2(Ω),

Dhw(0) −→ 1

2
wt(0) and Dhw(t) −→ 1

2
wt(t) weakly in L2(Γ).

Therefore,



limh→0

(
(ut(t), Dhu(t))Ω − (u1, Dhu(0))Ω

)
= 1

2

(
‖ut(t)‖2

2 − ‖ut(0)‖2
2

)
,

limh→0(wt(t) + γu(t), Dhw(t))Γ = 1
2
|wt(t)|22 + 1

2
(γu(t), wt(t))Γ,

limh→0(w1 + γu(0), Dhw(0))Γ = 1
2
|wt(0)|22 + 1

2
(γu(0), wt(0))Γ.

(2.4.6)

Also, by (A.0.4)

∫ t

0

(ut, (Dhu)t)Ωdτ =

∫ t

0

(wt, (Dhw)t)Γdτ = 0. (2.4.7)

In addition, since u ∈ Cw([0, t];H1
Γ0

(Ω)) and w ∈ Cw([0, t];H2
0 (Γ)), then (A.0.3)

yields:


limh→0

∫ t
0
(∇u,∇Dhu)Ωdτ = 1

2

(
‖∇u(t)‖2

2 − ‖∇u(0)‖2
2

)
,

limh→0

∫ t
0
(∆w,∆Dhw)Γdτ = 1

2

(
|∆w(t)|22 − |∆w(0)|22

)
.

(2.4.8)

An immediate consequence of (2.4.5) is that

lim
h−→0

∫ t

0

(wt, Dhw)Γdτ =

∫ t

0

|wt(τ)|22dτ. (2.4.9)

Also, since u ∈ Cw([0, T ];H1
Γ0

(Ω)), then u ∈ L∞(0, T ;L6(Ω)), by the Sobolev
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Imbedding Theorem. The assumption 1 ≤ p ≤ 3 yields,

∥∥|u(t)|p−1u(t)
∥∥

2
= ‖u(t)‖p2p ≤ C ‖u‖L∞(0,T ;H1

Γ0
(Ω)) <∞.

Consequently, |u|p−1u ∈ L2(Ω× (0, t)), and from (2.4.5) we have

lim
h→0

∫ t

0

∫
Ω

|u|p−1uDhudxdτ =

∫ t

0

∫
Ω

|u|p−1uutdxdτ. (2.4.10)

In addition, since w ∈ Cw([0, T ];H2
0 (Γ)), then w ∈ L∞(0, T ;L2q(Γ)) for all 1 ≤ q ≤ ∞.

Thus, the bound imposed on h in Remark 2.2.2 implies h(w) ∈ L2(Γ × (0, T )). As

such, (2.4.5) implies

lim
h−→0

∫ T

0

∫
Γ

h(w)DhwdΓdτ =

∫ T

0

∫
Γ

h(w)wtdΓdτ. (2.4.11)

The trouble terms
∫ t

0
(γu(τ), Dhwt(τ))Γdτ and

∫ t
0
(wt(τ), γDhu(τ))Γdτ are handled as

follows. For all sufficiently small h > 0, we have

∫ t

0

(γu(τ),Dhwt(τ))Γdτ

=
1

2h

(∫ t

0

(γu(τ), wt(τ + h))Γdτ −
∫ t

0

(γu(τ), wt(τ − h))Γdτ
)

=
1

2h

(∫ t

h

(γu(τ − h), wt(τ))Γdτ −
∫ t−h

0

(γu(τ + h), wt(τ))Γdτ
)
, (2.4.12)

where we have used a change of variables in (2.4.12) and the fact that wt = 0 outside

the interval [0, t]. By rearranging the terms in (2.4.12), we obtain

∫ t

0

(γu(τ),Dhwt(τ))Γdτ = −
∫ t

0

(γDhu(τ), wt(τ))dτ

− 1

2h

(∫ h

0

(γu(τ − h), wt(τ))Γdτ −
∫ t

t−h
(γu(τ + h), wt(τ))Γdτ

)
(2.4.13)



34

We now utilize the weak continuity of wt in the last two term in (2.4.13) as follows.

1

2h

∫ h

0

(γu(τ − h), wt(τ))Γdτ =
1

2h

∫ h

0

(γu(0), wt(τ))Γdτ

=
1

2h

∫ h

0

(γu(0), wt(τ)− wt(0))Γdτ +
1

2h

∫ h

0

(γu(0), wt(0))Γdτ

−→ 1

2
(γu(0), wt(0))Γ, as h −→ 0. (2.4.14)

Similarly, we have

1

2h

∫ t

t−h
(γu(τ + h), wt(τ))Γdτ =

1

2h

∫ t

t−h
(γu(t), wt(τ))Γdτ

=
1

2h

∫ t

t−h
(γu(t), wt(τ)− wt(t))Γdτ +

1

2h

∫ t

t−h
(γu(t), wt(t))Γdτ

−→ 1

2
(γu(t), wt(t))Γ, as h −→ 0. (2.4.15)

Finally, by adding (2.4.3)-(2.4.4) and by combining the results established in

(2.4.6)-(2.4.15) we can pass to the limit as h −→ 0 to obtain the energy identity

(2.2.3).

2.4.2 Energy Inequality

In order to complete the proof of Theorem 2.2.5 in the case where p > 3 it remains only

to establish the energy inequalities (2.2.5)-(2.2.6) which are given in Proposition 2.4.4

below. But, we first shall need some ancillary results regarding the the sequences of

approximate solutions {uN}∞1 and {wN}∞1 which satisfy the conclusions of Corollary

2.3.2.

Proposition 2.4.1. Let {uN}∞1 be the sequence of approximate solutions satisfy-

ing the conclusions of Corollary 2.3.2. Then, there is a subsequence, still labeled as
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{uN}∞1 , such that:

u′N(t)→ u′(t) weakly in L2(Ω), as N →∞, for all t ∈ [0, T ]. (2.4.16)

Proof. Let us first note that the boundedness of the sequence {uN}∞1 in L∞(0, T ;X)

implies that, the sequence {|uN |p−1uN}∞1 is bounded in L∞(0, T ;L
p+1
p (Ω)). Thus, on

a subsequence labeled by {uN}∞1 , we have

|uN |p−1uN −→ ξ weak∗ in L∞(0, T ;L
p+1
p (Ω)).

However, from the strong convergence in (2.3.17e) we conclude (on a subsequence)

that

|uN |p−1uN −→ |u|p−1u point-wise a.e. in Ω× (0, T ).

Hence, ξ = |u|p−1u a.e. in Ω× (0, T ). That is,

|uN |p−1uN −→ |u|p−1u weak∗ in L∞(0, T ;L
p+1
p (Ω)). (2.4.17)

From the first equation in (2.3.6) along with (2.3.20)-(2.3.21) and (2.4.17), we obtain,

as N −→∞,

(u′′N , ej)Ω

→ −(∇u,∇ej)Ω + (w′, γej)Γ −
∫

Ω

|u|p−1uejdx weak∗ in L∞(0, T ), (2.4.18)

for all j ∈ N. By comparing (2.4.18) with (2.3.27), it follows that

d

dt
(u′N , ej)Ω −→

d

dt
(u′, ej)Ω weak∗ in L∞(0, T ), for all j ∈ N. (2.4.19)
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Since χ[0,t] ∈ L1(0, T ) for t ∈ [0, T ], then by integrating (2.4.19) over [0, t], we obtain

(u′N(t), ej)Ω − (u′N(0), ej)Ω −→ (u′(t), ej)Ω − (u′(0), ej)Ω, as N −→∞,

for all j ∈ N and all t ∈ [0, T ]. By the strong convergence in (2.3.3), it follows that

(u′N(t), ej)Ω −→ (u′(t), ej)Ω, as N −→∞, (2.4.20)

for all j ∈ N and all t ∈ [0, T ].

Now, for any φ ∈ X, there exists a sequence φk =
∑k

j=1 ak,jej such that φk → φ

strongly in X. By linearity, one can replace ej in (2.4.20) with φk to obtain

(u′N(t), φk)Ω −→ (u′(t), φk)Ω, as N −→∞, for all t ∈ [0, T ]. (2.4.21)

Thus, by using (2.4.21) and the strong convergence of {φk}∞k=1 in X, we have for all

t ∈ [0, T ]:

∣∣∣(u′N(t), φ)Ω − (u′(t), φ)Ω

∣∣∣ ≤ ∣∣∣(u′N(t), φ)Ω − (u′N(t), φk)Ω

∣∣∣
+
∣∣∣(u′N(t), φk)Ω − (u′(t), φk)Ω

∣∣∣+
∣∣∣(u′(t), φk)Ω − u′(t), φ)Ω

∣∣∣
≤ ‖u′N(t)‖2 ‖φ− φk‖2 +

∣∣∣(u′N(t)− u′(t), φk)Ω

∣∣∣+ ‖u′(t)‖2 ‖φ− φk‖2

≤ C ‖φ− φk‖2 +
∣∣∣(u′N(t)− u′(t), φk)Ω

∣∣∣ −→ 0, as N, k −→∞. (2.4.22)

That is, for all φ ∈ X,

(u′N(t), φ)Ω −→ (u′(t), φ)Ω, as N −→∞, for all t ∈ [0, T ]. (2.4.23)

Since the space X is dense in L2(Ω), then by a similar density argument as in (2.4.22),
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we conclude that (2.4.23) remains valid for all φ ∈ L2(Ω), which completes the proof

of the proposition.

Proposition 2.4.2. The sequence of approximate solutions {wN}∞1 satisfying the

conclusions of Corollary 2.3.2 also satisfies:

w′N(t)→ w′(t) weakly in L2(Γ), as N →∞, for all t ∈ [0, T ]. (2.4.24)

Proof. From the second equation in (2.3.6) along with (2.3.33)-(2.3.34) and (2.3.17a),

we have, as N −→∞,

(w′′N + γu′N , σj)Γ −→− (∆w,∆σj)Γ − (w′, σj)Γ

+

∫
Γ

h(w)σjdΓ weak∗ in L∞(0, T ), (2.4.25)

for all j ∈ N. By comparing (2.4.25) with (2.3.39), we conclude that

d

dt
(w′N+γuN , σj)Γ

−→ d

dt
(w′ + γu, σj)Γ weak∗ in L∞(0, T ), for all j ∈ N. (2.4.26)

Again, as χ[0,t] ∈ L1(0, T ) for t ∈ [0, T ], then (2.4.26) implies that

(w′N(t) + γuN(t), σj)Γ − (w′N(0) + γuN(0), σj)Γ −→ (w′(t) + γu(t), σj)Γ

− (w′(0) + γu(0), σj)Γ, as N −→∞, (2.4.27)

for all j ∈ N and all t ∈ [0, T ]. By the strong convergence in (2.3.3) and the continuity
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of trace operator γ, it follows that

(w′N(t) + γuN(t), σj)Γ −→ (w′(t) + γu(t), σj)Γ, as N −→∞,

for all j ∈ N and all t ∈ [0, T ]. However, the strong convergence in (2.3.17g) yields,

(w′N(t), σj)Γ −→ (w′(t), σj)Γ, as N −→∞, (2.4.28)

for all j ∈ N and all t ∈ [0, T ]. Now, the rest of the proof goes exactly as in the proof

of Proposition 2.4.1 by using a density argument.

Proposition 2.4.3. Let {uN}∞1 and {wN}∞1 be the sequences of approximate solu-

tions satisfying the conclusions of Corollary 2.3.2. Then, there are subsequences, still

labeled as {uN}∞1 and {wN}∞1 , such that, as N −→∞



uN(t) −→ u(t) weakly in Lp+1(Ω), a.e. [0, T ],

uN(t) −→ u(t) weakly in H1
Γ0

(Ω), a.e. [0, T ],

wN(t) −→ w(t) weakly in H2
0 (Γ), a.e. [0, T ].

(2.4.29)

Proof. Since the sequence {uN}∞1 is bounded in L∞(0, T ;X), then in particular it is

bounded in L1(0, T ;Lp+1(Ω)). Thus, on a subsequence, it follows that

uN −→ u weakly in L1(0, T ;Lp+1(Ω)), as N −→∞. (2.4.30)

Thanks to the strong convergence in (2.3.17e) which implies

uN −→ u strongly in L1(0, T ;L2(Ω)), as N −→∞. (2.4.31)
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Since Lp+1(Ω) ⊂ L2(Ω) ⊂ L
p+1
p (Ω), then the first convergence in (2.4.29) follows from

Proposition A.0.2 in the Appendix. The other two convergences in (2.4.29) are also

routine conclusions of Proposition A.0.2.

Proposition 2.4.4. The limit functions u and w identified in Corollary 2.3.2 satisfy

the energy inequalities (2.2.5) and (2.2.6) in the statement of Theorem 2.2.5.

Proof. From (2.3.11) in the course of establishing the a priori estimates it was shown

that each uN satisfies for all t ∈ [0, T ]:

EN(t) +

∫ t

0

|w′N(τ)|22dτ = EN(0) +

∫ t

0

∫
Γ

h(wN(τ))w′N(τ)dΓdτ, (2.4.32)

where EN(t) is the positive energy of the system given by:

EN(t) =
1

2

(
‖u′N(t)‖2

2 + ‖∇uN(t)‖2
2 + |w′N(t)|22 + |∆wN(t)|22

)
+

1

p+ 1
‖uN(t)‖p+1

p+1.

By taking H(w) =
∫ w

0
h(s) ds as the primitive of h, then (2.4.32) becomes

EN(t) +

∫ t

0

|w′N(τ)|22dτ = EN(0) +

∫
Γ

H(wN(t))dΓ−
∫

Γ

H(wN(0))dΓ. (2.4.33)

By defining the total energy by

EN(t) = EN(t)−
∫

Γ

H(wN(t))dΓ,

we may recast (2.4.33) as

EN(t) +

∫ t

0

|w′N(τ)|22dτ = EN(0). (2.4.34)

From the mean value theorem and the polynomial bound for h in Remark 2.2.2, we
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have

∣∣∣ ∫
Γ

(
H(wN(t))−H(w(t))

)
dΓ
∣∣∣ ≤ C

∫
G

(1 + |wN(t)|q + |w(t)|q)|wN(t)− w(t)|dΓ

≤ C(1 + |wN(t)|q2q + |w(t)|q2q)|wN(t)− w(t)|2

≤ C sup
t∈[0,T ]

|∇wN(t)−∇w(t)|2 −→ 0, as N →∞, (2.4.35)

where we have used in (2.4.35) Hölder’s inequality, the Sobolev Imbedding Theorem,

and (2.3.17f). Hence,

lim
N−→∞

∫
Γ

H(wN(t))dΓ =

∫
Γ

H(w(t))dΓ, for all t ∈ [0, T ]. (2.4.36)

Now, by taking the “lim infN→∞” in (2.4.34), we obtain

lim inf
N→∞

EN(t) + lim inf
N→∞

∫ t

0

|w′N(τ)|22dτ ≤ lim inf
N→∞

EN(0) = E(0), (2.4.37)

were we have used (2.4.36) and the strong convergence in (2.3.3)-(2.3.4).

Using the weak lower-semicontinuity of norms, Fatou’s Lemma, and (2.4.36) along

with Proposition 2.4.1-Proposition 2.4.3, we obtain for almost all t ∈ [0, T ],

lim inf
N→∞

EN(t) + lim inf
N→∞

∫ t

0

|w′N(τ)|22dτ ≥ lim inf
N→∞

EN(t) +

∫ t

0

|w′(τ)|22dτ

− lim
N→∞

∫
Γ

H(wN(t))dΓ ≥ E (t) +

∫ t

0

|w′(τ)|22dτ −
∫

Γ

H(w(t))dΓ. (2.4.38)

Combining (2.4.37) with (2.4.38), we obtain

E (t) +

∫ t

0

|w′(τ)|22dτ −
∫

Γ

H(w(t))dΓ ≤ E(0) a.e. [0, T ], (2.4.39)

which is precisely the desired energy inequality (2.2.6).
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Finally, the energy inequality (2.2.5) is easily obtained after showing

lim
N−→∞

∫ t

0

∫
Γ

h(wN(τ))w′N(τ)dΓdτ =

∫ t

0

∫
Γ

h(w(τ))w′(τ)dΓdτ. (2.4.40)

The proof of (2.4.40) is similar to the proof of (2.4.36), and thus it is omitted.

2.5 Global Existence

This section is devoted to prove the existence of global solutions as described in

Theorem 2.2.6. As in [1, 33, 48] and other works, it is the case here that either a

given solution (u,w) must exist globally in time or else one may find a value of T0

with 0 < T0 <∞ so that

lim sup
t→T−0

(
E (t) +

∫ t

0

|wt(τ)|22dτ
)

=∞, (2.5.1)

where, E (t) = 1
2

(‖ut(t)‖2
2 + ‖∇u(t)‖2

2 + |wt(t)|22 + |∆w(t)|22) + 1
p+1
‖u(t)‖p+1

p+1.

By demonstrating a bound on the energy

E (t) +

∫ t

0

|wt(τ)|22dτ

on every interval [0, T ] which is dependent only upon T and the positive initial energy

E (0), we shall show that the scenario in (2.5.1) cannot occur as the argument is

bounded on any finite interval. This bound is possible provided the source term

acting on the plate is essentially linear. Indeed, this assertion is contained in the

following proposition.

Proposition 2.5.1. Let (u,w) be a weak solution of (2.1.1) on [0, T ] as furnished by

Theorem 2.2.5.
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� If q = 1, then for all t ∈ [0, T ], (u,w) satisfies

E (t) +

∫ t

0

|w(τ)|22dτ ≤ C(T,E (0)), (2.5.2)

where 0 < T <∞ is aribitrary.

� If q > 1, then the bound in (2.5.2) holds for all 0 ≤ t ≤ T ′, where 0 < T ′ ≤ T

and T ′ depending upon T and E (0).

Proof. Recall the energy inequality in (2.2.5):

E (t) +

∫ t

0

|wt(τ)|22dτ ≤ E (0) +

∫ t

0

∫
Γ

h(w)wtdΓdτ. (2.5.3)

By noting the polynomial bound on h in Remark 2.2.2 with q = 1 along with Hölder’s

and Young’s inequalities, we have:

∣∣∣∣∫ t

0

∫
Γ

h(w)wtdΓdτ

∣∣∣∣ ≤ C

∫ t

0

∫
Γ

(|w(τ)|+ 1)wt(τ)dΓdτ

≤ C

∫ t

0

(|w(τ)|2 + 1)|wt(τ)|2dτ

≤ 1

2

∫ t

0

|wt(τ)|22dτ + C

∫ t

0

|w(τ)|22dτ + CT

≤ 1

2

∫ t

0

|wt(τ)|22dτ + C

∫ t

0

E (τ)dτ + CT, (2.5.4)

where the constant C in (2.5.4) depends on |Γ|, the Lebesgue measure of Γ. Combining

(2.5.3) and (2.5.4) yields,

E (t) +
1

2

∫ t

0

|wt(τ)|22dτ ≤ E (0) + CT + C

∫ t

0

E (τ)dτ. (2.5.5)
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In particular,

E (t) ≤ E (0) + CT + C

∫ t

0

E (τ)dτ for t ∈ [0, T ]. (2.5.6)

By Gronwall’s inequality, we conclude that

E (t) ≤ (E (0) + CT )eCT for t ∈ [0, T ], (2.5.7)

where T > 0 is arbitrary. Combining (2.5.5) and (2.5.7), the desired result in (2.5.2)

follows.

Now, if q > 1, we appeal to the polynomial bonud on h in Remark 2.2.2 along with

Hölder’s and Young’s inequalities to obtain:

∣∣∣∣∫ t

0

∫
Γ

h(w)wtdΓdτ

∣∣∣∣ ≤ C

∫ t

0

∫
Γ

(|w(τ)|q + 1)wt(τ)dΓdτ

≤ C

∫ t

0

(|w(τ)|q2q + 1)|wt(τ)|2dτ

≤ 1

2

∫ t

0

|wt(τ)|22dτ + C

∫ t

0

|∆w(τ)|2q2 dτ + CT

≤ 1

2

∫ t

0

|wt(τ)|22dτ + C

∫ t

0

E (τ)qdτ + CT. (2.5.8)

Combining (2.5.3) and (2.5.8) yields

E (t) +
1

2

∫ t

0

‖wt(τ)‖2
2dτ ≤ E (0) + CT + C

∫ t

0

E (τ)qdτ. (2.5.9)

In particular,

E (t) ≤ E (0) + CT + C

∫ t

0

E (τ)qdτ. (2.5.10)
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By using a standard comparison theorem, (2.5.10) yields that E (t) ≤ z(t), where

z(t) = [(E (0) + CT )1−q − C(q − 1)t]
−1
q−1 is the solution of the Volterra integral equa-

tion

z(t) = E (0) + CT + C

∫ t

0

z(s)qds.

Since q > 1, z(t) blows up at the finite time T1 = 1
C(q−1)

(E0 + CT )1−q. Note that T1

depends on initial energy E (0) and the original existence time, T . Nonetheless, if we

choose T ′ = min{T, 1
2
T1}, then

E (t) ≤ z(t) ≤ C0 :=
[
(E (0) + CT )1−q − C(q − 1)T ′

] −1
q−1 <∞, (2.5.11)

for all t ∈ [0, T ′]. Finally, we combine (2.5.9) and (2.5.11) to conclude the second

statement of the proposition.

2.6 Continuous Dependence on Initial Data

In this section, we provide the proof to Theorem 2.2.7 in the case 1 ≤ p ≤ 3, where

the bound (2.5.2) is crucial in the proof.

Proof. Let U0 = (u0, w0, u1, w1) ∈ H = H1
Γ0

(Ω) × H2
0 (Γ) × L2(Ω) × L2(Γ). Assume

that {Un
0 = (un0 , w

n
0 , u

n
1 , w

n
1 ) : n ∈ N} is a sequence of initial data that satisfies:

Un
0 −→ U0 in H strongly as n −→∞. (2.6.1)

Let {(un, wn)} and (u,w) be the weak solutions to (2.1.1) defined on [0, T ] in the sense

of Definition 2.2.3, corresponding to the initial data {Un
0 } and {U0}, respectively.

First, we show that the local existence time T can be taken independent of n ∈ N.
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To see this, we recall that the local existence time provided by Theorem 2.2.5 for the

solution (u,w) depends on the initial energy E (0). Due to the strong convergence of

Un
0 −→ U0, then the local existence time T for the solutions {(un, wn)} and (u,w)

can be chosen independent of n ∈ N. Moreover, in view of (2.5.2), T can be taken

arbitrarily large in the case when q = 1. However, in the case when q > 1, we select

the local existence time to be T = T ′, where T ′ is as given in Proposition 2.5.1 (which

is also uniform in n). In either case, it follows from (2.5.2) that there exists R > 0

such that, for all n ∈ N and all t ∈ [0, T ] (where T > 0 is independent of n):


E (t) +

∫ t
0
|w(τ)|22dτ ≤ R,

E n(t) +
∫ t

0
|wn(τ)|22dτ ≤ R,

(2.6.2)

where E n(t) = 1
2

(‖unt (t)‖2
2 + ‖∇un(t)‖2

2 + |wnt (t)|22 + |∆wn(t)|22) + 1
p+1
‖un(t)‖p+1

p+1.

Now, put yn(t) = u(t)− un(t), zn(t) = w(t)− wn(t), and

Ẽ n(t) =
1

2

(
‖ynt (t)‖2

2 + ‖∇yn(t)‖2
2 + |znt (t)|22 + |∆zn(t)|22

)
, (2.6.3)

for t ∈ [0, T ]. We aim to show Ẽn(t) −→ 0 uniformly on [0, T ].

From Definition 2.2.3, then yn and zn satisfy:

(ynt (t), φ(t))Ω − (ynt (0), φ(0))Ω −
∫ t

0

(ynt (τ), φt(τ))Ωdτ

+

∫ t

0

(∇yn(τ),∇φ(τ))Ωdτ −
∫ t

0

(znt (τ), γφ(τ))Γdτ

+

∫ t

0

∫
Ω

(
|u(τ)|p−1u(τ)− |un(τ)|p−1un(τ)

)
φ(τ)dxdτ = 0, (2.6.4)
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(znt (t) + γyn(t), ψ(t))Γ − (znt (0) + γyn(0, ψ(0))Γ −
∫ t

0

(znt (τ), ψt(τ))Γdτ

−
∫ t

0

(γyn(τ), ψt(τ))Γdτ +

∫ t

0

(∆zn(τ),∆ψ(τ))Γdτ

+

∫ t

0

(znt (τ), ψ(τ))Γdτ =

∫ t

0

∫
Γ

(
h(w(τ))− h(wn(τ))

)
ψ(τ)dΓdτ, (2.6.5)

where φ and ψ are proper test functions as described in Definition 2.2.3.

As we demonstrated in the proof of the energy identity in Section 2.4, we can

replace φ(τ) by Dhy(τ) in (2.6.4) and ψ(τ) by Dhz(τ) in (2.6.5), for any τ ∈ [0, T ].

By using similar arguments as in the proof of the energy identity (2.2.3), we can pass

to the limit as h −→ 0 to deduce the identity:

Ẽ n(t) +

∫ t

0

|zn(τ)|22dτ +

∫ t

0

∫
Ω

(
|u(τ)|p−1u(τ)− |un(τ)|p−1un(τ)

)
ynt (τ)dxdτ

= Ẽ n(0) +

∫ t

0

∫
Γ

(
h(w(τ))− h(wn(τ))

)
znt (τ)dΓdτ. (2.6.6)

We first estimate the term coming from the source acting on the wave equation. By

recalling the bounds in Remark 2.2.2 and by using Hölder’s and Young’s Inequalities,

one has

∣∣∣ ∫ t

0

∫
Ω

(
|u(τ)|p−1u(τ)− |un(τ)|p−1un(τ)

)
ynt (τ)dxdτ

∣∣∣
≤ C

∫ t

0

∫
Ω

(
|u(τ)|p−1 + |un(τ)|p−1

)
|u(τ)− un(τ)||ynt (τ)|dxdτ

≤ C

∫ t

0

(‖u(τ)‖p−1
3(p−1) + ‖un(τ)‖p−1

3(p−1)‖u(τ)− un(τ)‖6‖ynt (τ)‖2dτ

≤ CR

∫ t

0

(‖∇yn(τ)‖2
2 + ‖ynt (τ)‖2

2)dτ ≤ CR

∫ t

0

Ẽ n(τ)dτ, (2.6.7)

where we have used in (2.6.7) the assumption 1 ≤ p ≤ 3, the Sobolev Imbedding

Theorem, and the bounds in (2.6.2).
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In a similar manner, we can estimate the term coming from the source acting on

the plate and obtain

∣∣∣ ∫ t

0

∫
Γ

(
h(w(τ))− h(wn(τ))

)
znt (τ)dΓdτ

∣∣∣ ≤ CR

∫ t

0

|∆zn(τ)|22dτ

≤ CR

∫ t

0

Ẽ n(τ)dτ. (2.6.8)

By combining (2.6.6)-(2.6.8), we conclude

Ẽ n(t) +

∫ t

0

|zn(τ)|22dτ ≤ Ẽ n(0) + CR

∫ t

0

Ẽ n(τ)dτ. (2.6.9)

In particular, Gronwall’s inequality yields

Ẽ n(t) ≤ Ẽ n(0)eCRT , for all t ∈ [0, T ]. (2.6.10)

Since Ẽ n(0) −→ 0, as n −→∞, then Ẽn(t) −→ 0 uniformly on [0, T ], completing the

proof.

Remark 2.6.1. Corollary 2.2.8 follows immediately from Theorem 2.2.7. Its proof is

outlined below. 4

Proof. Let (u,w) and (û, ŵ) be two weak solutions to (2.1.1) defined on [0, T ] in the

sense of Definition 2.2.3 with the same initial data U0 = (u0, w0, u1, w1) ∈ H, where

H = H1
Γ0

(Ω)×H2
0 (Γ)× L2(Ω)× L2(Γ). Put: ŷ(t) = u(t)− û(t), ẑ(t) = w(t)− ŵ(t),

and

Ê (t) =
1

2

(
ŷ′(t)‖2

2 + ‖∇ŷ(t)‖2
2 + |ẑ′(t)|22 + |∆ẑ(t)|22

)
. (2.6.11)
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Then, in the same manner in obtaining the identity (2.6.6), we have

Ê (t) +

∫ t

0

|ẑ(τ)|22dτ +

∫ t

0

∫
Ω

(
|u(τ)|p−1u(τ)− |û(τ)|p−1û(τ)

)
ynt (τ)dxdτ

≤
∫ t

0

∫
Γ

(
h(w(τ))− h(ŵ(τ))

)
znt (τ)dΓdτ (2.6.12)

Similar estimates as in (2.6.7)-(2.6.8) yield,

Ê (t) +

∫ t

0

|ẑ(τ)|22dτ ≤ C

∫ t

0

Ê (τ)dτ, (2.6.13)

which implies by Gronwall’s inequality that Ê (t) = 0 for all t ∈ [0, T ]. Hence,

(u,w) = (û, ŵ).
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Chapter 3

Supercritical Source and Damping Terms

3.1 The Model

In this iteration of the model we leave the statement of 1.2.1 intact, with more general

assumptions placed on the nonlinearities. As a reminder, this leaves us with:



utt −∆u+ g1(ut) = f(u) in Ω× (0, T ),

wtt + ∆2w + g2(wt) + ut|Γ = h(w) in Γ× (0, T ),

u = 0 on Γ0 × (0, T ),

∂νu = wt on Γ× (0, T ),

w = ∂νΓ
w = 0 on ∂Γ× (0, T ),

(u(0), ut(0)) = (u0, u1), (w(0), wt(0)) = (w0, w1),

(3.1.1)

where the initial data reside in the finite energy space, i.e.,

(u0, u1) ∈ H1
Γ0

(Ω)× L2(Ω) and (w0, w1) ∈ H2
0 (Γ)× L2(Γ).
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3.2 Main Results

Throughout the chapter, we study (3.1.1) under the following assumptions.

Assumption 3.2.1.

Damping g1, g2 : R → R are continuous and monotone increasing functions with

g1(0) = g2(0) = 0. In addition, the following growth conditions at infinity hold:

there exist positive constants α and β such that, for |s| ≥ 1,

α|s|m+1 ≤ g1(s)s ≤ β|s|m+1, with m ≥ 1,

α|s|r+1 ≤ g2(s)s ≤ β|s|r+1, with r ≥ 1.

Interior sources f and h are functions in C1(R) such that

|f ′(s)| ≤ C(|s|p−1 + 1), with 1 ≤ p < 6,

|h′(s)| ≤ C(|s|q−1 + 1), with 1 ≤ q <∞.

Parameters pm+1
m

< 6.

Remark 3.2.2. As the following bounds will be used often throughout the work it is

worthy of note that the above assumption implies that


|f(u) ≤ C(|u|p + 1), |f(u)− f(v)| ≤ C(|u|p−1 + |v|p−1 + 1)|u− v|,

|h(w)| ≤ C(|w|q + 1), |h(w)− h(z)| ≤ C(|w|q−1 + |z|q−1 + 1)|w − z|.

(3.2.1)

4

We begin by introducing the definition of a suitable weak solution for (3.1.1).
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Definition 3.2.3. A pair of functions (u,w) is said to be a weak solution of (3.1.1)

on the interval [0, T ] provided:

(i) u ∈ C([0, T ];H1
Γ0

(Ω)), ut ∈ C([0, T ];L2(Ω)) ∩ Lm+1(Ω× (0, T )),

(ii) w ∈ C([0, T ];H2
0 (Γ)), wt ∈ C([0, T ];L2(Γ)) ∩ Lr+1(Γ× (0, T )),

(iii) (u(0), ut(0)) = (u0, u1) ∈ H1
Γ0

(Ω)× L2(Ω),

(iv) (w(0), wt(0)) = (w0, w1) ∈ H2
0 (Γ)× L2(Γ),

(v) The functions u and w satisfy the following variational identities for all t ∈ [0, T ]:

(ut(t), φ(t))Ω − (u1, φ(0))Ω −
∫ t

0

(ut(τ), φt(τ))Ωdτ +

∫ t

0

(∇u(τ),∇φ(τ))Ωdτ

−
∫ t

0

(wt(τ), γφ(τ))Γdτ +

∫ t

0

∫
Ω

g1(ut(τ))φ(τ)dxdτ

=

∫ t

0

∫
Ω

f(u(τ))φ(τ)dxdτ, (3.2.2)

(wt(t) + γu(t), ψ(t))Γ − (w1 + γu(0), ψ(0))Γ −
∫ t

0

(wt(τ), ψt(τ))Γdτ

−
∫ t

0

(γu(τ), ψt(τ))Γdτ +

∫ t

0

(∆w(τ),∆ψ(τ))Γdτ

+

∫ t

0

∫
Γ

g2(wt(τ))ψ(τ)dΓdτ =

∫ t

0

∫
Γ

h(w(τ))ψ(τ)dΓdτ, (3.2.3)

for all test functions φ and ψ satisfying: φ ∈ C([0, T ];H1
Γ0

(Ω))∩Lm+1(Ω×(0, T )),

ψ ∈ C ([0, T ];H2
0 (Γ)) with φt ∈ L1(0, T ;L2(Ω)), and ψt ∈ L1(0, T ;L2(Γ)).

Our first theorem establishes the existence of a local weak solution to (3.1.1). Specif-

ically, we have the following result.
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Theorem 3.2.4. (Local weak solutions) Under the validity of Assumption 3.2.1, then

there exists a local weak soluition (u,w) to (3.1.1) defined on [0, T0] for some T0 > 0

depending on the initial energy E(0), where

E(t) =
1

2

(
‖ut(t)‖2

2 + ‖∇u(t)‖2
2 + |wt(t)|22 + |∆w(t)|22

)
.

In addition, the following energy identity holds for all t ∈ [0, T0]:

E(t) +

∫ t

0

∫
Ω

g1(ut)utdxdτ +

∫ t

0

∫
Γ

g2(wt)wtdΓdτ

= E(0) +

∫ t

0

∫
Ω

f(u)utdxdτ +

∫ t

0

∫
Γ

h(w)wtdΓdτ. (3.2.4)

Our next theorem states that weak solutions furnished by Theorem 3.2.4 are global

solutions, provided the exponents of damping are more dominant than the exponents

of the corresponding sources.

Theorem 3.2.5. (Global in time weak solutions) In addition to Assumption 3.2.1,

further assume u0 ∈ Lp+1(Ω). If p ≤ m and q ≤ r, then the said solution (u,w) in

Theorem 3.2.4 is a global weak solution and T0 can be taken arbitrarily large.

In order to state the next theorem, we need additional assumptions on the source

acting on the wave equation.

Assumption 3.2.6. For p > 3, assume that f ∈ C2(R) with |f ′′(u)| ≤ C(|u|p−2 + 1)

for all u ∈ R.

Theorem 3.2.7. (Continuous dependence on initial data) Assume the validity of

Assumptions 3.2.1 and 3.2.6 and an initial data U0 = (u0, w0, u1, w1) ∈ X where the

function space X is given by X = (H1
Γ0

(Ω)∩L
3(p−1)

2 (Ω))×H2
0 (Γ)×L2(Ω)×L2(Γ). If
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Un
0 = (un0 , w

n
0 , u

n
1 , w

n
1 ) is a sequence of initial data such that, as n −→∞,

Un
0 −→ U0 in X,

then, the corresponding weak solutions (un, wn) and (u,w) of (3.1.1) satisfy:

(un, wn, unt , w
n
t ) −→ (u,w, ut, wt) in C([0, T ];H), as n −→∞,

where H = H1
Γ0

(Ω)×H2
0 (Γ)× L2(Ω)× L2(Γ).

Remark 3.2.8. If p ≤ 5, then the assumption of u0 ∈ Lp+1(Ω) in Theorem 3.2.5 is

redundant as H1
Γ0

(Ω) ↪→ L6(Ω). Simlarily, if p ≤ 5, then the spaces X and H in

Theorem 3.2.7 are indentical. 4

Our final two theorems address uniqueness of weak solutions.

Theorem 3.2.9. (Uniqueness of weak solutions–Part 1) In addition to Assumptions

3.2.1 and 3.2.6, we further assume that u0 ∈ L
3(p−1)

2 (Ω). Then, weak solutions of

(3.1.1) are unique.

Remark 3.2.10. It is often the case that the wave source f fail to satisfy Assumption

3.2.6 for the values 3 < p ≤ 5, i.e, f /∈ C2(R). To ensure uniqueness of weak solutions

in such a case, we require the exponent of m of the wave damping to be sufficiently

large. More precisely, our final result resolves this issue. 4

Theorem 3.2.11. (Uniqueness of weak solutions–Part 2) Under Assumption 3.2.1

we additionally assume that u0 ∈ L3(p−1)(Ω) and m ≥ 3p − 4 if p > 3. Then weak

solutions of (3.1.1) are unique.
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3.3 Local Existence

3.3.1 Operator Theoretic Formulation

Our first goal is to put problem (3.1.1) in an operator theoretic form. In order to

do so, we introduce the Dirichlét-Neumann Laplacian, given by: A = −∆ : D(A) ⊂

L2(Ω) −→ L2(Ω), with its domain D(A) = {u ∈ H2(Ω) : u|Γ0 = 0, ∂νu|Γ = 0}. We

note that A can be extended to a continuous map A : H1
Γ0

(Ω) −→ (H1
Γ0

(Ω))′, where

〈Au, φ〉 =
∫

Ω
∇u · ∇φdx = (∇u,∇φ)Ω, for all u, φ ∈ H1

Γ0
(Ω).

We define the Dirichlét-Neumann map: R : Hs(Γ) −→ Hs+ 3
2 (Ω)∩H1

Γ0
(Ω); s ≥ 0 by:

q = Rp ⇐⇒ q is the weak solution of the problem


∆q = 0 in Ω,

q = 0 on Γ0,

∂νq = p on Γ.

(3.3.1)

It is well-known that R is continuous from Hs(Γ) to Hs+ 3
2 (Ω) ∩ H1

Γ0
(Ω), for s ≥ 0

(see for instance Lasiecka and Triggiani [43, 44]). Let us note here that (3.3.1) and a

straightforward computation yields the following useful identity:

〈ARp, φ〉 = (∇Rp · ∇φ)Ω = (p, γφ)Γ, (3.3.2)

for all p ∈ L2(Γ) and φ ∈ H1
Γ0

(Ω).

Also, the biharmonic operator ∆2 : D(∆2) ⊂ L2(Γ) −→ L2(Γ) with its domain

D(∆2) = H4(Γ) ∩ H2
0 (Γ) can be extended as a continuous mapping from H2

0 (Γ) to

H−2(Γ), where 〈∆2w, φ〉 = (∆w,∆φ)Γ, for all w, φ ∈ H2
0 (Γ).
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By using the operators above, then (3.1.1) can be formally casted as:



utt + A(u−Rwt) + g1(ut) = f(u) in Ω× (0, T ),

wtt + ∆2w + g2(wt) + γut = h(w) in Γ× (0, T ),

(u(0), ut(0)) = (u0, u1) ∈ H1
Γ0

(Ω)× L2(Ω),

(w(0), wt(0)) = (w0, w1) ∈ H2
0 (Γ)× L2(Γ).

(3.3.3)

Now, we introduce the state space H = H1
Γ0

(Ω) × H2
0 (Γ) × L2(Ω) × L2(Γ) with the

natural norm:

|U |2H = ‖∇u‖2
2 + |∆w|22 + ‖y‖2

2 + |z|22 , for all U = (u,w, y, z) ∈ H,

and define the nonlinear operator

A : D(A ) ⊂ H −→ H

by

A



u

w

y

z



tr

=



−y

−z

A(u−Rz) + g1(y)− f(u)

∆2w + g2(z) + γy − h(w)



tr

(3.3.4)
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where

D(A ) =
{

(u,w, y, z) ∈
(
H1

Γ0
(Ω)×H2

0 (Γ)
)2

: A(u−Rz) + g1(y)− f(u) ∈ L2(Ω),

g1(y) ∈
(
H1

Γ0
(Ω)
)′ ∩ L1(Ω), ∆2w ∈ L2(Γ)

}
.

By putting U = (u,w, ut, wt), then the system (3.3.3) is equivalent to

Ut + A U = 0 with U(0) = (u0, w0, u1, w1) ∈ H. (3.3.5)

3.3.1.1 Globally Lipschitz Sources

First, we deal with the case where the sources are globally Lipschitz. In this case, we

have the following lemma.

Lemma 3.3.1. Assume that f : H1
Γ0

(Ω) −→ L2(Ω) and h : H2
0 (Γ) −→ L2(Γ) are

globally Lipschitz continuous. Then, system (3.3.3) has a unique global strong solution

U ∈ W 1,∞(0, T ;H) for arbitrary T > 0; provided the initial datum U0 ∈ D(A ).

Proof. In order to prove Lemma 3.3.1 it suffices to show that the operator A + ωI

is m-accretive for some positive ω. We say an operator A : D(A ) ⊂ H −→ H is

accretive if (A x1 −A x2, x1 − x2)H ≥ 0, for all x1, x2 ∈ D(A ), and it is m-accretive

if, in addition, A +I maps D(A ) onto H. In fact, by Kato’s Theorem [55], if A +ωI

is m-accretive for some positive ω, then for each U0 ∈ D(A ) there is a unique strong

solution U of (3.3.5), i.e., U ∈ W 1,∞(0, T ;H) such that U(0) = U0, U(t) ∈ D(A ) for

all t ∈ [0, T ], and equation (3.3.5) is satisfied a.e. [0, T ], where T > 0 is arbitrary.

Step 1: Proof for A + ωI is accretive for some positive ω. Let U =
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(u,w, y, z), Û = (û, ŵ, ŷ, ẑ) ∈ D(A ). We aim to find ω > 0 such that

((A + ωI)U − (A + ωI)Û , U − Û)H ≥ 0.

By straightforward calculations we obtain:

((A + ωI)U − (A + ωI)Û , U − Û)H = (A (U)−A (Û), U − Û)H + ω|U − Û |2H

=− (∇(y − ŷ),∇(u− û))Ω − (∆(z − ẑ),∆(w − ŵ))Γ + 〈A(u− û), y − ŷ〉

− 〈AR(z − ẑ), y − ŷ〉+ 〈g1(y)− g1(ŷ), y − ŷ〉 − (f(u)− f(û), y − ŷ)Ω

+ 〈∆2(w − ŵ), z − ẑ〉+ 〈g2(z)− g2(ẑ), z − ẑ〉+ (γ(y − ŷ), z − ẑ)Γ

− (h(w)− h(ŵ), z − ẑ)Γ + ω‖∇(u− û)‖2
2 + ω |∆(w − ŵ)|22

+ ω‖y − ŷ‖2
2 + ω|z − ẑ|22. (3.3.6)

We note here that
〈A(u− û), y − ŷ〉 = (∇(u− û),∇(y − ŷ)Ω,

〈∆2(w − ŵ), z − ẑ〉 = (∆(w − ŵ),∆(z − ẑ))Γ.

(3.3.7)

Moreover, since g1(y) − g1(ŷ) ∈
(
H1

Γ0
(Ω)
)′ ∩ L1(Ω) and y − ŷ ∈ H1

Γ0
(Ω) satisfying

(g1(y(x)) − g1(ŷ(x)))(y(x) − ŷ(x)) ≥ 0, for all x ∈ Ω, then by Lemma 2.2 (p.89) in

[6], we have (g1(y)− g1(ŷ))(y − ŷ) ∈ L1(Ω) and

〈g1(y)− g1(ŷ), y − ŷ〉 =

∫
Ω

(g1(y)− g1(ŷ))(y − ŷ)dx ≥ 0. (3.3.8)
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We also immediately have

〈g2(z)− g2(ẑ), z − ẑ)〉 =

∫
Ω

(g2(z)− g2(ẑ))(z − ẑ)dx ≥ 0. (3.3.9)

Additionally, (3.3.2) yields

〈AR(z − ẑ), y − ŷ〉 = (z − ẑ, γ(y − ŷ))Γ (3.3.10)

By the assumption on the mappings f and h, let Lf and Lh be their globally Lipschitz

constants, and select L = max{Lf , Lh}. Then, one has

−(f(u)− f(û), y − ŷ)Ω − (h(w)− h(ŵ), z − ẑ)Γ

≥ −L‖∇(u− û)‖2‖y − ŷ‖2 − L|∆(w − ŵ)|2|z − ẑ|2

≥ −L
2

(
‖∇(u− û)‖2

2 + |∆(w − ŵ)|22 + ‖y − ŷ‖2
2 + |z − ẑ|22

)
, (3.3.11)

where we have used Young’s inequality. By combining (3.3.6)-(3.3.11), we have

((A + ωI)U − (A + ωI)Û , U − Û)H

≥
(
ω − L

2

)(
‖∇(u− û)‖2

2 + |∆(w − ŵ)|22 + ‖y − ŷ‖2
2 + |z − ẑ|22

)
.

Therefore, by choosing ω > L
2
, then A + ωI is accretive.

Step 2: Proof for A +λI is m-accretive for some λ > 0. It suffices to show

that the range of A + λI is all of H, for some λ > 0.

So, let (a, b, c, d) ∈ H. We have to show that there exists (u,w, y, z) ∈ D(A ) such



59

that (A + λI)(u,w, y, z) = (a, b, c, d), for some λ > 0, that is,



−y + λu = a

−z + λw = b

A(u−Rz) + g1(y)− f(u) + λy = c

∆2w + g2(z) + γy − h(w) + λz = d.

(3.3.12)

Note, (3.3.12) is equivalent to


1
λ
Ay − ARz + g1(y)− f(a+y

λ
) + λy = c− 1

λ
Aa

1
λ
∆2z + g2(z) + γy − h( b+z

λ
) + λz = d− 1

λ
∆2b.

(3.3.13)

Let V = H1
Γ0

(Ω) ×H2
0 (Γ) and notice that the right hand side of (3.3.13) belongs to

V ′. Thus, we define the operator B : D(B) ⊂ V −→ V ′ by:

B

y
z


tr

=

 1
λ
Ay − ARz + g1(y)− f(a+y

λ
) + λy

1
λ
∆2z + g2(z) + γy − h( b+z

λ
) + λz


tr

where D(B) = {(y, z) ∈ V : g1(y) ∈
(
H1

Γ0
(Ω)
)′∩L1(Ω)}. Therefore, the issue reduces

to proving that B : D(B) ⊂ V −→ V ′ is surjective. By Corollary 1.2 (p.45) in [6],

it is enough to show that B is maximal monotone and coercive. To do this we will

split B into two operators:

B1

y
z


tr

=

 1
λ
Ay − ARz − f(a+y

λ
) + λy

1
λ
∆2z + γy − h( b+z

λ
) + λz


tr

,
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and

B2

y
z


tr

=

g1(y)

g2(z)


tr

.

B1 is maximal monotone and coercive: Clearly, D(B1) = V . We first show

that B1 : V −→ V ′ is strongly monotone. So, let Y, Ŷ ∈ V , where Y = (y, z) and

Ŷ = (ŷ, ẑ). By straightforward calculations, we obtain

〈B1(Y )−B1(Ŷ ), Y − Ŷ 〉V ′,V =
1

λ
〈A(y − ŷ), y − ŷ〉 − 〈AR(z − ẑ), y − ŷ〉

−
(
f(
a+ y

λ
)− f(

a+ ŷ

λ
), y − ŷ

)
Ω

+ λ‖y − ŷ‖2
2 +

1

λ
〈∆2(z − ẑ), z − ẑ〉

+ (γ(y − ŷ), z − ẑ)Γ −
(
h(
b+ z

λ
)− h(

b+ ẑ

λ
), z − ẑ

)
Γ

+ λ|z − ẑ|22. (3.3.14)

Thanks to (3.3.2), we have 〈AR(z − ẑ), y − ŷ〉 = (z − ẑ, γ(y − ŷ))Γ. Therefore, it

follows from (3.3.14) and Young’s inequality (with an η > 0) that:

〈B1(Y )−B1(Ŷ ), Y − Ŷ 〉V ′,V ≥
1

λ
‖∇(y − ŷ)‖2

2 −
L

λ
‖∇(y − ŷ)‖2‖y − ŷ‖2

+ λ‖y − ŷ‖2
2 +

1

λ
|∆(z − ẑ)|22 −

L

λ
|∆(z − ẑ)|2|z − ẑ|2 + λ|z − ẑ|22

≥ 1

λ
‖∇(y − ŷ)‖2

2 −
L2

4ηλ
‖∇(y − ŷ)‖2

2 −
η

λ
‖y − ŷ‖2

2 + λ‖y − ŷ‖2
2 +

1

λ
|∆(z − ẑ)|22

− L2

4ηλ
|∆(z − ẑ)|22 −

η

λ
|z − ẑ|22 + λ|z − ẑ|22. (3.3.15)

Therefore, we conclude from (3.3.15) that

〈B1(Y )−B1(Ŷ ), Y − Ŷ 〉V ′,V ≥
(1

λ
− L2

4ηλ

)
‖∇(y − ŷ)‖2

2 +
(
λ− η

λ

)
‖y − ŷ‖2

2

+
(1

λ
− L2

4ηλ

)
|∆(z − ẑ)|22 +

(
λ− η

λ

)
|z − ẑ|22. (3.3.16)
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By selecting η large enough, say η = L2

2
, and then by selecting λ = L√

2
, it follows from

(3.3.16) that

〈B1(Y )−B1(Ŷ ), Y − Ŷ 〉V ′,V ≥
1

2λ

(
‖∇(y − ŷ)‖2

2 + |∆(z − ẑ)|22
)

=
1

2λ
‖Y − Ŷ ‖2

V ,

proving B1 is strongly monotone. It is easy to see that strong monotonicity implies

coercivity of B1. Next, we show that B1 is continuous. It is clear that the mappings

A : H1
Γ0

(Ω) −→ (H1
Γ0

(Ω))′, ∆2 : H2
0 (Γ) −→ H−2(Γ), and γ : H1

Γ0
(Ω) −→ H−2(Γ) are

continuous. Moreover, as f : H1
Γ0

(Ω) −→ L2(Ω) and h : H2
0 (Γ) −→ L2(Γ) are globally

Lipschitz continuous, then the mapping y 7→ f(a+y
λ

) is continuous from H1
Γ0

(Ω) to

(H1
Γ0

(Ω))′ and the mapping z 7→ h( b+z
λ

) is also continuous from H2
0 (Γ) to H−2(Γ).

In addition, by the properties of the Dirichlét-Neumann map R, we deduce that

AR : H2
0 (Γ) −→ (H1

Γ0
(Ω))′ is continuous.

It follows that B1 : V −→ V ′ is continuous, and along with the monotonicity of

B1, we conclude that B1 is maximal monotone.

B2 is maximal monotone: We first note that D(B2) = {(y, z) ∈ V : g1(y) ∈(
H1

Γ0
(Ω)
)′ ∩ L1(Ω)}. We will study first the operator g1(y), and in order to do so we

define the functional J1 : H1
Γ0

(Ω) −→ [0,∞] by

J1(y) =

∫
Ω

j1(y(x))dx

where j1 : R −→ [0,∞) is the convex function defined by

j1(s) =

∫ s

0

g1(τ)dτ.

Clearly J1 is proper, convex, and lower semi-continuous. Moreover, by Corollary 2.3
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in [7] we know that ∂J1 : H1
Γ0

(Ω) −→ (H1
Γ0

(Ω))′ satisfies

∂J1(y) = {µ ∈ (H1
Γ0

(Ω))′ ∩ L1(Ω) : µ = g1(y) a.e. in Ω} (3.3.17)

This implies that D(∂J1) = {y ∈ H1
Γ0

(Ω) : g1(y) ∈ (H1
Γ0

(Ω))′ ∩ L1(Ω)}, and for

all y ∈ D(∂J1), ∂J1(y) is a singleton such that ∂J1(y) = {g1(y)}. Since any sub-

differential is maximal monotone, we obtain the maximal monotonicity of the operator

g1(·) : D(∂J1) ⊂ H1
Γ0

(Ω) −→ (H1
Γ0

(Ω))′. Using the same approach, we define the func-

tional J2 : H2
0 (Γ) −→ [0,∞] by J2(z) =

∫
Γ
j2(z(x))dΓ, where j2(s) =

∫ s
0
g2(τ)dτ . By

the same argument above and using a result by Brézis [16], we obtain ∂J2 : H2
0 (Γ) −→

H−2(Γ) with D(∂J2) = H2
0 (Γ), and for all z ∈ D(∂J2), ∂J2(z) is a singleton such that

∂J2(z) = {g2(z)}. Therefore, the operator g2(·) : D(∂J2) ⊂ H2
0 (Γ) −→ H−2(Γ) is

maximal monotone. Hence, by Proposition 7.1 in [33], it follows that B2 : D(B2) ⊂

V −→ V ′ is maximal monotone. Now, since both B1 and B2 are both maximal

monotone and D(B1) = V , then by a well-known Theorem in [6], B = B1 + B2 is

maximal monotone.

Finally, since B2 is monotone and B2(0) = 0, it follows that 〈B2Y, Y 〉 ≥ 0 for

all Y ∈ D(B2), and along with the fact B1 is coercive, we obtain B is coercive as

well. Then, the surjectivity of B follows immediately by Corollary 1.2 (p.45) in [6].

Thus, we proved the existence of (y, z) ∈ D(B) ⊂ V = H1
Γ0

(Ω) × H2
0 (Γ) such that

(y, z) satisfies (3.3.13). So by (3.3.12), (u, v) =
(
a+y
λ
, b+z

λ

)
∈ H1

Γ0
(Ω) × H2

0 (Γ). In

addition, one can easily see that (u,w, y, z) ∈ D(A ). Thus, the proof of maximal

accretivity is completed and so is the proof of Lemma 3.3.1.
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3.3.1.2 Locally Lipschitz Sources

In this subsection, we loosen the restrictions on sources, namely allow f to be locally

Lipschitz continuous.

Lemma 3.3.2. Assume that g1 and g2 are satisfying the conditions in Assumption

3.2.1. Further assume that f : H1
Γ0

(Ω) −→ L2(Ω) is locally Lipschitz continuous.

Then, system (3.3.3) has a unique local strong solution U ∈ W 1,∞(0, T0;H) for some

T0 > 0; provided the initial datum U0 ∈ D(A ).

Proof. As in [14, 19, 33], we use standard truncation of the sources. Recall, V =

H1
Γ0

(Ω)×H2
0 (Γ) and define

fK(u) =


f(u) if ‖∇u‖2 ≤ K,

f
(

Ku
‖∇u‖2

)
if ‖∇u‖2 > K,

hK(w) =


h(w) if |∆w|2 ≤ K,

h
(

Kw
|∆w|2

)
if |∆w|2 > K,

where K is a positive constant such that K2 ≥ 4E(0) + 1, where the energy E(t) is

given by

E(t) =
1

2

(
‖ut(t)‖2

2 + |wt(t)|22 + ‖∇u(t)‖2
2 + |∆w(t)|22

)
.
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With the truncated sources above, we consider the following K problem:

(K)



utt + A(u−Rwt) + g1(ut) = fK(u) in Ω× (0, T ),

wtt + ∆2w + g2(wt) + γut = hK(w) in Γ× (0, T ),

(u(0), ut(0)) = (u0, u1) ∈ H1
Γ0

(Ω)× L2(Ω),

(w(0), wt(0)) = (w0, w1) ∈ H2
0 (Γ)× L2(Γ).

We note here that for each such K, the operators fK : H1
Γ0

(Ω) −→ L2(Ω) and

hK : H2
0 (Γ) −→ L2(Γ) are globally Lipschitz continuous (see for instance [19, 36]).

Therefore, by Lemma 3.3.1, the (K) problem has a unique global strong solution

UK ∈ W 1,∞(0, T ;H) for any T > 0 provided the initial datum U0 ∈ D(A ).

In what follows, we shall express (uK(t), wK(t)) as (u(t), w(t)). Since ut ∈ H1
Γ0

(Ω)

and vt ∈ H2
0 (Γ), such that g1(ut) ∈ (H1

Γ0
(Ω))′ ∩ L1(Ω), then by (3.3.8) we may use

the multiplier ut and vt on the (K) problem and obtain the following energy identity:

E(t) +

∫ t

0

∫
Ω

g1(ut)utdxdτ +

∫ t

0

∫
Γ

g2(wt)wtdΓdτ

= E(0) +

∫ t

0

∫
Ω

fK(u)utdxdτ +

∫ t

0

∫
Γ

hK(w)wtdΓdτ. (3.3.18)

In addition, since m, r ≥ 1, we know m̃ = m+1
m
, r̃ = r+1

r
≤ 2. Hence, by our assump-

tions on the sources, it follows that f : H1
Γ0

(Ω) −→ Lm̃(Ω) and h : H2
0 (Γ) −→ Lr̃(Γ)

are locally Lipschitz continuous with Lipschitz constants Lf (K) and Lh(K), respec-

tively, on the ball {(u,w) ∈ V : ‖(u,w)‖V ≤ K}. Put LK = max{Lf (K), Lh(K)}.

We now estimate the terms due to the sources in the energy identity (3.3.18). By
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Hölder’s and Young’s inequalities, we have

∫ t

0

∫
Ω

fK(u)utdxdτ ≤
∫ t

0

‖fK(u)‖m̃‖ut‖m+1dτ

≤ ε

∫ t

0

‖ut‖m+1
m+1dτ + Cε

∫ t

0

‖fK(u)‖m̃m̃dτ

≤ ε

∫ t

0

‖ut‖m+1
m+1dτ + Cε

∫ t

0

(
‖fK(u)− fK(0)‖m̃m̃ + ‖fK(0)‖m̃m̃

)
dτ

≤ ε

∫ t

0

‖ut‖m+1
m+1dτ + CεL

m̃
K

∫ t

0

‖u‖m̃1,Ωdτ + Cεt|f(0)|m̃|Ω|, (3.3.19)

where ε > 0 will be chosen below. Likewise, we deduce

∫ t

0

∫
Γ

hK(w)wtdΓdτ ≤ ε

∫ t

0

|wt|r+1
r+1dτ + CεL

r̃
K

∫ t

0

‖w‖r̃2,Γdτ + Cεt|h(0)|r̃|Γ|. (3.3.20)

By the assumptions on damping, it follows that

g1(s)s ≥ α(|s|m+1 − 1) and g2(s)s ≥ α(|s|r+1 − 1), (3.3.21)

for all s ∈ R. Therefore,


∫ t

0

∫
Ω
g1(ut)utdxdτ ≥ α

∫ t
0
‖ut‖m+1

m+1dτ − αt|Ω|,

∫ t
0

∫
Γ
g2(wt)wtdΓdτ ≥ α

∫ t
0
|wt|r+1

r+1dτ − αt|Γ|.

(3.3.22)
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By combining (3.3.19)-(3.3.22) in the energy identity (3.3.18), one has

E(t) + α

∫ t

0

(‖ut‖m+1
m+1 + |wt|r+1

r+1)dτ − αt(|Ω|+ |Γ|)

≤ E(0) + ε

∫ t

0

(‖ut‖m+1
m+1 + |wt|r+1

r+1)dτ

+ CεL
m̃
K

∫ t

0

‖u‖M̃1,Ωdτ + CεL
r̃
K

∫ t

0

‖w‖r̃2,Γdτ

+ Cεt(|f(0)|m̃|Ω|+ |h(0)|r̃|Γ|). (3.3.23)

If ε ≤ α, then (3.3.23) implies

E(t) ≤ E(0) + CεL
m̃
K

∫ t

0

‖u‖m̃1,Ωdτ + CεL
r̃
K

∫ t

0

‖w‖r̃2,Γdτ

+ Cεt(|f(0)|m̃|Ω|+ |h(0)|r̃|Γ|) + αt(|Ω|+ |Γ|). (3.3.24)

Since m̃, r̃ ≤ 2, then by Young’s inequality,

∫ t

0

‖u‖m̃1,Ωdτ ≤
∫ t

0

(‖u‖2
1,Ω + C̃)dτ ≤ 2

∫ t

0

E(τ)dτ + C̃t,

∫ t

0

‖w‖r̃2,Γdτ ≤
∫ t

0

(‖w‖2
2,Γ + C̃)dτ ≤ 2

∫ t

0

E(τ)dτ + C̃t,

where C̃ is a positive constant that depends on m and r. Therefore, if we set C(LK) =

2Cε(L
m̃
K +Lr̃K) and C0 = Cε(|f(0)|m̃|Ω|+ |h(0)|r̃|Γ|)+α(|Ω|+ |Γ|)+2C̃, then it follows

from (3.3.24) that

E(t) ≤ (E(0) + C0T0) + C(LK)

∫ t

0

E(τ)dτ, for all t ∈ [0, T0],
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where T0 will be chosen below. By Gronwall’s inequality, one has

E(t) ≤ (E(0) + C0T0)eC(LK)t for all t ∈ [0, T0]. (3.3.25)

We select

T0 = min

{
1

4C0

,
1

C(LK)
log 2

}
, (3.3.26)

and recall our assumption that K2 ≥ 4E(0) + 1. Then, it follows from (3.3.25) that

E(t) ≤ 2

(
E(0) +

1

4

)
≤ K2

2
, (3.3.27)

for all t ∈ [0, T0]. This implies that ‖(u(t), w(t))‖V ≤ K, for all t ∈ [0, T0], and

therefore, fK(u) = f(u) and hK(w) = h(w) on the time interval [0, T0]. Because of

the uniqueness of solutions for the (K) problem, the solution to the truncated problem

(K) coincides with the solution to the system (3.3.3) for t ∈ [0, T0], completing the

proof of Lemma 3.3.2.

Remark 3.3.3. In Lemma 3.3.2, the local existence time T0 depends on LK , which is

the local Lipschitz constant of f : H1
Γ0

(Ω) −→ Lm̃(Ω) and h : H2
0 (Γ) −→ Lr̃(Γ). The

advantage of this result is that T0 does not depend on the locally Lipschitz constants

for the mappings f : H1
Γ0

(Ω) −→ L2(Ω) and h : H2
0 (Γ) −→ L2(Γ). This fact is critical

for the remaining parts of the proof of the local existence statement in Theorem

3.2.4 4
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3.3.1.3 Lipschitz Approximations of the Sources.

This subsection is devoted for constructing Lipschitz approximations of the wave

source. We begin with essential propositions.

Proposition 3.3.4. Assume 1 ≤ p < 6, m ≥ 1, and pm+1
m
≤ 6

1+2ε
for some ε > 0.

Further assume f ∈ C1(R) such that |f ′(s)| ≤ C(|s|p−1 + 1), for all s ∈ R. Then

f : H1−ε
Γ0

(Ω) −→ Lm̃(Ω) is locally Lipschitz continuous, where m̃ = m+1
m

.

Remark 3.3.5. Since H1
Γ0

(Ω) ↪→ H1−ε
Γ0

(Ω), then it follows from Proposition 3.3.4 that

f is locally Lipschitz from H1
Γ0

(Ω) into Lm̃(Ω). In particular, if 1 ≤ p ≤ 3, then it is

easy to verify that f is locally Lipschitz from H1
Γ0

(Ω) −→ L2(Ω). 4

Proof. Let u, û ∈ H1−ε
Γ0

(Ω) such that ‖u‖H1−ε
Γ0

(Ω), ‖û‖H1−ε
Γ0

(Ω) ≤ R, for some R > 0. It

follows from (3.2.1) that

‖f(u)− f(û)‖m̃m̃ ≤ C

∫
Ω

|u− û|m̃
(
|u|m̃(p−1) + |û|m̃(p−1) + 1

)
dx. (3.3.28)

All terms in (3.3.28) are estimated in the same manner. In particular, for a typical

term in (3.3.28), we estimate it by Hölder’s inequality and the Sobolev imbedding

H1−ε
Γ0

(Ω) ↪→ L
6

1+2ε (Ω) together with the assumption pm̃ ≤ 6
1+2ε

and ‖u‖H1−ε
Γ0

(Ω) ≤ R.

For instance,

∫
Ω

|u−û|m̃|u|(p−1)m̃dx ≤ ‖u− û‖m̃pm̃ ‖u‖
(p−1)m̃
pm̃

≤ C‖u− û‖m̃
H1−ε

Γ0
(Ω)
‖u‖(p−1)m̃

H1−ε
Γ0

(Ω)
≤ CR(p−1)m̃‖u− û‖m̃

H1−ε
Γ0

(Ω)
.

Hence, we obtain

‖f(u)− f(û)‖m̃ ≤ C(R)‖u− û‖H1−ε
Γ0

(Ω),
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for some constant C(R) > 0 depending on R.

Recall that for the values 3 < p < 6, the source f(u) is not locally Lipschitz continuous

from H1
Γ0

(Ω) into L2(Ω). So, in order to apply Lemma 3.3.2 to prove Theorem 3.2.4,

we shall construct Lipschitz approximations of the source f . In particular, we shall

use smooth cutoff functions ηn ∈ C∞0 (R), similar to those used in Bociu [12] and later

by [33] and others, such that each ηn satisfies:

0 ≤ ηn ≤ 1; ηn(u) = 1 if |u| ≤ n; ηn(u) = 0 if |u| ≥ 2n; and |η′n(u)| ≤ C
n

. Put

fn(u) = f(u)ηn(u), u ∈ R, n ∈ N, (3.3.29)

where f satisfies Assumption 3.2.1. The following proposition summarizes important

properties of fn. Its proof has appeared in [14] and it is also similar to the one

appeared in [33], thus its proof is omitted.

Proposition 3.3.6. For each n ∈ N, the function fn defined in (3.3.29) satisfies:

� fn(u) : H1
Γ0

(Ω) −→ L2(Ω) is globally Lipschitz continuous with Lipschitz con-

stant depending on n.

� There exists ε > 0 such that fn : H1−ε
Γ0

(Ω) −→ Lm̃(Ω) is locally Lipschitz

continuous where the local Lipschitz constant is independent of n and where

m̃ = m+1
m

.

The following proposition deals with the plate source h and its proof is trivial.

Proposition 3.3.7. Assume 1 ≤ q < ∞ and r ≥ 1. If h ∈ C1(R) such that

|h′(s)| ≤ C(|s|q−1 + 1), then h is Locally Lipschitz from H2−ε
0 (Γ) into L

r+1
r (Γ), where

ε > 0 is sufficiently small.
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3.3.2 Approximate Solutions and Passage to the Limit.

We complete the proof of the local existence statement in Theorem 3.2.4 in the

following four steps.

Step 1: Approximate system.

Recall H = H1
Γ0

(Ω)×H2
0 (Γ)× L2(Ω)× L2(Γ), and the approximate source fn which

was introduced in (3.3.29). Now, we define the nonlinear operator A n : D(A n) ⊂

H −→ H by:

A n



u

w

y

z



tr

=



−y

−z

A(u−Rz) + g1(y)− fn(u)

∆2w + g2(z) + γy − h(w)



tr

, (3.3.30)

where D(A n) = {(u,w, y, z) ∈
(
H1

Γ0
(Ω)×H2

0 (Γ)
)2

: A(u − Rz) + g1(y) − fn(u) ∈

L2(Ω), g1(y) ∈
(
H1

Γ0
(Ω)
)′ ∩ L1(Ω), ∆2w ∈ L2(Γ)}.

Clearly, the space of test functions D(Ω)4 ⊂ D(A n), and since D(Ω)4 is dense in H,

for each (u0, w0, u1, w1) ∈ H there exists a sequence of functions Un
0 = (un0 , w

n
0 , u

n
1 , w

n
1 ) ∈

D(Ω)4 such that Un
0 −→ U0 in H.

Put U = (u,w, ut, wt) and consider the approximate system:

Ut + A nU = 0 with U(0) = (un0 , w
n
0 , u

n
1 , w

n
1 ) ∈ D(Ω)4. (3.3.31)

Step 2: Approximate solutions.

Since fn satisfies the assumptions of Lemma 3.3.2, then for each n, the approximate
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problem (3.3.31) has a strong local solution Un = (un, wn, unt , w
n
t ) ∈ W 1,∞(0, T0;H)

such that Un(t) ∈ D(A n) for t ∈ [0, T0]. It is important to note here that T0 is

totally independent of n. Although in (3.3.26) T0 does depend on the local Lipschitz

constant of the mapping fn : H1
Γ0

(Ω) −→ Lm̃(Ω), however, according to Proposition

3.3.6 the said Lipschitz constant is independent of n. Also, recall that in the proof

of Lemma 3.3.2, T0 depends on K which itself depends on the initial data, and since

Un
0 −→ U0 in H, we can choose K sufficiently large such that one K is uniform for

all n. Thus, we will only emphasize the dependence of T0 on K.

Now, by (3.3.27), we know En(t) ≤ K2

2
for all t ∈ [0, T0], which implies that,

‖Un(t)‖2
H = ‖un(t)‖2

1,Ω + ‖wn(t)‖2
2,Γ + ‖unt (t)‖2

2 + |wnt (t)|22 ≤ K2, (3.3.32)

for all t ∈ [0, T0]. In addition, by letting 0 < ε ≤ α
2

in (3.3.23) and by the fact m̃,

r̃ ≤ 2 and the bound (3.3.32), we deduce that,

∫ T0

0

‖unt ‖m+1
m+1dt+

∫ T0

0

|wnt |r+1
r+1dt < C(K), (3.3.33)

for some constant C(K) > 0 (independent of n). Since |g1(s)| ≤ β|s|m for all |s| ≥ 1,

and g1 is increasing with g1(0) = 0, then |g1(s)| ≤ β(|s|m + 1) for all s ∈ R. Hence,

it follows from (3.3.33) that

∫ T0

0

∫
Ω

|g1(unt )|m̃dxdt ≤ βm̃
∫ T0

0

∫
Ω

(|unt |m+1 + 1)dxdt < C(K). (3.3.34)
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Similarly, one has

∫ T0

0

∫
Γ

|g2(wnt )|r̃dΓdt ≤ β r̃
∫ T0

0

∫
Γ

(|wnt |r+1 + 1)dΓdt < C(K). (3.3.35)

Now recall that Un = (un, wn, unt , w
n
t ) ∈ D(A n) is a strong solution of (3.3.31).

If φ and ψ satisfy the conditions imposed on test functions in Definition 3.2.3, then

by (3.3.34) and (3.3.35) we can test the approximate system (3.3.31) with φ and ψ

to obtain:

(unt (t), φ(t))Ω − (unt (0), φ(0))Ω −
∫ t

0

(unt (τ), φt(τ))Ωdτ +

∫ t

0

(∇un(τ),∇φ(τ))Ωdτ

−
∫ t

0

(wnt (τ), γφ(τ))Γdτ +

∫ t

0

∫
Ω

g1(unt (τ))φ(τ)dxdτ

=

∫ t

0

∫
Ω

fn(un(τ))φ(τ)dxdτ, (3.3.36)

(wnt (t) + γun(t), ψ(t))Γ − (wnt (0) + γun(0), ψ(0))Γ −
∫ t

0

(wnt (τ), ψt(τ))Γdτ

−
∫ t

0

(γun(τ), ψt(τ))Γdτ +

∫ t

0

(∆wn(τ),∆ψ(τ))Γdτ

+

∫ t

0

∫
Γ

g2(wnt (τ))ψ(τ)dΓdτ =

∫ t

0

∫
Γ

h(wn(τ))ψ(τ)dΓdτ, (3.3.37)

for all t ∈ [0, T0].

Step 3: Passage to the limit.

We aim to prove that there exists a subsequence of {Un}, labeled again as {Un}, that

converges to a solution of the original problem (3.1.1). In what follows, we focus on

passing to the limit in (3.3.36) and (3.3.37).

First, we note that (3.3.32) shows {Un} is bounded in L∞(0, T0;H). So by Alaoglu’s
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Theorem, there exists a subsequence, labeled as {Un}, such that

Un −→ U weakly∗ in L∞(0, T0;H). (3.3.38)

Also, by (3.3.32), we know {un} is bounded in L∞(0, T0;H1
Γ0

(Ω)). In addition, by

(3.3.33), we know {unt } is also bounded in Lm+1(Ω × (0, T0)), and since m ≥ 1, we

see that {unt } is also bounded in Lm̃(Ω × (0, T0)) = Lm̃(0, T0;Lm̃(Ω)). We note here

that for sufficiently small ε > 0, the imbedding H1
Γ0

(Ω) ↪→ H1−ε
Γ0

(Ω) is compact, and

H1−ε
Γ0

(Ω) ↪→ Lm̃(Ω). Then, by Aubin-Lions-Simon Compactness Theorem (e.g., [15,

Thm. II.5.16]), there exists a subsequence, reindexed by {un}, such that

un −→ u strongly in C([0, T0];H1−ε
Γ0

(Ω)). (3.3.39)

Similarly, we deduce that there exists a subsequence such that

wn −→ w strongly in C([0, T0];H2−ε
0 (Γ)). (3.3.40)

Now since H1−ε(Ω) ↪→ L2(Γ) for sufficiently small ε > 0, it follows from (3.3.39) that

γun −→ γu strongly in C([0, T0];L2(Γ)). (3.3.41)

Now, fix t ∈ [0, T0]. Since φ ∈ C([0, t];H1
Γ0

(Ω)) and φt ∈ L1(0, t;L2(Ω)), then by

(3.3.38) we obtain

lim
n−→∞

∫ t

0

(∇un(τ),∇φ(τ))Ωdτ =

∫ t

0

(∇u(τ),∇φ(τ))Ωdτ, (3.3.42)
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and

lim
n−→∞

∫ t

0

(unt (τ), φt(τ))Ωdτ =

∫ t

0

(ut(τ), φt(τ))Ωdτ. (3.3.43)

Similarly, we obtain

lim
n−→∞

∫ t

0

(∆wn(τ),∆ψ(τ))Γdτ =

∫ t

0

(∆w(τ),∆ψ(τ))Γdτ, (3.3.44)

lim
n−→∞

∫ t

0

(wnt (τ), ψt(τ))Γdτ =

∫ t

0

(wt(τ), ψt(τ))Γdτ, (3.3.45)

and

lim
n−→∞

∫ t

0

(γun(τ), ψt(τ))Γdτ =

∫ t

0

(γu(τ), ψt(τ))Γdτ. (3.3.46)

From (3.3.32) we know {wnt } is bounded in L∞(0, T0;L2(Γ)). Now since φ ∈ C([0, t];H1
Γ0

(Ω))

and H1
Γ0

(Ω) ↪→ L2(Γ), then by (3.3.38) we obtain

lim
n−→∞

∫ t

0

(wnt , γφ)Γdτ =

∫ t

0

(wt, γφ)Γdτ. (3.3.47)

Now by (3.3.34), on a subsequence,

g1(unt ) −→ g∗1 weakly in Lm̃(Ω× (0, t)) (3.3.48)

for some g∗1 ∈ Lm̃(Ω). Similarly, by (3.3.35), on a subsequence,

g2(wnt ) −→ g∗2 weakly in Lr̃(Γ× (0, t)) (3.3.49)
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for some g∗2 ∈ Lr̃(Γ). Our goal is to show that g∗1 = g1(ut) and g∗2 = g2(wt). In order

to do so, we consider two solutions to the approximate problem (3.3.31), Un and U j.

For sake of simplifying the notation, put ũ = un−uj and w̃ = wn−wj. Since Un, U j ∈

W 1,∞(0, T0;H) and Un(t), U j(t) ∈ D(A n), then ũt ∈ W 1,∞(0, T0;L2(Ω)) with ũt(t) ∈

H1
Γ0

(Ω) and w̃t ∈ W 1,∞(0, T0;L2(Γ)) with w̃t(t) ∈ H2
0 (Γ). Moreover, by (3.3.33) we

know ũt ∈ Lm+1(Ω× (0, T0)) and w̃t ∈ Lr+1(Γ× (0, T0)). Hence, we may consider the

difference of the approximate problems corresponding to the parameters n and j, and

then use the multiplier ũt on the first equation. By performing integration by parts in

the first equation, one has the following energy identity (in what follows, we suppress

the variable τ and use the abbreviated notation for norms and inner product):

1

2

(
‖ũt(t)‖2

2 + ‖ũ(t)‖2
1,Ω

)
−
∫ t

0

(w̃t, γũt)Γdτ +

∫ t

0

∫
Ω

(g1(unt )− g1(ujt))ũtdxdτ

=
1

2

(
‖ũt(0)‖2

2 + ‖ũ(0)‖2
1,Ω

)
+

∫ t

0

∫
Ω

(fn(un)− f j(uj))ũtdxdτ. (3.3.50)

Similarly, we may consider the difference of the approximate problems corresponding

to the parameters n and j, and then use the multiplier w̃t on the second equation.

By performing integration by parts in the second equation, one has:

1

2

(
|w̃t(t)|22 + ‖w̃(t)‖2

2,Γ

)
+

∫ t

0

∫
Γ

(g2(wn)− g2(wj))w̃tdΓdτ +

∫ t

0

(γũt, w̃t)Γdτ

=
1

2

(
|w̃t(0)|22 + ‖w̃(0)‖2

2,Γ

)
+

∫ t

0

∫
Γ

(h(wn)− h(wj))w̃tdΓdτ. (3.3.51)
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Now adding (3.3.50) and (3.3.51) we obtain:

1

2

(
‖ũt(t)‖2

2 + ‖ũ(t)‖2
1,Ω + |w̃t(t)|22 + ‖w̃(t)‖2

2,Γ

)
+

∫ t

0

∫
Ω

(g1(unt )− g1(ujt))ũtdxdτ +

∫ t

0

∫
Γ

(g2(wn)− g2(wj))w̃tdΓdτ

≤ 1

2

(
‖ũt(0)‖2

2 + ‖ũ(0)‖2
1,Ω + |w̃t(0)|22 + ‖w̃(0)‖2

2,Γ

)
+

∫ t

0

∫
Ω

|fn(un)− f j(uj)||ũt|dxdτ +

∫ t

0

∫
Γ

|h(wn)− h(wj)||w̃t|dΓdτ. (3.3.52)

We will show that each term on the right hand side of (3.3.52) converges to 0 as

n, j −→∞. First, since limn−→∞ ‖un0−u0‖1,Ω = limn−→∞ ‖un1−u1‖2 = limn−→∞ ‖wn0−

w0‖2,Γ = limn−→∞ |wn1 − w1|2 = 0, we obtain

lim
n,j−→∞

‖ũ(0)‖1,Ω = lim
n,j−→0

‖un0 − u
j
0‖1,Ω = 0,

lim
n,j−→∞

‖ũt(0)‖2 = lim
n,j−→0

‖un1 − u
j
1‖2 = 0,

lim
n,j−→∞

‖w̃(0)‖2,Γ = lim
n,j−→0

‖wn0 − w
j
0‖2,Γ = 0,

lim
n,j−→∞

|w̃t(0)|2 = lim
n,j−→0

|wn1 − w
j
1|2 = 0. (3.3.53)

Next, we look at the second term on the right-hand side of (3.3.52). We have,

∫ t

0

∫
Ω

|fn(un)− f j(uj)||ũt|dxdτ

≤
∫ t

0

∫
Ω

|fn(un)− fn(u)||ũt|dxdτ +

∫ t

0

∫
Ω

|fn(u)− f(u)||ũt|dxdτ

+

∫ t

0

∫
Ω

|f(u)− f j(u)||ũt|dxdτ +

∫ t

0

∫
Ω

|f j(u)− f j(uj)||ũt|dxdτ. (3.3.54)

We now estimate each term on the right-hand side of (3.3.54) as follows. Recall, by

Proposition 3.3.6, fn : H1−ε
Γ0
−→ Lm̃(Ω) is locally Lipschitz where the local Lipschitz
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constant is independent of n. By Hölder’s inequality, we obtain

∫ t

0

∫
Ω

|fn(un)− fn(u)||ũt|dxdτ

≤
(∫ t

0

∫
Ω

|fn(un)− fn(u)|m̃dxdτ
) m

m+1
(∫ t

0

∫
Ω

|ũt|m+1dxdτ

) 1
m+1

≤ C(K)

(∫ t

0

‖un − u‖m̃
H1−ε

Γ0
(Ω)
dτ

) m
m+1

−→ 0, (3.3.55)

as n −→∞, where we have used the convergence (3.3.39) and the uniform bound in

(3.3.32). To handle the second term on the right-hand side of (3.3.54), we shall show

fn(u) −→ f(u) in Lm̃(Ω× (0, T0)). (3.3.56)

Indeed, by (3.3.38), we know U ∈ L∞(0, T0;H), thus u ∈ L∞(0, T0;H1
Γ0

(Ω)). In

addition, by (3.3.29) and the definition of fn, we have

‖fn(u)− f(u)‖m̃Lm̃(Ω×(0,T0)) =

∫ T0

0

∫
Ω

(|f(u)||ηn(u)− 1|)m̃ dxdt. (3.3.57)

Since 0 ≤ ηn(u) ≤ 1, it follows that (|f(u)||ηn(u)− 1|)m̃ ≤ |f(u)|m̃. To see |f(u)|m̃ ∈

L1(Ω× (0, T0)), we use the assumptions |f(u)| ≤ C (|u|p + 1) and pm̃ < 6 along with

the imbedding H1
Γ0

(Ω) ↪→ L6(Ω). Indeed,

∫ T0

0

∫
Ω

|f(u)|m̃dxdt ≤ C

∫ T0

0

∫
Ω

(
|u|pm̃ + 1

)
dxdt

≤ C

∫ T0

0

(
‖u‖pm̃

H1
Γ0

(Ω)
+ |Ω|

)
dt <∞.

Clearly, ηn(u) −→ 1 a.e. on Ω as n −→ ∞. By applying the Lebesque Dominated

Convergence Theorem on (3.3.57), then (3.3.56) follows, as desired. Now, by using
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Hölder’s inequality and the limit (3.3.56), one has

∫ t

0

∫
Ω

|fn(u)− f(u)||ũt|dxdτ

≤
(∫ t

0

∫
Ω

|fn(u)− f(u)|m̃dxdτ
) m

m+1
(∫ t

0

∫
Ω

|ũt|m+1dxdτ

) 1
m+1

−→ 0, (3.3.58)

as n −→ ∞, where we have used the uniform bound in (3.3.32). Combining (3.3.55)

and (3.3.58) in (3.3.54) gives us the desired result, namely,

lim
n,j−→∞

∫ t

0

∫
Ω

|fn(un)− f j(uj)||ũt|dxdτ = 0. (3.3.59)

Next we show

lim
n,j−→∞

∫ t

0

∫
Γ

|h(wn)− h(wj)||w̃t|dΓdτ = 0. (3.3.60)

To see this, we write

∫ t

0

∫
Γ

|h(wn)− h(wj)||w̃t|dΓdτ

≤
∫ t

0

∫
Γ

|h(wn)− h(w)||w̃t|dΓdτ +

∫ t

0

∫
Γ

|h(w)− h(wj)||w̃t|dΓdτ. (3.3.61)

By Proposition 3.3.7, h : H2−ε
0 (Γ) −→ Lr̃(Γ) is locally Lipschitz. Therefore, by

Hölder’s inequality

∫ t

0

∫
Γ

|h(wn)− h(w)||w̃t|dΓdτ

≤
(∫ t

0

∫
Γ

|h(wn)− h(w)|r̃dΓdτ

) r
r+1
(∫ t

0

∫
Γ

|w̃t|r+1dΓdτ

) 1
r+1

≤ C(K)

(∫ t

0

‖wn − w‖r̃
H2−ε

0 (Γ)

) r
r+1

−→ 0, (3.3.62)
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as n −→∞, where we have used the convergence (3.3.40) and the uniform bound in

(3.3.33). This is enough to yield the desired result (3.3.60).

Now, by using the fact that g1 and g2 are monotone increasing and using (3.3.53),

(3.3.59), and (3.3.60), we can take the limit as n, j −→∞ in (3.3.52) to deduce

lim
n,j−→∞

∫ t

0

∫
Ω

(g1(unt )− g1(ujt))(u
n
t − u

j
t)dxdτ = 0, (3.3.63)

lim
n,j−→∞

∫ t

0

∫
Γ

(g2(wnt )− g2(wjt ))(w
n
t − w

j
t )dΓdτ = 0. (3.3.64)

In addition, it follows from (3.3.33) that, on relabeled subsequences unt −→ ut weakly

in Lm+1(Ω×(0, T0)) and wnt −→ wt weakly in Lr+1(Γ×(0, T0)). Therefore, Lemma 1.3

(p.49) [6] along with (3.3.48), (3.3.49), (3.3.63), and (3.3.64) assert that g∗1 = g1(ut)

and g∗2 = g2(wt); provided we show that

g1 : Lm+1(Ω× (0, T0)) −→ Lm̃(Ω× (0, T0))

and

g2 : Lr+1(Γ× (0, T0)) −→ Lr̃(Γ× (0, T0))

are maximal monotone. Indeed, since g1 and g2 are monotone increasing, it is easy

to see g1 and g2 are monotone operators. Thus, we need to verify that g1 and g2 are

hemi-continuous, i.e., in the case for g1 we have to show that

lim
λ−→∞

∫ t

0

∫
Ω

g1(u+ λv)zdxdτ =

∫ t

0

∫
Ω

g1(u)zdxdτ, (3.3.65)
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for all u, v, and z ∈ Lm+1(Ω × (0, t)). Indeed, since g1 is continuous, then g1(u +

λv)z −→ g1(u)z point-wise as λ −→ 0. Moreover, since |g1(s)| ≤ β(|s|m + 1) for all

s ∈ R, we know if |λ| ≤ 1, then |g1(u + λv)z| ≤ β(|u + λv|m + 1)|z| ≤ C(|u|m|z| +

|v|m|z|+ |z|) ∈ L1(Ω× (0, t)), by Hölder’s inequality. Thus, (3.3.65) follows from the

Lebesque Dominated Convergence Theorem. Hence, g1 is maximal monotone and we

conclude g∗1 = g1(ut), i.e.,

g1(unt ) −→ g1(ut) weakly in Lm̃(Ω× (0, t)). (3.3.66)

In a similar way, one can show that g2 is indeed maximal monotone, and in turn we

deduce g∗2 = g2(wnt ), that is

g2(wnt ) −→ g2(wt) weakly in Lr̃(Γ× (0, t)). (3.3.67)

Now as φ ∈ Lm+1(Ω× (0, t)), it follows from (3.3.66) that

lim
n−→∞

∫ t

0

∫
Ω

g1(unt )φdxdτ =

∫ t

0

∫
Ω

g1(ut)φdxdτ (3.3.68)

Similarly, we obtain

lim
n−→∞

∫ t

0

∫
Γ

g2(wnt )ψdΓdτ =

∫ t

0

∫
Γ

g2(wt)ψdΓdτ. (3.3.69)

Next we wish to show that

lim
n−→∞

∫ t

0

∫
Ω

fn(un)φdxdτ =

∫ t

0

∫
Ω

f(u)φdxdτ (3.3.70)
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To prove (3.3.70), we write

∣∣∣∣∫ t

0

∫
Ω

(fn(un)− f(u))φdxdτ

∣∣∣∣
≤
∫ t

0

∫
Ω

|fn(un)− fn(u)||φ|dxdτ +

∫ t

0

∫
Ω

|fn(u)− f(u)||φ|dxdτ. (3.3.71)

Since φ ∈ Lm+1(Ω× (0, t)), then by replacing ũt by φ in (3.3.55), we deduce

lim
n−→∞

∫ t

0

∫
Ω

|fn(un)− fn(u)||φ|dxdτ = 0. (3.3.72)

In addition, (3.3.56) yields

lim
n−→∞

∫ t

0

∫
Ω

|fn(u)− f(u)||φ|dxdτ = 0. (3.3.73)

Hence, (3.3.70) is verified. In a similar manner, one can deduce

lim
n−→∞

∫ t

0

∫
Γ

h(wn)ψdΓdτ =

∫ t

0

∫
Γ

h(w)ψdΓdτ. (3.3.74)

Step 4: Completion of the proof.

Lastly, since t ∈ [0, T0] and g1, g2 are monotone increasing on R, then (3.3.52), along

with (3.3.53), (3.3.59), and (3.3.60) imply

lim
n,j−→∞

‖un(t)− uj(t)‖2
1,Ω = lim

n,j−→∞
‖ũ(t)‖2

1,Ω = 0 uniformly in t ∈ [0, T0];

lim
n,j−→∞

‖unt (t)− ujt(t)‖2
2 = lim

n,j−→∞
‖ũt(t)‖2

2 = 0 uniformly in t ∈ [0, T0];

lim
n,j−→∞

‖wn(t)− wj(t)‖2
2,Γ = lim

n,j−→∞
‖w̃(t)‖2

2,Γ = 0 uniformly in t ∈ [0, T0];

lim
n,j−→∞

|wnt (t)− wjt (t)|22 = lim
n,j−→∞

|w̃t(t)|22 = 0 uniformly in t ∈ [0, T0].
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Hence,



un(t) −→ u(t) in H1
Γ0

(Ω) uniformly on [0, T0],

unt (t) −→ ut(t) in L2(Ω) uniformly on [0, T0],

wn(t) −→ w(t) in H2
0 (Γ) uniformly on [0, T0],

wnt (t) −→ wt(t) in L2(Γ) uniformly on [0, T0].

(3.3.75)

Since Un ∈ W 1,∞(0, T0;H), by (3.3.75), we conclude

u ∈ C([0, T0];H1
Γ0

(Ω)), ut ∈ C([0, T0];L2(Ω)),

w ∈ C([0, T0];H2
0 (Γ)), wt ∈ C([0, T0];L2(Γ)).

Moreover, (3.3.75) shows un(0) −→ u(0) in H1
Γ0

(Ω). Since un(0) = un0 −→ u0 in

H1
Γ0

(Ω), then the initial condition u(0) = u0 holds. Also, since unt (0) −→ ut(0) in

L2(Ω) and unt (0) = un1 −→ u1 in L2(Ω), we obtain ut(0) = u1. Similarly, we find

that w(0) = w0 and wt(0) = w1. Finally, by using (3.3.38)-(3.3.47), (3.3.68)-(3.3.70),

(3.3.74)-(3.3.75), we can pass to the limit in (3.3.36) and (3.3.37) to obtain (3.2.2)

and (3.2.3) with the imposed regularity on u and w. This completes the proof of the

local existence statement in Theorem 3.2.4.

3.4 Energy Identity

This section is devoted to derive the energy identity (3.2.4) in Theorem 3.2.4. As

with chapter 2, one must utilize difference quotients due to limitations in regularity.
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3.4.1 Proof of the Energy Identity.

Throughout the proof, we fix t ∈ (0, T0] and let (u,w) be a weak solution of the

system (3.1.1) in the sense of Definition 3.2.3. Recall the regularity of u and w.

We can define the difference quotient Dhu(τ) on [0, t] as (A.0.1), i.e., Dhu(τ) =

1
2h

[ue(τ + h)− ue(τ − h)], where ue(τ) extends u(τ) from [0, t] to R as in (A.0.2). By

Proposition A.0.4, with X = Lm+1(Ω) and Y = L2(Ω), we have

Dhu ∈ Lm+1(Ω× (0, t)) and Dhu −→ ut in Lm+1(Ω× (0, t)). (3.4.1)

Similarly, we have

Dhw ∈ Lr+1(Γ× (0, t)) and Dhw −→ wt in Lr+1(Γ× (0, t)). (3.4.2)

Moreover, since u ∈ C([0, t];H1
Γ0

(Ω)) and w ∈ C([0, t];H2
0 (Γ)), then

Dhu ∈ C([0, t];H1
Γ0

(Ω)) and Dhw ∈ C([0, t];H2
0 (Γ)). (3.4.3)

We now show that

(Dhu)t ∈ L1(0, t;L2(Ω)) and (Dhw)t ∈ L1(0, t;L2(Γ)). (3.4.4)

Indeed, for 0 < h < t
2
, we note that

(Dhu)t(τ) =



1
2h

[ut(τ + h)− ut(τ − h)], if h < τ < t− h,

−1
2h
ut(τ − h), if t− h < τ < t,

1
2h
ut(τ + h), if 0 < τ < h,
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and since ut ∈ C([0, t];L2(Ω)), we conclude (Dhu)t ∈ L1(0, t;L2(Ω)). Similarly,

(Dhw)t ∈ L1(0, t;L2(Γ)). Thus, (3.4.1)-(3.4.4) show that Dhu and Dhw satisfy the

required regularity conditions to be suitable test functions in Definition 3.2.3. There-

fore, by taking φ = Dhu in (3.2.2) and ψ = Dhw in (3.2.3), we obtain

(ut(t), Dhu(t))Ω − (u1, Dhu(0))Ω −
∫ t

0

(ut(τ), (Dhu)t(τ))Ωdτ

+

∫ t

0

(u(τ), Dhu(τ))1,Ωdτ −
∫ t

0

(wt(τ), γDhu(τ))Γdτ

+

∫ t

0

∫
Ω

g1(ut(τ))Dhu(τ)dxdτ =

∫ t

0

∫
Ω

f(u(τ))Dhu(τ)dxdτ, (3.4.5)

and

(wt(t) + γu(t), Dhw(t))Γ − (w1 + γu(0), Dhw(0))Γ −
∫ t

0

(wt(τ), (Dhw)t(τ)Γdτ

−
∫ t

0

(γu(τ), (Dhw)t(τ))Γdτ +

∫ t

0

(w(τ), Dhw(τ))2,Γdτ

+

∫ t

0

∫
Γ

g2(wt(τ))Dhw(τ)dΓdτ =

∫ t

0

∫
Γ

h(w(τ))Dhw(τ)dΓdτ. (3.4.6)

We will justify passing to the limit as h −→ 0 in both (3.4.5) and (3.4.6). Since

u, ut ∈ C([0, t];L2(Ω)) and w, wt ∈ C([0, t];L2(Γ)), then as h → 0, it follows from

(A.0.6) that

Dhu(0) −→ 1

2
ut(0) and Dhu(t) −→ 1

2
ut(t) weakly in L2(Ω),

Dhw(0) −→ 1

2
wt(0) and Dhw(t) −→ 1

2
wt(t) weakly in L2(Γ).
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Therefore,



limh→0

(
(ut(t), Dhu(t))Ω − (u1, Dhu(0))Ω

)
= 1

2

(
‖ut(t)‖2

2 − ‖ut(0)‖2
2

)
,

limh→0(wt(t) + γu(t), Dhw(t))Γ = 1
2
|wt(t)|22 + 1

2
(γu(t), wt(t))Γ,

limh→0(w1 + γu(0), Dhw(0))Γ = 1
2
|wt(0)|22 + 1

2
(γu(0), wt(0))Γ.

(3.4.7)

Also, by (A.0.4)

∫ t

0

(ut, (Dhu)t)Ωdτ =

∫ t

0

(wt, (Dhw)t)Γdτ = 0. (3.4.8)

In addition, since u ∈ C([0, t];H1
Γ0

(Ω)), then (A.0.3) yields

lim
h−→0

∫ t

0

(u,Dhu)1,Ωdτ =
1

2

(
‖u(t)‖2

1,Ω − ‖u(0)‖2
1,Ω

)
. (3.4.9)

Similarly, we obtain

lim
h−→0

∫ t

0

(w,Dhw)2,Γdτ =
1

2

(
‖w(t)‖2

2,Γ − ‖w(0)‖2
2,Γ

)
. (3.4.10)

Since ut ∈ Lm+1(Ω × (0, t)) and |g1(s)| ≤ β|s|m whenever |s| ≥ 1, then clearly

g1(ut) ∈ Lm̃(Ω× (0, t)), where m̃ = m+1
m

. Hence, by (3.4.1)

lim
h−→0

∫ t

0

∫
Ω

g1(ut)Dhudxdτ =

∫ t

0

∫
Ω

g1(ut)utdxdτ. (3.4.11)
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Similarly, as wt ∈ Lr+1(Γ × (0, t)) and |g2(s)| ≤ β|s|r whenever |s| ≥ 1, then clearly

g2(wt) ∈ Lr̃(Γ× (0, t)), where r̃ = r+1
r

. Then by (3.4.2)

lim
h−→0

∫ t

0

∫
Γ

g2(wt)DhwdΓdτ =

∫ t

0

∫
Γ

g2(wt)wtdΓdτ. (3.4.12)

In order to handle the wave and plate sources, we note that since u ∈ C([0, t];H1
Γ0

(Ω)),

then there exists M0 > 0 such that ‖u(τ)‖6 ≤ M0 for all τ ∈ [0, t]. Also, since

|f(u)| ≤ C(|u|p + 1), then

∫
Ω

|f(u(τ))|
6
pdx ≤ C

∫
Ω

(|u(τ)|6 + 1)dx ≤ C(M0),

for all τ ∈ [0, t]. Hence, f(u) ∈ L∞
(

0, t;L
6
p (Ω)

)
, and so, f(u) ∈ L

6
p (Ω× (0, t)). Since

6
p
> m̃, then f(u) ∈ Lm̃(Ω× (0, t)). Therefore, it follows from (3.4.1) that

lim
h−→0

∫ t

0

∫
Ω

f(u)Dhudxdτ =

∫ t

0

∫
Ω

f(u)utdxdτ. (3.4.13)

Note that since w ∈ C([0, t];H2
0 (Γ)), then for any s > 1, then there exists M1 > 0

such that ‖w(τ)‖s ≤ M1 for all τ ∈ [0, t], and all 1 ≤ s < ∞. In particular,

h(w) ∈ Lr̃(Γ× (0, t)). Therefore, it follows from (3.4.2) that

lim
h−→0

∫ t

0

∫
Γ

h(w)DhwdΓdτ =

∫ t

0

∫
Γ

h(w)wtdΓdτ. (3.4.14)
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The trouble terms, namely
∫ t

0
(wt(τ), γDhu(τ))Γdτ and

∫ t
0
(γu(τ), (Dhw)t(τ))ΓdΓdτ ,

are handled as follows. For all sufficiently small h > 0, we have

∫ t

0

(γu(τ), (Dhw)t(τ))Γdτ

=
1

2h

(∫ t

0

(γu(τ), wt(τ + h))Γdτ −
∫ t

0

(γu(τ), wt(τ − h))Γdτ

)
=

1

2h

(∫ t

h

(γu(τ − h), wt(τ))Γdτ −
∫ t−h

0

(γu(τ + h), wt(τ))Γdτ

)
, (3.4.15)

where we have used a change of variables in (3.4.15) and the fact that wt = 0 outside

of the interval [0, t]. By rearranging the terms in (3.4.15), we obtain

∫ t

0

(γu(τ), (Dhw)t(τ))Γdτ = −
∫ t

0

(γDhu(τ), wt(τ))Γdτ

− 1

2h

(∫ h

0

(γu(τ − h), wt(τ))Γdτ −
∫ t

t−h
(γu(τ + h), wt(τ))Γdτ

)
. (3.4.16)

We now utilize the continuity of wt in the last two terms of (3.4.16) as follows.

1

2h

∫ h

0

(γu(τ − h), wt(τ))Γdτ =
1

2h

∫ h

0

(γu(0), wt(τ))Γdτ

=
1

2h

∫ h

0

(γu(0), wt(τ)− wt(0))Γdτ +
1

2h

∫ h

0

(γu(0), wt(0))Γdτ

−→ 1

2
(γu(0), wt(0))Γ, (3.4.17)

as h −→ 0. Similarly, we have

1

2h

∫ t

t−h
(γu(τ + h), wt(τ))Γdτ =

1

2h

∫ t

t−h
(γu(t), wt(τ))Γdτ

=
1

2h

∫ t

t−h
(γu(t), wt(τ)− wt(t))Γdτ +

1

2h

∫ t

t−h
(γu(t), wt(t))Γdτ

−→ 1

2
(γu(t), wt(t))Γ, (3.4.18)
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as h −→ 0. Finally, by adding (3.4.5) and (3.4.6) and combining (3.4.7)-(3.4.18) we

can pass to the limit h −→ 0 to obtain the energy identity 3.2.4 in Theorem 3.2.4.

3.5 Global Existence

This section is devoted to prove the existence of global solutions as described in

Theorem 3.2.5. As in [1, 33, 48] and other works, it is the case here that either a

given solution (u,w) must exist globally in time or else one may find a value of T0

with 0 < T0 <∞, so that

lim sup
t→T−0

E1(t) = +∞, (3.5.1)

where E1(t) is modified energy given by:

E1(t) =
1

2

(
‖ut(t)‖2

2 + ‖∇u(t)‖2
2 + |wt(t)|22 + |∆w(t)|22

)
+

1

p+ 1
‖u(t)‖p+1

p+1 +
1

q + 1
|w(t)|q+1

q+1, (3.5.2)

where, without any loss of generality, we may assume that E1(t) ≥ 1. We aim to

show that (3.5.1) cannot happen under the assumptions of Theorem 3.2.5. Indeed,

this assertion is contained in the following proposition.

Proposition 3.5.1. Let (u,w) be a weak solution of (3.1.1) on [0, T0] as furnished

by Theorem 3.2.4. Assume u0 ∈ Lp+1(Ω), if p > 5. We have:

� If p ≤ m and q ≤ r, then for all t ∈ [0, T0], (u,w) satisfies

E1(t) +

∫ t

0

(
‖ut‖m+1

m+1 + |wt|r+1
r+1

)
dτ ≤ C(T0, E1(0)), (3.5.3)
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where 0 < T0 <∞ is being arbitrary.

� If p > m or q > r, then the bound in (3.5.3) holds for 0 ≤ t < T ′, for some

T ′ > 0 depending on E1(0) and T0.

Proof. With the modified energy as given in (3.5.2), the energy identity (3.2.4) now

reads,

E1(t) +

∫ t

0

∫
Ω

g1(ut)utdxdτ +

∫ t

0

∫
Γ

g2(wt)wtdΓdτ

= E1(0) +

∫ t

0

∫
Ω

f(u)utdxdτ +

∫ t

0

∫
Γ

h(w)wtdΓdτ

+
1

p+ 1

∫
Ω

(
|u(t)|p+1 − |u(0)|p+1

)
dx+

1

q + 1

∫
Γ

(
|w(t)|q+1 − |w(0)|q+1

)
dΓ

= E1(0) +

∫ t

0

∫
Ω

f(u)utdxdτ +

∫ t

0

∫
Γ

h(w)wtdΓdτ

+

∫ t

0

∫
Ω

|u|p−1uutdxdτ +

∫ t

0

∫
Γ

|w|q−1wwtdΓdτ. (3.5.4)

To estimate the source terms on the right-hand side of (3.5.4), we recall the assump-

tions f , h, and (3.2.1). By employing Hölder’s and Young’s inequalities, we find

∣∣∣∣∫ t

0

∫
Ω

f(u)utdxdτ

∣∣∣∣ ≤ C

∫ t

0

∫
Ω

(|u|p + 1)|ut|dxdτ

≤ C

∫ t

0

‖ut‖p+1

(
‖u‖pp+1 + |Ω|

p
p+1

)
dτ

≤ ε

∫ t

0

‖ut‖p+1
p+1dτ + Cε

∫ t

0

(
‖u‖p+1

p+1 + |Ω|
)
dτ

≤ ε

∫ t

0

‖ut‖p+1
p+1dτ + Cε

∫ t

0

E1(τ)dτ + Cε|Ω|T0. (3.5.5)

Similarly, we deduce

∣∣∣∣∫ t

0

∫
Γ

h(w)wtdΓdτ

∣∣∣∣ ≤ ε

∫ t

0

|wt|q+1
q+1dτ + Cε

∫ t

0

E1(τ)dτ + Cε|Γ|T0. (3.5.6)
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By adopting similar estimates as in (3.5.5), we obtain

∣∣∣∣∫ t

0

∫
Ω

|u|p−1uutdxdτ

∣∣∣∣ ≤ ∫ t

0

∫
Ω

|u|p|ut|dxdτ

≤ ε

∫ t

0

‖ut‖p+1
p+1dτ + Cε

∫ t

0

E1(τ)dτ. (3.5.7)

Likewise, we deduce

∣∣∣∣∫ t

0

∫
Γ

|w|q−1wwtdΓdτ

∣∣∣∣ ≤ ε

∫ t

0

|wt|q+1
q+1dτ + Cε

∫ t

0

E1(τ)dτ. (3.5.8)

By recalling (3.3.22), one has

∫ t

0

∫
Ω

g1(u)utdxdτ +

∫ t

0

∫
Γ

g2(w)wtdΓdτ

≥ α

∫ t

0

(
‖ut‖m+1

m+1 + |wt|r+1
r+1

)
dτ − αT0(|Ω|+ |Γ|). (3.5.9)

Now, if p ≤ m and q ≤ r, it follows from (3.5.5)-(3.5.9) and the energy identity (3.5.4)

that, for all t ∈ [0, T0],

E1(t) + α

∫ t

0

(
‖ut‖m+1

m+1 + |wt|r+1
r+1

)
dτ

≤ E1(0) + ε

∫ t

0

(
‖ut‖p+1

p+1 + |wt|q+1
q+1

)
dτ + Cε

∫ t

0

E1(τ)dτ + CT0,ε

≤ E1(0) + ε

∫ t

0

(
‖ut‖m+1

m+1 + |wt|r+1
r+1

)
dτ + Cε

∫ t

0

E1(τ)dτ + CT0,ε, (3.5.10)

where we have used Hölder’s and Young’s inequalities in the last line of (3.5.10). By

choosing 0 < ε ≤ α
2
, then (3.5.10) yields

E1(t) +
α

2

∫ t

0

(
‖ut‖m+1

m+1 + |wt|r+1
r+1

)
dτ ≤ Cε

∫ t

0

E1(τ)dτ + E1(0) + CT0,ε. (3.5.11)
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In particular,

E1(t) ≤ Cε

∫ t

0

E1(τ)dτ + E1(0) + CT0,ε. (3.5.12)

By Gronwall’s inequality, we conclude that

E1(t) ≤ (E1(0) + CT0,ε)e
CεT0 for t ∈ [0, T0], (3.5.13)

where T0 > 0 is arbitrary, and by combining (3.5.11) and (3.5.13), the desired result

in (3.5.3) follows.

Now, if p > m or q > r, then we slightly modify estimate (3.5.5) by using differ-

ent Hölder’s conjugates. Specifically, we apply Hölder’s inequality with m + 1 and

m̃ = m+1
m

followed by Young’s inequality to obtain

∣∣∣∣∫ t

0

∫
Ω

f(u)utdxdτ

∣∣∣∣ ≤ C

∫ t

0

∫
Ω

(|u|p + 1)|ut|dxdτ

≤ C

∫ t

0

‖ut‖m+1

(
‖u‖ppm̃ + |Ω|

m
m+1

)
dτ

≤ ε

∫ t

0

‖ut‖m+1
m+1dτ + Cε

∫ t

0

(
‖u‖pm̃pm̃ + |Ω|

)
dτ. (3.5.14)

Since pm̃ < 6 and H1
Γ0

(Ω) ↪→ L6(Ω), then

∣∣∣∣∫ t

0

∫
Ω

f(u)utdxdτ

∣∣∣∣ ≤ ε

∫ t

0

‖ut‖m+1
m+1dτ + Cε

∫ t

0

E1(τ)
pm̃
2 dτ + Cε|Ω|T0. (3.5.15)

Likewise, we may deduce

∣∣∣∣∫ t

0

∫
Γ

h(w)wtdΓdτ

∣∣∣∣ ≤ ε

∫ t

0

|wt|r+1
r+1dτ + Cε

∫ t

0

E1(τ)
qr̃
2 dτ + Cε|Γ|T0. (3.5.16)
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In addition, by employing similar estimates as in (3.5.14) and (3.5.15), we have

∣∣∣∣∫ t

0

∫
Ω

|u|p−1uutdxdτ

∣∣∣∣ ≤ ∫ t

0

∫
Ω

|u|p|ut|dxdτ

≤ ε

∫ t

0

‖ut‖m+1
m+1dτ + Cε

∫ t

0

E1(τ)
pm̃
2 dτ. (3.5.17)

Likewise, we deduce

∣∣∣∣∫ t

0

∫
Γ

|w|q−1wwtdΓdτ

∣∣∣∣ ≤ ε

∫ t

0

|wt|r+1
r+1dτ + Cε

∫ t

0

E1(τ)
qr̃
2 dτ. (3.5.18)

By using (3.5.15)-(3.5.18) along with (3.5.9), we obtain from the energy identity

(3.5.4) that

E1(t) + α

∫ t

0

(
‖ut‖m+1

m+1 + |wt|r+1
r+1

)
dτ

≤ E1(0) + ε

∫ t

0

(
‖ut‖m+1

m+1 + |wt|r+1
r+1

)
dτ + Cε

∫ t

0

E1(τ)σdτ + CT0,ε, (3.5.19)

where σ = max{pm̃
2
, qr̃

2
}. Notice, the assumption p > m or q > r implies that σ > 1.

By choosing 0 < ε < α
2
, then it follows that

E1(t) +
α

2

∫ t

0

(
‖ut‖m+1

m+1 + |wt|r+1
r+1

)
dτ ≤ Cε

∫ t

0

E1(τ)σdτ + E1(0) + CT0,ε, (3.5.20)

for t ∈ [0, T0]. In particular,

E1(t) ≤ Cε

∫ t

0

E1(τ)σdτ + E1(0) + CT0,ε, (3.5.21)

for t ∈ [0, T0]. By using a standard comparison theorem, then (3.5.21) yields that
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E1(t) ≤ z(t), where

z(t) =
[
(E1(0) + CT0,ε)

1−σ − Cε(σ − 1)t
] −1
σ−1

is the solution of the Volterra integral equation

z(t) = Cε

∫ t

0

z(s)σds+ E1(0) + CT0,ε.

Since σ > 1, then clearly z(t) blows up at the finite time T1 = 1
Cε(σ−1)

(E1(0)+CT0,ε)
1−σ,

i.e., z(t) −→ ∞, as t −→ T−1 . Note that T1 depends on the initial energy E1(0) and

the original existence time T0. Nonetheless, if we choose T ′ = min
{
T0,

1
2
T1

}
, then

E1(t) ≤ z(t) ≤ C0 :=
[
(E1(0) + CT0,ε)

1−σ − Cε(σ − 1)T ′
] −1
σ−1 , (3.5.22)

for all t ∈ [0, T ′]. Finally, we may combine (3.5.20) and (3.5.22) to obtain

E1(t) +
α

2

∫ t

0

(
‖ut‖m+1

m+1 + |wt|r+1
r+1

)
dτ ≤ CεT

′Cσ
0 + E1(0) + CT0,ε, (3.5.23)

for all t ∈ [0, T ′], which completes the proof of the proposition.

3.6 Continuous Dependence on Initial Data

In this section, we provide the proof of Theorem 3.2.7.

Proof. Let U0 = (u0, w0, u1, w1) ∈ X, where

X =
(
H1

Γ0
(Ω) ∩ L

3(p−1)
2 (Ω)

)
×H2

0 (Γ)× L2(Ω)× L2(Γ).
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Assume that {Un
0 = (un0 , w

n
0 , u

n
1 , w

n
1 )} is a sequence of initial data that satisfies

Un
0 −→ U0 in X, as n −→∞. (3.6.1)

Notice that in Remark 3.2.8, we have pointed out that if p ≤ 5, then the space X

is identitcal to H = H1
Γ0

(Ω) × H2
0 (Γ) × L2(Ω) × L2(Γ). Let {(un, wn)} and (u,w)

be the weak solutions to (3.1.1) defined on [0, T0] in the sense of Definition 3.2.3,

corresponding to the initial data {Un
0 } and {U0}, respectively. First, we show that

the local existence time T0 can be taken independent of n ∈ N. To see this, we recall

that the local existence time T0 provided by Theorem 3.2.4 depends on the initial

energy E(0). In addition, since Un
0 −→ U0 in X, then un0 −→ u0 in Lp+1(Ω), if p > 5.

Hence, we may assume En
1 (0) ≤ E1(0) + 1, for all n ∈ N, where E1(t) is defined in

(3.5.2) and En
1 (t) is defined by:

En
1 (t) = En(t) +

1

p+ 1
‖un(t)‖p+1

p+1 +
1

q + 1
|wn(t)|q+1

q+1

where En(t) = 1
2

(
‖un(t)‖2

1,Ω + ‖wn(t)‖2
2,Γ + ‖unt (t)‖2

2 + |wnt (t)|22
)
. Therefore, we can

choose K, as in (3.3.26), sufficiently large, say K2 ≥ 4E1(0) + 5, such that the local

existence time T0 for the solutions {(un, wn)} and (u,w) can be chosen independent

of n ∈ N. Moreover, in view of (3.5.3), T0 can be taken arbitrarily large in the case

when p ≤ m and q ≤ r. However, in the case when p > m or q > r, we select the

local existence time to be T = T ′ where T ′ is given in Proposition 3.5.1 (which is

also uniform in n). In either case, it follows from (3.5.3) that there exists R > 0 such
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that, for all n ∈ N and all t ∈ [0, T ],


E1(t) +

∫ t
0

(
‖ut‖m+1

m+1 + |wt|r+1
r+1

)
dτ ≤ R,

En
1 (t) +

∫ t
0

(
‖unt ‖m+1

m+1 + |wnt |r+1
r+1

)
dτ ≤ R,

(3.6.2)

where T can be arbitrarily large if p ≤ m and q ≤ r, or T sufficiently small if p > m

or q > r. From here on, the proof will be carried out in four steps.

Step 1: Put yn(t) = u(t)− un(t), zn(t) = w(t)− wn(t), and

Ẽn(t) =
1

2

(
‖yn(t)‖2

1,Ω + ‖zn(t)‖2
2,Γ + ‖ynt (t)‖2

2 + |znt (t)|22
)
, (3.6.3)

for t ∈ [0, T ]. We aim to show Ẽn(t) −→ 0 uniformly on [0, T ] for sufficiently small

T . Now by construction, yn and zn satisfy:

(ynt (t), φ(t))Ω − (ynt (0), φ(0))Ω −
∫ t

0

(ynt (τ), φt(τ))Ωdτ +

∫ t

0

(yn(τ), φ(τ))1,Ωdτ

−
∫ t

0

(znt (τ), γφ(τ))Γdτ +

∫ t

0

∫
Ω

(g1(ut(τ))− g1(unt (τ)))φ(τ)dxdτ

=

∫ t

0

∫
Ω

(f(u(τ))− f(un(τ)))φ(τ)dxdτ, (3.6.4)
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and

(znt (t), ψ(t))Γ − (znt (0), ψ(0))Γ −
∫ t

0

(znt (τ), ψt(τ))Γdτ + (γyn(t), ψ(t))Γ

− (γyn(0), ψ(0))Γ −
∫ t

0

(γyn(τ), ψt(τ)Γdτ +

∫ t

0

(zn(τ), ψ(τ))2,Γdτ

+

∫ t

0

∫
Γ

(g2(wt(τ))− g2(wnt (τ)))ψ(τ)dΓdτ

=

∫ t

0

∫
Γ

(h(w(τ))− h(wn(τ)))ψ(τ)dΓdτ, (3.6.5)

for all t ∈ [0, T ] and for all test functions φ and ψ as described in Definition 3.2.3.

Let φ(τ) = Dhy
n(τ) in (3.6.4) and ψ(τ) = Dhz

n(τ) in (3.6.5) for τ ∈ [0, t] where the

difference quotients Dhy
n and Dhz

n are defined in (A.0.1). Using a similar argument

as in obtaining the energy identity (3.2.4), we can pass to the limit as h −→ 0 and

deduce

Ẽn(t) +

∫ t

0

∫
Ω

(g1(ut(τ))− g1(unt (τ)))ynt (τ)dxdτ

+

∫ t

0

∫
Γ

(g2(wt(τ))− g2(wnt (τ)))znt (τ)dΓdτ

= Ẽn(0) +

∫ t

0

∫
Ω

(f(u(τ))− f(un(τ)))ynt (τ)dxdτ

+

∫ t

0

∫
Γ

(h(w(τ))− h(wn(τ)))znt (τ)dΓdτ. (3.6.6)

Employing the monotonicity propoerties of g1 and g2 to (3.6.6) yields

Ẽn(t) ≤ Ẽn(0) +

∫ t

0

∫
Ω

(f(u(τ))− f(un(τ)))ynt (τ)dxdτ

+

∫ t

0

∫
Γ

(h(w(τ))− h(wn(τ)))znt (τ)dΓdτ, (3.6.7)

for all t ∈ [0, T ]. We will now estimate each term on the right hand side of (3.6.7).
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Step 2: “Estimate for the wave source term.”

Put:

Rn
f =

∫ t

0

∫
Ω

(f(u(τ))− f(un(τ)))ynt (τ)dxdτ.

First we note that, if 1 ≤ p ≤ 3, then by Remark 3.3.5 we know f is locally

Lipschitz from H1
Γ0

(Ω) into L2(Ω). In this case, the estimate for Rn
f is straightforward,

as follows:

∣∣∣∣∫ t

0

∫
Ω

(f(u)− f(un))ynt dxdτ

∣∣∣∣
≤
(∫ t

0

∫
Ω

|f(u)− f(un)|2dxdτ
) 1

2
(∫ t

0

∫
Ω

|ynt |2dxdτ
) 1

2

≤ C(R)

(∫ t

0

‖yn‖2
1,Ωdτ

) 1
2
(∫ t

0

‖ynt ‖2
2dτ

) 1
2

≤ C(R)

∫ t

0

Ẽn(τ)dτ. (3.6.8)

Therefore, for 1 ≤ p ≤ 3, we have that

∣∣Rn
f

∣∣ ≤ C(R)

∫ t

0

Ẽn(τ)dτ. (3.6.9)

For the case 3 < p < 6, f is not locally Lipschitz from H1
Γ0

(Ω) into L2(Ω), and

therefore the computation in (3.6.8) does not work. To overcome this difficulty, we

shall use a clever idea by Bociu and Lasiecka [13, 14] which involves integration by

parts. In order to do so, we require the assumption f ∈ C2(R), with |f ′′(u)| ≤

C(|u|p−2 + 1), as in Assumption 3.2.6. We also remind the reader with Assumption

3.2.1 and (3.2.1).

Now, we evaluate Rn
f in the case 3 < p < 6. By integration by parts in time, one
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has

Rn
f =

∫ t

0

∫
Ω

(f(u(τ))− f(un(τ)))ynt (τ)dxdτ

=

∫
Ω

(f(u(t))− f(un(t)))yn(t)dx−
∫

Ω

(f(u(0))− f(un(0)))yn(0)dx

−
∫ t

0

∫
Ω

(
f ′(u)ut − f ′(un)unt

)
yndxdτ

=

∫
Ω

(f(u(t))− f(un(t)))yn(t)dx−
∫

Ω

(f(u(0))− f(un(0)))yn(0)dx

−
∫ t

0

∫
Ω

(f ′(u)− f ′(un))unt y
ndxdτ −

∫ t

0

∫
Ω

f ′(u)ynt y
ndxdτ

:= P1 + P2 + P3 + P4, (3.6.10)

respectively. By using the assumptions on f , we obtain



|P1| ≤ C
∫

Ω
(|u(t)|p−1 + |un(t)|p−1 + 1) |yn(t)|2dx,

|P2| ≤ C
∫

Ω
(|u(0)|p−1 + |un(0)|p−1 + 1) ||yn(0)|2dx,

|P3| ≤ C
∫ t

0

∫
Ω

(|u|p−2 + |un|p−2 + 1) |unt ||yn|2dxdτ.

(3.6.11)

As for P4, we integrate by parts one more time to obtain

−P4 =

∫ t

0

∫
Ω

f ′(u)ynt y
ndxdτ

=
1

2

∫
Ω

f ′(u(t))(yn(t))2dx− 1

2

∫
Ω

f ′(u(0))(yn(0))2dx

− 1

2

∫ t

0

∫
Ω

f ′′(u)ut(y
n)2dxdτ. (3.6.12)
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By employing the assumptions on f , we deduce

|P4| ≤ C

∫
Ω

(
|u(t)|p−1 + 1

)
|yn(t)|2dx+ C

∫
Ω

(
|u(0)|p−1 + 1

)
|yn(0)|2dx

+ C

∫ t

0

∫
Ω

(
|u|p−2 + 1

)
|ut||yn|2dxdτ. (3.6.13)

It follows from (3.6.10)-(3.6.11), and (3.6.13) that

|Rn
f | ≤ C

∫
Ω

(|yn(t)|2 + |yn(0)|2)dx+ C

∫ t

0

∫
Ω

(|ut|+ |unt |)|yn|2dxdτ

+ C

∫ t

0

∫
Ω

(
|u|p−2 + |un|p−2

)
(|ut|+ |unt |)|yn|2dxdτ

+ C

∫
Ω

(
|u(t)|p−1 + |un(t)|p−1

)
|yn(t)|2dx

+ C

∫
Ω

(
|u(0)|p−1 + |un(0)|p−1

)
||yn(0)|2dx. (3.6.14)

Now, we estimate each term on the right-hand side of (3.6.14) as follows.

1. Estimate for I1 =

∫
Ω

|yn(t)|2dx:

Since yn, ynt ∈ C([0, T ];L2(Ω)), we obtain with Young’s inequality

I1 =

∫
Ω

|yn(t)|2dx =

∫
Ω

∣∣∣∣yn(0) +

∫ t

0

ynt (τ)dτ

∣∣∣∣2 dx
≤ 2

∫
Ω

|yn(0)|2dx+ 2

∫
Ω

∣∣∣∣∫ t

0

ynt (τ)dτ

∣∣∣∣2 dx
≤ C

(
‖yn(0)‖2

1,Ωdx+ t

∫ t

0

‖ynt (τ)‖2
2dτ

)
≤ C

(
Ẽn(0) + T

∫ t

0

Ẽn(τ)dτ

)
. (3.6.15)

2. Estimate for I2 =

∫ t

0

∫
Ω

(|ut|+ |unt |)|yn|2dxdτ :
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Both terms in I2 are estimated in the same manner, for instance we have

∫ t

0

∫
Ω

|ut||yn|2dxdτ ≤
∫ t

0

‖yn‖2
6‖ut‖ 3

2
dτ

≤ C

∫ t

0

‖yn‖2
1,Ω‖ut‖2dτ ≤ C(R)

∫ t

0

Ẽn(τ)dτ, (3.6.16)

where we have used the fact that ‖ut(t)‖2
2 ≤ R, for all t ∈ [0, T ] (see (3.6.2)). There-

fore,

I2 ≤ C(R)

∫ t

0

Ẽn(τ)dτ. (3.6.17)

3. Estimate for I3 =

∫ t

0

∫
Ω

(
|u|p−2 + |un|p−2

)
(|ut|+ |unt |)|yn|2dxdτ :

A typical term in I3 is estimated as follows. Recall the assumption pm+1
m

< 6

which implies 6
6−p < m+ 1. Thus, by using Hölder’s inequality and (3.6.2), one has

∫ t

0

∫
Ω

|u|p−2|ut||yn|2dxdτ ≤
∫ t

0

‖u‖p−2
6 ‖ut‖ 6

6−p
‖yn‖2

6

≤ C

∫ t

0

‖u‖p−2
1,Ω ‖ut‖m+1‖yn‖2

1,Ωdτ

≤ C(R)

∫ t

0

Ẽn(τ)‖ut‖m+1dτ. (3.6.18)

Therefore,

I3 ≤ C(R)

∫ t

0

Ẽn(τ) (‖ut‖m+1 + ‖unt ‖m+1) dτ. (3.6.19)

4. Estimate for I4 =

∫
Ω

(|u(t)|p−1 + |un(t)|p−1)|yn(t)|2)dx:

As the first term in I4 is a little easier to estimate, we shall focus on the second

term
∫

Ω
|un(t)|p−1|yn(t)|2dx in the following two cases for the exponent p ∈ (3, 6).
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Case 1: 3 < p < 5. In this case, we have

∫
Ω

|un(t)|p−1|yn(t)|2dx ≤
∫

Ω

|yn(t)|2dx+

∫
{x∈Ω: |un(t)|>1}

|un(t)|p−1|yn(t)|2dx (3.6.20)

The first term on the right-hand side of (3.6.20) has been already estimated in (3.6.15).

For the second term, we notice if 0 < σ < 5 − p, then |un(t)|p−1 ≤ |un(t)|4−σ, since

|un(t)| > 1. Again, by using Hölder’s inequality, (3.6.2), and (1.3.1), it follows that

∫
{x∈Ω: |un(t)|>1}

|un(t)|p−1|yn(t)|2dx ≤
∫

Ω

|un(t)|4−σ|yn(t)|2dx

≤ ‖un(t)‖4−σ
6 ‖yn(t)‖2

6
1+σ/2

≤ C‖un(t)‖4−σ
1,Ω ‖y

n(t)‖2

H
1−σ/4
Γ0

(Ω)

≤ C(R)
(
ε‖yn(t)‖2

1,Ω + Cε‖yn(t)‖2
2

)
, (3.6.21)

where ε > 0 that will be selected below. By utilizing (3.6.15) and (3.6.21), then from

(3.6.20) it follows that

∫
Ω

|un(t)|p−1|yn(t)|2dx ≤ C(R)εẼn(t) + C(R, ε)

(
Ẽn(0) + T

∫ t

0

Ẽn(τ)dτ

)
(3.6.22)

in the case 3 < p < 5.

Case 2: 5 ≤ p < 6.

In this case, the assumption pm+1
m

< 6 implies m > 5. Recall that in Theorem

3.2.7 we required a higher regularity of initial datum u0, namely, u0 ∈ L
3(p−1)

2 (Ω). By

density of C0(Ω) in L
3(p−1)

2 (Ω), then for any ε > 0, there exists φ ∈ C0(Ω) such that
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‖u0 − φ‖ 3(p−1)
2

< ε
1
p−1 . Therefore,

∫
Ω

|un(t)|p−1|yn(t)|2dx ≤ C
(∫

Ω

|un(t)− un0 |p−1|yn(t)|2dx

+

∫
Ω

|un0 − u0|p−1|yn(t)|2dx+

∫
Ω

|u0 − φ|p−1|yn(t)|2dx

+

∫
Ω

|φ|p−1|yn(t)|2dx
)
. (3.6.23)

Since p < 6m
m+1

and m > 5, then 3(p−1)
2(m+1)

< 1. So, by using Hölder’s inequality and the

bound
∫ T

0
‖unt ‖m+1

m+1 ≤ R, one has

∫
Ω

|un(t)− un0 |p−1|yn(t)|2dx ≤
(∫

Ω

|un(t)− un0 |
3(p−1)

2 dx

) 2
3

‖yn(t)‖2
6

≤ C

∫
Ω

∣∣∣∣∫ t

0

unt (τ)dτ

∣∣∣∣
3(p−1)

2

dx

 2
3

‖yn(t)‖2
1,Ω

≤ CT
m(p−1)
m+1

∫
Ω

(∫ t

0

|unt (τ)|m+1dτ

) 3(p−1)
2(m+1)

dx

 2
3

Ẽn(t)

≤ C(R)T
m(p−1)
m+1 Ẽn(t), (3.6.24)

where we have used the important fact that 3(p−1)
2(m+1)

< 1. Also, by using Hölder’s

inequality and the embedding H1(Ω) ↪→ L6(Ω), we obtain

∫
Ω

|un0 − u0|p−1|yn(t)|2dx ≤ ‖un0 − u0‖p−1
3(p−1)

2

‖yn(t)‖2
6 ≤ εẼn(t), (3.6.25)

for all sufficiently large n, since un0 −→ u0 in L
3(p−1)

2 (Ω).

The third term on the right-hand side of (3.6.23) is easily estimated as follows:

∫
Ω

|u0 − φ|p−1|yn(t)|2dx ≤ ‖u0 − φ‖p−1
3(p−1)

2

‖yn(t)‖2
6 ≤ CεẼn(t). (3.6.26)
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Since φ ∈ C0(Ω) then |φ(x)| ≤ C(ε), for all x ∈ Ω. So, by (3.6.15), the last term on

the right-hand side of (3.6.23) is estimated as follows:

∫
Ω

|φ|p−1|yn(t)|2dx ≤ C(ε)

∫
Ω

|yn(t)|2dx ≤ C(ε)

(
Ẽn(0) + T

∫ t

0

Ẽn(τ)dτ

)
. (3.6.27)

By combining (3.6.24)-(3.6.27), (3.6.23) yields

∫
Ω

|un(t)|p−1|yn(t)|2dx ≤ C(R)
(
T
m(p−1)
m+1 + ε

)
Ẽn(t) + C(R, ε)Ẽn(0)

+ C(ε, T )

∫ t

0

Ẽ(τ)dτ, (3.6.28)

in the case 5 ≤ p < 6, and all sufficiently large n ∈ N.

By combining the estimates in (3.6.22) and (3.6.28), then for the case 3 < p < 6,

we conclude

I4 =

∫
Ω

(|u(t)|p−1 + |un(t)|p−1)|yn(t)|2)dx

≤ C(R)
(
T
m(p−1)
m+1 + ε

)
Ẽn(t) + C(R, ε)Ẽn(0) + C(R, ε, T )

∫ t

0

Ẽn(τ)dτ. (3.6.29)

5. Estimate for I5 =

∫
Ω

(
1 + |u(0)|p−1 + |un(0)|p−1

)
||yn(0)|2dx:

If 1 ≤ p ≤ 5, then a typical term I5 is estimated in the following manner. By

using Hölder’s inequality and (3.6.2), we have

∫
Ω

|un0 |p−1|yn(0)|2dx ≤ ‖un0‖
p−1
3(p−1)

2

‖yn(0)‖2
6

≤ C(R) ‖yn(0)‖2
1,Ω

≤ C(R)Ẽn(0). (3.6.30)
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For the values 5 < p < 6, we proceed as in (3.6.23) to obtain

∫
Ω

|un(0)|p−1|yn(0)|2dx ≤ CεẼn(0). (3.6.31)

Finally, by combining the estimates (3.6.15), (3.6.17), (3.6.19), (3.6.29)-(3.6.31)

back into (3.6.14), we obtain for 3 < p < 6:

∣∣Rn
f

∣∣ ≤ C(R, ε)Ẽn(0) + C(R)
(
T
m(p−1)
m+1 + ε

)
Ẽn(t)

+ C(T,R, ε)

∫ t

0

Ẽn(τ) (‖ut‖m+1 + ‖unt ‖m+1 + 1) dτ, (3.6.32)

where ε > 0 is sufficiently small. According to (3.6.9), estimate (3.6.32) also holds

for 1 ≤ p ≤ 3, i.e., (3.6.32) holds for all 1 ≤ p < 6.

Step 3: “Estimate for the plate source term.”

Since h is locally Lipschitz from H2
0 (Γ) into L2(Γ), then it straightforward to obtain

|Rn
h| =

∫ t

0

∫
Γ

(h(w(τ))− h(wn(τ)))znt (τ)dΓdτ

≤ C(R)

(∫ t

0

‖zn‖2
2,Γdτ

) 1
2
(∫ t

0

|znt |22dτ
) 1

2

≤ C(R)

∫ t

0

Ẽn(τ)dτ. (3.6.33)

Step 4: “Completion of the proof”
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By the estimates (3.6.32) and (3.6.33), we obtain from (3.6.7) that

Ẽn(t) ≤ C(R, ε)Ẽn(0) + C(R)
(
T
m(p−1)
m+1 + ε

)
Ẽn(t)

+ C(T,R, ε)

∫ t

0

Ẽn(τ) (‖ut‖m+1 + ‖unt ‖m+1 + 1) dτ,

for all t ∈ [0, T ]. Choose ε and T small enough so that

C(R)
(
T
m(p−1)
m+1 + ε

)
< 1.

By Gronwall’s inequality, we obtain

Ẽn(t) ≤ C(R, ε, T )Ẽn(0) exp

[∫ t

0

(‖ut‖m+1 + ‖unt ‖m+1 + 1) dτ

]
, (3.6.34)

and so by (3.6.2), we have

Ẽn(t) ≤ C(R, ε, T )Ẽn(0), (3.6.35)

for all sufficiently large n. Hence, Ẽn(t) −→ 0 uniformly on [0, T ]. This concludes

the proof of Theorem 3.2.7.

3.7 Uniqueness of Weak Solutions

The uniqueness results of Theorem 3.2.9 and 3.2.11 will be justified in the following

two subsections.
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3.7.1 Proof of Theorem 3.2.9

In this section, we provide the proof of Theorem 3.2.9. The strategy here is to adopt

the same argument as in the proof of Theorem 3.2.7.

Proof. Let (u,w) and (û, ŵ) be two weak solutions on [0, T ], in the sense of Definition

3.2.3 satisfying the same initial conditions. Put y = u− û and z = w− ŵ. The energy

corresponding to (y, z) is given by:

Ẽ(t) =
1

2

(
‖y(t)‖2

1,Ω + ‖z(t)‖2
2,Γ + ‖yt(t)‖2

2 + |zt(t)|22
)

(3.7.1)

for all t ∈ [0, T ]. We aim to show that Ẽ(t) = 0, and thus y(t) = z(t) = 0 for all

t ∈ [0, T ]. By the regularity imposed by weak solutions in Definition 3.2.3, there

exists a constant R > 0 such that

‖u(t)‖1,Ω, ‖û‖1,Ω, ‖w(t)‖2,Γ, ‖ŵ(t)‖2,Γ ≤ R,

‖ut(t)‖2, ‖ût(t)‖2, |wt(t)|2, |ŵt(t)|2 ≤ R,

∫ T
0
‖ut‖m+1

m+1dt,
∫ T

0
‖û(t)‖m+1

m+1 ≤ R,

∫ T
0
|wt|r+1

r+1dt,
∫ T

0
|ŵ(t)|r+1

r+1 ≤ R

(3.7.2)

for all t ∈ [0, T ]. We now begin following the proof of Theorem 3.2.7, where un, wn,

yn, zn, and Ẽn are now replaced by û, ŵ, y, z, and Ẽ, respectively. In fact, since

y(0) = yt(0) = z(0) = zt(0) = 0, several terms from the proof of Theorem 3.2.7 are

simplified or completely eliminated.

First, as in (3.6.7), accounting for Ẽ(0) = 0 and employing the monotonicity
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properties of g1, g2, we obtain the energy inequality:

Ẽ(t) ≤ Rf +Rh, (3.7.3)

where 
Rf =

∫ t
0

∫
Ω

(f(u(τ))− f(û(τ)))yt(τ)dxdτ,

Rh =
∫ t

0

∫
Γ
(h(w(τ))− h(ŵ(τ)))zt(τ)dΓdτ.

We can follow (3.6.9)-(3.6.33), making the proper replacements outlined in the pre-

vious section and recalling that Ẽ(0) = 0, then we conclude

Ẽ(t) ≤ |Rf |+ |Rh| ≤ C(R)
(
T
m(p−1)
m+1 + ε

)
Ẽ(t)

+ C(T,R, ε)

∫ t

0

Ẽ(τ) (‖ut‖m+1 + ‖ût‖m+1 + 1) dτ, (3.7.4)

for all t ∈ [0, T ]. Again, choose ε and T small enough so that

C(R)
(
T
m(p−1)
m+1 + ε

)
< 1.

By applying Gronwall’s inequality with an L1-kernel, it follows that Ẽ(t) = 0 on

[0, T ]. Hence y(t) = z(t) = 0 on [0, T ]. Finally, we note that, it is sufficient to

consider a small time interval [0, T ], since this process can be reiterated. The proof

of Theorem 3.2.9 is now complete.

3.7.2 Proof of Theorem 3.2.11

We begin by pointing out that the only difference between 3.2.11 and Theorem 3.2.9 is

that Assumption 3.2.6 is not imposed in Theorem 3.2.11. Thus, the proof of Theorem
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3.2.11 is essentially the same as Theorem 3.2.9 (which itself was only a slight reworking

of the proof of Theorem 3.2.7), with the exception of the estimate for Rf . So, we focus

on estimating Rf in the case where p > 3 and the wave source f is not necessarily

a C2-function. With this scenario in place, the method of integration by parts twice

fails. To handle this difficulty, recall the additional restriction on parameters and the

initial data in Theorem 3.2.11, namely, m > 3p− 4 if p > 3, and u0 ∈ L(3(p−1)(Ω).

Proof. Put y = u− û and recall (3.2.1). Then, we have

∣∣∣∣∫ t

0

∫
Ω

(f(u)− f(û))ytdxdτ

∣∣∣∣ ≤ C

∫ t

0

∫
Ω

(|u|p−1 + |û|p−1 + 1)|y||yt|dxdτ. (3.7.5)

Put:

I1 =

∫ t

0

∫
Ω

|y||yt|dxdτ, I2 =

∫ t

0

∫
Ω

(|u|p−1 + |û|p−1)|y||yt|dxdτ.

The estimate for I1 is straightforward. Invoking Hölder’s inequality yields,

I1 ≤ C

∫ t

0

‖y(τ)‖6‖yt(τ)‖2dτ ≤ C

∫ t

0

Ẽ(τ)
1
2 Ẽ(τ)

1
2dτ = C

∫ t

0

Ẽ(τ)dτ. (3.7.6)

A typical term in I2 is estimated as follows:

∫ t

0

∫
Ω

|u|p−1|y||yt|dxdτ

≤ C

∫ t

0

∫
Ω

|u− u0|p−1|y||yt|dxdτ + C

∫ t

0

∫
Ω

|u0|p−1|y||yt|dxdτ. (3.7.7)
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By invoking Hölder’s inequality,

∫ t

0

∫
Ω

|u− u0|p−1|y||yt|dxdτ

≤
∫ t

0

(∫
Ω

|u(τ)− u0|3(p−1)dx

) 1
3
(∫

Ω

|y(τ)|6dx
) 1

6
(∫

Ω

|yt|2dx
) 1

2

dτ. (3.7.8)

Since u, ut ∈ C([0, T ];L2(Ω)), we can write

∫
Ω

|u(τ)− u0|3(p−1)dx =

∫
Ω

∣∣∣∣∫ τ

0

ut(s)ds

∣∣∣∣3(p−1)

dx

≤ C(T )

∫
Ω

(∫ τ

0

|ut(s)|m+1ds

) 3(p−1)
m+1

dx. (3.7.9)

Since m ≥ 3p−4, then 3(p−1)
m+1

≤ 1. Therefore, by using Hölder’s inequality and (3.7.2),

it follows that

∫
Ω

|u(τ)− u0|3(p−1)dx ≤ C(T )

(∫
Ω

∫ τ

0

|ut(s)|m+1dsdx

) 3(p−1)
m+1

≤ C(R, T ). (3.7.10)

So, (3.7.10) and (3.7.8) yield

∫ t

0

∫
Ω

|u− u0|p−1|y||yt|dxdτ ≤ C(R, T )

∫ t

0

‖y(τ)‖6‖yt(τ)‖2dτ

C(R, T ) ≤
∫ t

0

Ẽ(τ)
1
2 Ẽ(τ)

1
2dτ = C(R, T )

∫ t

0

Ẽ(τ)dτ. (3.7.11)

By recalling the assumption u0 ∈ L3(p−1)(Ω), then the second term on the right-hand

side of (3.7.7) is estimated by:

∫ t

0

∫
Ω

|u0|p−1|y||yt|dxdτ ≤
∫ t

0

‖u0‖p−1
3(p−1)‖y(τ)‖6‖yt(τ)‖2dτ

≤ C(T )‖u0‖p−1
3(p−1)

∫ t

0

Ẽ(τ)dτ. (3.7.12)
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Combining (3.7.11) and (3.7.12) back into (3.7.7) yields

∫ t

0

∫
Ω

|u|p−1|y||yt|dxdτ ≤ C
(
R, T, ‖u0‖3(p−1)

) ∫ t

0

Ẽ(τ)dτ. (3.7.13)

The other term in I2 are estimated in the same manner, and one has

I2 ≤ C
(
R, T, ‖u0‖3(p−1)

) ∫ t

0

Ẽ(τ)dτ. (3.7.14)

Hence, (3.7.6), (3.7.14), and (3.7.5) yield

∣∣∣∣∫ t

0

∫
Ω

(f(u)− f(û))ytdxdτ

∣∣∣∣ ≤ C
(
R, T, ‖u0‖3(p−1)

) ∫ t

0

Ẽ(τ)dτ. (3.7.15)

Finally, we may use the same argument for the proof of Theorem 3.2.9 and Gronwall’s

inequality to complete the proof of Theorem 3.2.11.
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Chapter A

Ancillary Results

The following auxiliary results were invoked at various points in the dissertation and

appear in various references (we refer the reader to [48, 51, 53, 33, 39] for instance).

We list them here for sake of convenience.

Proposition A.0.1 (Prop. A.1 in [48]). Let H be a Hilbert space and X be a Banach

space such that X ⊂ H ⊂ X ′ where each injection is continuous with dense range. If


f ∈ L2(0, T ;H), f ′ ∈ L2(0, T ;X ′),

g ∈ L2(0, T ;X), g′ ∈ L2(0, T ;H),

then the map t 7→ (f(t), g(t))H coincides with an absolutely continuous on [0, T ] and

d

dt
(f(t), g(t))H = 〈f ′(t), g(t)〉X′,X + (f(t), g′(t))H a.e. [0, T ].

Proposition A.0.2 (Prop. A.2 in [48]). Let H be a Hilbert space and X be a Banach

space such that X ⊂ H ⊂ X ′ where with each injection is continuous with dense range.
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Suppose X ′ is separable and {uN}∞1 is a sequence in L1(0, T ;X) satisfying:


uN → u weakly in L1(0, T ;X),

uN → u strongly in L1(0, T ;H),

as N →∞. Then, there exists a subsequence of {uN}∞1 (again reindexed by N) such

that

uN(t)→ u(t) weakly in X a.e. [0, T ], as N →∞.

A.0.1 The Difference Quotient

Let Y be a Banach space. For u ∈ Cw([0, T ];Y ) or C([0, T ];Y ) and h > 0, we define

its symmetric difference quotient by:

Dhu(t) =
ue(t+ h)− ue(t− h)

2h
, (A.0.1)

where ue denotes the extension of u to R given by:

ue(t) =


u(0) for t ≤ 0,

u(t) for t ∈ (0, T ),

u(T ) for t ≥ T.

(A.0.2)

For the reader’s convenience, we review the important results of the difference quotient

(see for instance [33, 39, 52, 54]).

Proposition A.0.3 ([39]). Let u ∈ Cw([0, T ];Y ) where Y is a Hilbert space with
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inner product (·, ·)Y . Then,

lim
h−→0

∫ T

0

(u,Dhu)Y dt =
1

2

(
‖u(T )‖2

Y − ‖u(0)‖2
Y

)
. (A.0.3)

If, in addition, ut ∈ Cw([0, T ];Y ), then

∫ T

0

(ut, (Dhu)t)Y dt = 0, for each h > 0, (A.0.4)

and, as h −→ 0,

Dhu(t) −→ ut(t) weakly in Y, for every t ∈ (0, T ), (A.0.5)

Dhu(0) −→ 1

2
ut(0) and Dhu(T ) −→ 1

2
ut(T ) weakly in Y. (A.0.6)

Proposition A.0.4 ([33]). Let Y and Z be Banach spaces. Assume u ∈ L1([0, T ];Y )

and ut ∈ L1(0, T ;Y ) ∩ Lp(0, T ;Z), where 1 ≤ p < ∞. Then Dhu ∈ Lp(0, T ;Z) and

‖Dhu‖Lp(0,T ;Z) ≤ ‖ut‖Lp(0,T ;Z). Moreover, Dhu −→ ut in Lp(0, T ;Z), as h −→ 0.
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