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 Tenderness is the primary factor to influence consumer palatability in fresh meat. 

The tenderization of muscle is dependent on proteolytic mechanisms, including calcium-

dependent, non-lysosomal endogenous enzymes such as calpains and proteasomes. These 

mechanisms have been indicated alongside apoptosis early postmortem as cascades of 

apoptotic events promote ideal conditions for postmortem tenderization. Recent literature 

has identified oxidative stress-mediated events to be linked to apoptotic activity. 

Oxidative stress is defined as the overwhelming production of reactive species compared 

to homeostatic, endogenous antioxidants present within muscle systems. These 

conditions exhaust antioxidant function and facilitate reactive species to alter protein, 

lipid, or nucleic morphology and functionality. Perhaps, the generation of oxidative stress 

can alter muscle tissue, resulting in changes in the overall quality of fresh meat 

postmortem. This study examined the impact of different levels of oxidative stress in vivo 

on postmortem muscle quality of lambs, with emphasis towards elements of proteolytic 

mechanisms responsible for meat tenderness. Lipopolysaccharides (LPS) are endotoxins 

used to induce acute stress for this experiment. Effects of inducing lambs with an 

injection of either a saline control, 50 ng of LPS per kg of bodyweight (LPS50), or 100 

ng of LPS per kg of bodyweight (LPS100). Injections were administered every 72 hours 



across a nine-day immune challenge. Treatments used examined changes in biomarkers 

of oxidative stress (RNA Transcriptomics and isoprostanes), pre-harvest stress conditions 

(rectal temperature), free calcium concentration, proximate composition, color and lipid 

oxidation, and tenderness. In this study, lambs administered LPS50 tended to be more 

tender early postmortem, and had a greater degree of troponin T degradation compared to 

control samples (P < 0.05). The LPS-treated lambs exhibited noticeable upregulation of 

gene pathways responsible for cell growth, differentiation, degradation, and generation of 

oxidative species and antioxidants (Praw < 0.05). While not significant, LPS treated 

samples exhibited more oxidative biomarkers present in muscle tissue (isoprostane 

content). The LPS treatments had no detrimental effects of color or lipid oxidation (P > 

0.05). Oxidative stress may impact early postmortem tenderization of meat. 
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INTRODUCTION 

 This study seeks to understand the effect of oxidative stress in vivo on post-

harvest changes in meat quality which may improve tenderness early postmortem. 

Tenderness is repeatedly cited as the primary element associated with both eating quality 

and consumer purchasing decisions (Miller et al., 2001; Platter et al., 2005). In the U.S., 

consumers are willing to pay premiums for higher quality meat to ensure a good eating 

experience (Platter et al., 2005). However, noticeable variation exists when comparing 

tenderness (shear force values), in particular when comparing across marbling scores in 

beef. More so, the extent of variation in tenderness increases as marbling decreases. 

Inconsistent meat tenderness and its impact on consumer satisfaction is an obstacle to 

optimizing both domestic and international demand for U.S. meat products. Thus, 

investigations into the process of postmortem tenderization and the role of cellular 

organelles and mechanisms involved have strong, practical application. 

Muscle contraction is the result of a complex mechanism, requiring multiple 

proteins and molecular compounds to work in concert. Contraction of myofibrillar 

proteins allows for the physical movement of bones and tendons in response to neural 

stimuli (Kuo et al., 2015). The postmortem deterioration of these proteins alters meat 

tenderness. Further, if these protein complexes are altered in vivo, an earlier onset of the 

tenderization process might be achieved, promoting more tender beef. Using proteomics 

approaches, Malheiros et al. (2019) analyzed beef muscle tissue across samples 

distinguished as tough, intermediate, or tender based on their average shear force values 

(kilograms-force) and identified different oxidized proteins across each tenderness group. 

The tender group samples, compared to the tough and intermediate groups, had highly 



 2

oxidized structural, contractile, and regulatory proteins, all directly associated with 

muscle contraction and tenderization mechanisms. Concurrently, the tender group 

exhibited higher oxidized proteins related to enzyme regulation (peroxiredoxin; 

superoxide dismutase [Cu-Zn]) and cell protection (heat shock proteins). From these 

results, it is clear that tender muscles exhibited oxidation of specific proteins associated 

with meat tenderization. There is tremendous value to further understanding why certain 

proteins oxidize in a manner to promote more tender beef. 

 Predisposition to oxidative stress may promote an increase in oxidized proteins. In 

mitochondria, the oxidative phosphorylation mechanism produces reactive oxygen 

species (ROS), the driving force of oxidative damage. These are highly reactive free 

radical compounds generated as by-products of ATP synthesis, such as the production of 

superoxide anion (O2
-
) and hydrogen peroxide (H2O2) (Sierra et al., 2013). Due to their 

unstable state, ROS will collect electrons from their immediate surroundings, commonly 

from organelles, to reach a stable state. The interaction of ROS with components of the 

muscle can result in major cell damage, lipid oxidation, protein turnover, and DNA 

alteration (Scicchitano et al., 2018). To alleviate this damage, muscle cells contain 

various non-enzymatic and enzymatic antioxidants to detoxify ROS and prevent cell 

damage (Kozakowska et al., 2015). These antioxidant mediators include superoxide 

dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and other low 

molecular free radical scavengers (Bekhit et al., 2013; Scicchitano et al., 2018).  The 

dietary antioxidant alpha-tocopherol, vitamin E, has also been shown as an effective 

supplement to alleviate ROS generation (Harris et al., 2001; Maraba et al., 2018). 
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However, under conditions of significant oxidative stress, endogenous antioxidants may 

not be sufficient to quench the increased production of free radicals.  

 In states of prolonged oxidative stress, stability of mitochondrial membranes will 

fail, thereby allowing encapsulated ROS generated by the mitochondria to be released to 

interact with the matrix of muscle cells (Paradies et al., 2001; Elmore et al., 2007; Powers 

et al., 2011).  From this phenomenon, there is growing evidence that oxidative stress can 

promote programmed cell death (apoptosis) and enhance early postmortem proteolysis.  

Oxidative stress during death allows the release of cytochrome c, a pro-apoptotic heme 

protein localized between the inner and outer mitochondrial membranes (Cai et al., 

1998). The cascade of the apoptotic pathway gives rise to the activation of caspases, 

allowing subsequent proteolytic enzymes such as calpains (µ and m) and cathepsins to 

interact with the muscle tissue, promoting structural degradation of muscle proteins 

during postmortem aging (Logue et al., 2008; Kemp et al., 2010). Wang et al. (2018) 

investigated the influence of ROS-generated oxidative stress in pre-rigor muscle tissue. 

They concluded that increased generation of oxidative stress via ROS accumulation prior 

to animal harvest may promote apoptotic factors such as cytochrome c displacement and 

the caspase cascade.  They also speculated that these conditions could initiate proteolytic 

degradation of muscle fibers and improve meat tenderness. The influence of oxidative 

stress is also being investigated for its impact on other factors of meat quality, such as 

lipid oxidation and color stability. 

The working hypothesis is that controlled levels of induced oxidative stress in 

lamb can stimulate the production of ROS, generating a state of oxidative stress that 

modifies the function of the different mechanisms responsible for meat quality. If the 
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hypothesis is true, control of oxidative stress-inducing events for the live animal may 

impact meat quality.   

The objectives of the research were to understand the mechanisms and 

components related to meat quality in lamb from wethers administered defined levels of 

an oxidative stress promoter. Specific objectives were to: 

1) Identify changes in physiological status of lambs via a lipopolysaccharide 

(LPS) challenge. 

2) Characterize the relationship between muscle quality and oxidative stress on 

the basis of the RNA transcriptome as it relates to LPS and Control-treated 

lambs. 

3) Quantify changes in oxidative biomarker generation in relation to LPS-

challenged lambs. 

4) Assess the effects of oxidative stress parameters on lamb longissimus muscle 

tenderness; and 

5) Evaluate the impact of known levels of oxidative stress on color stability of 

intact fresh lamb meat. 

            The long-term goal of this research is to improve the tenderness of fresh meat by 

understanding the complexity of muscle tenderization as affected by in vivo oxidative 

stress. The results are intended to serve as a model for future analyses in beef, meant to 

understand the impact which oxidative stress-induced conditions may change the overall 

meat quality attributes. This research could provide insightful thought into how 

biochemical mechanisms are altered due to inherent physiological stress that occur within 
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our current livestock strategies, and how these strategies could be manipulated to 

optimize the greatest opportunity for more consistently tender meat. 
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LITERATURE REVIEW 

Mechanism of muscle contraction 

 Muscle contraction is the result of a complex mechanism, which requires multiple 

proteins and molecular compounds to work in concert (Kuo and Ehrlich, 2015). In the 

event of a stimuli, a nerve response instigates signal movement to the neuromuscular 

junction surrounding the muscle fiber. This results in the binding of acetylcholine to 

facilitate transfer of sodium ions through the sarcolemma, allowing an action potential to 

travel down the t-tubule. As a result, an opening of calcium ion channels allows the 

sarcoplasmic reticulum (SR) to release calcium ions via the ryanodine receptors. The 

main function of calcium during muscle contraction is to bind to troponin C, one of the 

three troponin subunits of the regulatory protein that facilitates tropomyosin to expose or 

cover actin binding sites. When exposed, myosin hydrolyzes adenosine triphosphate 

(ATP) to trigger the power stroke, pulling the actin filament towards the M-line, 

shortening sarcomere length and completing contraction. Subsequent ATP binding is 

required to release myosin heads and decrease the degree of contraction. This implies 

muscle contraction is dependent on the relationship between the efficient calcium 

regulation of the SR and ATP generation within the mitochondria (Dirksen, 2009). 

 

Sarcoplasmic reticulum regulatory proteins 

 The intracellular signal for muscle contraction, regulation of calcium storage, 

release, and cytoplasmic uptake are all factors manipulated by the SR. Storage of calcium 

ions is met by homeostatic control of luminal calcium binding proteins. Calsequestrin, the 

most abundant luminal calcium binding protein in the SR, maintains a high binding 
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capacity to support a large concentration of calcium ions reserves within the SR, while 

also allowing a rapid release of calcium ions up reaction to a stimulus via an action 

potential (Rossi and Dirksen, 2006). Calsequestrin also is bound to the SR membrane via 

interactions with ryanodine receptors (RyR1), facilitating effective calcium release. 

Activity of RyR1 is mutually dependent on bound calsequestrin, as an interrelationship 

between levels of total luminal calcium can influence binding capacity of calsequestrin 

(Zhang et al., 1997). 

Calcium release is controlled by the direct protein-protein interactions as a result 

of sodium-ion transfer with RyR1 proteins and inositol triphosphate (Meissner, 2002). A 

cysteine-dense protein matrix, RyR1 is the predominant protein responsible for the 

release of calcium from within the SR of skeletal muscle (MacKrill, 2012). Regulation of 

RyR1 is dependent on calcium concentration (µM to mM) within and surrounding the 

SR, as high levels within the sarcoplasm inhibit calcium release and low levels promote 

calcium release (Copello et al., 1997). As an action potential travels down the t-tubule, 

excitation coupling reactions take place, promoting a conformational change to the 

dihydropyridine receptor (DHPR) and initiating the activation of RyR1 (Rossi et al., 

2009). In conjunction with calsequestrin, activity of RyR1 is manipulated by free radical-

mediated changes in amino acid structure during states of physiological stress, illustrating 

the relationship between proteins (Eu et al., 1999). Inositol triphosphate acts as signaling 

molecule responsible for calcium release along the SR. Inositol triphosphate assists in 

prolong levels of calcium in the sarcoplasm upon RyR1 release.  

Calcium influx is achieved by the Sarco-endoplasmic reticulum ATP-ase pumps 

(SERCA). Sarco-endoplasmic reticulum ATP-ase is comprised of two primary structures: 
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a transmembrane portion that facilitates opening and closing of SERCA pumps and a 

protein head which sustains calcium binding and release (Toyoshima and Inesi, 2004).  

As its name suggests, SERCA is an energy-dependent protein pump which requires the 

hydrolysis of adenosine triphosphate (ATP) (Rossi and Dirksen, 2006). Within muscle, 

two isoforms are present, with SERCA 1 and SERCA 2 present in the sarcolemma of 

Type II and slow-twitch skeletal muscle fibers, respectively (Ishii et al., 1998). Similar to 

RyR1, SERCA activity can be inactivated in the presence of high free-radical 

concentration and inhibited by sarcolipin (Ishii et al., 1998).  All these proteins are 

located along the outer membrane of the SR and each protein is involved with the 

complex action of calcium flux during muscle contraction and relaxation. 

 

Membrane composition 

 Organelle membranes, focusing on SR and mitochondria, are generally comprised 

of a phospholipid bilayer, with hydrophobic fatty acid tails oriented towards the interior 

of the membrane and the hydrophilic fatty acid head facing towards the cytosol exterior, 

allowing an impermeable matrix to prevent transfer of water-soluble molecules 

(Borchman et al., 1999). Composition of fatty acids is critical to fluidity and function of 

bound protein channels (Stanley and Parkin, 1991). Saturated fatty acids contain no 

double bonds across the carbon chain, lowering overall fluidity due to their densely 

packed spacing. Conversely, unsaturated fatty acids contain one or more double bonds 

across their hydrocarbon chain, allowing intermittent spacing across the membrane to 

increasing fluidity (Borchman et al., 1999). Under states of oxidation, the fatty acid 

composition is paramount to influence downstream effects on meat quality (Faustman et 



 9

al., 2010). Allylic carbons found on unsaturated fatty acids have a weaker capacity to 

retain their hydrogens compared to saturated fatty acids, allowing an affinity for greater 

oxidation at these sites, altering their physical orientation. This initiates a cascade of 

oxidizing reactions, impacting the functionality of in vivo organelle membranes and 

postmortem attributes of meat quality such as color stability, lipid oxidation, and meat 

tenderization. 

 

Generation of oxidative properties 

 Oxygen comprises roughly 21% of atmospheric air, nearly all of which is utilized 

by mitochondria during respiration (Bolisetty and Jaimes, 2013). After binding to 

hemoglobin, oxygen is transferred to myoglobin with muscle cells and available to 

perform oxidative phosphorylation within mitochondria. This mechanism acts as the 

production cycle of ATP, the essential energy source of biological function. Constant 

metabolism of oxygen is necessary in order to supply sufficient ATP for basal metabolic 

and physical function within an organism. While a necessity to sustain life of aerobic 

organisms, such as livestock, oxidative phosphorylation does not come without 

byproducts. These byproducts are beneficial in some respect for cellular signaling and 

inflammatory response, but an intricate balance of these molecules is needed to prevent 

detrimental quantities that can alter cellular stability. It is critical, therefore, to further 

understand the generation of these products in conjunction with mitochondrial function 

and their potential impact on muscle cells. 
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Mitochondrial function in skeletal muscle 

 Mitochondria are integral to normal cellular function and are the key contributor 

to energy production in eukaryotic cells. Originating as a specialized form of bacteria, 

mitochondria have adapted an endosymbiotic relationship within eukaryotic cells, acting 

as the primary facilitator of phospholipid and heme synthesis, calcium homeostasis, 

apoptotic activation and cellular death (Gray et al., 2001; Bolisetty and Jaimes, 2013). 

Mitochondria hold key enzymatic systems designated for the oxidation of carbohydrates, 

fat, and proteins to produce cellular energy in the form of ATP. The production of ATP is 

essential for maintenance of skeletal muscle function, including contraction, relaxation, 

signal transduction, and energy-dependent enzymes utilized in molecular reactions. 

Mitochondria are comprised of four distinct domains, each holding their unique function 

in relation to skeletal muscle (Kühlbrandt, 2015).  

 

Mitochondria structure 

Commonly misinterpreted as oval shaped organelles, mitochondria are very 

diverse in their shape due to cycles of fissions and fusions with other mitochondria to 

better facilitate the demands of cellular respiration (Gray et al., 2001). Given the current 

state of an organism or localized cells, mitochondrial fission or fusion is regulated to 

optimize energy metabolism while maintaining a homeostatic function within the 

mitochondrial membrane. This is shown when overproduction of H2O2 facilitates fission 

to repair damaged mitochondrial matrices (Schenkel and Bakovic, 2014). Focusing on 

mitochondrial structure, the outer membrane is comprised of a phospholipid membrane 

and separates the organelle from the cytoplasm. Porous in its design, the outer membrane 
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facilitates transportation of small uncharged molecules (<5 kDa) via the voltage 

dependent anion channel (VDAC). The inter-membrane space allows translocation of 

ions further into the mitochondria. In contrast to the outer membrane, the inner 

membrane is a tightly built diffusion barrier, designed for selective ion and molecular 

transport. This exclusivity is shown by an inner membrane potential of approximately 

180mV, illustrating the movement of ions via specialized transport proteins (Schenkel 

and Bakovic, 2014). Next, the inner mitochondrial membrane is distinguished as two sub-

sections, the boundary membrane and the cristae. As closely stacked discus-shaped 

structures, cristae are bound to the majority of the inner membrane, and act as the site of 

mitochondrial energy conversion (Osellame et al., 2012; Kühlbrandt, 2015). Lastly, the 

inner mitochondrial matrix is the cytoplasmic space responsible for precursor 

mechanisms in oxidative phosphorylation and mitochondrial DNA (mtDNA) synthesis. 

This is possible due to a higher pH found within the mitochondrial matrix, permitting 

regulation of ions via an electrochemical gradient during oxidative phosphorylation 

(Llopis et al., 1998). 

 

Mitochondria uniporter 

 During homeostasis, high concentrations of extracellular calcium are capable of 

entering the mitochondria via the mitochondria uniporter. Due to the close proximity of 

mitochondria to SR organelles, evolutionary development of this protein was necessary 

(Dirksen, 2009). This protein regulates the passive uptake of calcium while maintaining 

an even distribution of calcium concentration across the surrounding cytosol and the 

mitochondria. Acting as a buffer for calcium in the cell, the uniporter allows the 
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concentration of calcium in the mitochondria to reach 10
6
 greater concentration compared 

to the cytosol. The concentration gradient of calcium acts to maintain proper membrane 

potential of mitochondria, which is essential for proper function  the TCA cycle and 

function of the electron transport chain (Santo-Domingo and Demaurex, 2010). Given the 

low affinity of the uniporter, however, a large amount of calcium is required to activate 

the uniporter to cycle calcium into the mitochondrial matrix (Kirichok et al., 2004). 

 

Mitochondria permeable transition pore 

 During mitochondrial storage of calcium, there are methods to mitigate calcium 

overload. The mitochondria permeable transition pore (MPTP) is a secondary method to 

release mass quantities of calcium in case of possible mitophagy. Used as a final option, 

the MPTP opens the matrix to release large quantities of calcium as quickly as possible 

during state of mitochondrial stress. However, calcium discharging can prolong exposure 

of pore openings, facilitating disruption of the mitochondrial matrix’s membrane 

potential, disrupting the mitochondria’s capacity to transfer electron and protons across 

the matrix and lead to cellular death (Di Lisa et al., 2001). 

 

ATP production precursors 

 Oxidative phosphorylation is the mechanism by which nutrients are oxidized to 

produce electrons, enabling the generation of ATP (Santo-Domingo and Demaurex, 

2010; Osellame et al., 2012). The subsequent breakdown of proteins, fats, and 

carbohydrates produce the end product acetyl-CoA via amino acid metabolism, �-

oxidation, and glycolysis, respectively. Dependent on the nutrient, each pathway provides 
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a unique technique for acetyl-CoA to enter the mitochondrial matrix (Owen et al., 1998). 

Amino acid metabolism degrades amino acids to a variety of intermediates for the citric 

acid cycle and/or pyruvate for gluconeogenesis.  During a fasting state, oxidation of 

amino acids predominantly occurs when muscle cells break down amino acid constituents 

with assistance of the liver, with some additional metabolism in the kidneys and small 

intestine (Owen et al., 1998). The end product, pyruvate, is subsequently brought into the 

mitochondrial matrix from the cytosol via the mitochondrial pyruvate carrier.. Beta-

oxidation of lipids is a more complex pathway, requiring the activation of acyl-CoA 

synthetase to form fatty acyl-CoA. This facilitates fatty acids to pass through the outer 

mitochondria membrane via the carnitine palmitoyl transferase I (CPTI). When reacted 

with carnitine, a component of amino acids, acyl-CoA forms acyl-carnitine, and is then 

allowed to pass into the inner mitochondrial membrane via translocase, with byproduct 

CoA-SH is sent back into the cytosol (Melzer, 2011; Dunning et al., 2014). Carbohydrate 

metabolism is fairly similar to amino acid metabolism in its end product. After the 

breakdown of simple sugars glucose, fructose, and galactose via glycolysis, pyruvate can 

be transported into the mitochondrial matrix via the mitochondrial pyruvate carrier 

(Owen et al., 1998; Melzer, 2011). Carbohydrate breakdown is a result of each sugars 

chemical makeup and how metabolic organs facilitate degradation. To utilize fructose, 

the liver is the predominant organ needed to convert to phosphorylation substrates, as 

fructose is not as readily absorbed in the blood as glucose. This constraint requires more 

complex degradation techniques (Melzer, 2011). Once nutrients are broken down into 

substrates, oxidative phosphorylation can occur.  
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Oxidative phosphorylation 

During oxidative phosphorylation, a choreographed exchange of electron donors 

works in concert with respired oxygen and hydrogen ions to produce ATP molecules. 

Mitochondria bioenergetics facilitate electron donors nicotinamide adenine dinucleotide 

(NADH) and flavin adenine dinucleotide (FADH2) via the citric acid cycle (Osellame et 

al., 2012). Matrix protein complexes (MPC I, III, IV) embedded in the inner membrane to 

facilitate the pumping of protons from the inner mitochondrial matrix into the inner 

membrane space. These complexes work in conjunction with MPC II, coenzyme Q, and 

cytochrome c to continue the transfer of electrons within the inner membrane. This alters 

the membrane potential, increasing an affinity for hydrogen ions to re-enter the 

mitochondrial matrix. Appropriately, MPC V permits transfer of hydrogen ions back into 

the mitochondrial matrix, and when bound with enzyme ATP synthase, it is this transfer 

of ion that facilitate ATP generation from previous oxidized adenosine diphosphate 

(ADP) (Osellame et al., 2012; Kühlbrandt, 2015). This mechanism acts as the primary 

pathway towards energy production and produces multiple byproducts as a result. While 

major energy donors NAD
+
 and FADH

+
 are recycled in the mitochondrial matrix to 

regenerate to their reduced state, the production of additional, more unstable molecules, 

can serve further biological functions. 

 

Reactive oxygen species 

 Free radicals are necessary byproducts of oxidative phosphorylation. They are 

developed and controlled within the mitochondria. While free radical formation is 

commonly associated with states of inflammation or chronic illness, the vast majority of 



 15 

free radical species are formed during basal physiological functions of cells, such as 

oxidative phosphorylation (Dröge, 2002; Bolisetty and Jaimes, 2013). The exchange of 

electrons from NADH and FADH2, coupled with the transfer of H
+
 ions through the inner 

mitochondrial membrane, facilitate the generation of oxygen-based radicals known as 

reactive oxygen species (ROS).  

Other components of muscle cells (sarcoplasmic reticulum; sarcolemma) have 

been suspected to contributing to ROS production, primarily due to subtle interactions 

with cofactor NADPH and membrane proteins (Xia et al., 2003). However, the 

mitochondria are widely regarded as the central point of ROS generation. Reactive 

oxygen species include negatively charged, oxygen centered radicals (O2
-
, OH

-
), but also 

include reactive derivatives such as hydrogen peroxide (H2O2) (Zorov et al., 2000; Dröge, 

2002; Powers et al., 2011; Xing et al., 2019). Low physiological levels of oxidants and 

other radicals play an important role in the control of gene expression and regulation of 

cell signaling. As signaling transduction molecules, ROS can influence redox-sensitive 

pathways in skeletal muscle to alter how proteins modulate growth, differentiation, 

proliferation, and controlled muscle turnover. Concurrently, ROS levels can influence 

redox-sensitive pathways such as gene expression in response to inflammation, exercise, 

infection, growth factors, and stress. In particular, the mitogen activated protein-kinase 

(MAPK), nuclear factor kappa-light chain enhancer of activated B cells (Nf-kB), and 

activator protein 1 (AP1) have all be shown to change their expression in response to 

ROS (Powers et al., 2011). The generation of ROS, when coupled with minimal 

physiological response, holds potential to alter the composition of cellular stability 

through oxidative stress and change myocyte composition. 
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Superoxide 

Superoxide (O2
-
) is the primary ROS generated by incomplete reduction of 

oxygen in the electron transport chain in vitro, and is an intermittent product of specific 

enzymatic systems. Through comprehensive review, it is theorized that the majority of 

O2
-
 production occurs within the mitochondrial matrix during the electron exchange at 

Complex I (Ott et al., 2007; Bekhit et al., 2013). This phenomenon is stimulated with the 

presence of succinate, a common substrate produced from Complex III. While Complex 

III can generate O2
-
, inhibition of Complex III via antimycin reduces its activity along the 

electron transport chain, which is theorized to significantly increase superoxide 

generation. Because antimycin does not inhibit Complex I, it can continue to utilize 

electron donors and generate O2
-
 (Ott et al., 2007; Powers et al., 2011; Bolisetty and 

Jaimes, 2013). In contrast to Complex I, O2
-
 production at Complex III is possible outside 

of the mitochondrial matrix within the inter-membrane space. Coenzyme Q10, (i.e. 

ubiquinone) is a lipophilic electron carrier that is conjoined to Complex III (Paradies et 

al., 2001). Through a series of redox reactions, Coenzyme Q10, ubiquinone, is capable of 

transferring electrons across Complex III. As a result, the recycling oxidation-reduction 

reactions of ubiquinone also facilitate the generation of O2
-
 (Ott et al., 2007; Bolisetty and 

Jaimes, 2013). While considered relatively unreactive in comparison to other radicals, 

superoxide can extract electrons from biological membranes and other cellular 

components. An example of this is the reduction of cytochrome c to initiate apoptotic 

mechanisms. Superoxide does, however, hold a noticeably longer half-life (~5 seconds) 

than most radicals, and is capable of dismutating with other molecules, such as nitric 

oxide (NO
-
) and hydrogen ions (H

+
) to produce ROS which are more unstable than O2

-
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(Zorov et al., 2000; Fulle et al., 2004). While superoxide is constantly produced at low 

levels during normal respiration, intracellular reactions permit superoxide to have an 

increased impact on organelle and cellular function. 

 

Hydrogen peroxide 

 Hydrogen peroxide (H2O2) is a produced by O2
-
 binding with hydrogen ions or 

enzymatic breakdown of O2
-
 via manganese-superoxide dismutase enzymes. Organelle 

membranes are permeableto H2O2, allowing it to corss the mitochondria into the cytosol 

with the use of aquaporins surrounding the outer mitochondrial membrane (Bienert et al., 

2006; Bolisetty and Jaimes, 2013). While it is speculated O2
-
 may also diffuse through 

mitochondria by voltage dependent anion channels, it is unknown to what degree this 

diffusion occurs (Madesh and Hajnóczky, 2001). As a non-radical ROS, H2O2 is 

incapable of directly oxidizing lipids or DNA, but it can be cytotoxic during periods of 

chronic illness such as cancer (Fulle et al., 2004; Powers et al., 2011). Hydrogen peroxide 

can act as a major precursor to oxidative damage within a cell. In particular, when H2O2 

is converted into hydroxyl radicals (OH
-
) in the presence of ferrous (Fe

2+
) and cuprous 

(Fe
+
) iron via the Fenton reaction (Powers et al., 2011; Bolisetty and Jaimes, 2013; 

Halon-Golabek et al., 2019). This is pertinent to the presence of iron within myocytes, as 

skeletal muscle holds the majority of the bound iron in ferritin or myoglobin, outside of 

the mitochondria. However, in conditions of manganese deficiency, superoxide dismutase 

enzymes can instead bind with copper or iron, which may restrict availability for these 

metals to interact with H2O2, hindering its activity. When bound to these transition 

metals, H2O2-medated production of OH
-
 increases within the mitochondria, promoting 
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increased organelle damage and possible mitophagy (Paradies et al., 2001; Ott et al., 

2007; Halon-Golabek et al., 2019). 

 

Hydroxyl radical 

 During a homeostatic response, hydroxyl radicals (OH
-
) are the final free radicals 

formed as a result of ROS interaction with proteins or enzymatic degradation, and are 

known to promote cellular damage. Due to its electron spin configuration, OH
-
 holds the 

strongest oxidizing potential of all ROS, attributing to their high reactivity. Consequently, 

they bind with their nearest surroundings and satisfy their lone valence electron, resulting 

in oxidative damage (Powers et al., 2011). Their affinity to rapidly bind to their 

surroundings makes it virtually impossible to directly quantify them in vitro, and only 

possible to evaluate products of oxidative reactions, such as disulfide bonds (Powers et 

al., 2011; Bekhit et al., 2013; Bolisetty and Jaimes, 2013) Due to their extreme reactivity, 

OH
-
 molecules are regarded as the most damaging ROS generated in a biological setting. 

 

Reactive nitrogen species 

 The term reactive nitrogen species (RNS) refers to the enzymatic development of 

nitrogen radicals and reactive derivatives with a nitrogen center (Powers et al., 2011; 

Bolisetty and Jaimes, 2013). In nature, all development of RNS is controlled by the 

activity of nitric oxide synthase enzymes (NOS). In mammals, NOS is generated in three 

distinct isoforms: neuronal (nNOS), inducible (iNOS), and endothelial (eNOS) (Kapur et 

al., 1997; Brannan and Decker, 2002; Förstermann and Sessa, 2012). Of these isoforms, 

nNOS is expressed in neurons of the central and peripheral nervous systems, and 
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predominantly functions for the relaxation of smooth muscle and vasodilation of blood 

vessels. Through immunological and cellular fractionation methods, nNOS has been 

detected in specialized structures of fast-twitch muscle fibers like the sarcolemma 

(Powers et al., 2011). Endothelial NOS is a dually acylated peripheral membrane protein 

found bound to caveolin-1, a caveolae structural protein associated with endothelial cells, 

and assists in regulating blood pressure and atherosclerosis (García-Cardeña et al., 1997). 

Unique to muscle, immunoblotted eNOS colocalized with mitochondria of rat skeletal 

muscle, strongly suggesting a specific localization of eNOS to skeletal muscle 

mitochondria (Stamler and Meissner, 2001). Inducible NOS, while not as active in 

muscle, is expressed in response to stress factors such as lipopolysaccharides and 

cytokines (Tengan et al., 2012). When mediated by molecular oxygen, L-arginine, and 

electron cofactors NADPH and FAD, NOS is capable of producing nitric oxide (NO), the 

smallest known signaling molecule. Similar to ROS, the physiological levels of NO are 

recognized to have an impact on mitochondrial biogenesis, respiration, and oxidative 

stress. Under states of low RNS, its constituents assist in increased glucose 

uptake/metabolism, vasodilation, and possibly mitochondrial biogenesis (Nisoli and 

Carruba, 2006; Powers et al., 2011; Bolisetty and Jaimes, 2013; Hong et al., 2014). 

However, it is postulated that cascading of RNS can initiate nitosative stress, producing 

detrimental effects on organelle function, DNA stability, and lipid/protein composition. 

 

Nitic oxide 

 Nitric oxide (NO
-
) is the initial RNS formed as a result of enzymatic reactions 

(Figure 1). Predominantly generated using endothelial nitric oxide synthase, eNOS, NO
-
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is introduced into skeletal muscle via major arterioles surrounding muscle fibers 

(Bolisetty and Jaimes, 2013). Concurrently, eNOS is postulated to be found in 

mitochondria, sometimes identified as mtNOS. This theory is supported by the growth of 

enzymatic products of NO reactions (L-citrulline) in the presence of inflammatory stimuli 

(Stamler and Meissner, 2001). It is speculated the presence of NO
-
 within mitochondria is 

indicative of pathways independent of NOS activity such as the electron transport chain 

(Ghafourifar and Cadenas, 2005; Lacza et al., 2006; Arriagada et al., 2018). As a result, 

NO
-
 is capable of influencing mitochondrial composition and function. Mainly, NO

-
 

holds a high affinity to cysteine-rich proteins, such as Complex IV-bound cytochrome c 

oxidase, due to the easy covalent binding, nitrosylation, of thiol groups (-SH) into 

disulfide bonds (Nisoli and Carruba, 2006; Tengan et al., 2012; Liu et al., 2018; Poderoso 

et al., 2019). Given the significance of cytochrome c oxidase and its ability to transfer 

multiple electrons simultaneously, accumulated NO
-
 present can ultimately inhibit 

mitochondrial respiration. Given high levels of NO
-
 coupled with prolonged exposure, 

NO can cause irreversible inhibition of mitochondrial respiration, uncoupling proteins, 

and ultimately resulting in apoptosis (Bekhit et al., 2013; Poderoso et al., 2019). 

Conversely, low levels of NO
-
 have been shown to trigger mitochondrial biogenesis via 

increased expression of Peroxisome proliferator-activated receptor gamma coactivator 1-

���ℎ�, PGC-1�, encoding proliferation of mitochondrial proteins (Nisoli and Carruba, 

2006; Tengan et al., 2012). Nitric oxide regulation is critical to the efficiency of 

mitochondrial respiration and energy production. The presence of NO
-
, particularly 

within mitochondria, is critical considering the interaction of NO
-
 generates reactive 

derivatives of RNS. In particular, the high affinity for NO
-
 to bind to superoxide to 
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produce peroxynitrite, S-nitrosothiols (SNOs), and metal NO
-
 complexes (Stamler and 

Meissner, 2001).  

L-arginine + O2 + NADPH 
�	
�	(���������)�������������� NO + L-citrulline + NADP

+
 

NO
-
 + O2

.-→ 
ONOO

-
 (Peroxynitrite) 

ONOOH → 
NO2

-
 + OH

-
 

 Figure 1: Generation and breakdown of reactive nitrogen species (RNS). 

 

Peroxynitrite 

 During prolonged states of oxidative stress, hybridization of superoxide and nitric 

oxide produce peroxynitrite (ONOO
-
), a specialized molecule that can target proteins 

relevant to organelle stability and muscle function (Eu et al., 1999). This reaction holds a 

large Km, and energetically favors production of peroxynitrite in the presence of O2
-
 and 

NO
-
. As a result, the reaction is three time faster than the dismutation of superoxide to 

produce hydrogen peroxide, and even faster than the binding of NO
-
 with heme proteins 

(Powers et al., 2011). The reaction kinetics in making peroxynitrite are so favorable that 

accumulation of ONOO
-
 is greater than other products when O2

-
 and NO

-
 are present. 

Depending on the quantity, peroxynitrite can have drastically different effects on skeletal 

muscle. During cellular homeostasis, Zhou et al. (2003) demonstrated peroxynitrite 

promotes tyrosine nitration, which in turn activates glucose uptake via lipid or protein 

oxidation channels by AMPK expression (Hong et al., 2014). Under conditions of 

reactive species amplification, ONOO
-
 supports protein nitrosylation and DNA damage 

(Zorov et al., 2000; Stamler and Meissner, 2001; Bekhit et al., 2013) Specifically, 

ONOO
-
 targets proteins rich in cysteine and methionine residues, as these amino acids 

hold high oxidative potential due to the weak stability of their thiol groups (-SH). These 
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reactions result in protonated peroxynitrite formation (ONOOH), facilitating an 

energetically favorable decomposition of peroxynitrite to produce hydroxyl radicals 

(ONOOH � NO2
-
 + OH

-
) (Wang et al., 2002). As a result, peroxynitrite is not only 

highly disruptive towards protein function, but an effective precursor to the development 

of highly reactive oxygen species. 

 

Hyperchlorite 

 Hyperchlorite is a myeloperoxidase formed by binding hydrogen peroxide with 

molecular chloride (Cl
-
). Similar to peroxynitrite, hyperchlorite is capable of damaging 

biomolecules via oxidizing lipids, electron donor activity, and thiols. In rare cases, 

hypercholrite can be converted to hypochlorous acid, which can diffuse across cellular 

membranes and is acidic enough to cause further protein and lipids damage (Powers et 

al., 2011). However, this RNS is found in infection-responding neutrophils, specialized 

white blood cells, and is commonly seen when experimentally-induced stress in bacterial 

species. Due to the irregular generation and unknown effect in mammalian cells 

compared to well-known RNS, it is regarded as a less critical RNS in the respect of 

skeletal muscle damage. 

 

Redox-sensitive signaling pathways 

 While it is still unknown how to define distinct levels of ROS based on their 

biological effects, there is evidence that ROS/RNS trigger downstream signaling 

pathways that stimulate cell growth, differentiation, proliferation, and apoptosis. These 

pathways can also act as precursors to generate enzymes and antioxidant factors which 
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can suppress the quantity and severity of reactive species (Miller et al., 1993). Often, 

these pathways are triggered by the mere presence of ROS/RNS generated, and are 

sometimes expressed due to the change in activity of distinct proteins (cysteine, kinases, 

phosphatases) linked to oxidation or nitrosylation products (Bolisetty and Jaimes, 2013). 

Concurrently, there is evidence to suggest that the degree of ROS/RNS damage may alter 

the level of expression across redox-signaling pathways. Simply put, the expression of 

redox-signaling pathways is not positively correlated [linearly related] with the sheer 

amount of ROS/RNS generated (Bolisetty and Jaimes, 2013). Given the diversity of 

pathways activated in response to ROS/RNS, it is challenging to understand the intricate 

relationship between reactive species and biological response pathways. As a result, it is 

pertinent to understand the known connection between these foundational pathways and 

oxidative stress factors. 

 

Nuclear factor erythroid 2-related factor (Nrf2) 

 During ideal physiological conditions, the production of ROS generated by 

oxidative phosphorylation is easily suppressed. This is predominantly due to the activity 

of the nuclear factor erythroid 2-related factor (Nrf2), which is responsible for the 

regulation of antioxidants and radical scavengers produced in vivo (Bolisetty and Jaimes, 

2013; Kozakowska et al., 2015). Stored in the cytosol, Nrf2 is sequestered to Kelch like-

ECH-associated protein 1 (KEAP1). A sensor protein, KEAP1 is designed to inactivate in 

response to reactive oxygen species (Dodson et al., 2015). When present, H2O2 and NO 

have been shown to inactivate KEAP1 by oxidizing several cysteine residues present, 

stimulating Nrf2 to enter the nucleus and bind to the antioxidant response element (ARE) 
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attached to stress responsive genes. This generates transcription factors needed to signal 

release of antioxidants (Fourquet et al., 2010; Bolisetty and Jaimes, 2013). It is possible 

that Nrf2 activators may actually increase ROS/RNS generation (Fourquet et al., 2010), 

however, the evidence is inconclusive. While Nrf2 activity is a critical mediator to 

antioxidant signaling during low levels of reactive species, its activity is generally 

disregarded compared to other signaling pathways during increased cellular stress 

(Fourquet et al., 2010; Bolisetty and Jaimes, 2013). 

 

NF�B/AP-1 

 As expected, a multitude of physiological pathways work dependently, as the 

activities of certain proteins for one pathway are mitigated by the expression of 

transcription factors of another. For example, the function of Activator Protein 1(AP-1) is 

largely dependent on the signaling pathways of NF�B (nuclear factor kappa-light-chain-

enhancer of activated B cells) and MAPK (mitogen-activated protein kinase). In both the 

cytoplasm and nucleus, NF�B and AP-1 react to “moderate” amounts of ROS. 

Concomitantly, each are stimulated by the presence of H2O2 and a variety of cytokines 

related to inflammation and apoptosis, such as Interleukin-1/6, and Tumor necrosis 

factor-� (Powers et al., 2011). In concert, both pathways bind to DNA promoters to 

activate antioxidant proteins including superoxide dismutase-2 (SOD2), cyclooxygenase-

2, catalase (CAT), MnSOD, and glutathione peroxidase (GPx) (Bolisetty and Jaimes, 

2013). Interestingly, NF�B also assists in activating iNOS, which suggests that it 

indirectly promotes expression of other redox-signaling pathways by the generation of 

NO (Nisoli and Carruba, 2006; Powers et al., 2011). While the activation of this pathway 



 25 

is shown to develop antioxidant combatants against reactive species, NF�B is implicated 

to increase inflammation via upregulation of enzymes that facilitate ROS production such 

as NADPH oxidase and xanthine oxidase, as well as NOS isoforms (Bolisetty and 

Jaimes, 2013). As a result, an intricate balance of NF�B and AP-1 regulation is necessary 

as too little expression will not suppress reactive species and over expression may 

generate high enough levels of ROS to oxidize proteins relevant to cellular structure and 

organelle function, reducing their activity entirely.  

 

Mitogen activated protein kinase (MAPK) 

 From another perspective, MAPK promotes cell proliferation and differentiation 

in response to cellular damage as a result of reactive species (Dröge, 2002). In regards to 

cell turnover, MAPK pathways activate dormant satellite cells, the precursor to active 

skeletal muscle cells (Jones et al., 2005). This is accomplished by the diverse 

composition of MAPK phosphate subsets, each can be grouped based on their subcellular 

localization (i.e., MAPK-2 found in the nucleus; MAPK-3 present in the cytoplasm). 

These subsets act to dephosphorylate MAPK, inactivating it. Interestingly, ROS can 

target MAPK phosphates during states of high ROS production, and modify their 

function to upregulate MAPK activity (Son et al., 2011). Upregulation of MAPK is 

speculated to initiate translocation of heat shock proteins 25/27 to the myofilament Z-disk 

to prevent apoptosis (Blunt et al., 2007). In turn, there is a tight and intricate relationship 

between MAPK activation and ROS production.  
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Homeostatic response 

 In order to maintain cellular homeostasis, muscle cells have evolved to use a 

network of different antioxidant defense systems to counteract oxidative damage in the 

presence of ROS. The diverse antioxidant systems distribute enzymes, which are specific 

to certain reactive species and designed to produce a subsequent reactive specie which is 

specific to another antioxidant. This cascade of enzymatic reactions intend to produce 

final products that are stable for ideal cellular function, such as water or molecular 

oxygen. Intrinsic regulation of ROS includes both enzymatic and non-enzymatic 

antioxidants and these regulatory systems are located across both intracellular 

(organelles; cytoplasm) and extracellular space. The regulatory mechanism for ROS 

depends on the antioxidant. Predominantly, endogenous antioxidant systems convert 

ROS to less reactive states, but can also prevent ROS propagation by minimizing 

available pro-oxidants such as chelating iron and copper (Miller et al., 1993). 

Interestingly, antioxidant activity varies across different muscle fibers, with oxidative 

(Type I) fibers noticeably greater than glycolytic (TypeII) fibers (Powers et al., 1994). 

This is understandable as Type I fiber types have more mitochondria. Dietary 

antioxidants  (�-tocopherol) can act as ROS scavengers and eliminate ROS molecules 

(Suman et al., 2014). Antioxidants are readily present endogenously and mitigate cellular 

response to ROS. In similar fashion, exogenous enzymes can be administered to combat 

ROS, as Batifoulier et al. (2002) showed greater membrane stability of organelles as 

supplemented �-tocopherol inclusion rates increased. Typically, such antioxidants are 

provided in daily rations, as there is potential that supplementation can also hold benefits 

of energy efficiency and growth in livestock (Miller et al., 1993). 
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Superoxide dismutase 

 As the name implies, endogenous antioxidant enzymes are those which are 

produced within an organism to provide protection against lipid, protein, or nucleic 

oxidation. In relation to reactive species, superoxide dismutase (SOD) is the antioxidant 

that starts the cascade of enzymatic reactions to eliminate ROS. Discovered in 1969, 

SOD dismutates O2
-
 radicals to form H2O2 as seen in Figure 2 (Paradies et al., 2001; 

Descalzo and Sancho, 2008; Delliaux et al., 2009). Superoxide dismutase comprises three 

isoforms, all of which use unique cofactors to facilitate the breakdown superoxide anions. 

Superoxide dismutase-1 is located in the cytosol and inner membrane space, and uses a 

copper-zinc binding cofactor. Superoxide dismutase-3 uses the same cofactor but is found 

in the extracellular space outside a muscle cell. Superoxide dismutase-2 uses a 

manganese cofactor and resides in the mitochondrial matrix, making it the primary 

isoform used to prevent ROS accumulation during oxidative phosphorylation (Miller et 

al., 1993). When examining skeletal muscle, the general activity of SOD varies by 

location, with ~15-35% of SOD activity occurring within the mitochondria and the 

remaining activity in the cytosol. This implies that if ROS generation occurs outside of 

the mitochondria, there is sufficient SOD that resides outside of the mitochondria to 

break down O2
-
. With sufficient supply of SOD, prevention of ROS formation is 

attainable, eliminating the onset of oxidative stress from the start.   

 

2 O2
.-
 + 2H

+
 
����������	������ ������������������� O2 + H2O2 

 Figure 2: Superoxide breakdown and production of hydrogen peroxide. 
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Glutathione peroxidase/catalase 

 Upon completion of SOD-mediated degradation, ROS species are further broken 

down to water molecules via glutathione peroxidase and catalase (GPx and CAT, 

respectively; Figure 3) (Gatellier et al., 2004). When examining the two enzymes, GPx 

appears to be relatively similar to SOD in respect to its diverse isoforms and their 

localization in muscle cells. In particular, GPx activity can greatly influence the 

mitochondrial permeable transition pore due to the large quantity of cysteine residues 

present (Dalle-Donne et al., 2003). Additionally, GPx requires both a selenium cofactor 

and glutathione (GSH), a cysteine based protein, which supplies electrons needed to 

trigger a forward reaction. This may act as a detriment to GPx activity however, as the 

cell must have a redox cycle to have the oxidized glutathione (GSSG) to return to is 

reduced state (Descalzo and Sancho, 2008). Catalase, like SOD, uses iron as a required 

cofactor to reduce H2O2 to water and molecular oxygen (Zámocký and Koller, 1999; 

Kirkman and Gaetani, 2007). Compared to GPx, CAT only uses one cofactor, iron, to 

regulate its activity instead of a reduced, thiol-based peptide. Conversely, CAT efficacy 

is more variable, as its concentration is positively correlated to its affinity towards H2O2 

degradation (Pradhan et al., 2000). This implies that CAT is most effective against H2O2 

once the ROS has grown in quantity rather than when it becomes available for enzymatic 

degradation. While both enzymes act to degrade the same reactive species, both GPx and 

CAT are ineffective in certain conditions. However, its counterpart remains active in that 

same situation. This results in a relationship between each enzyme, where conditions 

which may inhibit optimal activity of one are more conducive for the activity of the other, 

which helps maximize suppression of ROS-mediated damage to myocytes. 
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H2O2 + H2O2 
! � � �������� 2H2O + O2 

H2O2 + 2GSH  
"�� �#����	������� ������������������� 2H2O + GSSG 

 Figure 3: Enzymatic breakdown of hydrogen peroxide using catalase and glutathione peroxidase. 

 

Alpha-tocopherol (vitamin E) 

 Dietary supplementation of vitamin E is widely regarded as the best applicable 

method to delay meat discoloration and lipid oxidation (Faustman et al., 1998). When 

consumed, �-tocopherol is predominantly deposited in the membranes of major 

organelles. Derived from the carotenoid family, �-tocopherol is a lipid-soluble 

antioxidant consisting of long chains of conjugated double bonds and a benzene ring, and 

acts as an effective inhibitor of free radical-induced peroxidation of unsaturated fatty 

acids (Suman et al., 2014). This prevention occurs by terminating free radical reactions 

during the propagation of lipid radicals, oxidizing �-tocopherol into a tocopherol radical 

(Ryan et al., 2010). Redox reactions can occur using ascorbate and reduced glutathione to 

recycle this radical back to �-tocopherol, allowing further ROS scavenging (Packer et al., 

1979; Ryan et al., 2010). Given the capacity for carotenoids to be deposited within 

organelle membranes responsible for myofibrillar function, their presence can profoundly 

affect protein and lipid oxidation (Harris et al., 2001). 

 

Mechanism of oxidative stress 

 Aerobic organisms generate ROS as a result of oxidative phosphorylation. As a 

safeguard, generation of a multitude of antioxidants and enzymatic compounds are 

utilized to suppress and eventually remove any detrimental effect of these ROS. 
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However, evidence has shown instances where physiological response mechanisms are 

not sufficient in combating ROS, such as inflammation, chronic disease, illness, or 

muscle injury. As a result, these occurrences can stem from the phenomena known as 

oxidative stress (Figure 4). As its name implies, oxidative stress is defined as the 

imbalance between the production of ROS and antioxidant defenses, in which oxidative 

stress favors ROS (Ott et al., 2007; Tsutsui et al., 2011). The exhaustion of defense 

mechanisms allows ROS to react with their surroundings, along with each other, resulting 

in damage to proteins, lipids, and DNA. With sustained damage to cellular structures and 

altered redox-reactions, oxidative stress worsens (Miller et al., 1993; Ott et al., 2007; 

Celi, 2010; Scicchitano et al., 2018). Under states of prolonged oxidative stress, a 

timeline which is undefined, oxidative stress changes cellular function and the biological 

mechanisms used to sustain cellular development, validating the need for further 

investigation into oxidative stress effects. 

 

Figure 4: Enzymatic sources of reactive oxygen species (ROS) and their pathophysiological role 

involved in oxidative stress (Tsutsui et al., 2011). 
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DNA profile 

 Various components of DNA can be modified via oxidative stress. In particular, 

the oxidation of purine and pyrimidine bases making up the foundation for the 

deoxyribose backbone are the most susceptible to oxidative alteration (Bekhit et al., 

2013). This promotes permanent cross-bridging of these nucleic acids,, drastically 

changing the functionality of the DNA molecule, forcing recycling of these molecules 

and slowing cellular nuclei to meet cellular demands for DNA turnover. In particular, the 

damage by ROS to mitochondrial DNA disrupts transfer RNA and ribosomal RNA, 

impacting protein synthesis and essential ATP production by the electron transport train. 

Oxidative damage induced by ROS is likely a major source of genomic instability leading 

to respiratory dysfunction (Ott et al., 2007). Oxidative stress-mediated DNA damage is 

more commonly linked to chronic illness and has not yet been linked to meat quality. A 

more in-depth investigation into the presence of oxidative stress and its impact on the 

formation of proteins using transcriptomic profiling is necessary. 

 

Lipid oxidation 

 Oxidation of lipids is primarily focused on polyunsaturated fatty acids (PUFAs). 

Due to weak allylic central carbon binding in double bonds, PUFAs contain methylene 

bridges, which hold highly reactive hydrogen atoms. In the presence of ROS, the lipid 

oxidation mechanism can begin (Figure 5). Known as the initiation step, fatty acids lose a 

hydrogen  ion during oxidation to produce highly unstable lipid radicals called 

hydroperoxides (Bekhit et al., 2013; Domínguez et al., 2019). In regards to fatty acids, 

PUFAs are the most susceptible to lipid oxidation. In the presence of molecular oxygen, 
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hydroperoxides react to produce lipid peroxyl radicals. Due to the instability of these 

radicals, they behave like ROS to scavenge an available hydrogen from their 

surroundings. Ironically, their surroundings are other fatty acid structures. This cascade 

of lipid radical binding to non-radical fatty acids begins an exponential propagation in the 

oxidation of surrounding lipids. Eventually, a localized area of fatty acids is 

overwhelmingly comprised of lipid radicals, allowing these radicals to bind with one 

another, producing lipid peroxides (Domínguez et al., 2019). Concurrently, the 

generation of lipid oxidation promotes further biochemical changes, such as increased 

membrane fluidity, physiological function, enzyme inactivation, and protein denaturation 

(Stark, 2005; Ott et al., 2007; Powers et al., 2011; Bekhit et al., 2013; Kozakowska et al., 

2015; Scicchitano et al., 2018), all of which, can result in major shifts in cellular vitality 

and stability. 

 
Figure 5: Systematic process of lipid peroxidation.  
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Lipid oxidation interrelationship with meat color 

 Fresh meat color is one of the largest indicators of freshness to consumers and the 

primary factor in consumer purchasing (Gatellier et al., 2001). Consumer analysis 

indicates that a 20% discoloration of meat during retail display can reduce total beef sales 

by 50% (Hood and Riordan, 1973). The color of meat has been related to the combination 

of three states of myoglobin on the surface of meat: reduced myoglobin, oxymyoglobin, 

and metmyoglobin. The overall composition of myoglobin pigments depend on the rates 

of oxymyoglobin oxidation and metmyoglobin reduction (Gatellier et al., 2001), which 

has been linked to lipid oxidation (Faustman et al., 2010). Intermediate radicals are 

produced as a result of oxidative propagation of lipids and can accelerate myoglobin 

oxidation, increasing meat discoloration. Wong (1989) explained how iron-bound 

myoglobin can catalyze lipid oxidation, indicating that ferric (Fe
3+

) can promote lipid 

autoxidation, generating superoxide anions (O2
-
). When reacting with protein-bound thiol 

groups, additional O2
-
 generation can occur. Concurrently, O2

-
 acts as a byproduct of 

redox reactions, rapidly being dismutated to H2O2, which can further increase lipid and 

myoglobin oxidation simultaneously.  

 

Protein oxidation  

 Recent literature has been recognizing the emerging investigation in the oxidation 

of proteins sources in food. The growing interest stemmed from the idea of protein 

sources to be oxidized via ROS reactions, with ROS potentially causing deleterious 

effects on muscle proteins alongside lipids (Stadtman and Levine, 2003). In turn, the 
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investigation into how protein oxidation occurs, and how oxidative stress can promote 

these reactions, has yet to be adequately defined. 

 Using current knowledge, protein oxidation can occur through the targeting of 

peptide backbones and specific amino acid side chains, resulting in a loss of sulfhydryl 

groups (protein cross-linking) and generation of carbonyl derivatives (Estévez, 2011). In 

general, protein oxidation occurs similar to oxidation of lipids. Using the generation of 

ROS, oxidative radicals target the functional groups along the side chain of amino acid 

residues and scission of peptide backbones. In regards to lipid and protein oxidation, 

radical formation can be a result of the Fenton reaction, the catalysis of transition metals 

iron/copper in the presence of H2O2 radicals (Martinaud et al., 1997; Estévez, 2011). 

When oxidative radicals are reduced, the transfer of energy with the hydrogen atoms can 

generate protein radicals. Protein radicals further react with each other and molecular 

oxygen to form a population of radicals and generate hydroxyl derivatives of proteins 

(Stadtman and Levine, 2003). The routes taken to generate these protein derivatives are 

dependent on the specific amino acid complexes which are targets by ROS, and thus, 

each method of protein oxidation can merit different products from protein oxidation. 

 From protein oxidation, there are a number of different derivatives which can be 

used to evaluate oxidation. Of these, loss of sulfhydryl groups (R-SH) is a common 

measure of protein oxidation. While most thiols are low-reacting given their pKa (~8.5), 

certain amino acids can create a charged environment for thiolate anions to exist. These 

anions are more readily oxidized/nitrosylated, especially in the presence of ROS/RNS 

(Dalle-Donne et al., 2003; Ying et al., 2007). As a result, cysteine and methionine are 

easily oxidized than others due to their thiolate side chains. If oxidized, thiol groups tend 
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to bind with their cysteine-oxidized thiol counterparts, forming covalent disfulide cross-

bridges (Frederiksen et al., 2008; Estévez, 2011). These cross-bridges are more stable 

than most cross-linkages in amino acids, due to their strong attraction from sharing 

electron orbital with one another, and require exogenous chemical conditions to prevent 

their formation (i.e., betamercaptoethanol). During conditions which promote protein 

denaturation (cooking, high pH, or oxidative stress), disulfide bonds are very common 

and act to change the conformation of protein shape, and possibly function (Soladoye et 

al., 2015). As a result, the change in composition drastically alters protein stability, acts 

as a severe detriment to protein function and quality, and can affect downstream quality 

attributes of muscle postmortem. 

 In addition to thiol oxidation, generation of carbonyl derivatives is a well-known 

indicator of protein oxidation. Carbonylation is the irreversible, non-enzymatic formation 

of aldehydes and ketones during protein oxidation (Estévez, 2011). Carbonyl derivatives 

are commonly formed from amino acids lysine, threonine, and arginine using metal-

catalyzed oxidation against amine groups (Stadtman and Levine, 2003). After oxidation, 

amino acids covert into irreversible aldehyde groups. Given the moiety of carbonyls, they 

are capable to continue binding with surrounding peptide bonds to form cross-links via 

Schiff-base formation, which increases the susceptibility of neighboring peptide to form 

ketones or aldehydes. Unique to carbonylation, myoglobin is susceptible to protein 

oxidation when exposed to H2O2 due to the its binding with transition-metals iron or 

copper. As a result, oxidation reactions occur to form metmyoglobin pigments. Estévez 

and Heinonen. (2010) discovered H2O2-mediated metmyoglobin formation to produce 
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hypervalent radical ferrylmyoglobin, which has been linked to lipid and protein oxidation 

(Baron and Andersen, 2002). 

 

Stability of the sarcoplasmic reticulum 

 As previously stated, the sarcoplasmic reticulum (SR) acts as a regulatory 

organelle for muscle contraction by the release and sequestering of calcium ions into the 

cytosol by the ryanodine calcium channel and SERCA, respectively. (Rossi and Dirksen, 

2006). Consequently, the SR acts as a critical component to meat quality, as calcium acts 

as a catalyst for the activation of proteolytic calpains used in meat tenderization 

(Koohmaraie, 1996). Oxidation of the SR membrane could increase calcium flow out of 

the SR. This effect occurs as a result of prolonged postmortem muscle aging in 

conjunction with chronic illness, when membrane repair mechanisms are minimal (Fulle 

et al., 2004). Certain ROS can influence calcium homeostasis across the sarcoplasmic 

reticulum and mitochondria. Isaeva et al. (2005) reported that H2O2 increased calcium 

release from the sarcoplasmic reticulum. Other factors, such as prolonged exercise, have 

been shown to produce ROS (Li et al., 1999). 

During states of oxidative stress, nitric oxide is generated and reacts with protein 

residues found within the SERCA and ryanodine receptors. Cysteine and methionine 

residues are largely comprised of oxidatized sulfhydryl-groups. When oxidized, SERCA 

activity is inhibited via disulfide formation, drastically decreasing uptake of cytosolic 

Ca
2+

 ions and consequent inhibition of muscle contraction (Powers et al., 2011). Ishii et 

al. (1998) revealed the reversible activity of SERCA inhibition after the loss of nitric 
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oxide. However, this recovery of SERCA activity is quite slow considering the reactivity 

of NO occurs within seconds.  

Activity of ryanodine receptors is likely dependent on S-nitrosylation of amino 

acids with high oxidative potential. Low concentrations of NO-mediated oxidation did 

not affect RyR1 channel activity, as the binding of radical hybrid peroxynitrite forms 

permanent cross-links of disulfide bonds within RyR proteins. Interestingly, subunit 

cross-linking did not inhibit activation of skeletal RyR channels by disulfide bond 

formation from sulfhydryl groups. Simply put, low NO concentration didn’t stop activity 

of ryanodine receptors, but did alter the functionality of receptors, changing their function 

and preventing physical release of Ca
2+

 ions. Conversely, high concentrations of NO 

could activate RyR channels. At high enough concentrations, diversity of NO-related 

species are created after binding to RyR (GSNO, CysNO, and SIN-1) and their 

concentration ratio regulated the denitrosylation of RyR (Ishii et al., 1998; Eu et al., 

1999). It is not quite understood how the diversity of these NO-related species are 

controlled, as it is likely dependent on factors such as cellular composition, organelle 

membrane structure, NO concentration, and antioxidant interaction  (Eu et al., 1999).  

 

Mitochondria stability 

 Multiple facets of cellular life and death revolve around mitochondrial activity. 

Not only are mitochondria the center for ATP production, they are also the center of 

intracellular ROS production (Bolisetty and Jaimes, 2013). During bouts of oxidative 

stress, the integrity of mitochondrial function is jeopardized both within the matrix and 

across the extracellular membrane. Ott et al. (2007) demonstrated how aconitase, an iron-



 38 

sulfur bound protein, acts as a catalytic converter of citrate to isocitrate in the Krebs 

cycle. Irreversible oxidation of aconitase during oxidative stress caused dysfunction of 

the Krebs cycle and diminished ATP production due to the lack of electron donors 

generated. This progressively decreased the membrane potential of the mitochondrial 

matrix, and if not resolved, caused the degradation of the matrix and loss of 

mitochondrial function to promote apoptosis (Zorov et al., 2000; Sierra and Olivan, 

2013). Free fatty acid production as a result of membrane oxidation confounds the loss of 

membrane potential.  Bernardi et al. (2006) stated the combination of increased ROS 

production and lowered membrane potential activated the MPTP in a last-ditch effort to 

expel ROS and prevent mitochondrial destruction. However, the increased proportion of 

ROS produced, combined with the depolarization of mitochondria membrane, facilitated 

slow efflux of ROS, which can result in mitophagy (Di Lisa et al., 2001). These 

cascading events all promote cellular death and initiate apoptotic pathways, which are 

responsible for replacing oxidized proteins and organelles. 

 

Apoptotic pathway 

 Mitochondrial ROS generation, coupled with other pro-apoptotic proteins, are the 

central cause of apoptosis, or the execution of programmed cellular death. The apoptotic 

process is a non-inflammatory pathway complementary to mitosis, which acts in concert 

with enzymatic proteins. The end goal is to break down necrotic cells and induce growth 

of new cells (Ott et al., 2007). At mitochondrial failure, key proteins are utilized in cell 

signaling of apoptosis and can be evaluated as markers of apoptotic pathways during 

stages of oxidative stress (Dröge, 2002). 
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Cytochrome c 

 In living cells, cytochrome c functions as a the primary electron carrier between 

Complex III and IV of the electron transport chain (Ke et al., 2017). As it is related to the 

electron transport chain, cytochrome c is localized within the inner mitochondrial 

membrane and bound alongside cardiolipin, an anionic phospholipid that assists in 

stability of the mitochondrial membrane. Ott et al. (2007) postulated cardiolipin and 

cytochrome c were so tightly bound that the separation requires major changes in 

cardiolipin’s affinity for cytochrome c to be released. In states of oxidative stress, the 

oxidation of cardiolipin facilitates cytochrome c release and is shown to assist in the 

expulsion of cytochrome c from the inner mitochondrial membrane (Kagan et al., 2009). 

Concomitantly, pro-apoptotic proteins (Bax) allow the opening of mitochondrial pores 

along the outer membrane, allowing cytochrome c release from the mitochondria into the 

cytoplasm. Once in the cytoplasm, cytochrome c initiates gene signaling of proteolytic 

proteins used to complete apoptosis. 

 

Caspase system 

Later stages of apoptosis facilitate the degradation of necrotic cells in order to 

provide growth for new and adapted structures. Madesh and Hajnóczky (2001) 

commented on how the presence of cytochrome c in the cytoplasm signaled the family 

Apaf-1 genes (apoptotic protease activating factor 1), which activate enzymatic proteins. 

Correspondingly,  Apaf-1 binds with cytosolic cytochrome C to form the apoptosome, a 

large quaternary protein that enables the activation of caspase proteins (Madesh and 

Hajnóczky, 2001). The caspase work in conjunction to achieve proteolytic function. 



 40 

Sierra and Olivan (2013) reviewed distinct groups of caspases and their role in apoptotic 

pathways. To start, initiator caspases 8, 9, and 12 turn on in response to apoptotic stimuli 

and accordingly activate effector caspases 3, 6, or 7. This is completed by the progressive 

cleaving of each type of caspase in order to cleave subsequent caspases, activating each 

upon being cleaved. When activated, the caspase enzymes initially function to cleave 

Poly (ADP Ribose) Polymerase, designed to repair proteins, allowing natural cellular 

breakdown and eventual death to be met (Porter and Jänicke, 1999). Additionally, 

caspase has been theorized to cleave calpastatin, an inhibitor of postmortem aging in 

muscle. Wang et al. (1998) showed calpastatin activity held a negative relationship with 

caspase activity up to two days postmortem at refrigerated temperatures. Caspase 

degradation of organelle membranes and cytoskeletal proteins increases cytosolic 

calcium levels and calpain activity (Wang, 2000). This action assists in early postmortem 

tenderization. 

 

Small heat shock proteins 

Inherently, biological homeostasis of structural proteins is maintained through the 

use of chaperone proteins. As its name suggests, chaperone proteins stabilize unstable 

proteins and oversee the correct assembly of protein growth (Creagh et al., 2000; 

Lomiwes et al., 2014). In relation to oxidative stress, the primary isoforms of interest are 

small heat shock proteins (sHSPs). Of sHSPs, HSP20 (20 kDa), HSP27 (27 kDa) and ��-

crystallin (22 kDa) have been implicated in meat quality related to oxidative stress. 

Fischer et al. (2002) found that the expression of these chaperone proteins in skeletal 

muscle occur at a high volume compared to other tissues. Due to the frequent generation 
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of oxidative stress factors in skeletal muscle, it makes sense that increased sHSPs are 

produced as a response to apoptosis. During homeostatic conditions, sHSPs can act as 

regulatory factors in myofiber composition. Lomiwes et al. (2014) stated that sHSPs 

regulate the growth of actin myofilaments. During the conversion of G-actin to F-actin, 

the positive terminal associated with F-actin growth has an affinity ten times greater to 

bind G-actin than the negative end. As HSP27 inherently binds to the positive end, 

inhibiting exponential growth, phosphorylation of HSP27 is required to be released to 

allow for further F-actin growth. This action prevents the overproduction of actin 

filaments. Der Perng et al. (1999) illustrated how HSP27 works alongside ��-crystallin 

to prevent overgrowth of intermediate desmin filaments, controlling their growth to 

replace damaged proteins. During oxidative stress, however, they function as modulators 

of the apoptotic mechanism. Creagh et al. (2000) stated an increase in stress factors 

(ROS, heat) promote heat shock factors (HSF) to transport into the nucleus, bind with 

HSP genes, and upregulate HSPs to combat apoptotic mechanisms. In particular, HSP27 

can bind to cytosolic cytochrome C and other pro-apoptotic proteins, inhibiting 

apoptosome formation and subsequent activation of caspase enzymes. However, the 

overexpression of these sHSPs can prevent myogenic differentiation necessary for new 

cellular growth, as shown by ��-crystallin inhibition of caspase-3 dimers to prevent 

degradation of necrotic cells. This reinforces the rule of sHSPs as a necessity during 

oxidative stress response, regular cellular growth, and development. 
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Enzymatic aging 

 Cellular apoptosis begins at death, only there is no longer a supply of oxygen 

present to sustain energy production for the repair, growth, and protection for cellular 

turnover. Consequently, it has been suggested that apoptotic factors may contribute to 

initial postmortem degradation of proteins during the conversion of muscle to meat 

(Ouali et al., 2006). Cao et al. (2010) found the generation of caspase-9 activity increases  

exponentially from 4 to 30 hours postmortem, and was shown to peak in its activity for as 

long as 7 days postmortem. Total activity of caspase activity may also be muscle-

specific, as different muscles are comprised different fiber types. As the degree of 

apoptosis is correlated to mitochondrial activity, different fiber types require varying 

number of mitochondria for normal muscle function in vivo. Therefore, fiber type may 

affect mitochondrial-mediated apoptotic processes in the early postmortem development 

of caspase (Kemp and Parr, 2012). Early increase in apoptotic activity is logical, as death 

coupled with anaerobic conditions and the lack of ATP generation would increase 

caspase activity, and any external injury or advanced oxidative stress could further 

impact the extent of apoptosis early postmortem. Huang et al. (2016) reported that 

increased postmortem aging of beef skeletal muscle increased the ratio of 

cytosol:mitochondria cytochrome c and decreased anti-apoptotic factor HSP27, 

indicating continual proteolytic degradation as aging continues. Laville et al. (2009) 

reported that samples from bulls exhibiting less shear force (tender; 27.7 N) compared to 

samples with more shear force (tough; 41.2 N) 7 days postmortem, showed a greater 

amount of inner and extracellular mitochondria fragments in samples collected 10 

minutes postmortem. Thus, increased aging results in faster degradation of organelle 
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structures. With the help of increased organelle degradation, downstream mechanisms 

contributing to meat tenderness may become more active early postmortem. 

 

Calpain-calpastatin relationship 

 At the onset of postmortem tenderization, changes in muscle pH, temperature, and 

enzymatic inhibitors all contribute to the behavior of proteolytic enzymes to 

progressively degrade muscle structure as a natural degradation process. Under controlled 

conditions, this is a vital mechanism to enhance the palatability of fresh meat 

(Koohmaraie and Geesink, 2006). Postmortem improvement in meat tenderness results 

from the breakdown of myofibrillar structures by endogenous enzymes (Ouali et al., 

2006). The primary enzymes recognized to contribute to postmortem aging are calpains, 

cathepsins, and, to an extent, 20S proteasome. Of these, calpains are by far the most 

extensively researched family of enzymes linked to meat tenderness. While Pandurangan 

and Hwang (2012) comment on the ability of calpains to modify proteins in vivo, their 

primary effect on meat quality is the overarching mechanism responsible for 

tenderization in muscle proteins (Kemp and Parr, 2012; Lian et al., 2013). Calcium-

dependent, non-lysosomal peptides, the three subsets of calpains within skeletal muscle 

are $-calpain, m-calpain, and calpain 3. In regards to skeletal muscle postmortem, $-

calpain and m-calpain take precedent, as calpain 3 is not associated with calpain 

inhibitors and functions for maintenance of the structural protein titin (Ilian et al., 2004). 

When active, the calpain system targets substrates that relate to structural integrity of the 

sarcomere. In particular, the hydrolysis of desmin, titin, and nebulin are recognized as the 

first proteins degraded as a result of postmortem aging (Kemp et al., 2010; Lian et al., 
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2013; Bhat et al., 2018). These proteins assist in the sarcomeric alignment of the 

myofibril during contraction, and maintain the binding of the Z-line to both myofibirils 

and costameres connected to the sarcolemma (Huff Lonergan et al., 2010). The 

hydrolysis of these proteins results in the detachment of sarcomere-sarcolemma binding 

in addition to sarcomere-sarcomere adhesion found at the Z-disk (Taylor et al., 1995; 

Henderson et al., 2017) Of the two active isoforms, $-calpain is the more readily active 

due to its lower molar calcium concentration needed to function (~5-50$m) compared to 

m-calpain (~200-800	$m). Taylor et al. (1995) reported $-calpain to be more active in 

early postmortem compared to m-calpain, when the majority of postmortem proteolysis 

of key myofibrillar proteins including nebulin, titin, desmin and troponin-T occurs. Their 

activity is short lived, however, as their unstable state, combined with calpain inhibitor 

calpastatin, quickly suppress the majority of their activity within a few days postmortem. 

Conveniently, the progression of postmortem aging results in greater calcium leakage 

from the sarcoplasmic reticulum and mitochondria, the same organelles responsible for 

muscle contraction, facilitating m-calpain activity. 

 In addition to cytosolic calcium levels, the activity of calpain is regulated by 

calpastatin (Ouali et al., 2006). Calpastatin (110 kD) is the inhibitor specific for $- and 

m-calpain and coexists with calpain. Calpastatin is comprised of four domains on its N-

terminal, each of which can independently inhibit calpain, meaning a single calpastatin is 

capable of inhibiting four calpain units (Ouali et al., 2006; Pandurangan and Hwang, 

2012). In relation to oxidative stress in terminal patients, calpastatin is shown to prevent 

calpain activity during apoptosis, inhibiting the dysregulation of harmful cells and 

promoting chronic inflammation (Momeni, 2011). In the same manner, apoptotic 
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pathways resulting in cellular degradation upregulate calpastatin in response to calpain 

activity. Ouali et al. (2006) and Kemp and Parr (2012) commented on the proportional 

growth of both calpain and calpastatin to be fairly consistent regardless of muscle or fiber 

type, insisting that calpain tenderization can be limited because of calpastatin inhibition 

regardless of length of postmortem aging. The literature has shown an overall decline in 

change of shear force in meat as aging progresses. Given the minimal change of shear 

force after a certain time, prolonged aging could promote more negative effects to meat 

quality, such as shorter shelf life and greater discoloration. Concurrently, prolonged aging 

will eventually create no significant difference among consumer tenderness evaluation 

(Miller et al., 2001; Perry et al., 2001). It is recognized, therefore, that early postmortem 

aging of muscle holds the greatest impact on total tenderization in lowering shear force of 

meat. 

 

Cathepsins 

 First discovered in 1950, cathepsins were the first enzymatic system postulated as 

the postmortem tenderization mechanism (De Duve et al., 1955; Ouali et al., 2006). 

Cathepsins are a family of enzymes stored within the lysosome, and are identified based 

on the frequency of amino acid residues within each type, such as cysteine, aspartic, and 

serine groups. In particular, cathepsin L and B, both with the cysteine active site, are 

implicated to increase tenderization by hydrolysis of desmin, troponin, nebulin, titin, and 

tropomyosin. However, extensive research correlating cathepsins to meat tenderness is 

inconclusive (Taylor et al., 1995). Koohmaraie et al. (1991) showed that there is minimal 

degradation as a result of cathepsins. This is because tenderization is not associated with 
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actin and myosin degradation, both of which are primary substrates for cathepsins 

(Okitani et al., 1980). This is coupled with the multitude of hurdles that must be met in 

order to allow cathepsin activation, including breakdown of the lysosome. Koohmaraie 

(1988) showed cathepsins to have an optimum activity in a more acidic (pH ~5.0) 

environment. Zamora et al. (2005) suggested the inhibition of cathepsins, via cystatin, to 

be the superior indicator of meat tenderness, as there is a stronger correlation between 

activity of cysteine cathepsin inhibitors and meat toughness than there is cathepsin 

enzymes and meat tenderness. However, this correlation was made with a 6-variable 

regression equation comprised of factors such as rate of pH decline, decline of $-calpain 

level, and lactate dehydrogenase activity. 

 

Manipulation of oxidative stress precursors 

 Generation of oxidative stress factors are contingent on the onset of physiological 

stress conditions. While there is inherent generation of ROS due to oxidative 

phosphorylation, the generation of ROS can result from mitochondrial processes 

influenced by extrinsic factors. While their degree of influence on oxidative stress is 

uncertain, it is well-recognized that external factors can be integral to oxidative 

mechanisms related to meat quality, most notably protein oxidation and lipid 

peroxidation. 

 

Diet 

In animal production, diet composition has always been a topic of discussion. Due 

to the variety of animal diets available, diet composition is commonly developed due to 
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cost, nutritional value, and known health and performance benefits that can benefit the 

growth and development of livestock. There is an ever-present need to understand how 

commercial diets may influence animal performance, feed efficiency, and even meat 

quality. 

In commercial agriculture, the majority of intensive finishing systems in the 

United States incorporate energy-dense concentrates such as grains supplemented with 

essential minerals and fibers. This strategy is known to assist in increased weight gain 

and muscle growth in livestock compared to finishing strategies focused on grass-fed 

diets. In turn, diets impact fatty acid composition of muscle cells and organelle structures. 

Hwang and Joo (2017) demonstrated how cattle from different genetic and environmental 

backgrounds (Hanwoo vs American vs Australian) had fatty acid profiles related to their 

diet during finishing (grain vs grass). They discovered noticeably higher unsaturated fatty 

acids in beef fed grain-based diets, especially in monounsaturated fatty acid (MUFA) 

content. In the United States, dietary inclusion of grain by-products has been 

implemented as a result of ethanol production utilizing corn grains for fuel production. 

As a result, energy dense distillers grains are often used as a substitute for part of the corn 

being used in livestock production.  

Distillers grains are produced in a variety of forms, such as dried, wet, modified, 

or with soluble supplementation. All forms tend to be more energy dense than corn for 

livestock feed (Klopfenstein et al., 2008). As with corn, cattle fed diets with distillers 

grains inclusion deposit larger amounts of unsaturated fatty acids compared to grass-fed 

diets. In addition, distillers grains cause greater unsaturated fatty acids in meat compared 

to diets composed predominantly of corn (Nade et al., 2012; Chao et al., 2017; Ribeiro et 
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al., 2018). Fatty acid composition is a critical factor to meat quality, as unsaturated fatty 

acids are susceptible to oxidative mechanisms which impact lipid oxidation, color 

stability of lean proteins, and oxidative rancidity and off flavors, reducing consumer 

acceptability (Wood et al., 2004). de Mello et al. (2018) demonstrated greater inclusion 

of wet distillers grains compared to a corn-based diets increased malonaldehyde (MDA) 

content in whole muscle cuts, with MDA content increasing with increased days of retail 

display.  

In sustaining meat quality, inclusion of vitamin E (�-tocopherol) is commonly 

utilized as a ROS scavenger deposited within organelle membranes. While �-tocopherol 

inclusion is more costly, it is suggested to improve immune function and weight gain in 

cattle production (Wood et al., 2004; Deters and Hansen, 2019). Also, inclusion of �-

tocopherol has been shown to enhance meat quality (Faustman et al., 1998). Asghar et al. 

(1991), Ponnampalam et al. (2012), and E. N. Ponnampalam et al. (2012) showed greater 

stability of desirable meat color and decreased lipid oxidation in whole muscle products 

when animals diets were supplemented with �-tocopherol, in particular with greater 

inclusion of grass-based diets compared concentrates. Sales and Koukolová (2011) 

demonstrated how varying levels of �-tocopherol imparted within muscle related to color 

stability. Interestingly, the level of  �-tocopherol deposited into meat eventually plateaus 

as vitamin E inclusion increases. These mirror redness (a*) values in meat across fresh 

beef and pork products. This suggests that while the utilization of vitamin E in diets can 

greatly increase color sustainability, a limit of maximum efficacy is possible, so over 

supplementation of this feed additive may not be cost effective.  
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In addition, Chao et al. (2017) examined how cattle supplemented vitamin E in 

high energy diets can counteract oxidative stability in sarcoplasmic reticulum, reducing 

oxidative potential against organelle membranes and apoptotic mechanisms in vivo and 

early postmortem. This evidence confirms that the feeding strategies provided to 

livestock can have a direct impact of oxidative potential to affect meat quality. 

 

Heat stress 

 Environmental factors have been suggested to increase oxidative factors. In 

particular, heat stress is a non-specific physiological response to prolonged exposure to 

high ambient temperatures (Xing et al., 2019). As a whole, heat stress is shown to reduce 

feed intake, as metabolic heat of digestion coupled with environmental heat promotes 

added stress on livestock (Habibian et al., 2016). It was suggested by Akbarian et al. 

(2016) that increased heat stress could create an imbalance of body redox stability, 

resulting in susceptibility to oxidative stress. Slimen et al. (2014) noted that heat stress 

caused an acute oxidative stress response, as heat stress upregulates superoxide anions 

and thermal inactivation of superoxide dismutase. Concurrently, heat stress promotes 

dysregulation of uncoupling proteins along the electron transport chain, allowing protein 

leakage and mitochondrial dysfunction (Akbarian et al., 2016). Interestingly, heat stress 

has been linked to variable response of oxidative stress, based on muscle type. Montilla et 

al. (2014) isolated red and white muscle fibers of pork semitendinosus muscles from gilts 

under 1 or 3 days of thermoneutral or heat stress conditions. As a whole, red muscle 

fibers expressed greater malonaldehyde (oxidation) across 1 day of heat stress, along with 

increased response to ROS enzymes and anti-apoptotic factors compared to 
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thermoneutral and heat stressed white fibers. This infers that red (oxidative) fibers are 

more sensitive to heat-mediated oxidative stress response systems and are most sensitive 

to downstream effects of oxidative stress. It can be postulated that prolonged-acute 

oxidative stress can be more detrimental to oxidative muscle fibers (Type I) compared to 

glycolytic white fibers (Type II). 

 

Lipopolysaccharides 

 Given the complexity of oxidative stress in vivo, administration of pro-

inflammatory stimuli are controlled measures of oxidative stress to monitor immune 

response factors. Lipopolysaccharides (LPS) are covalently-bound lipids and 

polysaccharides derived from the outer membrane of gram-negative bacteria (i.e. 

Escherichia coli) and are a known endotoxin used in acute inflammatory-mediated 

oxidative stress studies (Sternberg, 2007; Powers et al., 2011). As an endotoxin, LPS 

stimulates toll-like receptor signaling pathways, which initiate innate immune response 

mechanism NF�B, to start transcription of pro-inflammatory cytokines interleukin-1� 

(IL-1), interleukin-6 (IL-6), and tumor necrosis factor-� (TNF-	�) (Halawa et al., 2013). 

Under condition of high LPS concentration, production of pro-inflammatory mediators 

such as ROS can be produced as a result of LPS toxicity, promoting oxidative stress to 

occur. Implementation of management strategies has been shown to influence the degree 

of LPS-mediated oxidative stress on livestock performance. Bai et al. (2019) illustrated a 

decrease in rate of gain in Cherry Valley meat ducks as LPS dosage increased.  

Concurrently, an increase in inflammatory cytokines IL-6, IL-10, TGF-	�, as well 

as an increase in oxidative synthase protein inducible nitric oxide synthase (iNOS) have 
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been found. This makes sense, as an increase in compensatory weight of liver, a 

metabolic organ, also occurred. Yates et al. (2011) reported LPS to increase 

inflammatory response hormone cortisol, rectal temperatures, and lymphocytes as mature 

ewes consume higher crude protein diets. Studies have been performed to investigate the 

effects of dietary oils on aggregated inflammatory conditions. Yang et al. (2008) 

compared the inclusion of fish or corn oil at 4.5% (g/kg of BW) on performance of 

chickens when administered an inner-perineal LPS challenge or saline control. 

Lipopolysaccharide challenge lowered overall feed efficiency and increased lymphocyte 

generation. Interestingly, inclusion of fish oil increased activity of inflammatory 

cytokines IL-1 compared to corn oil, and upregulated IL-6, and TNF-	� compared to corn 

oil when exposed to an LPS challenge. In addition to pro-oxidative factors in diet, 

inclusion of exogenous antioxidants can ameliorate LPS-mediated oxidative stress. 

Kaiser et al. (2012) evaluated mRNA expression of different inflammatory cytokines in 

response to vitamin E type (natural vs synthetic) compared to level of intramuscular LPS 

injection. As expected, LPS injections resulted in higher RNA expression of cytokines 

compared to saline groups. Intriguingly, vitamin E source influenced different RNA 

expression of cytokines, as synthetic vitamin E increased IL-6 expression across saline 

groups and natural vitamin E increased TGF-	� expression. Concurrently, natural vitamin 

E lowered iNOS expression compared to synthetic vitamin E, suggesting supplementing 

natural vitamin E inclusion may ameliorate inflammatory mechanisms in vivo. 

 Lipopolysaccharide-mediated oxidative stress, it is postulated to have an impact 

on muscle cells, which could affect meat quality postmortem. Suliman et al. (2004) 

examined gene expression of mitophagy and biogenesis in response to LPS-induced mice 
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harvested 6, 24, or 48 hours post-injection. Total oxidation (malondialdehyde; carbonyl 

content) increased as post-injection time of LPS increased coupled with significant 

decrease in reduced glutathione (antioxidant) content at 6 and 24 hours. Antioxidant 

activity aligns with expression of COX-1, an inflammatory producing enzyme, as COX-1 

was at its highest expression at 0 and 6 hours, with a significant decrease after 24 hours 

post-injection. As post-injection time increased, there was a significant decrease in 

mtDNA expression 24 hours post-injection, which was negatively correlated with 

mitochondrial glutathione content (r
2
=0.89) and positively correlated with 

malondialdehyde content (r
2
=0.91). Concurrently, mitochondrial transcription factors 

Nrf-1 and Nrf-2 increased expression between 6 and 24 hours, but both ultimately 

decreased at 48 hours postmortem. This infers the lack of transcription factors for 

mitochondrial biogenesis occurred as post-injection time increased. Additionally, 

transcription factors used to generate protein complexes of the electron transport chain 

(ND-1 and ND-2) significantly decreased at 24- and 48-hours postmortem. Finally, an 

increase in uncoupling proteins was expressed as post-injection time increased, signifying 

the dissipation of the inner mitochondrial membrane. In total, the use of LPS caused an 

early antioxidant response, but quickly exhausted antioxidant effects. Coupled with the 

gradual decrease in proteins related to mitochondrial biogenesis, the induction of LPS-

mediated oxidative stress could act as a stimulant for mitophagy. As a result, the onset of 

LPS-mediated oxidative stress could impact postmortem quality of meat by induced 

apoptotic mechanisms and oxidation of muscle proteins and lipids.  
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Tenderness  

 Since the phenomena of oxidative stress was discovered, it has been extensively 

linked to its effects on chronic inflammation and illness, and has been investigated 

thoroughly in medical literature. However, oxidative stress is now being linked to factors 

related to meat quality, as organelles linked to oxidative stress have been shown to 

impact proteolytic mechanisms related to postmortem quality of meat, influencing both 

product quality and consumer palatability. An investigation into oxidative stress on these 

organelles and mechanisms have been reported to hold an immediate impact on meat 

tenderization early postmortem (Cook et al., 1998; Wang et al., 1998; Koh and Tidball, 

2000; Warner et al., 2005; Blunt et al., 2007; Cottrell et al., 2008; Archile-Contreras and 

Purslow, 2011; Senaratne, 2012; Mohrhauser et al., 2013; Ouali et al., 2013; Picard et al., 

2014; Chao, 2015; Cottrell et al., 2015; Chao et al., 2017; Kunze et al., 2017; Chao et al., 

2018; Liu et al., 2018; Wang et al., 2018; Zhang et al., 2018; Malheiros et al., 2019). 

Ouali et al. (2013) commented on how early postmortem tenderization in meat tends to 

show increased fractionation of cytochrome C as a result of greater meat tenderization. 

Cytochrome C fractions, along with other apoptotic precursors involved with the TCA 

cycle (3-Hydroxyisobutyrate dehydrogenase) increase early postmortem. In addition, 

Picard et al. (2014) reported how proteolytic enzymes ($-calpains) and proteins related to 

muscle structure (myosin chains) are all highly active in meat during aging. These studies 

imply that apoptotic mechanisms can act as initiators of proteolytic enzymes linked to 

meat tenderization. It has been recognized, however, that meat given similar aging 

conditions with drastically different tenderness values exhibit unique proteomic profiles, 

which can insinuate how inherent differences in biological mechanisms can influence 
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meat tenderization. Malheiros et al. (2019) investigated differences in oxidized proteins 

from angus-crossbred cattle under identical management conditions, aged for two days 

postmortem, with different shear force values to designate between groups labeled tender 

(38.2 ± 2.9N), intermediate (51.9 ± 6.8N) and tough (74.5 ± 7.8N). Amongst these 

groups, it was evident that tender samples had greater oxidative damage to structural 

(actin, myosin, desmin), regulatory (troponin), and antioxidant proteins (peroxiredoxin), 

along with some anti-apoptotic heat shock proteins compared to tough samples. 

Interestingly, tough samples exhibited less oxidation towards metabolic proteins, 

including enzyme SOD2 related to mitochondrial ROS stress. These data depict how 

early postmortem tenderization can be influenced by the expression or activity of 

oxidative stress factors, and how these factors can impact the oxidation of proteins which 

promote tenderization. Further investigation is necessary to discern how different 

ROS/RNS  impact components of meat tenderness.  

Both in vivo and in vitro analysis of muscle tissue has been examined. Using 

nitric oxide as the contributor to oxidative stress, Cook et al. (1998) induced pre-rigor 

longissimus lumborum with promoters and inhibitors of nitric oxide to assess postmortem 

meat quality. Across multiple days aging, Cook et al. (1998) discovered increased 

tenderness on 3 and 6 day aging in samples administered with NO promoters compared to 

NO inhibitor group. There were no tenderness differences in 1 or 8 days of aging. This 

data supports that in vitro NO generation in muscle can stimulate increased postmortem 

tenderization. However, this data is shown to be contrary compared to more recent 

literature. Koh and Tidball (2000) induced skeletal muscle cells with nitric oxide donors 

to inhibit the activity of m-calpain on the breakdown of cytoskeletal protein talin. These 
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data suggest that nitric oxide inhibits m-calpain activity by S-nitrosylation of the cysteine 

sites on the endogenous enzyme. In addition to calpain inhibition, the data shows 

upregulated calpastatin activity, further inhibiting calpain-mediated proteolysis of 

structural proteins. Liu et al. (2018) and Warner et al. (2005) theorize reduced 

tenderization is a result of nitrosylation reactions of NO with organelle calcium channels 

RyR1 and SERCA. Due to NO nitrosylation, there is insufficient cytosolic calcium 

available to facilitate calpain autolysis on cytoskeletal proteins such as titin, desmin, or 

nebulin, resulting in less tender meat. Conversely, inhibition of nitric oxide has been 

indicated to increase postmortem tenderization. Cottrell et al. (2008) indicated 

antemortem injections of nitric oxide inhibitors 135 minutes prior to slaughter can 

improve meat tenderness early postmortem in lambs. Combining NO inhibitors with brief 

exercise prior to slaughter, lambs had a lesser degree of pH decline during rigor mortis, 

although gross numbers are not significant enough to be a detriment to meat quality. 

Interestingly, Cottrell et al. (2008) evaluated across two muscles: longissimus lumborum 

(LL) and semimembranosus (SM). Interestingly, NO inhibition was shown to 

significantly decrease shear force in LL muscle (p<0.01), with no change in shear force 

of SM (p=.48). This data was corroborated when Cottrell et al. (2015) exposed sedentary 

lambs to NO donors and inhibitors 190 minutes prior to slaughter. Cottrell et al. (2015) 

exhibited that SM tended to increase in shear force at 1-day aging when administered NO 

inhibitors compared to NO promoters (p=.06). While not significant (p=.58), NO 

inhibitors lowered shear force in LL muscle across 1 and 3 days of aging compared to 

NO promoters and control. While NO inhibitors did change the progression of pH decline 
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in SM muscle, the ultimate pH was equivalent to other treatments and did not alter meat 

color characteristics across treatment or muscle type.  

From these different studies it can be suggested that NO interaction may be more 

muscle dependent than originally considered. In conjunction with shear force, proteolytic 

activity can change as a result of RNS. Zhang et al. (2018) investigated changes in 

protein proteolysis at 1-day postmortem across samples incubated with varying degrees 

of either NO donor or inhibitor. Nitric oxide inhibitor treatments exhibited less total 

protein nitrosylation and greater autolysis of calpains, desmin, troponin-T, myosin, and 

protein solubility compared to NO donors treatments and control groups, indicating 

greater proteolysis. There was a significant interaction between the treatment and aging 

time, with the increasing amount of NO inhibitor resulted in greater protein degradation 

over time compared to all other NO donor treatments. Through this data, it is conceivable 

to state NO may play a critical role in meat quality through regulating calpain autolysis 

and myofibrillar protein degradation during postmortem aging. 

 In addition to NO, isolation of H2O2 has been evaluated to influence meat 

tenderness. It is speculated that the function of H2O2 may be due to its amount within the 

muscle cell. Archile-Contreras and Purslow (2011) demonstrated how H2O2-mediated 

oxidative stress can influence collagen turnover in different muscles. Given collagen is a 

structural protein of various connective tissues throughout muscle, its presence can 

impact on overall palatability of meat, including tenderness. Incubating myofibrillar 

muscle cells from 1-hour postmortem longissimus dorsi and semitendinosus muscle, they 

introduced samples to either 0.5 or 5$& of either H2O2 or synthetic pro-oxidant xanthine 

oxidase. In particular, an inverse relationship between H2O2 concentration and matrix 
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metallopeptidase-2 (MMP-2) growth, with a significant increase in MMP-2 growth in 

longissimus dorsi muscle compared to semitendinosus. MMP-2 is a matrix 

metalloproteinase used to facilitate collagen turnover. Additionally, increased H2O2 

concentration reduced total soluble collagen synthesis, with a noticeable loss of collagen 

synthesis in semitendinosus muscle. As a result, they were able to relate different levels 

of ROS production to the degree of collagen turnover across different muscles, with the 

overall indication that ROS reduced collagen synthesis. As collagen is a contributor to 

beef tenderness, this study reinforces the impact of ROS factors and their implications 

towards meat quality and muscle structure postmortem. As Blunt et al. (2007) discovered, 

hydrogen peroxide incubation with ischemia rat ventricular muscle is shown to reduce 

desmin degradation. Instead, H2O2 is theorized to activate MAPK pathways for cell 

sustainability. This is validated by showing decreased desmin degradation in conjunction 

with incubating myocytes with H2O2 and a MAPK inhibitor. Furthermore, Blunt et al. 

(2007) depicted increased expression of HSP27on decreased desmin degradation 

regardless of calpain activity. This suggests that H2O2 may be a driving factor of HSP27 

expression early postmortem, preventing calpain activity and reducing overall protein 

degradation. Interestingly, the analysis presented H2O2 as a promoter of protein 

degradation during increased calcium availability, as H2O2 combined with calcium had 

numerically lowered desmin degradation. These amounts of degradation were statistically 

significant when H2O2 and calcium were combined with MAPK inhibitors. This is telling, 

as these conditions best represent cellular stability during apoptosis via MAPK inactivity, 

oxidative stress factor H2O2, combined with increased cytosolic calcium as an indicator 

of cellular death postmortem. Given the combination of these conditions, it is significant 
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when considering all these factors work in concert of one another during cellular death 

cascades as a result of oxidative stress, and a significant source of calcium early 

postmortem could provide the tools necessary to facilitate increased protein degradation. 

Wang et al. (2018) investigated this idea: the effect of reactive oxygen species-mediated 

oxidative stress on mitochondrial apoptosis factors in relation to tenderness in yak meat. 

By injecting 20mM of either H2O2 or H2O2-inhibitors compared to a control group across 

multiple aging periods, it was discovered that H2O2 increases total ROS, apoptosis 

regulator proteins (Bax), lipid oxidation, and caspase activity compared to both the 

control and inhibitor treatment. Concurrently, H2O2 decreases SOD, glutathione 

peroxidase, mitochondrial stability via the mitochondrial permeable transition pore 

opening, anti-apoptotic proteins (Bcl-2), and shear force in yak meat throughout a 7-day 

aging period. This data supports the theory of oxidative stress and its influence on 

mitochondrial stability, calcium release, initiating apoptotic mechanisms.  These 

observations further support the idea that oxidative stress has a role in the activation of 

mitochondrial apoptosis and meat tenderness by influencing regulators necessary of the 

apoptotic pathway. Furthermore, Wang et al. (1998) and Mohrhauser et al. (2013) 

decipher that caspase, while an indicator of mitochondrial apoptosis, is not the primary 

cysteine enzyme used to inhibit calpastatin activity. Rather, $-calpain is the primary 

inhibitor of calpastatin in conjunction with caspase enzymes. It also reinforces that 

calpains are the primary protease responsible for myofibrillar protein degradation during 

postmortem aging of myofibrils. 

As suggested, diet has been used as a possible indicator of changes in tenderness 

in beef cattle research. Recent work at the University of Nebraska-Lincoln has identified 
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an improvement in tenderness when distillers grains are supplemented (Senaratne, 2012; 

Chao, 2015; Chao et al., 2017; Kunze et al., 2017; Chao et al., 2018). Senarte (2012) 

indicated that meat from cattle fed distillers grains, without supplement of vitamin E, 

increased both tenderness and troponin-T degradation compared to steaks from cattle fed 

a corn-based control diet. These studies suggest that muscle membrane integrity can be 

altered and compromised as a result of feeding distillers grains, which could promote 

greater calcium release early postmortem and increase calpain activity to promote 

improved tenderness. Knowing this, Chao (2015) indicated an increase in PUFAs in the 

sarcoplasmic reticulum which could lead to greater calcium leakage early postmortem, 

upregulating increased enzymatic tenderization. Kunze et al. (2017) investigated further 

into this occurrence and isolated mitochondria to understand the calcium flux mechanism 

in relation to beef steak tenderness. This study illustrated that cattle fed distillers grains 

deposited greater amounts of linoleic acid (18:2) in addition to total PUFA content in 

mitochondria. Concurrently, cattle fed predominantly corn diets had mitochondria which 

tended to retain more calcium compared to cattle finished on distillers grains (p = 0.08). 

Therefore, it can be speculated that greater PUFA content in organelles can increase 

susceptibility of oxidation reactions, altering calcium flux and resulting in increased 

tenderness early postmortem. Chao et al. (2018) indicated that distillers grains may 

impact sarcoplasmic reticulum composition as well, as feeding distillers grains increased 

total PUFA in sarcoplasmic reticulum membrane. In turn, increased unsaturated fatty acid 

content could lead to greater oxidative potential, facilitating calcium leakage to improve 

tenderness early postmortem. These studies strengthened the concept of which oxidative 

stress factors can alter biological composition, and prolong oxidative stress prior to death, 
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while not becoming detrimental to animal well-being. This could be a major facet to 

enhance meat tenderization and produce more consistently tender meat products moving 

forward. 

 

Color 

 Color is the primary purchasing factor consumers use when evaluating meat 

quality (Suman et al., 2014). The demand to maintain ideal fresh meat color is an ongoing 

challenge, as industry implemented techniques to enhance product palatability can greatly 

influence the stability of meat color during retail display. Of these techniques, 

tenderization of meat during aging reduces prolonged color stability in meat, as the 

substrates used in redox reactions are slowly depleted as aging progresses. Mitacek et al. 

(2019) reported a decrease in color stability during increased aging periods (3 to 28 days 

aging). Factors such as oxygen availability, mitochondrial activity, and color redox-

reaction substrates all contribute to color stability. Oxygen depletion increased as aging 

continued, in addition to lower mitochondrial concentrations. Metabolomic analysis 

determined a decrease in substrates necessary to run TCA cycle, supporting lack of 

mitochondria activity. Interestingly, Mitacek et al. (2019) discovered greater NADH 

reductase activity with increased aging, meaning an increase in demand of NADH redox 

reactions are necessary to sustain oxymyoglobin pigment as meat ages. Concurrently, 

total NADH concentration decreased as aging increased, and an increase in oxidative 

potential as indicated by increased malonaldehyde as aging and days of retail display 

interaction. These results indicate that there are insufficient substrates necessary to supply 

the growing requirements of redox reactions to maintain color stability in aged meat, 
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allowing further oxidation of meat tissue using pro-oxidants as means for oxidation, 

including factors related to oxidative stress. In addition to aging effects, muscle type has 

been indicated as a contributing factor to color stability. Ke et al. (2017) discovered 

greater rate of decline in a* (redness) values and increased metmyoglobin content in 

psoas major (PM) muscle compared to longissimus lumborum (LL) of select graded beef 

cattle. Psoas major muscle had a greater rate of decline of oxygen consumption, 

mitochondrial activity, metmyoglobin reducing activity, and lipid oxidation compared to 

LL. Interestingly, PM expressed greater cytochrome C across all retail display days 

compared to LL, indicating an increased rate of cellular degradation. This data can 

speculate that an increase in mitochondrial degradation caused by oxidation-mediated 

apoptosis, as evidenced by cytochrome C expression, can influence meat color stability. 

This relationship can be a contributing factor when meat is introduced to oxidative stress 

or its precursors. 

 When examining oxidative stress inclusion antemortem, however, there is 

minimal effect on meat color. Ponnampalam et al. (2005) discovered no differences 

between color stability of longissimus thoracis lumborum (LTL) or semimembranosus 

(SM) when administered nitric oxide donors and inhibitors into lambs twenty-four hours 

prior to slaughter. Concurrently, Cottrell et al. (2008) found no differences in color 

measurements on LTL or SM across 1- and 3-days aging when animals were induced 

with a NO inhibitor prior to slaughter. A follow up study by Cottrell et al. (2015) 

indicated that lambs administered NO donors 190 minutes prior to slaughter exhibited no 

significant changes in color of LTL or SM muscles across 1 and 3 days of aging. 

Concurrently, Niu et al. (2016) used a 3-day LPS challenge across two LPS 



 62 

concentrations (3 mg/kg; 6 mg/kg) to evaluate meat quality of broilers breast and thigh 

muscle against a saline control. Both muscles had a lower ultimate pH 24 hours 

postmortem as LPS increased, however, the gross differences between control, 3, and 6 

treatments were negligible. In both breast and thigh muscle, an increase (p < 0.05) in b* 

values on the 3
rd

 day of retail display was found as LPS concentration increased, with 

breast muscle L* values increasing (p < 0.05) as LPS increased on the 6
th

 day of retail 

display. While these color values were significant, however, their gross differences across 

treatments were negligible. It is speculated that a more prolonged oxidative stress 

challenge may be more critical to understand its relationship to meat color. 

 

Protein oxidation 

 As protein oxidation occurs, the modification of muscle tissue from carbonylation 

is shown to affect muscle and color (Batifoulier et al., 2002; Santé-Lhoutellier et al., 

2008; Terevinto et al., 2010). Promeyrat et al. (2011) used this proteomics to build 

correlations of carbonyl formation and protein oxidation in m. Longissimus lumborum of 

pigs across different storage periods. Notably, they showed a negative correlation 

between carbonyl content and activity of superoxide dismutase activity. This indicates 

that by reducing the formation of free radicals, SOD acts as regulators of protein stability 

against oxidation. There also was a negative correlation between myoglobin and 

carbonyls at 4 days of storage. This contrasts with 1-day storage positively correlating the 

two variables. This contrasting data infers myoglobin to act as both an antioxidant and 

pro-oxidant, dependent on its current state. In the presence of hydrogen peroxide, 

metmyoglobin is transformed into perferryl-myoglobin, which can be autoreduced by 
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oxidative radicals at low pH (~5.5) which falls in line with the ultimate pH (pHu) of fresh 

meat (~5.4-5.8). Given the capacity for perferryl-myoglobin to reduce oxidative radicals, 

in conjunction with prolonged postmortem storage, metmyoglobin formation could 

promote activity of oxidant enzymes such as catalase and glutathione peroxidase.  

It has been postulated increased carbonyl formation may be an indicator for meat 

texture, as Carlin et al. (2006) discerned proteolytic activity of calpains to be hindered by 

carbonylation, decreasing postmortem tenderness. Due to the rich concentration of 

cysteine residues comprised within the calpain enzymes, oxidative inactivation of such 

amino acids could hinder proteolytic function. If protein oxidation mechanisms occur 

during aging, cross-linking of proteins could help explain the correlation between 

carbonyl content and decreased tenderness in meat (Lund et al., 2007). Carbonylation has 

been indicated as a result of different feed strategies. Santé-Lhoutellier et al. (2008) 

demonstrated increased carbonyl formation in concentrate (corn-based) diets compared to 

pasture-fed in lamb during prolonged meat storage. Carbonyl content could not explain 

protein digestibility of myofibrillar proteins. Conversely, Batifoulier et al. (2002) 

demonstrated diet inclusion of vitamin E to retard the loss of free thiols in microsomal 

organelles in turkey breast muscle. In addition, turkeys fed vitamin E exhibited less 

malonaldehyde content across days of storage. Building off this data, Terevinto et al. 

(2010) evaluated the oxidative stability and endogenous enzyme response in three 

muscles of rhea, a species closely related to ostrich. They discovered muscle exhibiting 

higher malonaldehyde content also had greater carbonyl content across muscles, 

demonstrating that there may be inherent differences between muscles and their capacity 

to generate carbonyls. Given the differences in color stability of different muscle 
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combined with the interrelationship between color and lipid oxidation, it is plausible that 

different muscle are more susceptible to oxidation (Faustman et al., 2010). 

 

Lipid oxidation 

 Given the link between oxidation of fatty acids and oxidative stress, evaluation of 

lipid oxidation is critical when examining meat quality. As shown by Gatellier et al., 

(2004), Zhang et al. (2011), Chao et al. (2018), and Zhao et al. (2018), diet can impact 

lipid and total oxidation, as an increase in unsaturated fatty acids and oxidized oils can 

increase the oxidative potential postmortem. Interestingly, Zhao et al. (2018) evaluated 

the generation of ROS in conjunction with lipid oxidation when lambs were 

supplemented grape pomace. They noted a decrease (P < 0.05) in total ROS as inclusion 

of antioxidants increased. Concurrently, there was a significant decrease (P < 0.05) in 

malonaldehyde content as antioxidant content increased. In addition, evaluating the onset 

of oxidative stress was used without dietary treatments. Niu et al. (2016) evaluated LPS-

mediated oxidative stress on oxidative stability of broilers. Malonaldehyde content did 

increase (p < 0.05), as well as a decrease in total antioxidant capacity, in plasma as LPS 

concentration increased. Furthermore, malonaldehyde content increased (p < 0.001) as 

LPS increased across all days of retail display. Additionally, Pradhan et al. (2000) used 

endogenous catalase as a measure of lipid oxidation in muscle tissue. They discovered 

that increased catalase inclusion in ground beef semitendinosus decreased lipid oxidation 

across all storage periods, signifying a decrease in oxidative potential postmortem due to 

the increase in endogenous enzymes. 
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Evaluation of oxidative stress markers 

 In order to better understand oxidative stress and its link to muscle cell 

interactions and meat quality, there is an ever-growing demand to understand its behavior 

from the onset of ROS generation, its relationship with physiological response 

mechanisms, and the activity of prolonged oxidative stress on muscle characteristics both 

in vivo and postmortem.  However, the evaluation of oxidative stress factors, and their 

intermediate constituents, is a challenge. Due to the complexity of oxidative stress and 

the short half-life of many constituents, strategies used to validate its effects on meat 

quality have their constraints. In the literature, there are a multitude of oxidative stress 

products produced in muscle tissue which can be used as markers indicating oxidative 

stress has occurred, and relative quantities of such compounds are being linked to meat 

quality attributes (i.e., carbonyls) (Lawson et al., 1999; Dalle-Donne et al., 2003; 

Ponnampalam et al., 2017). However, the obvious constraint of this approach is the lack 

of knowledge on the degree of oxidative stress occurring in vivo and the regulation of 

different pathways oxidative stress activates on a per organism basis, as all can have 

variable levels of physiological response mechanisms. In the last two decades, there is 

growing interest for in vivo evaluation of oxidative stress factors to monitor their 

quantification and sustained activity during stages of oxidative stress. This method of 

analysis is even more complicated, due to the inherent behavior of ROS and their average 

half-lives (~2-5 seconds) (Bekhit et al., 2013). Additionally, there is still developing 

technology sensitive to evaluate real-time analysis of ROS activity. In order to better 

understand the totality of oxidative stress, there is value to use both measures to create a 

more rounded picture of oxidative stress on muscle and meat quality. 
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In vivo: single wall nanotube hydrogels 

 Recent milestones in biotechnology have enabled the development of biosensors 

used to evaluate real-time generation of molecular ions. In particular, the use of single-

walled carbon nanotubes (SWNTs) as an active biosensor has sparked interest in medical 

applications for its innovative methodology and growing accuracy to detect molecules in 

living organisms, such as glucose detection (Strano et al., 2004). In short, SWNT are a 

synthetically manufactured graphene cylinders made of a 1-D carbon atoms rolled into a 

cylindrical shape. Commercially, the most common SWNT used in biotechnology is the 

CoMoCAT (6,5) ™, as the binding of the carbon molecules acts as a very stable 

semiconductor. Their high conductivity facilitates stable emission of near-infrared (NIR) 

light to transmit through SWNT with no noticeable photo-intensity threshold, this 

facilitates prolonged imaging of SWNT in organic tissue and cells without degradation 

when introduced into organisms (J. Zhang et al., 2011). As a result, the sustainability of 

SWNT under intense electromagnetic radiation makes them a useful tool in molecular 

detection using real-time evaluation. During manufacturing, the composition of the 

SWNT is critical to its end function, especially considering both the length and diameter 

of the SWNT can influence the sensitivity and compatibility to bind with unique DNA 

sequences (J. Zhang et al., 2011). Iverson et al. (2015) illustrated wrapping SWNT with a 

15-repitition of adenine-thymine complex [(AT)15] as a sensor for nitric oxide.  

Concurrently, the development of (GT)15 DNA sequences have been indicated as 

reliable sensors for H2O2 detection (Kim et al., 2011). However, the (GT)15 sequence is 

sensitive to both H2O2 and NO, requiring the use of both DNA-wrappings to detect H2O2 

quantity via the transitive property (Iverson et al., 2017). In addition to SWNT 
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manufacture, the specificity and wrapping of DNA is theorized as a critical component to 

the sensitivity of detecting molecules. Unfortunately, techniques to DNA wrapping are 

still undefined, as this field of research is still in its early stages (Iverson et al., 2013). 

When administered in a biological system (i.e., the blood/tissue), there is speculation that 

SWNT can degrade from itself and independently traverse throughout cells. In order to 

contain SWNT within a localized system, mixed alginate gels have been used to contain 

SWNT upon administration into a biological system (Iverson et al., 2013). The binding of 

SWNT to the gels allows additional support for SWNT to stay bunched together, 

facilitating a better composition for SWNT upon reading fluorescence (Iverson et al., 

2015; Iverson et al., 2017). When evaluating single-molecule components, excitation of 

DNA-wrapped SWNT occurs during exposure to a NIR stimulus laser, which elicits a 

fluorescent intensity of SWNT. This intensity can be used to dictate the total quenching 

of SWNT in the presence of the targeted molecules, with less florescence equating to 

greater quenching of SWNT, indicating a greater concentration of the targeted molecule 

present (Strano et al., 2004). Concurrently, consecutive readings of SWNT can be used to 

evaluate both the rate of quenching from the time of exposure to a stimuli, as well as the 

rate of recovery, the time in which the SWNT regains its fluorescence (Jin et al., 2010; 

Iverson et al., 2017). While still in its infancy, the field of carbon nanotubes is growing 

with exponential potential on scientific applications. If administered and measured 

properly, SWNT could be used as an innovative technique to evaluate the onset of 

oxidative stress and rate of physiological response for in vivo livestock analysis. 
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Ex vivo: omic profiles 

 When examining the development of muscle tissue, there are countless conditions 

which govern the growth, functionality, and stability of muscle cells, all of which 

contribute to the composition of meat quality after harvest. These variables are strongly 

influenced through both predisposed genetic development in addition to extrinsic 

conditions such as species, diet, pre- and post-slaughter handling, processing, and 

formulation of products(Capozzi et al., 2017). These factors trigger changes in how the 

organism, and its subsequent tissues, acts and reacts to certain stimuli. These factors can 

be used to distinguish differences in muscle cells through omics analysis.  

A novel, comprehensive approach, omics are the analysis of genomic and 

molecular profiles of an organism (D’Alessandro and Zolla, 2013). Using this tool, 

examination of different components of muscle growth and function in relation to 

oxidative stress factors are possible. In meat science, transcriptomics has been used to 

relate molecular mechanisms underlying the formation of meat quality traits with gene 

expression (Guo and Dalrymple, 2017). In particular, the relationship of upregulating or 

downregulating specific pathways related to muscle cell proliferation, growth, organelle 

development, cell modification, enzymatic activation, and cell immunity are of interest. 

Bongiorni et al. (2016) and Arora et al. (2019) examined breed variation on the impact of 

muscle development and tenderization in cattle and sheep, respectively. These scientists 

used pre-existing data (tenderness, cell proliferation) as benchmarks to assess genomic 

differences between treatments (breed). Guo and Dalrymple (2017) utilized 

transcriptomics to analyze biological mechanisms which regulate lipogenesis, fatty acid 

deposition, and tenderness characteristics related to intramuscular fat in livestock species. 
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Conversely, transcriptomics can be used to asses genomic conditions in response to 

specific stimuli, such as oxidative stress. Kim et al. (2018) used oxidative stress as a 

treatment to assess the expression of genes in specific tissues of mice. As expected, an 

overall upregulation of ROS enzymes (catalase, superoxide dismutase, glutathione 

peroxidase) were found. Interestingly, the degree of upregulated genes was tissue-

dependent, as metabolic organs (liver and kidney) were greater in total expression 

compared to muscle tissue. This investigation revealed gene expression can be dependent 

on the tissue of interest, and that each tissue may respond to a treatment with varying 

magnitudes of gene expression. Transcriptomics acts as an outline, as the complex 

expression of different biological pathways elucidates how genetic mechanisms interact 

with one another to reach a final function. 

Proteomics, the study of biological proteins, can assess the composition of muscle 

proteins under specialized conditions. This is appropriate, as muscle proteins can be used 

in association with different meat quality attributes, such as calpains for enzymatic 

tenderization. This association is indicative of the conditions which developed the tissue 

in its current state (i.e., genetics, environment). Hollung et al. (2007) identified individual 

proteins related to mechanisms responsible in postmortem tenderness, such as 

myofibrillar proteins and the calpain system, in addition to proteomes related to muscle 

color (sarcoplasmic) and antemortem stress (heat shock proteins and glycolytic enzymes). 

Building off of this research, Polati et al. (2012) distinguished proteomic changes as a 

result of proteolytic aging. As aging increased, the expression rate of troponin-T, �-

actinin, and myosin light chains all increased, supporting the role of proteolytic 

breakdown of essential proteins to meat tenderness. Concurrently, a mixed expression of 
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heat shock proteins (HSP) and �-crystallin were shown to increase with prolonged aging. 

The expression of these proteins can be used as markers for meat tenderness, with aging 

as a key indicator in the change of protein expression and functionality postmortem. In 

addition, Picard et al. (2014) demonstrated genetic variation has an impact on meat 

quality, as differing cattle breeds show varying expression of metabolic (lactate 

dehydrogenase) and contractile (myosin, actin) proteins in relation to different muscles 

within a breed. This suggests that composition of muscle fibers, in addition to metabolic 

properties of muscle cell, can be dependent on genetic predisposition (Picard et al., 2014; 

De Souza Rodrigues et al., 2017). When referring to meat tenderness, the common 

comparison between Bos indicus and Bos taurus cattle is utilized, as both species have 

distinctly different meat quality attributes. Proteomic evaluation reveals Bos indicus 

cattle presented higher expression of myosin and actin proteins, enhancing contraction 

force in skeletal muscle, in addition to increased expression of heat shock proteins 5 

(HSP5) located within the sarcoplasmic reticulum. Concomitantly, Bos indicus cattle held 

a greater proportion of fast-twitch glycolytic fibers, compared to the oxidative slow-

twitch fibers of Bos taurus cattle. Conversely, Bos taurus exhibited higher 

phosphorylation in troponin-T and HSP9, both of which have been linked to increased $-

calpain activity (De Souza Rodrigues et al., 2017). Couple these proteins with greater 

shear force (less tender) values in Bos indicus cattle, and it can be illustrated how a 

genetic bias can influence inherent quality traits in fresh meat products. 

Metabolomics is used for the quantification of cellular molecules taking part as 

intermediates or end products of metabolic reactions (Capozzi et al., 2017). The 

identification of metabolic substrates can be used as a reference in discerning subtle 
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differences in a given set of conditions. Straadt et al. (2014) used this method to evaluate 

sensory attributes in thawed pork chops of crossbred pigs related to the composition of 

amino acids extracted during drip loss. While the flavor of meat is commonly associated 

with cooked meat via the maillard reaction, the composition of non-volatile compounds 

in raw meat such as amino acids, can elicit the unique flavor profile (Mottram, 1998). 

These amino acids, while readily available in post-rigor meat, have been shown to 

increase in concentration during aging, and impact a greater depth of flavor as a result 

(Nishimura et al., 1988). Additionally, Kim et al. (2016) used dry aging as a model to 

enhance amino acid concentration of glutamate, tryptophan, and isoleucine, which are 

associated with the umami, bitter, and maillard flavor profiles, respectively. The 

development of dry aging has been suggested to elicit greater complexity of flavor being 

present compared to wet aged beef, which builds its niche market for this unique flavor 

profile. However, further investigation into amino acid composition is needed to interpret 

its impact of meat flavor. Chen and Ho (2002) have identified offsetting flavor attributes 

of amino acids. Carnosine, which has been linked to “roasted” and “nutty” notes in 

cooked meat, has also been implicated to reduce compound 2-methyl-3-furanthiol, a 

cysteine based chemical responsible for the “meaty” aroma consumer identify in cooked 

meat products. A greater demand for metabolomic analysis is necessary to tackle the 

current challenges to relate specific amino acids to flavor profiles of aged meat, 

increasing the viable application of this methodology. 
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Isoprostanes 

In addition to omics measurements, the evaluation of other downstream end 

products specific to oxidative stress have been suggested. While oxidative stress factors 

can induce oxidation of both lipids (malonaldehyde) and proteins (carbonyls/thiols), the 

isolation of F2-isoprostanes has been recognized as a key indicator for oxidative stress 

(Basu, 1998; Lawson et al., 1999; Montuschi et al., 2004; Nikolaidis et al., 2011). 

Compared to other oxidation products, generation of F2-isoprostanes cannot be 

accomplished via photo-oxidation or auto-oxidation (Lawson et al., 1999). Rather, an 

integrated mechanism is required to produce isoprostanes, which is solely contingent on 

ROS-mediated oxidation (Lawson et al., 1999; Milne et al., 2011). Currently, F2-

isoprostanes are the family of prostaglandin-like compounds formed by non-enzymatic, 

free-radical oxidation of arachidonic acid (20:4) with reactive oxygen species. During 

oxidation, the abstraction of hydrogens due to ROS result in delocalized pentadienyl 

carbon-centered radicals (Lawson et al., 1999; Montuschi et al., 2004; Nikolaidis et al., 

2011). Subsequently, peroxyl radicals formed by oxygen molecule binding undergo 

cyclization, the formation of carbon rings, using additional oxygen molecules. These 

molecules then attach hydroxyl radical groups (
.
OH) as a final binding reaction, resulting 

in isoprostanes formation. Within the F2-isoprostane group, different isoforms are 

produced based on which carbon the allylic hydroxyl group binds (Figure 6) (Nikolaidis 

et al., 2011). Generated during lipid peroxidation, F2-isoprostanes are produced as 

esterified fatty acid form in phospholipids membranes, and then released using 

phospholipase action (Montuschi et al., 2004). Stafforini et al. (2006) and Milne et al. 

(2011) establish phospholipase action as digestion enzymes, facilitating the breakdown of 
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phospholipid arachidonic acid. Upon release, F2-isoprostanes can follow oxidized fatty 

acids into the blood, or transfer out from the kidneys and into urine. Compared to other 

oxidative products, F2-isoprostanes very stable compounds that are detectable in all 

normal biological fluids and tissues. When evaluating F2-isoprostanes, different 

collection methods can discern variation in detected levels of F2-isoprostanes. Urine 

sampling can detect unesterified (free) fatty acids which can transport into the urine, 

which is easily collected. Both blood plasma and skeletal muscle still contain esterified 

F2-isoprostanes, which suggest the quantity of F2-isoprostanes formed to be dependent on 

the quantity of lipids present, especially arachidonic acid (Nikolaidis et al., 2011). 

However, Basu  (1998) noted blood plasma to quickly metabolize F2-isoprostanes, with a 

half-life no longer than 20 minutes, suggesting blood plasma to have greater variability of 

F2-isoprostanes when mishandled. However, immediate analysis of blood plasma F2-

isoprostanes provides an index of total endogenous production in vivo. Levels of 

esterified F2-isoprostanes in muscle can be used to localize oxidation in an area of interest 

(skeletal muscle). This is common to evaluate for muscle biopsies or sampling in anoxic 

muscle tissue, as the lack of blood prevent F2-isoprostanes to be transferred and 

metabolized in blood. 
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Figure 6: Chemical structure of arachidonic acid and the four regional isomers of isoprostanes (Nikolaidis 

et al., 2011). 

After collecting a sample, there are a multitude of methods used to detect 

isoprostane quantity. Lawson et al. (1999) Roberts and Morrow (2000) illustrate the use 

of mass spectrometry (MS), as this was the original and ideal methodology used to 

evaluate isoprostanes. Combine this with liquid/gas chromatography (LC/GC), and F2-

isoprostanes detection is highly specific and sensitive. However, this is a very expensive 

process which deters its use in contemporary evaluation of isoprostanes. Currently, the 

generation of enzyme-linked immunosorbent assays (ELISA) are frequently used as 

modes for isoprostane detection. Commerical ELISA kits can detect individual isoforms 

of F2-isoprostanes. While ELISA kits are more cost-effective and hold respectable 

sensitivity to isoprostane detection compared to GC-MS/LC-MS (75-90% and >96%, 

respectively), the sensitivity of ELISA kits require high quality samples, which have gone 

through a purification method to eliminate any biological contaminants which could 

interfere with the immunoassays.  

Given the relationship between isoprostane generation with oxidative stress activity, 

detection of this molecule is regarded as the standard for evaluating oxidative stress. 

However, there is very little literature relating this oxidative stress to meat quality using 
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this molecule as a baseline measurement. Karamouzis et al. (2004) used microdialysis 

probes to evaluate the generation of 8-isoprostane PGF2�, a predominant isoform of F2-

isoprostanes, in the event of rest compared to prolonged exercise. They found that 

exercise increased (P < 0.05) isoprostane content nearly three-fold. This makes sense, as 

an increase in exercise promotes an upregulation of ROS generation (Li et al., 1999). 

Given the generation of oxidative stress on muscle tissue, Ponnampalam et al. (2017) 

theorized the change in isoprostanes as an in vivo indicator of meat quality deterioration 

postmortem (in vitro). Using diet as a treatment of metabolic energy, lambs were fed for 

8 weeks on diets consisting of varying levels of metabolizable energy in feedlot, ryegrass, 

and lucerne hay (12.9, 10,4, 8.6 MJ/kg DM, respectively). Using blood samples, they 

detected an increase in plasma of 8-isoprostane PGF2� levels, with the feedlot diet 

exhibiting the greatest isoprostane content at 4 (P < 0.01) and 8 (P = 0.05) weeks of 

feeding. This is due to both the increase in energy content of diets, but also the amount of 

�-tocopherol increased in roughage-based diets (ryegrass, lucerne). Positive correlations 

between 8-isoprostane PGF2� levels and lipid oxidation (malonaldehyde content) have 

been found. Interestingly, positive correlations between 8-isoprostane PGF2� levels and 

both arachidonic (20:4) and linolenic (18:2n-6) acid were significant (P = 0.005; P < 

0.001, respectively). This supports Milne et al. (2011) on how F2-isoprostanes can 

potentially be generated from other PUFAs [eicosapentaenoic acid (20:5n-3), adrenic 

acid (22:4n-6), and docosahexaenoic acid (22:6n-3)] due to the orientation of their double 

bonds, but the knowledge on these fatty acids to generate F2-isoprostanes is not fully 

understood. As a result, the generation of F2-isoprostanes is an excellent marker for in 

vivo oxidative damage as a result of oxidative stress. 
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Other metabolic indicators 

 Physiological stress triggers a vast number of homeostatic mechanisms, producing 

signaling molecules and hormones to activate suppression of stress-inducing factors. In 

turn, a vast majority of these signaling factors are generated independent to a particular 

stress-induced event, allowing their evaluation as an overarching indicator of 

physiological stress. Cortisol, synthesized from cholesterol, acts to suppress stress by 

signaling other homeostatic pathways by binding to cortisol receptors, assisting in 

regulation of blood pressure, energy metabolism, and immune system response (Lee et 

al., 2015). Under conditions of oxidative damage, the upregulation of cortisol is an 

appropriate response. Hoogenboom et al. (2012) identified an influx in cortisol 

concentration in conjunction with testosterone release during spawning of brown trout 

(Salmo trutta, L.). This is appropriate, as reproduction is recognized as a benchmark for 

increased stress during an animal’s life span. Under livestock management conditions, 

these benchmarks would include events such as birth, weaning, transportation, feeding 

strategies, and handling. All of these factors can be implicated as points of cortisol 

growth, and potential benchmarks for oxidative stress to occur. 

In addition, the production of additional indicators is used to assess biological 

stress. Temperature is an ubiquitous measure of biological stress, as temperature increase 

is a strong correlation to acute illness or inflammation. Concurrently, increased 

environmental temperature can increase metabolic stress. Srikandakumar et al. (2003) 

indicated that increased temperature can stimulate an increase in rectal temperature, 

respiration rate, and alters blood chemistry in mature sheep. Interestingly, different 

breeds of sheep within the study has a lesser degree of overall stress (temperature, blood 
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chemistry) in response to increased temperatures, indicating that genetics may influence 

the capacity for animals to suppress biological stressors. As a whole, stress response 

studies can use baseline measurements as markers of biological stress ensuing in 

livestock. 

 

Link between downstream effects of oxidative stress and meat quality 

Components related to cellular respiration are critical to the development of ATP, 

organelle function for muscle contraction, and downstream effects towards postmortem 

tenderization of muscle (Kemp et al., 2010). Concurrently, the action of cellular 

respiration promotes the generation of ROS/RNS properties, and production of these 

compounds accumulate with physiological stress factors such as chronic inflammation or 

illness, even when these factors are not a recognizable detriment to the organism in vivo. 

If ROS/RNS generation overwhelms biological homeostatic response systems, oxidative 

stress begins, and is capable to manipulate a multitude of cellular proteins, lipid 

peroxidation, and regulation of nucleic information (Powers et al., 2011). As a result, 

organelles and their constituents related to muscle contraction and tenderization are 

distorted, with increased membrane leakage and overall organelle dysfunction. This 

cascade of events will alter both the composition and function of organelles, inciting 

cellular apoptotic pathways and development of new protein and lipid turnover. If 

oxidative stress occurs during death, especially due to chronic oxidative stress, the 

current state of cellular dysfunction may expose molecular ions readily available in the 

cytosol, as well as nucleic expression of postmortem mechanisms (Kemp and Parr, 2012).  
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Tenderness is one of the most important factors for consumer palatability and 

repurchasing of meat (Koohmaraie and Geesink, 2006; Kemp et al., 2010). However, 

subtle variations in tenderness within muscles have been shown to greatly influence 

consumer likeness to different retail products (Martinez et al., 2017). One method to 

mitigate inconsistent tenderness is producing high marbled cattle, as an increase in 

intramuscular fat is shown to increase overall tenderness and palatability scores in beef 

strip loins (Platter et al., 2003). However, these tenderness differences decrease with 

lower marbled meat, providing greater challenges to replicate consistently tender meat. 

As a result, a plethora of research has been conducted to moderate this concern. The 

University of Nebraska-Lincoln has investigated the impact of different feedstuffs on 

meat quality with staggering results. Chao (2015), Hart et al. (2019) and Ribeiro et al. 

(2019) all exhibited inclusions of distillers grains as a model for increased tenderness 

early postmortem, compared to standards corn rations. This may be a result of distillers 

grain inclusions impart greater deposition of unsaturated fatty acids within muscle 

organelles, increasing susceptibility to oxidative mechanisms both ante- and postmortem 

(Chao et al., 2018). These oxidative mechanisms can alter membrane integrity of 

organelles, promoting rapid available intracellular molecules for tenderization (Chao et 

al., 2018).  

 Therefore, it is conceivable that prolonged oxidative stress prior to death can 

signal the interaction of oxidative/apoptotic pathways in vivo and increase enzymatic 

activity early postmortem. It is not fully understood how the degree of oxidative stress 

may impact factors related to in vivo myocytes, nor is there a definite understanding on 

its role with muscle tenderization and color stability in postmortem muscle. As a result, 
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this study identifies and evaluates mechanisms related to skeletal muscle, using known 

levels of an oxidative stress promoter prior to harvest on meat quality attributes. 

 

Conclusion 

 This literature review supports the hypothesis that oxidative stress can manipulate 

organelle function, promoting ROS-mediated disruption of membrane stability in 

mitochondria and sarcoplasmic reticulum, upregulating apoptotic pathways necessary 

during anoxia of postmortem meat, facilitating greater proteolytic potential and muscle 

tenderization. The exploration of this hypothesis will allow us to use LPS as a mediator 

of oxidative stress, as in vivo oxidative stress is a more viable model system for 

postmortem tenderization of meat.  

 Researching this hypothesis will provide valuable insight to the meat industry. If 

there is a link between proteolytic degradation and the manipulation of organelle 

confirmation prior to slaughter which promotes tenderness, it could be possible to use 

oxidative stress as an indicator to enhance meat tenderness, especially when investigating 

management strategies which influence oxidative stress, such as diet, genetic selection, 

and environmental control. Additionally, in dealing with muscle cells, there is great 

potential to understand the biochemical behavior of oxidative stress, in particular how 

varying degrees of oxidative stress can impact ROS/RNS interrelationships with 

antioxidant response mechanisms and organelle function. The parabolic nature of 

oxidative stress is yet to be understood, and there is much knowledge to gain in this 

biochemical phenomenon.   

 



 80 

MATERIALS AND METHODS 

Manuscript – Oxidative Stress as a measure for Postmortem Meat Quality 

Lambs 

 A total of 29 cross-bred wethers (initial BW = 29 ± 2.68 kg) were group housed 

(University of Nebraska Life Sciences Annex in Lincoln, NE) for 42 days on a standard 

finishing ration (Appendix I) developed at Eastern Nebraska Research and Extension 

Center (ENREC; Mead, NE). After acclimation period, lambs were blocked and stratified 

by BW prior to being randomly assigned to a treatment. Lambs were individually fed 

according to BW to maintain a 0.34kg/day weight gain for the remainder of the in vivo 

analysis. 

 

Lipopolysaccharide treatments 

 Lambs were randomly assigned a 2 mL intravenous injection of either saline 

control (Control), 50ng LPS/kg BW (LPS50) or 100ng LPS/kg BW (LPS100) treatment 

group. Concentrations of lipopolysaccharide were determined based off of previous 

research performed at University of Nebraska-Lincoln using sheep as a model for LPS 

injections. Three injections would be administered across a 12-day immune challenge, 

with a subsequent injection occurring after every 72 h period. Injection times were 

partitioned across the 12-day timeline in two groups with 7-8 lambs being administered 

in each group. Two immune challenge cycles were completed with lambs blocked by BW 

to determine which cycle they would participate, allowing all animals to reach consistent 

final BW prior to harvest. All methods of live animal handling were approved by UNL 

Institutional Animal Care and Use Committee (IACUC). 
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 Rectal temperatures and respiration rates were taken at time 0, 1, 2, 4, 8, 12, 24, 

48, and 72 h post-injection time (0600 h). Lambs were secured on a trim stand prior to 

taking readings. Rectal temperature was completed using a Vicks® Thermometer 

(ComfortFlex®, V966US, Marlborough, MA) after being inserted 2.54cm from the tip of 

the thermometer into the rectum of the lamb and held for 10 s. Respiration rate was taken 

by evaluating the number of exhales taken in a 15 s span. Respiration rates were then 

calculated up to total breaths per min. 

 

Sample collection 

 Upon completion of the final 72 h cycle, lambs were held 48 h prior to slaughter, 

then transported to the Loeffel Meat Lab (Lincoln, NE). Within 30 min of 

exsanguination, an 80 g pre-rigor sample of posterior Longissimus lumborum from CON 

and HIGH treatment groups were extracted using a scalpel blade (Feather Safety Razor 

Co. LTD., No. 11 2976, Osaka, Japan). Pre-rigor sample was denuded of exterior fat and 

connective tissue, then placed in a 2 mL cryotube (Cryogenic Vial CryoClear 3012 Globe 

Scientific, Mahwah, N.J.) and frozen for future analysis (-80°C). The carcasses were 

tagged with a university number that corresponded to the animal and lab ID, then chilled 

for 24 h. 

 

Fabrication 

 After 24 h postmortem, sample primals were split between the 8
th

 and 9
th

 rib 

extending to the last lumber vertebrae. Primals were split down the spine using a band-

saw (Biro MFG. Co., Model 3334, Marblehead, OH), and each side was randomly 
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assigned to one of two aging periods (1 or 14 d). Longissimus muscle was deboned and 

removed of excess subcutaneous fat. Four 2.54 cm chops were fabricated adjacent to one 

another at each aging period (one to measure lipid and protein oxidation for 0 d of RD, 

and three to measure Warner-Bratzler shear force for 0 d retail display).  One 2.54 cm 

chop at each aging period was trimmed of all subcutaneous fat, and utilized to measure 

visual discoloration, objective color, lipid oxidation, and protein oxidation for 7 d of RD. 

One 2.54 cm chop at each aging period was cut and utilized for analysis of pH and 

proximate composition. A 5.08 cm chop was cut the at the most posterior point of the 

primal and utilized for subsequent laboratory analysis. An additional 2.54 cm chop was 

cut at the most anterior point of the primal and was used as extra laboratory analysis 

sample. At d 1, chops for laboratory analysis, pH and proximate composition, extra 

laboratory analysis were vacuum packaged (MULTIVAC 500, Multivac, Inc., Kansas 

City, MO) in Prime Source Vacuum pouches (3 mil STD barrier, Prime Sources, St. 

Louis, MO). Steaks for laboratory analysis, pH and proximate composition were frozen 

for further analysis (-80°C). The remaining halved portion of loins lined with Boneguard 

(Boneguard Traditional Perforated, JVR Industries, Lancaster, NY) and aged (2°C) under 

dark storage. All chops were separated from the loin starting from the anterior end of the 

loin. The same fabrication map (Appendix II) was used for all aging periods. At all aging 

periods, samples for color, lipid, and protein oxidation analysis were placed on foam 

trays (21.6 x 15.9 x 2.1 cm, Styro-Tech, Denver, CO) and overwrapped with an oxygen 

permeable film (Prime Source PSM 18 #75003815, Bunzl Processors Division, North 

Kansas City, MO) Trays were placed under simulated RD conditions for 7 d (3°C under 

white fluorescence lighting at 1000 to 1800 lux) and randomly rotated daily. All frozen 
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steaks utilized for laboratory analysis and lipid/ protein oxidation were tempered enough 

to finely dice, freeze in liquid nitrogen and then powdered in a metal cup blender (Model 

51BL32, Waring Commercial, Torrington, CT) on May 13/14 and July 26, 2019 and held 

for 11d and 23d respectively, at -80°C until further analysis. 

 

RNA transcriptomics 

 Total RNA extraction from muscle was completed using RNeasy Fibrous Tissue 

Mini Kit (QIAGEN, #74704, Hilden, Germany) and RNase-Free DNase Set (QIAGEN, 

#79254, Hilden, Germany). Completely sterilize work station with 100% ethanol solution 

prior to start of RNA extraction. 30 mg of pre-rigor muscle was diced and added to a 1.5 

mL conical tube, added with 300µL of RLT solution, and vortexed until broken up. 

Homogenize with hand-held pestle for 30 s. Add 10µL proteinase K solution and 590µL 

RNase-free water and mix thoroughly by pipetting. Incubate at 55°C for 10 min then 

centrifuge for 3 min at 10,000 x g. Transfer supernatant (approximately 900 µL) into a 

new 2 mL microcentrifuge (2mL safe-lock tube; 02236352, Eppendorf AG, Hamburg, 

Germany), avoiding transfer of any pellet. Add 450 µL of 100% ethanol to the cleared 

lysate. Mix well by pipetting up and down. Transfer 700 µL of the sample to a RNeasy 

Mini spin column placed in a 2 mL collection tube. Centrifuge for 15 s at 8,000 x g, 

discard the flow-through. Add 350 µL Buffer RW1 to the RNeasy spin column. 

Centrifuge for 15 s at 8,000 x g to wash the membrane, discard the flow-through. Add 

10µL DNase I stock solution to 70 µL Buffer RDD. Mix by gently inverting the tube, and 

centrifuge briefly to collect residual liquid from the sides of the tube. Add the DNase I 

incubation mix (80 µL) directly to the RNeasy spin column membrane, and place on the 
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benchtop for 15 min. Add 350 µL Buffer RW1 to the RNeasy spin column. Centrifuge 

for 15 s at 8,000 x g. Discard the flow-through. Add 500 µL Buffer RPE to the RNeasy 

spin column. Centrifuge for 15 s at 8,000 x g. Discard the flow-through. Add 500 µL 

Buffer RPE to the RNeasy spin column. Centrifuge for 2 min at 8,000 x g. Place the 

RNeasy spin column in a new 2 mL collection tube, and discard the old collection tube 

with the flow-through. Centrifuge at 14,000 x g for 1 min. Place the RNeasy spin column 

in a new 1.5 mL collection tube. Add 30-50 µL RNase-free water directly to the RNeasy 

spin column membrane. To elute the RNA, centrifuge for 1 min at 8,000 x g. For RNA 

amplification, transfer samples to University of Nebraska-Medical Center (Next 

Generation Sequencing, Genome Core Facility, Omaha, NE, USA). 

 

Warner-Bratzler shear force 

 Three chops (2.54 cm) were measured for tenderness via Warner-Bratzler Shear 

Force (WBSF) per sample. Internal temperature and weight were measured prior to 

cooking using a quick disconnect T-type thermocouple (TMQSS-062U-6, OMEGA 

Engineering, Inc., Stamford, CT) and a handheld thermometer (OMEGA 450-ATT, 

OMEGA Engineering, Inc., Stamford, CT) in geometric center of steaks. All chops were 

cooked to an internal temperature of 35°C and turned over until they reached a target 

temperature of 70°C on an electric indoor grill (Hamilton Beach-31605A, Hamilton 

Beach Brands, Glen Allen, VA). After cooking, final weights were recorded. The steak 

was then bagged (PB-90-C, .85 mil., 6x3x15in.) and stored overnight at 2°C. The 

following day, 2 (1.27 cm diameter) cores per chop were removed with a drill press 

parallel to muscle fibers and sheared using a Food Texture Analyzer (TMS-Pro, Food 
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Technology Corp., Sterling, VA.) with a triangular Warner-Bratzler blade. The mean of 6 

cores was calculated for statistical analysis. 

 

Objective color and subjective color: 

 Objective color measurements were taken once daily for 7 days during simulated 

retail display at all aging time points. Chops (2.54 cm) were placed on Styrofoam trays 

(21.6 x 15.9 x 2.1 cm, Styro-Tech, Denver, CO), overwrapped with oxygen permeable 

film (Prime Source PSM 18 #75003815, Bunzl Processors Division, North Kansas City, 

MO), and placed under retail display conditions (3°C under white fluorescence lightening 

at 1,000 to 1,800 lux). Commission international de l’éclairage (CIE) L* a* b* values 

were obtained using a Minolta CR-400 colorimeter (Minolta, Osaka, Japan) set with a 

D65 illuminant, 2°C, with an 8 mm diameter measurement area. Three measurements 

were made per chop and the mean was calculated for statistical analysis. The colorimeter 

was calibrated daily with a white ceramic tile (Calibration Plate, Serial No. 14933058, 

Konica Minolta, Japan). Lightness (L*) is measured with a range from 0 (black) to 100 

(white), a* measures redness with the range between red (positive) and green (negative), 

and b* is a measure of yellowness from yellow (positive) to blue (negative). Color 

readings were recorded at the same time each day. 

 Visual discoloration was assessed daily during the 7 d of RD utilizing 5 trained 

panelists comprised of graduate students from the University of Nebraska. Panelists were 

trained using a standardized discoloration guide (Appendix VI). Discoloration % was 

approximated from 0% to 100% with 0% meaning no discoloration present and 100% 
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being a fully discolored chop. Chops were randomly rotated daily to minimize location 

effects. 

 

Proximate composition 

 Moisture, fat, and ash (%) of raw meat samples were determine. Samples were 

measured in triplicate in Whatman #2 paper filter paper and fat was extracted with 

anhydrous ether. After identifying and recording weights of the folded filter papers with 

corresponding paper clips to hold packets closed, these were tared out and powdered 

meat samples (2 g) were weighed onto the filter paper and then closed with the paper 

clip. Samples were then placed in a Soxhlet tubes and the boiling flasks were filled with 

400 mL of ether. Once in place, water was opened to ender the condensers and each 

individual burner was turned on. After 48 h, burners were turned off and allowed to cool 

completely. Samples were air-dried under a fume hood for 2 h, then placed in a drying 

oven (105°C) overnight prior to recording final dry weight. In order to calculate final fat 

percentage, the final equation was used: % Fat = ((Pre-extraction wet weight with filter 

paper and paper clip – Post-extraction dry sample weight)/sample weight) * 100) - % 

Moisture. Moisture and ash (%) were calculated with a LECO Thermogravimetric 

Analyzer in duplicate (Model 604-100-400, LECO Corporation, St. Joseph, MI), see 

Appendix IV for information. Moisture was determined in nitrogen atmosphere with a 

start temperature of 25°C and an end temperature of 130°C (17 min ramp rate). Ash was 

determined in oxygen atmosphere with a start temperature of 130°C and an end 

temperature of 600°C (30 min ramp rate). Protein was determined by difference.  
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Sarcomere length 

 Sarcomere length was determined using the helium-neon laser diffraction method 

described by Cross et al. (1981) and Dolazza and Lorenzen (2014). A few flecks of 

powdered meat sample were placed on a clear glass microscopic slide. A single drop of 

0.25M sucrose solution was added to the slide and topped with a glass coverslip. The 

distance to the top of the slide from the base of the laser was 100mm. A sheet of paper 

was placed below the stand in order to mark the two diffraction bands. Six sarcomeres 

per sample were determined and sarcomere length (µm) was determined by the equation 

provided by Cross et al. (1981): 

Sarcomere length (µm) =  

$ =
0.6328	.	/0123

/ 4 + 1
2  

Where: 

0.6328 = 632.8 (the wavelength of the laser) x 10
-3

 

D = distance from specimen to diffraction pattern screen (100mm) 

T = spacing between diffraction bands (mm) 

 

pH analysis 

 Powdered sample from chops from all aging periods with 0 d RD were weighed 

out in 5 g duplicates into 250 mL plastic beakers and placed on a stir plate. Forty-five mL 

of distilled deionized water and a magnetic stir bar were added to ensure constant mixing 

during the measurement process. The pH was measured using a pH meter (Orion 
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410Aplus: ThermoFisher Scientific; Waltham, MA) that was calibrated using 4.0, 7.0, 

10.0 standards. The mean measurement of the duplicates was utilized for all analysis. 

 

Fatty acids 

 Fatty acid profiles were obtained via gas chromatography as described by (Folch 

et al., 1987). After extraction, lipids were converted to fatty acid methyl esters according 

to Morrison and Smith (1964) and Metcalfe et al. (1966). One g of powdered sample was 

homogenized with 5 mL of 2:1 chloroform: methanol and allowed to sit at room 

temperature (23°C) for 1 h. After, samples were filtered through Whatman #2 paper, 

brought up to a final volume of 10mL with 2:1 chloroform: methanol, and vortexed for 5 

s with 2mL of 0.74% KCl. Samples were centrifuged (1,000 x g for 5 min at 5°C) and the 

top layer was aspirated off. After centrifugation, samples were dried on a heating block at 

60°C under nitrogen purge. Once dry, 1 mL of 0.5 M NaOH in methanol was added, 

vortexed (5 s), and again heated at 100°C for 10 min. One mL of 14% Boron Trifluoride 

in methanol was added, vortexed (5 s), and again heated at 100°C, this time for 5 min. 

Two mL of saturated salt solution and 2 mL of hexane was added and vortexed (5 s). 

Samples were then centrifuged (1,000 x g for 5 min at 5°C) and the hexane layer 

removed and analyzed using gas chromatography (TRACE 1310 Gas Chromatograph; 

ThermoFisher Scientific, Waltham, MA). Fatty acids were separated using a Chrompack 

CP-Sil 88 capillary column (0.25mm by 100mm; Inlet temp: 260°C, Oven: 140°C hold 

for 5 min, increase at 4°C/min to 240°C and hold for 15 min. FID temp: 280°C. Injected 

at 30:1 ratio) and identified based on their retention times compared to known 

commercial standards (NU-Check Prep, Inc., Elysian, MN; #GLC-68D, GLC-79, GLC-
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87, GLC-455, and GLC-458). The percentage of fatty acids were determined by the peak 

areas in the chromatograph and values were converted to mg/100g tissue: Fatty acid 

mg/100g tissue = (% of fatty acid peak area * fat content of samples) * 100. 

 

Free calcium concentration 

 Free calcium was quantified according to the procedure described by Parrish et al. 

(1981)with modifications. Three grams of powdered sample were centrifuged at 196,000 

x g (Beckman Optima XPN-90 Ultracentrifuge, Type 50.2 Ti rotor, Beckman Coulter, 

Brea, CA) at 4°C for 30 min. Seven hundred microliters of the supernatant were collected 

and treated with 0.1 mL of 27.5 trichloroacetic acid (TCA). Samples were centrifuged at 

6,000 x g (accuSpin Micro 17R, ThermoFisher Scientific, Waltham, MA) for 10 min at 

4°C. Four hundred µL of supernatant were transferred to a syringe, and the volume was 

brought to 4 mL with deionized, distilled water. The diluted sample was filtered through 

a 13 mm diameter Millex-LG 0.20 µm syringe filter (Milliore, Bedford, MA). Calcium 

concentration was quantified at Ward Laboratories (Kearney, NE) using an inductively-

coupled plasma emission spectrometer (iCAP 6500 Radial; Thermo Electron, Cambridge, 

UK) with an appropriate calcium concentration standard. 

 

Lipid oxidation (TBARS) 

 Lipid oxidation was determined using thiobarbaturic acid reactive substances 

values (TBARS) for all aging periods at 0 and 7 d RD described (Ahn et al., 1998). Five 

grams of powdered meat were placed into a 50 mL conical tube to which 14 mL of 

distilled deionized water were added and 1 mL of butylated hydroxyanisole (BHA) 
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solution (10% BHA: 90% ethanol). Samples were homogenized using a Polytron 

(POLYTRON Kinimatica CH-6010, Switzerland) for 15 s at medium to high speed. 

The samples were centrifuged (2,000 x g for 5 min at 10°C) and one mL of supernatant 

was transferred into a 15 mL conical tube with 2 mL of 2,4,6-tribromoanisole (TBA) 

2,4,6-tricholoroanisole (TCA) solution (15% and 20 mM TBA in deionized distilled 

water). Tubes were then placed in a 70°C water bath for 30 min. After 30 min, tubes were 

cooled for at least 10 min in a water bath (22°C) and centrifuged (2,000 x g for 15 min at 

10°C). Two hundred µL of supernatant was transferred to a 96-well plate in duplicate 

(Microtest III sterile 96 well flat-bottomed microplate; Becton Dickinson & Company, 

Lincoln Park, NJ). Absorbance values were then read at 540 nm using a microplate 

spectrophotometer and compared to known standards (Model Epoch Biotek, Winooski, 

VT). Results were expressed in mg of malonaldehyde per kg of tissue. 

 

Troponin T 

 Troponin T degradation was quantified according the procedure described by 

Chao et al. (2018)with modifications. 3 grams of powdered meat was homogenized with 

15 mL of ice-cold rigor buffer (0.1M KCl, 2mM MgCl2, 1mM EDTA, and 10mM 

K2HPO4; pH 7.4) using a polytron (POLYTRON Kinimatica CH-6010, Switzerland) at 

medium speed for 5 s bursts for 30 s. Homogenate was filtered through a double-layered 

cheese cloth and 1.4 mL of homogenate was extracted into an eppendorf tube (2mL safe-

lock tube; 02236352, Eppendorf AG, Hamburg, Germany). Tubes were centrifuged at 

4,000 x g for 5 min. Supernatent was decanted and pellet was resuspended in 1 mL of 

rigor buffer. Centrifuge sample at 4,000 x g for 5 min two more times. Decant 
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supernatant and suspend pellet in 1 mL suspension buffer (0.1M Tris-Base, 1.25mM 

EDTA, 5% SDS; pH 8) and centrifuged at 4,000 x g for 5 min. Protein concentration was 

determined using a Pierce bicinchoninic acid protein assay kit (Pierce Biotechnology, 

Rockford, IL, USA). All samples were diluted to 2 mg/mL with deionized-distilled water 

and 2x Laemmli buffer (65.8mM Tris-HCl, 2.1% SDS, 26.3% glycerol, 0.01% 

bromophenol blue) with 2% betamercaptoethanol (1:50) and put on a heating block at 

95°C for 5 min. 20µL of sample were loaded on 4-20% Mini-PROTEAN TGX™ precast 

polyacrylamide gels (Bio-Rad Laboratories, Hercules, CA, USA) with a 10µL pre-stained 

standard (Precision Plus Protein Kaleidoscope, #1610375, Bio Rad, Hercules, CA) using 

a Bio-Rad Mini-PROTEIN 2 Cells system (Bio-Rad Laboratories). The system was run at 

constant voltage of 200V for 60 min with an electrophoresis buffer (1xTris/Glycine/SDS, 

#161-0732, Bio-Rad Laboratories, Hercules, CA, USA). Proteins in the gels were blotted 

to polyvinylidene difluoride membranes (0.45µm, Immobion-FL transfer membrane; 

Millipore) using a Bio-Rad Mini-Trans-Blot Electrophoretic transfer cell (Bio-Rad 

Laboratories) for 60 min at a constant amperage of 180mA with ice-cold transfer buffer 

(25mM Tris-base, 192mM Glycine, 20% methanol; pH at 9.2). Membranes were blocked 

for 2 h in Odyssey Blocking Buffer (LI-COR, Lincoln, NE, USA) and incubated for 60 

min at room temperature in monoclonal anti-troponin-T antibody (JLT-12; Sigma-

Aldrich, St. Louis, MO, USA) at a dilution of 1:10,000 in Odyssey blocking buffer 

containing 0.2% TWEEN-20 and 5% non-fat dry milk. Membranes incubated overnight 

at 4°C, then washed three time with Tris Buffered Saline containing 0.2% TWEEN-20 

(TBST) for 10 min and incubated in IRDye 680 LT Conjugated Goat Anti-Mouse IgG1 

secondary antibody (LI-COR) at a dilution of 1: 10,000 in Odyssey blocking buffer 
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containing 0.2% TWEEN-20 for 60 min. Membranes were washed three times with 

TBST and scanned using Odyssey Infrared Imaging system (LI-COR) at 700nm. 

Degradation was evaluated by quantifying band intensities (k. pixels) using Odyssey 

application software version 1.1. Bands ranging from 38 and 35kDa were designated as 

intact and bands ranging from 30 to 28kDa were designated as degraded. Percent 

degradation was calculated by (intensity of degraded bands/intensity of intact bands)*100 

 

Desmin 

 Three grams of powdered meat was homogenized with 15 mL of whole muscle 

solubilization buffer (2%wt/vol SDS, 10mM sodium phosphate buffer; pH 7.0) using a 

polytron (POLYTRON Kinimatica CH-6010, Switzerland) at medium speed for 5 s 

bursts for 30 s. Homogenate was filtered through a double-layered cheese cloth and 1.4 

mL of homogenate was extracted into an eppendorf tube (2mL safe-lock tube; 02236352, 

Eppendorf AG, Hamburg, Germany). Tubes were centrifuged at 1,500 x g for 15 min at 

25°C to remove traces of insoluble components. 1 mL of supernatant was collected and 

into a 1.5 mL eppendorf tube. Protein concentration was determined using a Pierce 

bicinchoninic acid protein assay kit (Pierce Biotechnology, Rockford, IL, USA). All 

samples were diluted to 6.4 mg/mL using whole muscle solubilizing buffer. Samples 

were diluted to a final concentration of 4mg/mL with 50% of gel buffer (3mM EDTA, 

3% wt/vol SDS, 30% vol/vol glycerol, 0.001% wt/vol pyronin Y, and 30mM Tris-HCl; 

pH 8.0) and 10% of betamercaptoethanol then heated on a block for 15 min at 50°C. 

30µL of sample were loaded on 4-20% Mini-PROTEAN TGX™ precast polyacrylamide 

gels (Bio-Rad Laboratories, Hercules, CA, USA) with a 10µL pre-stained standard 
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(Precision Plus Protein Kaleidoscope, #1610375, Bio Rad, Hercules, CA) using a Bio-

Rad Mini-PROTEIN 2 Cells system (Bio-Rad Laboratories). The system was run at 

constant voltage of 360V for 45 min with an electrophoresis buffer (1xTris/Glycine/SDS, 

#161-0732, Bio-Rad Laboratories, Hercules, CA, USA). Proteins in the gels were blotted 

to polyvinylidene difluoride membranes (0.45µm, Immobion-FL transfer membrane; 

Millipore) using a Bio-Rad Mini-Trans-Blot Electrophoretic transfer cell (Bio-Rad 

Laboratories) for 90 min at a constant voltage of 90Vwith ice-cold transfer buffer (25mM 

Tris-base, 192mM Glycine, 20% methanol; pH at 9.2). Membranes were blocked for 60 

min in Odyssey Blocking Buffer (LI-COR, Lincoln, NE, USA) and incubated for 60 min 

at room temperature in monoclonal anti-desmin antibody (DE-U-10 Sigma-Aldrich, St. 

Louis, MO, USA) at a dilution of 1:10,000 in Odyssey blocking buffer containing 0.2% 

TWEEN-20 and 5% non-fat dry milk. Membranes were incubated overnight at 4°C, then 

washed three time with Tris Buffered Saline containing 0.2% TWEEN-20 (TBST) for 10 

min and incubated in IRDye 680 LT Conjugated Goat Anti-Mouse IgG1 secondary 

antibody (LI-COR) at a dilution of 1: 10,000 in Odyssey blocking buffer containing 0.2% 

TWEEN-20 for 60 min. Membranes were washed three times with TBST and scanned 

using Odyssey Infrared Imaging system (LI-COR) at 700nm. Degradation was evaluated 

by quantifying band intensities (k. pixels) using Odyssey application software version 

1.1. Bands at 55kDa were designated as intact and bands at 38kDa were designated as 

degraded. Percent degradation was calculated by (intensity of degraded bands/intensity of 

intact bands)* 100. 
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Isoprostanes 

 All analysis was completed using OxiSelect™ 8-iso-Prostaglandin F2aplha 

ELISA Kit (Cell BioLabs, INC., STA-337, San Diego, CA). Weigh out 30mg of 

powdered meat in a 5 mL eppendorf tube (). Homogenize sample in 2 mL of 2N NaOH 

using Micropolytron(Pro-Scientific200, Bio-Gen, Oxford, CT) and spin for 20 s, cleaning 

micropolytron between each sample. Heat homogenized sample in water bath (Thelco 

261, GCA Precision Scientific, Chicago, IL) at 45°C for 2 h to ensure hydrolysis. Cool 

tissue samples to room temperature (~20 min), then neutralize pH using 2 mL of 2N HCl, 

vortex for 20 s. Split into two 2 mL eppendorf tubes (2mL safe-lock tube; 02236352, 

Eppendorf AG, Hamburg, Germany). Using microcentrifuge, spin samples at 10,000 x g 

for 15 min at 4°C. Add 100µL of sample to 100µL of neutralization solution in a 0.6 mL 

eppendorf tube. Dilute Anti-8-iso-PGF2� Antibody (1:1000) with sample diluent. Add 

100µL of the diluted antibody to the Goat Anti-Rabbit Antibody coated plate. Incubate 

on an oscillation shake at 25°C for 1 h. During incubation, prepare 100 mL of 1x wash 

buffer by diluting 10x wash buffer concentrate with deionized water. Prepare 

Isoprostanes standards as labeled in Appendix XIX. After incubation, remove the 

antibody solution from the wells. Wash wells 5 times with 300µL 1x wash buffer per 

well. After the last wash, empty the wells and tap microwell plate on absorbent pad or 

paper towel to remove excess wash solution. Immediately before use, dilute the conjugate 

(1:80) with sample diluent. Combine 55µL of the 8-iso-PGF2� standard or hydrolyzed 

sample and 55µL of 8-iso-PGF2alphs-HRP conjugate in a microtube and mix thoroughly. 

Transfer 100µL of the combined solution per well. A well containing sample diluent can 

be used as a blank. Incubate plate for 1 h at 25°C on an orbital shaker. After incubation, 
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remove the combined solution from the wells. Wash 5 times with 300µL of 1x wash 

buffer per well. After the last wash, empty wells and tap microwell plate on absorbent 

pad or paper. Add 100µL of substrate solution to each well and incubate at 25°C for 30 

min on oscillate shaker. After incubation, add 100µL of stop solution to each well. 

Results should be read immediately on a microplate reader using 450nm as the target 

wavelength. Units of isoprostane content designated as picogram/mL. 

 

Statistical analysis 

 Statistical analysis was conducted with SAS (version 9.4, Cary, NC). Objective 

and subjective color data were analyzed as a split-plot repeated measures design with 

treatment as the whole-plot, aging period as the split-plot and retail display as the 

repeated measures. Tenderness, troponin t, desmin, calcium, and pH were analyzed as a 

split-plot design with treatment as the whole-plot and aging period as the split-plot. Lipid 

oxidation, free thiols and carbonyls were a split-split-plot design with treatment as the 

whole plot, aging period as the split-plot and retail display time as the split-split-plot. 

Transcriptomics, sarcomere length, fatty acids, cytochrome c, and isoprostanes were 

analyzed as a completely randomized design. Data were analyzed using the PROC 

GLIMMIX procedure of SAS and animal was the experimental unit. All means were 

separated with the LS MEANS statement with an � level of 0.05 and tendencies were 

considered at an � level of 0.15. 
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Abstract 

 The objective of this study was to evaluate the effects of different levels of 

lipopolysaccharide (LPS)-mediated oxidative stress on fresh meat quality. Crossbred 

lambs (n = 29) were blocked by weight and fed a standard finishing ration for the 

duration of the study. Lambs were individually housed, and treatment groups were 

administered one of three injections every 72 hours across a three-injection (9-day) cycle: 

a saline control (Control), 50 ng LPS/kg bodyweight (LPS50), or 100 ng LPS/kg 

bodyweight (LPS100). Rectal temperatures were measured to indicate inflammatory 

response. Lambs were harvested at the Loeffel Meat Laboratory, and 80 mg of pre-rigor 

Longissimus lumborum were collected in Control and LPS100 treatments within thirty 

minutes postmortem for RNA analysis. Loins were split and randomly assigned for 1 or 

14 d of aging. Chops were fabricated after aging and placed under retail display (RD) 

conditions for 0 or 7 d. Animal was the experimental unit. Lipopolysaccharide-treated 

lambs had increased (P < 0.05) rectal temperatures at 1, 2, 4, and 24 h post-injection. 

Transcriptomics exhibited significant (Praw < 0.05) upregulation in RNA pathways related 

to generation of oxidative stress in LPS100 compared to Control. A trend was found for 

tenderness (Warner-Bratzler shear) (P = 0.10), with chops from LPS50 having a lower 

shear force compared with Control at 1 d postmortem. The LPS50 treatment exhibited 

greater troponin T degradation (P = 0.02) compared to all treatments at 1 d. Aging 

decreased WBSF (P < 0.0001), increased free calcium concentration (P < 0.0001), pH (P 

< 0.0001), and proteolytic degradation (P < 0.0001) across all treatments. After 7 d of 

RD, following aging periods, chops increased discoloration as RD increased (P < 
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0.0001), with Control chops aged for 14 d being the most discolored. Chops from lambs 

given LPS had higher (P < 0.05) a* values compared to control at 14 d of aging. The L* 

values were greater (P < 0.05) in LPS100 compared to both LPS50 and Control. Aging 

tended (P = 0.0608) to increased lipid oxidation (TBARS) during RD across either aging 

period. There were no significant differences (P > 0.05) in sarcomere length, proximate 

composition, fatty acid composition, or isoprostane content. These results suggest that 

defined upregulation of oxidative stress has no detriment on fresh meat color, but may 

alter biological pathways responsible for muscle composition and enzymatic processes, 

resulting in changes in tenderness early postmortem. 

Key words: apoptosis, color stability, lamb, meat quality, oxidative stress, tenderization 

 

Introduction 

During postmortem aging, the tenderization of muscle relies on several biological 

mechanisms, including endogenous enzymes, such as calpains, caspases, and 

proteasomes (Ouali et al., 2006; Bhat et al., 2018). These endogenous mechanisms 

activate early postmortem with the utilization of free calcium released from mitochondria 

and sarcoplasmic reticulum(Rossi and Dirksen, 2006; Santo-Domingo and Demaurex, 

2010). With regards to postmortem aging, an increasing number of investigations have 

focused on the influence of apoptosis on meat quality. Kemp and Parr (2012) indicated 

apoptotic events can contribute to proteolytic degradation of many structural proteins 

during muscle aging.  

Apoptosis is the mechanism responsible for regulated cell death, portrayed by 

multiple biochemical and molecular pathways (Sierra and Olivan, 2013). This intrinsic 
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mechanism involves mitochondria, as increased apoptotic events promote mitophagy, as 

indicated by the release of cytochrome c from the mitochondrial membrane into the 

cytoplasm (Ott et al., 2007; Kagan et al., 2009; Ke et al., 2017). Cytosolic cytochrome c 

binds to Apaf-1 genes, responsible for initiating enzymatic proteins, to produce 

apoptosomes, large quaternary proteins used to initiate caspase systems and begin 

proteolytic events (Porter and Jänicke, 1999; Momeni, 2011). Initiation of apoptotic 

activity has been linked to oxidative stress-mediated events (Slimen et al., 2014).  

The onset of oxidative stress results from the overwhelming production of 

reactive oxygen species (ROS) compared to homeostatic endogenous antioxidants present 

within the system (Powers et al., 2011). As the name implies, ROS are highly reactive 

substances primarily produced as by-products during oxidative phosphorylation (Paradies 

et al., 2001). Additionally, ROS act as signaling molecules to upregulate a homeostatic 

response (Dröge, 2002). This action facilitates antioxidant enzymes (superoxide 

dismutase, catalase, glutathione) capable of changing ROS to more stable products within 

muscle cells. However, conditions of oxidative stress overwhelm antioxidant function, 

allowing ROS to alter protein, lipid, or nucleic acid morphology and functionality (Bekhit 

et al., 2013). Concurrently, ROS can interact with nitrosative species (nitric oxide), 

producing hybrid radicals which can target proteins responsible for organelle function 

(Stamler and Meissner, 2001). Given the right conditions, oxidative stress factors have 

been theorized to impact muscle cells and create conditions critical to meat quality. 

Intrinsic and extrinsic conditions promoting oxidative stress have been implicated 

to alter meat quality (Warner et al., 2005; Ponnampalam et al., 2017; Wang et al., 2018; 

Mitacek et al., 2019). However, there is inconsistency within the literature describing the 
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impact of oxidative stress factors on meat quality, as this phenomenon is theorized to be 

dependent on a multitude of factors. These factors include degree and duration of 

oxidative stress, source of oxidative stress generation (in vivo vs in vitro), the influence of 

individual oxidative and nitrosative species on cellular constituents, and composition of 

muscle tissue (Cottrell et al., 2015; Niu et al., 2016; Ke et al., 2017; Wang et al., 2018). 

Concurrently, there is a gap in the literature relating specific genetic pathways and their 

oxidative stress-mediated regulation on the impact of meat quality. 

 The mechanism of meat tenderization is well-recognized. However, the impact of 

oxidative stress on skeletal muscle, and its influence on factors critical to meat quality 

has yet to be understood. Additionally, the impact of oxidative stress and its relationship 

towards the muscle transcriptome are not fully understood. Therefore, the objective of 

this study was to evaluate the effects of controlled oxidative stress in vivo on oxidative 

biomarkers within the muscle transcriptome and meat quality attributes, including 

tenderness, color stability, and lipid oxidation.   

 

Materials and Methods 

          All animal use protocols were approved by the University of Nebraska-Lincoln’s 

Institutional Animal Care and Use Committee [Protocol No. 1751]. 

 

Lambs 

 A total of 29 cross-bred (Hampshire x Dorset x Polypay) wethers (initial BW = 29 

± 2.68 kg) were group housed (University of Nebraska Life Sciences Annex in Lincoln, 

NE) for 42 days on a standard finishing ration (Appendix I) developed at Eastern 
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Nebraska Research and Extension Center (ENREC; Mead, NE). After the acclimation 

period, lambs were blocked and stratified by BW prior to being randomly assigned to a 

treatment. Lambs were individually fed according to BW to maintain a 0.34kg/day 

weight gain for the remainder of the in vivo analysis. 

 

Lipopolysaccharide treatments 

 Lambs were randomly assigned a 2 mL intravenous injection of either saline 

control (Control), 50ng LPS/kg BW (LPS50) or 100ng LPS/kg BW (LPS100) treatment 

group. Concentrations of lipopolysaccharide O111: B4 (L2630; Sigma-Aldrich) were 

determined based on previous research performed at University of Nebraska-Lincoln 

using sheep as a model for LPS injections. Three injections were administered across a 

12-day immune challenge, with a subsequent injection occurring after every 72 h period. 

Injection times were partitioned across the 12-day immune challenge, with two sets of 

14-15 lambs being administered in each group. Two immune challenge groups were 

completed with lambs blocked by BW to determine which cycle they would participate, 

allowing all animals to reach consistent final BW prior to harvest. All methods of live 

animal handling were approved by UNL Institutional Animal Care and Use Committee 

(IACUC). 

 

Rectal temperatures 

 Rectal temperatures and respiration rates were measured at time 0, 1, 2, 4, 8, 12, 

24, 48, and 72 h post-injection time (0600 h). Lambs were secured on a trim stand prior 

to taking readings. Rectal temperature was completed using a Vicks® Thermometer 
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(ComfortFlex®, V966US, Marlborough, MA) by inserting 2.54cm in from the tip of the 

anus to the rectum of the lamb and held for 10 s. Temperatures were recorded as degrees 

Centigrade. 

 

Muscle Sample collection 

 Upon completion of the final 72 h cycle, lambs were held 48 h prior to slaughter, 

then transported to the Loeffel Meat Lab (Lincoln, NE). Within 30 min of 

exsanguination, an 80 mg pre-rigor sample taken from the posterior end of the 

Longissimus lumborum from Control and LPS100 treatment groups. Samples were 

extracted using a scalpel blade sterilized in ethanol in between sampling (Feather Safety 

Razor Co. LTD., No. 11 2976, Osaka, Japan). Pre-rigor samples were removed of 

exterior fat and connective tissue, then placed in a 2 mL cryotube (Cryogenic Vial 

CryoClear 3012 Globe Scientific, Mahwah, N.J.) and frozen for future analysis (-80°C). 

The carcasses were tagged with a university number that corresponded to the animal and 

lab ID, then chilled for 24 h. 

 

Fabrication 

 After 24 h postmortem, carcasses were fabricated and the loin portion from the 9
th

 

rib to the last lumbar vertebrae was retained. Each loin section was split down the spine 

using a band-saw (Biro MFG. Co., Model 3334, Marblehead, OH). Within each animal, 

sides were randomly assigned to one of two aging periods (1 or 14 d). Longissimus 

muscle was deboned and removed of excess subcutaneous fat. Beginning at the posterior 

end, one 5.08 cm chop was cut and utilized for all laboratory analysis at each aging 
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period. One 2.54 cm chop at each aging period was utilized for analysis of pH and 

proximate composition. Three 2.54 cm chops were fabricated adjacent to one another for 

each aging period and analyzed for tenderness using Warner-Bratzler shear force for 0 d 

retail display. One 2.54 cm chop was cut to measure lipid and protein oxidation for 0 d of 

RD. One 2.54 cm chop at each aging period was trimmed of all subcutaneous fat, and 

utilized to measure visual discoloration, objective color, lipid oxidation, and protein 

oxidation for 7 d of RD. Lastly, a 2.54 cm chop was cut at the most anterior point of the 

primal and was used as extra laboratory analysis sample. At d 1 aging, chops for 

laboratory analysis, pH and proximate composition, extra laboratory analysis were 

vacuum packaged (MULTIVAC 500, Multivac, Inc., Kansas City, MO) in Prime Source 

Vacuum pouches (3 mil STD barrier, Prime Sources, St. Louis, MO). Chops for 

laboratory analysis, pH and proximate composition were frozen for further analysis (-

80°C). The remaining halved portion of loins were lined with Boneguard (Boneguard 

Traditional Perforated, JVR Industries, Lancaster, NY), vacuum packaged, and aged 

(2°C) under dark storage for 14 days total. All chops were separated from the loin 

starting from the anterior end of the loin. The same fabrication map (Appendix II) was 

used for all aging periods. For both aging periods, samples for color, lipid, and protein 

oxidation analysis were placed on foam trays (21.6 x 15.9 x 2.1 cm, Styro-Tech, Denver, 

CO) and overwrapped with an oxygen permeable film (Prime Source PSM 18 

#75003815, Bunzl Processors Division, North Kansas City, MO) Trays were placed 

under simulated RD conditions for 7 d (3°C under white fluorescence lighting at 1000 to 

1800 lux) and randomly rotated daily. All frozen steaks utilized for laboratory analysis 

and lipid/ protein oxidation were tempered enough to finely dice, freeze in liquid nitrogen 
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and then powdered in a metal cup blender (Model 51BL32, Waring Commercial, 

Torrington, CT) on May 13/14 and July 26, 2019 and held for 11d and 23d respectively, 

at -80°C until further analysis. 

 

RNA transcriptomics 

 Total RNA isolation from muscle was completed using the RNeasy Fibrous 

Tissue Mini Kit (QIAGEN, #74704, Hilden, Germany) and RNase-Free DNase Set 

(QIAGEN, #79254, Hilden, Germany). Utilize RNaseZap prior to start of RNA isolation 

to remove RNase from all work stations. Less than 30 mg of frozen pre-rigor muscle was 

weighed and added to a 1.5 mL microcentrifuge tube. Tissue was vortexed in 300 µL of 

RLT solution (3 µL β-mercaptoethanol mixed with 300 µL of Buffer RLT) for up to 30 s 

and then homogenized with a hand-held pestle for another 30 s. 10 µL of Proteinase K 

solution and 590 µL of RNase-free water were mixed thoroughly by pipetting and added 

to the sample. The sample solution was incubated at 55°C for 10 min then centrifuged for 

3 min at 10,000 x g. Approximately 900 µL of supernatant was transferred into a 2 mL 

microcentrifuge tube, while avoiding transfer of pellet. Half the supernatant volume in 

100% ethanol was added to the cleared lysate and mixed by pipetting. 700 µL of the 

sample was transferred to an RNeasy Mini spin column placed in a 2 mL collection tube.  

Samples were centrifuged for 15 s at 8,000 x g.  Flow-through was discarded. The rest of 

the sample was transferred to the column and re-centrifuged. Three-hundred fifty µL of 

Buffer RW1 was added to the spin column and centrifuged for 15 s at 8,000 x g. The 

flow-through was discarded. 10 µL of DNase I stock solution (prepared using the 

handbook instructions) was added to 70 µL Buffer RDD and mixed by inverting the tube. 
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DNase I incubation mix (80 µL) was added directly to the spin column membrane, and 

incubated at room temperature for 15 min. 350 µL of Buffer RW1 was added to the spin 

column and centrifuged for 15 s at 8,000 x g. Filtered soltuion was discarded. Five-

hundred µL of Buffer RPE was added to the spin column and centrifuged for 15 s at 

8,000 x g. Filtered solution was discarded. 500 µL of Buffer RPE was added to the spin 

column and centrifuged for 2 min at 8,000 x g. The spin column was placed into a new 2 

mL collection tube and centrifuged for 1 min at 14,000 x g. The spin column was placed 

in a 1.5 mL microcentrifuge tube. 50 µL of RNase-free water was directly added to the 

spin column membrane and centrifuged for 1 min at 8,000 x g. Samples were sent to the 

University of Nebraska-Medical Center (Next Generation Sequencing, Genome Core 

Facility, Omaha, NE, USA) for poly-A+ library preparation and sequencing (150bp 

paired-end). 

 Resulting data were quality trimmed using Trim Galore! , and aligned to the 

Oar_rambouillet_v1.0 reference genome STAR (Dobin et al., 2016).  Differential 

expression (control vs LPS treatment) was evaluated using transcript counts in DESeq2 

(Love et al., 2014).  Loci with Padj<0.05 were considered to be differentially expressed; 

those with Praw<0.05 were utilized for pathway exploration in Ingenuity Pathway 

Analysis (Qiagen). 

 

Warner-Bratzler shear force (WBSF) 

 Three chops (2.54 cm) from each side were measured for tenderness via Warner-

Bratzler Shear Force (WBSF) per sample. Internal temperatures were measured prior to 

cooking using a quick disconnect T-type thermocouple (TMQSS-062U-6, OMEGA 
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Engineering, Inc., Stamford, CT) with a handheld thermometer (OMEGA 450-ATT, 

OMEGA Engineering, Inc., Stamford, CT) in geometric center of steaks. Weights of 

chops were collected prior to cooking using a precision balance scale (PL6001E, Mettler 

Toledo, Hogentogler and Co. Inc., Columbia, MO). All chops were cooked to an internal 

temperature of 35°C and turned over until they reached a target temperature of 70°C on 

an electric indoor grill (Hamilton Beach-31605A, Hamilton Beach Brands, Glen Allen, 

VA). After cooking, final weights were recorded. The steak was then bagged (PB-90-C, 

.85 mil., 6x3x15in. PITT PLASTICS, Pittsburg, KS) and stored overnight at 2°C. The 

following day, 2 (1.27 cm diameter) cores per chop were removed with a drill press 

parallel to muscle fibers and sheared using a Food Texture Analyzer (TMS-Pro, Food 

Technology Corp., Sterling, VA.) with a triangular Warner-Bratzler blade. The mean of 6 

cores was calculated for statistical analysis. 

 

Troponin T 

 Troponin T degradation was quantified according to the procedure described by 

Chao et al. (2018) with modifications. Three grams of powdered meat was homogenized 

with 15 mL of ice-cold rigor buffer (0.1M KCl, 2mM MgCl2, 1mM EDTA, and 10mM 

K2HPO4; pH 7.4) using a polytron (POLYTRON Kinimatica CH-6010, Switzerland) at 

medium speed for 5 s bursts for 30 s. Homogenate was filtered through a double-layered 

cheese cloth and 1.4 mL of homogenate was placed into an Eppendorf tube (2mL safe-

lock tube; 02236352, Eppendorf AG, Hamburg, Germany). Tubes were centrifuged at 

4,000 x g for 5 min at 4°C. Supernatant was decanted and pellet was resuspended in 1 mL 

of rigor buffer. Samples were centrifuged at 4,000 x g for 5 min two additional times. 
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Supernatent was decanted and the suspended pellet was mixed in 1 mL suspension buffer 

(0.1M Tris-Base, 1.25mM EDTA, 5% SDS; pH 8) and centrifuged at 4,000 x g for 5 min. 

Protein concentration was determined using a Pierce bicinchoninic acid protein assay kit 

(Pierce Biotechnology, Rockford, IL, USA). All samples were diluted to 2 mg 

protein/mL with deionized-distilled water and 2x Laemmli buffer (65.8mM Tris-HCl, 

2.1% SDS, 26.3% glycerol, 0.01% bromophenol blue) with 2% betamercaptoethanol 

(1:50) and put on a heating block at 95°C for 5 min. 20µL of sample were loaded on 4-

20% Mini-PROTEAN TGX™ precast polyacrylamide gels (Bio-Rad Laboratories, 

Hercules, CA, USA) with a 10µL pre-stained standard (Precision Plus Protein 

Kaleidoscope, #1610375, Bio Rad, Hercules, CA) using a Bio-Rad Mini-PROTEIN 2 

Cells system (Bio-Rad Laboratories). The system was run at constant voltage of 200V for 

60 min with an electrophoresis buffer (1xTris/Glycine/SDS, #161-0732, Bio-Rad 

Laboratories, Hercules, CA, USA). Proteins in the gels were blotted to polyvinylidene 

difluoride membranes (0.45µm, Immobion-FL transfer membrane; Millipore) using a 

Bio-Rad Mini-Trans-Blot Electrophoretic transfer cell (Bio-Rad Laboratories) for 60 min 

at a constant amperage of 180mA with ice-cold transfer buffer (25mM Tris-base, 192mM 

Glycine, 20% methanol; pH at 9.2). Membranes were blocked for 2 h in Odyssey 

Blocking Buffer (LI-COR, Lincoln, NE, USA) and incubated for 60 min at room 

temperature in monoclonal anti-troponin-T antibody (JLT-12; Sigma-Aldrich, St. Louis, 

MO, USA) at a dilution of 1:10,000 in Odyssey blocking buffer containing 0.2% 

TWEEN-20 and 5% non-fat dry milk. Membranes were incubated overnight at 4°C and 

then washed three times with Tris Buffered Saline containing 0.2% TWEEN-20 (TBST) 

for 10 min. Membranes were incubated in IRDye 680 LT Conjugated Goat Anti-Mouse 
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IgG1 secondary antibody (LI-COR) at a dilution of 1: 10,000 in Odyssey blocking buffer 

containing 0.2% TWEEN-20 for 60 min. Membranes were washed three times with 

TBST and scanned using Odyssey Infrared Imaging system (LI-COR) at 700nm. 

Degradation was evaluated by quantifying band intensities (k. pixels) using Odyssey 

application software version 1.1. Bands ranging from 38 and 35kDa were designated as 

intact and bands ranging from 30 to 28kDa were designated as degraded. Percent 

degradation was calculated by (intensity of degraded bands/intensity of intact 

bands)*100. 

 

Desmin 

 Three grams of powdered meat were homogenized with 15 mL of whole muscle 

solubilization buffer (2%wt/vol SDS, 10mM sodium phosphate buffer; pH 7.0) using a 

polytron (POLYTRON Kinimatica CH-6010, Switzerland) at medium speed for 5 s 

bursts for 30 s. Homogenate was filtered through a double-layered cheese cloth and 1.4 

mL of homogenate was placed into an Eppendorf tube (2mL safe-lock tube; 02236352, 

Eppendorf AG, Hamburg, Germany). Tubes were centrifuged at 1,500 x g for 15 min at 

25°C to remove traces of insoluble components. 1 mL of supernatant was collected and 

into a 1.5 mL eppendorf tube. Protein concentration was determined using a Pierce 

bicinchoninic acid protein assay kit (Pierce Biotechnology, Rockford, IL, USA). All 

samples were diluted to 6.4 mg protein /mL using whole muscle solubilizing buffer. 

Samples were diluted to a final concentration of 4mg protein/mL with 50% of gel buffer 

(3mM EDTA, 3% wt/vol SDS, 30% vol/vol glycerol, 0.001% wt/vol pyronin Y, and 

30mM Tris-HCl; pH 8.0) and 10% of betamercaptoethanol and then heated on a block for 
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15 min at 50°C. 30µL of samples were loaded on 4-20% Mini-PROTEAN TGX™ 

precast polyacrylamide gels (Bio-Rad Laboratories, Hercules, CA, USA) with a 10µL 

pre-stained standard (Precision Plus Protein Kaleidoscope, #1610375, Bio Rad, Hercules, 

CA) using a Bio-Rad Mini-PROTEIN 2 Cells system (Bio-Rad Laboratories). The system 

was run at constant voltage of 360V for 45 min with an electrophoresis buffer 

(1xTris/Glycine/SDS, #161-0732, Bio-Rad Laboratories, Hercules, CA, USA). Proteins 

in the gels were blotted to polyvinylidene difluoride membranes (0.45µm, Immobion-FL 

transfer membrane; Millipore) using a Bio-Rad Mini-Trans-Blot Electrophoretic transfer 

cell (Bio-Rad Laboratories) for 90 min at a constant voltage of 90Vwith ice-cold transfer 

buffer (25mM Tris-base, 192mM Glycine, 20% methanol; pH at 9.2). Membranes were 

blocked for 60 min in Odyssey Blocking Buffer (LI-COR, Lincoln, NE, USA) and 

incubated for 60 min at room temperature in monoclonal anti-desmin antibody (DE-U-10 

Sigma-Aldrich, St. Louis, MO, USA) at a dilution of 1:10,000 in Odyssey blocking 

buffer containing 0.2% TWEEN-20 and 5% non-fat dry milk. Membranes were incubated 

overnight at 4°C, then washed three time with Tris Buffered Saline containing 0.2% 

TWEEN-20 (TBST) for 10 min and incubated in IRDye 680 LT Conjugated Goat Anti-

Mouse IgG1 secondary antibody (LI-COR) at a dilution of 1: 10,000 in Odyssey blocking 

buffer containing 0.2% TWEEN-20 for 60 min. Membranes were washed three times 

with TBST and scanned using Odyssey Infrared Imaging system (LI-COR) at 700nm. 

Degradation was evaluated by quantifying band intensities (k. pixels) using Odyssey 

application software version 1.1. Bands at 55kDa were designated as intact and bands at 

38kDa were designated as degraded. Percent degradation was calculated by (intensity of 

degraded bands/intensity of intact bands)* 100. 
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Free calcium concentration 

 Free calcium was quantified according to the procedure described by Parrish et al. 

(1981)with modifications. Three grams of powdered sample were centrifuged at 196,000 

x g (Beckman Optima XPN-90 Ultracentrifuge, Type 50.2 Ti rotor, Beckman Coulter, 

Brea, CA) at 4°C for 30 min. Seven hundred µL of the supernatant were collected and 

treated with 0.1 mL of 27.5 trichloroacetic acid (TCA). Samples were centrifuged at 

6,000 x g (accuSpin Micro 17R, ThermoFisher Scientific, Waltham, MA) for 10 min at 

4°C. Four hundred µL of supernatant were transferred to a syringe, and the volume was 

brought to 4 mL with deionized, distilled water. The diluted sample was filtered through 

a 13 mm diameter Millex-LG 0.20 µm syringe filter (Milliore, Bedford, MA). Calcium 

concentration was quantified at Ward Laboratories (Kearney, NE) using an inductively-

coupled plasma emission spectrometer (iCAP 6500 Radial; Thermo Electron, Cambridge, 

UK) with an appropriate calcium concentration standard. 

 

Isoprostanes 

 All analysis were completed using OxiSelect™ 8-iso-Prostaglandin F2aplha 

ELISA Kit (Cell BioLabs, INC., STA-337, San Diego, CA). Thirty mg of powdered meat 

were weighed in a 5 mL eppendorf tube. Samples were homogenized in 2 mL of 2N 

NaOH using a Micropolytron (Pro-Scientific200, Bio-Gen, Oxford, CT) and spun for 20 

s, cleaning micropolytron between each sample. Homogenized samples were heated in a 

water bath (Thelco 261, GCA Precision Scientific, Chicago, IL) at 45°C for 2 h to ensure 

hydrolysis. Samples were cooled to room temperature (~20 min), then pH was 

neutralized using 2 mL of 2N HCl, then vortexed for 20 s. Two 2 mL Eppendorf tubes 



 124

(2mL safe-lock tube; 02236352, Eppendorf AG, Hamburg, Germany) were used to split 

samples. Using microcentrifuge, samples were spun at 10,000 x g for 15 min at 4°C. One 

hundred µL of sample were added to 100µL of neutralization solution in a 0.6 mL 

Eppendorf tube. Additionally, Anti-8-iso-PGF2� Antibody (1:1000) was diluted with 

sample diluent. One hundred µL of the diluted antibody to the Goat Anti-Rabbit 

Antibody coated plate and incubated on an oscillation shake at 25°C for 1 h. During 

incubation, 100 mL of 1x wash buffer was prepared by diluting 10x wash buffer 

concentrate with deionized water. Isoprostanes standards were prepared as labeled in 

Appendix XV. After incubation, antibody solution was removed from the wells and 

washed 5 times with 300µL 1x wash buffer per well. After the last wash, wells were 

emptied and tapped on absorbent pad or paper towel to remove excess wash solution. 

Immediately before use, conjugate (1:80) was diluted with sample diluent. Fifty-five µL 

of the 8-iso-PGF2� standard or hydrolyzed sample were combined with 55µL of 8-iso-

PGF2alphs-HRP conjugate in a microtube and mixed thoroughly. One hundred µL of the 

combined solution per well were mixed thoroughly. Using a well containing sample 

diluent as a blank, microwell plates were incubated for 1 h at 25°C on an orbital shaker. 

After incubation, combined solutions were removed from the wells and washed 5 times 

with 300 µL of 1x wash buffer per well. After the last wash, emptied wells were tapped 

on absorbent pad or paper. One hundred µL of substrate solution was added to each well 

and incubated at 25°C for 30 min on an oscillate shaker. After incubation, 100µL of stop 

solution was added to each well. Results were read immediately on a microplate reader 

using 450nm as the target wavelength. Units of isoprostane content were designated as 

picogram/mL. 
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Sarcomere length 

 Sarcomere length was determined using the helium-neon laser diffraction method 

described by Cross et al. (1981) and Dolazza and Lorenzen (2014). A few flecks of 

powdered meat sample were placed on a clear glass microscopic slide. A single drop of 

0.25M sucrose solution was added to the slide and topped with a glass coverslip. The 

distance to the top of the slide from the base of the laser was 100mm. A sheet of paper 

was placed below the stand in order to mark the two diffraction bands. Six sarcomeres 

per sample were determined and sarcomere length (µm) was determined by the equation 

provided by Cross et al. (1981): 

Sarcomere length (µm) =  

$ =
0.6328	.	/0123

/ 4 + 1
2  

Where: 

0.6328 = 632.8 (the wavelength of the laser) x 10
-3

 

D = distance from specimen to diffraction pattern screen (100mm) 

T = spacing between diffraction bands (mm) 

 

Proximate composition 

 Moisture, fat, and ash (%) of raw meat samples were determine. Samples were 

measured in triplicate in Whatman #2 paper filter paper and fat was extracted with 

anhydrous ether. After identifying and recording weights of the folded filter papers with 

corresponding paper clips to hold packets closed, these were tared out and powdered 

meat samples (2 g) were weighed onto the filter paper and then closed with the paper 
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clip. Samples were then placed in a Soxhlet tubes and the boiling flasks were filled with 

400 mL of ether. Once in place, water was opened to ender the condensers and each 

individual burner was turned on. After 48 h, burners were turned off and allowed to cool 

completely. Samples were air-dried under a fume hood for 2 h, then placed in a drying 

oven (105°C) overnight prior to recording final dry weight. In order to calculate final fat 

percentage, the final equation was used: % Fat = ((Pre-extraction wet weight with filter 

paper and paper clip – Post-extraction dry sample weight)/sample weight) * 100) - % 

Moisture. Moisture and ash (%) were measured with a LECO Thermogravimetric 

Analyzer in duplicate (Model 604-100-400, LECO Corporation, St. Joseph, MI), see 

Appendix IV for information. Moisture was determined in nitrogen atmosphere with a 

start temperature of 25°C and an end temperature of 130°C (17 min ramp rate). Ash was 

determined in oxygen atmosphere with a start temperature of 130°C and an end 

temperature of 600°C (30 min ramp rate). Protein was determined by difference.  

 

Fatty acids 

 Fatty acid profiles were obtained via gas chromatography as described by (Folch 

et al., 1987). After extraction, lipids were converted to fatty acid methyl esters according 

to Morrison and Smith (1964) and Metcalfe et al. (1966). One g of powdered sample was 

homogenized with 5 mL of 2:1 chloroform: methanol and allowed to sit at room 

temperature (23°C) for 1 h. After, samples were filtered through Whatman #2 paper, 

brought up to a final volume of 10mL with 2:1 chloroform: methanol, and vortexed for 5 

s with 2mL of 0.74% KCl. Samples were centrifuged (1,000 x g for 5 min at 5°C) and the 

top layer was aspirated off. After centrifugation, samples were dried on a heating block at 
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60°C under nitrogen purge. Once dry, 1 mL of 0.5 M NaOH in methanol was added, 

vortexed (5 s), and again heated at 100°C for 10 min. One mL of 14% Boron Trifluoride 

in methanol (wt/vol) was added, vortexed (5 s), and again heated at 100°C, this time for 5 

min. Two mL of saturated salt solution and 2 mL of hexane was added and vortexed (5 

s). Samples were centrifuged (1,000 x g for 5 min at 5°C) and the hexane layer removed 

and analyzed using gas chromatography (TRACE 1310 Gas Chromatograph; 

ThermoFisher Scientific, Waltham, MA). Fatty acids were separated using a Chrompack 

CP-Sil 88 capillary column (0.25mm by 100mm; Inlet temp: 260°C, Oven: 140°C hold 

for 5 min, increase at 4°C/min to 240°C and hold for 15 min. FID temp: 280°C. Injected 

at 30:1 ratio) and identified based on their retention times compared to known 

commercial standards (NU-Check Prep, Inc., Elysian, MN; #GLC-68D, GLC-79, GLC-

87, GLC-455, and GLC-458). The percentage of fatty acids were determined by the peak 

areas in the chromatograph and values were converted to mg/100g tissue: Fatty acid 

mg/100g tissue = (% of fatty acid peak area * fat content of samples) * 100. 

 

pH analysis 

 Powdered sample from chops from all aging periods with 0 d RD were weighed 

out in 5 g duplicates into 250 mL plastic beakers and placed on a stir plate. Forty-five mL 

of distilled deionized water and a magnetic stir bar were added to ensure constant mixing 

during the measurement process. The pH was measured using a pH meter (Orion 

410Aplus: ThermoFisher Scientific; Waltham, MA) that was calibrated using 4.0, 7.0, 

10.0 standards. The mean measurement of the duplicates was utilized for all analysis. 
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Objective color and subjective color in simulated retail display 

 Objective color measurements were taken once daily for 7 days during simulated 

retail display at all aging time points. Chops (2.54 cm) were placed on Styrofoam trays 

(21.6 x 15.9 x 2.1 cm, Styro-Tech, Denver, CO), overwrapped with oxygen permeable 

film (Prime Source PSM 18 #75003815, Bunzl Processors Division, North Kansas City, 

MO), and placed under retail display conditions (3°C under white fluorescence lightening 

at 1,000 to 1,800 lux). Commission international de l’éclairage (CIE) L* a* b* values 

were obtained using a Minolta CR-400 colorimeter (Minolta, Osaka, Japan) set with a 

D65 illuminant, 2°C, with an 8 mm diameter measurement area. Three measurements 

were made per chop and the mean was calculated for statistical analysis. The colorimeter 

was calibrated daily with a white ceramic tile (Calibration Plate, Serial No. 14933058, 

Konica Minolta, Japan). Lightness (L*) is measured with a range from 0 (black) to 100 

(white), a* measures redness with the range between red (positive) and green (negative), 

and b* is a measure of yellowness from yellow (positive) to blue (negative). Color 

readings were recorded at the same time each day. 

 Visual discoloration was assessed daily during the 7 d of RD utilizing 5 trained 

panelists comprised of graduate students from the University of Nebraska. Panelists were 

trained using a standardized discoloration guide (Appendix VI). Discoloration % was 

approximated from 0% to 100% with 0% meaning no discoloration present and 100% 

being a fully discolored chop. Chops were randomly rotated daily to minimize location 

effects. 
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Lipid oxidation (TBARS) 

 Lipid oxidation was determined using thiobarbaturic acid reactive substances 

values (TBARS) for all aging periods at 0 and 7 d RD described (Ahn et al., 1998). Five 

grams of powdered meat were placed into a 50 mL conical tube to which 14 mL of 

distilled deionized water were added and 1 mL of butylated hydroxyanisole (BHA) 

solution (10% BHA: 90% ethanol). Samples were homogenized using a Polytron 

(POLYTRON Kinimatica CH-6010, Switzerland) for 15 s at medium to high speed. 

The samples were centrifuged (2,000 x g for 5 min at 10°C) and one mL of supernatant 

was transferred into a 15 mL conical tube with 2 mL of 2,4,6-tribromoanisole (TBA) 

2,4,6-tricholoroanisole (TCA) solution (15% and 20 mM TBA in deionized distilled 

water). Tubes were then placed in a 70°C water bath for 30 min. After 30 min, tubes were 

cooled for at least 10 min in a water bath (22°C) and centrifuged (2,000 x g for 15 min at 

10°C). Two hundred µL of supernatant was transferred to a 96-well plate in duplicate 

(Microtest III sterile 96 well flat-bottomed microplate; Becton Dickinson & Company, 

Lincoln Park, NJ). Absorbance values were then read at 540 nm using a microplate 

spectrophotometer and compared to known standards (Model Epoch Biotek, Winooski, 

VT). Results were expressed in mg of malonaldehyde per kg of tissue. 

 

Statistical analysis 

 Statistical analysis was conducted with SAS (version 9.4, Cary, NC). Objective 

and subjective color data were analyzed as a split-plot repeated measures design with 

treatment as the whole-plot, aging period as the split-plot and retail display as the 

repeated measures. Tenderness, troponin t, desmin, calcium, and pH were analyzed as a 
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spilt-plot design with treatment as the whole-plot and aging period as the split-plot. Lipid 

oxidation, free thiols and carbonyls were a split-split-plot design with treatment as the 

whole plot, aging period as the split-plot and retail display time as the split-split-plot. 

Transcriptomics, sarcomere length, fatty acids, cytochrome c, and isoprostanes were 

analyzed as a completely randomized design. Data were analyzed using the PROC 

GLIMMIX procedure of SAS and animal was the experimental unit. Correlations were 

evaluated using the PROC CORR procedure of SAS across all postmortem analyses. All 

means comparing within aging periods were separated using SLICE function in SAS. All 

means were separated using the LS MEANS statement with an � level of 0.05 and 

tendencies were considered at an � level of 0.10. 

 

Results 

Rectal temperatures 

 In this study, treatment had a significant effect (P < 0.05) on rectal temperatures 

of lambs (Figure 1), and a time effect (P < 0.05) was identified. Lambs administered 

LPS50 and LPS100 had significantly greater (P < 0.05) rectal temperatures than lambs 

administered the saline control. Additionally, LPS-treated lambs exhibiting the greatest 

increase in rectal temperature at 1, 2, and 4 hours post-injection, with a numerically 

greater rectal temperature in LPS100 treated lambs compared to LPS50 at each timepoint 

listed. These results are in agreement with Yates et al. (2011), who found LPS treatments 

to consistently increase rectal temperatures and peak at 4 hours post-injection, followed 

by a steady decline to basal temperature around 24 hours.  
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Transcriptomics 

 Considering all transcripts with differential expression (Praw<0.05), pathway 

analyses identified 68 conical pathways altered due to treatments. Transcriptomics 

pathway analyses are illustrated in Figure 2, with total change in gene turnover expressed 

as negative log (-log). Additionally, all significant (P < 0.05) pathways are expressed by 

a color-treatment directionality (Orange = LPS100; Blue = Control), with increased level 

of standard deviations (z-score) shown by an increase in the intensity of the respective 

colors. In the LPS100-treated samples, genes with evidence of dysregulation due to 

treatment were found in pathways that predicted an upregulation of genes responsible for 

cellular biosynthesis, oxidative stress generation, cellular defense systems, nucleic acid 

alteration, and skeletal muscle function. 

 

Tenderness  

Warner-Bratzler Shear Force (WBSF) for lambs across treatment and aging are 

shown in Figure 3. A significant aging effect (P < 0.0001) was identified across aging 

periods, along with a trend (P = 0.10) found across treatments. No aging time-by 

treatment interaction (P = 0.13) was seen.  

A significant aging effect (P < 0.0001) was found, as 1 day-aged chops exhibited 

greater WBSF compared to 14 day-aged chops (7.31kg and 2.52kg, respectively). 

Treatment tended to affect WBSF (P = 0.10), as chops from lambs administered LPS50 

had lower shear force values compared to chops from lambs administered saline 

(Control) (4.51kg and 5.41kg, respectively), with no differences in shear force values 

between LPS100 and Control. No aging-time-by-treatment interaction (P = 0.13) was 
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seen. Interestingly, chops from lambs administered LPS50 had noticeably lower WBSF 

compared to Control (6.59kg and 8.06kg, respectively) within 1 d aging. There were no 

differences (P > 0.05) in tenderness between LPS100 and Control among aging periods, 

however, chops from lambs administered LPS100 had numerically lower shear force 

values than Control at 1 day of aging (7.27 kg and 8.06 kg, respectively). Chops aged for 

14 days did not differ in WBSF across treatments (P > 0.05). 

 

Troponin T 

 After 1 day postmortem, a treatment effect was found (P = 0.02), with LPS50 

samples having significantly greater percent troponin-T degradation compared to Control 

and LPS100 (Figure 4) (10.32%, 6.85%, and 6.24%, respectively). No differences in 

degradation were seen at 14 days postmortem. A significant aging effect (P < 0.0001) 

was found, as 1 day-aged chops exhibited less troponin-T degradation compared to 14 

day-aged chops. There was no aging time-by-treatment effect (P > 0.05). It is interesting, 

however, that chops from lambs treated with LPS50 had numerically greater degradation 

compared to Control and LPS100 at both 1-day aging and 14-day aging. These results 

parallel the WBSF data.   

 

Desmin 

In this study, a significant aging effect was found (P < 0.0001), as 1-day aged 

chops exhibited less percent desmin degradation compared to 14-day aged chops (3.57% 

and 50.6%, respectively; Figure 5). An aging-by treatment effect trend (P = 0.08) was 

found. Within 1-day aging, no differences (P > 0.05) were found across treatments. 
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However, both Control and LPS100 tended (P = 0.10) to be greater in percent 

degradation compared to LPS50 at 14-days aging (55.02%, 54.94%, and 41.73%, 

respectively). 

 

Free calcium concentration 

Free calcium concentration for samples across treatments and aging are shown in Table 1. 

An aging effect was shown for free calcium, as 14 day-aged samples had notably higher 

(P < 0.0001) free (sarcoplasmic) calcium compared to 1 day-aged samples. No 

differences (P > 0.05) were found across treatments. 

 

Isoprostanes 

 There were no differences (P = 0.21) across treatments for F2-isoprostane content 

(Figure 6). Interestingly, LPS50 and LPS100 treated samples had numerically greater 

total F2-isoprostane content compared to Control chops (239.51 pg/mL, 219.95 pg/mL, 

165.51 pg/mL, respectively). 

 

Sarcomere length 

 No differences in sarcomere length among treatments were observed (P = 0.70; 

Figure 7). Similar results were found by Starkey et al. (2015) who reported  postmortem 

sarcomere lengths of 1.77 $m in lamb longissimus muscle.  
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Proximate analysis 

 In this study, treatment had no effect (P ≥ 0.31) on proximate composition of 1 d 

aged chops (Table 2). The mean values for the proximate composition were: 75.35% 

moisture, 14.49% protein, 8.49% fat, 1.67% ash.  

 

Fatty acids 

 There were no differences (P ≥ 0.21) found in amount of saturated fatty acids, 

monounsaturated fatty acids, polyunsaturated fatty acids, or trans fats, 

saturated:unsaturated ratio, along with no differences (P > 0.05) in any individual fatty 

acids identified (Table 3). 

 

pH 

 Data for pH across treatment and aging in lamb chops are exhibited in Figure 8. 

There was no treatment effect for pH (P > 0.05), regardless of aging period. An aging 

effect was found for pH (P < 0.0001), as 14 day-aged chops had a greater pH (5.87) 

compared to 1 day-aged chops (5.71). However, the average difference in values are 

likely of little practical significance. There was no treatment by aging interaction (P = 

.7621). 

 

Color (objective) 

Color values are shown in Table 4. A days of aging-by-retail display interaction 

was detected (P < 0.05) for all color measures. In general, L* values increased and a* and 

b* values decreased as aging and retail display increased, regardless of treatment. 
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L* values were statistically different (P = 0.0017) among dietary treatments. 

Regardless of days of aging and retail display, L* values were greater (lighter color) in 

LPS100 compared to Control treatments (45.97 and 44.37, respectively). Chops from the 

LPS50 treatment was not different from the other treatments. There were no days of 

aging-by-treatment interaction for L* values (P > 0.05).  

There was a days of aging-by treatment effect (P = 0.0008) in a* (redness) values. 

Regardless of retail display, chops from Control lambs exhibited the lowest a* value 

across treatments at 14 days of aging, with no difference when comparing LPS50 and 

LPS100 (15, 16.01, and 15.70, respectively). There were no significant differences found 

for a* at 1 day of aging. Concurrently, an age-by-treatment effect (P = 0.02) was 

observed in b* values. Within 1 day of aging, meat from lambs treated with LPS50 

exhibited (P < 0.05) the highest b* values compared to all other treatments. There were 

no significant differences at 14 days of aging. However, chops from lambs treated with 

LPS100 exhibited the highest b* values compared to all other treatments. 

 

Discoloration 

As expected, percent discoloration of chops increased (P < 0.0001) as days of 

retail display increased (Table 5). A days of aging-by-treatment effect was shown in 

Table 4 (P = 0.02). Chops from Control lambs clearly had the most discoloration across 

all treatments at 14 days of aging (P < 0.05). There were no differences among treatments 

at 1 day of aging. 
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Thiobarbaturic acid reactive substances 

No differences (P > 0.05) in treatment were identified (Table 6). As days of retail 

display increased, lipid oxidation (mg malonaldehyde) also increased (P < 0.0001). A 

days of aging tendency was found, as 14 day-aged chops tended (P = 0.06) to have more 

malonaldehyde content compared to 1 day-aged chops (2.26 mg and 1.65 mg 

malonaldehyde, respectively). While not significant (P = 0.17), chops aged for 14 days 

with 7 days of retail display (14-7) had the greatest TBARS values compared with all 

other age-by-retail display combinations (14-7: 4.08; 1-7: 3.03; 14-0: 0.44; 1-0: 0.27, mg 

malonaldehyde). 

 

R
2
 Correlations 

 Significant correlations (P < 0.05) were found in analyses comparing analyses 

relevant to tenderness, including WBSF and calcium, WBSF and pH, and calcium and pH 

(Table 6). Additionally, there were significant correlations among analyses related to 

oxidative potential, including TBARS and pH, TBARS and calcium, and calcium and pH. 

Interestingly, there were significant correlations found between isoprostanes content and 

early postmortem tenderness measurements, including WBSF and desmin. Additionally, 

statistical trends (P < 0.10) were found in comparisons relating tenderness attributes, 

including positive comparisons across WBSF, desmin, calcium, troponin T, and 

sarcomere length. 
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Discussion 

LPS treatment and oxidative response mechanisms 

 This research explored the relationship between oxidative stress response via LPS 

exposure, and the subsequent impacts of oxidative processes on meat quality. There is a 

wide variety of commercially-available LPS preparations and the type of LPS used in an 

analysis dictates the degree of physiological stress induced. Therefore, effects due to LPS 

treatment and its impact on oxidative stress are rather complex (Suliman et al., 2004). 

Lipopolysaccharides are covalently-bound lipids derived from the outermost membrane 

of many gram-negative bacterium (Escherichia coli).  Acting as an endotoxin, LPS 

promotes an acute inflammatory response (Sternberg, 2007; Powers et al., 2011). As a 

result, innate immune response mechanisms are activated, such as nuclear factor kappa-

light-chain-enhancer of activated B cells (NF�B), start transcription of pro-inflammatory 

cytokines interleukin-1� (IL-1), interleukin-6 (IL-6), and tumor necrosis factor-� (TNF-

	�) (Halawa et al., 2013). Similar to hormones like cortisol, cytokines are broad proteins 

which function for cellular signaling of homeostatic mechanisms during biological stress. 

Given the complexity of oxidative stress in vivo, administration of 

lipopolysaccharides provided a dose dependent method to quantitatively induce oxidative 

stress to monitor response factors. The LPS model (O111:B4) promoted a quick 

inflammatory response in vivo, as indicated by the rapid change in rectal temperatures of 

lambs (Yates et al., 2011). Under conditions of high LPS concentration, production of 

pro-inflammatory mediators such as ROS are produced as a result of LPS toxicity, 

inducing oxidative stress and altering composition of muscle cells, including apoptotic 

mechanisms (Suliman et al., 2004). While recent literature (Niu et al., 2016) has used 
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LPS as a means to generate oxidative stress and influence meat quality, the impact of 

reintroducing LPS every 72 hours in an immune challenge, as our study performed, has 

yet to be determined. We postulated that the constant reintroduction of an oxidative 

promoter would provide a basal level of oxidative stress prior to harvest, replicating the 

effects of conditions linked as potential oxidative promoters in livestock production 

systems (e.g., genetics, diet, environment, handling, etc.) which contribute to final meat 

quality. 

 In addition, the development of ROS can impact gene expression in muscle cells, 

promoting changes in cell proliferation, differentiation, function, and turnover. Using 

proteomic analysis, Malheiros et al. (2019) observed greater damage from oxidative 

stress in tender beef, compared to tough beef. The proteomic profile identified oxidation 

to antioxidant enzymes, heat shock proteins, and structural proteins, suggesting that 

biochemical changes within muscle induced by oxidative stress prior to harvest can 

impact meat tenderness. In the present study, transcriptomics was utilized to evaluate 

changes in RNA transcripts among samples induced by a LPS challenge. Lambs 

administered LPS100 exhibited an upregulation of genes related to stress response 

pathways compared to the Control. This was evident by the gross changes in systematic 

pathways responsible for cell biosynthesis and turnover (ILK, Ceramide, IGF-1, PI3K, 

EGF, ERK5). These pathways are predominantly involved in cellular metabolism, 

proliferation, differentiation, protein transfer, and cell signaling. Interestingly, certain 

pathways act as hybrid models, both acting for cell biosynthesis but have secondary 

functions to inhibit apoptosis (PI3K). This is rational, as a biological system that has 

undergone biological stress would endure cellular damage, and thus need mechanisms to 
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repair, grow, and reinforce new cellular structures, organelles, and signaling mechanisms. 

Conversely, Control samples also upregulated certain biosynthesis pathways (cAMP, 

ErbB2-ErbB3) compared to LPS100 samples, as homeostatic maintenance of cells 

requires continuous cellular turnover. It is noteworthy that genes upregulated in LPS100-

treated lambs included those responsible high levels of cellular growth and 

differentiation, suggesting they can account for increased cellular turnover as a result of 

acute biological disruption. Additionally, LPS-treated lambs expressed nucleic-related 

proteins (HMGB1, Telomerase, Unfolded Protein, EIF2, Neurotrophin/TRK, JAK/Stat, 

3-phosphoinositide). These proteins are responsible for the modification and development 

of chromosomes, chromatin function, and regulation of protein transcription, some of 

which are also capable of inducing cytokine signaling (JAK/Stat, HMGB1). In particular, 

any nucleic damage as a result of oxidative stress merits the degradation (Unfolded 

protein) of damaged proteins and renewal of nucleic information. Most notably, LPS-

treated samples identified oxidative stress-related genes, all of which act for cellular 

oxidative response mechanisms (IL-6, IL-8, IL-3, NRF2, Chemokine), stress signaling 

(p38 MAPK, CXCR, TNFR-2, and Sumoylation), or autophagic initiation. Although 

overall statistical significance was fairly liberal (P < 0.05), the increased upregulation of 

systematic processes in response to LPS treatment in this study validates that oxidative 

stress was generated within our test subjects, allowing stress response systems to be 

evaluated.   

Oxidative stress changed mRNA related to muscular function and development. 

In particular, LPS-treated samples exhibited an upregulation of NO/ROS generation in 

macrophages, neuromuscular signaling between neurons and myofibrils (Agrin), and 
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alterations in messenger molecules used to selectively block epithelial calcium channels 

(D-myo-inositol tetrakiphosphate biosynthesis pathways). This implies the induction of 

oxidative stress not only generated ROS, but also upregulated different proteins 

responsible for inhibition of calcium regulation. From the perspective of muscle 

contraction and early postmortem tenderization, these factors hold tremendous 

implications on the development of muscle function by neuromuscular signaling in vivo 

in addition to enzymatic action in post-rigor muscle tissue. Interestingly, genes 

upregulated in Control samples presented the opposite impact on muscle tissue. 

Specifically, an increase in calcium signaling was found, suggesting that a homeostatic 

environment facilitates increased availability of calcium release in myocytes. 

Additionally, an increase in PPAR�/RXR�, responsible for glucose and lipid 

metabolism, were identified in Control lambs. Lastly, eNOS signaling was upregulated in 

Control samples, reflecting support of endothelial homeostasis within the lining of blood 

vessels, in addition to maintenance of blood flow. Perhaps eNOS acts on mitochondrial 

biogenesis and fission within homeostatic environments (Tengan et al., 2012). This is 

plausible, as an increase in oxidative stress would induce mitophagy rather than 

mitochondrial fission. In total, these measures help to validate the presence of oxidative 

stress within our experiment, as well as identifying subsequent mechanisms which act in 

response to oxidative stress.  

When discussing oxidative products, evaluation of biomarkers (isoprostanes) have 

recently been used as a measure of downstream products due to oxidative stress. F2-

isoprostanes are the family of prostaglandin-like compounds formed by non-enzymatic, 

free-radical oxidation of arachidonic acid (20:4) by reactive oxygen species. Due to an 
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integrated mechanism required to produce isoprostanes, its generation is contingent on 

ROS-mediated oxidation (Lawson et al., 1999; Milne et al., 2011). Generated during lipid 

peroxidation, F2-isoprostanes are produced as esterified fatty acid form in phospholipids 

membranes, and then released using phospholipase action (Montuschi et al., 2004). 

Compared to other oxidative products, F2-isoprostanes are very stable compounds that are 

detectable in all normal biological fluids and tissues. It is common to sample muscle 

biopsies or anoxic muscle tissue for isoprostane content, as the lack of blood present 

prevents F2-isoprostanes to be transferred and metabolized in blood. Given the 

relationship between isoprostane generation and oxidative stress activity, detection of this 

molecule is regarded as the standard for evaluating oxidative stress. Isoprostanes has 

been linked to oxidative stress in animals due to its evaluation across a multitude of 

treatments speculated to influence oxidative stress in vivo, such as exercise Karamouzis 

et al. (2004). Ponnampalam et al. 2017) theorized the change in isoprostanes as an in vivo 

indicator of meat quality deterioration postmortem (in vitro). Using blood samples, they 

detected an increase in plasma of 8-isoprostane PGF2� levels, with the feedlot diet 

exhibiting the greatest concentration at 4 and 8 weeks of feeding trials. This is due to 

both the increase in energy content of diets, but also the amount of �-tocopherol content 

increased in roughage-based diets (ryegrass, lucerne). Concurrently, positive correlations 

between 8-isoprostane PGF2� levels and lipid oxidation (malonaldehyde content) were 

found. Interestingly, positive correlations between 8-isoprostane PGF2� levels and both 

arachidonic (20:4) and linolenic (18:2n-6) acid were discovered. This supports Milne et 

al. (2011) on how F2-isoprostanes can potentially be generated from other PUFAs 

[eicosapentaenoic acid (20:5n-3), adrenic acid (22:4n-6), and docosahexaenoic acid 
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(22:6n-3)] due to the orientation of their double bonds, but the knowledge on these fatty 

acids being able to generate F2-isoprostanes is not fully understood. As a result, the 

generation of F2-isoprostanes is an excellent marker for in vivo oxidative damage as a 

result of oxidative stress. Given our results, we did not find statistical evidence between 

Control and LPS treated samples. However, it is noted that LPS50 and LPS100 treated 

samples have noticeably greater isoprostane content compared to the control (~ 44.7% 

and 32.9% greater content, respectively). In conjunction with changes in RNA transcripts 

for genetic pathways, this supports our hypothesis that the presence of increased in vivo 

oxidative stress occurred in LPS treated samples. 

 

Oxidative stress and meat tenderness  

Tenderness is recognized as one of the most important factors for consumer 

palatability and repurchasing of meat (Koohmaraie and Geesink, 2006; Kemp et al., 

2010). Subtle variations (~0.5 kg) in tenderness within muscles have been shown to 

greatly influence consumer likeness to different retail products (Martinez et al., 2017). 

While marbling acts as an indicator of tenderness (Emerson et al., 2013), a complete 

understanding of the biological mechanism of this relationship is not known.  Such 

knowledge might be used to induce and increase the rate or extent of tenderization in 

meat. Oxidative stress has been linked to factors influencing meat quality, as oxidative 

stress has been suggested to impact organelles linked to normal muscle function and 

promote cellular turnover via apoptotic mechanisms (Stamler and Meissner, 2001; Kagan 

et al., 2009; Bolisetty and Jaimes, 2013). It has been postulated oxidative stress alters 

proteins responsible for muscle structure, color stability, and organelle components 
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interconnected with proteolytic mechanisms. As a result, oxidative stress could influence 

the degree of postmortem tenderization, and greatly impacting both product quality and 

consumer palatability (Ott et al., 2007; Mitacek et al., 2019; Xing et al., 2019). 

This study’s statistical evidence is not sufficient to claim LPS decreased WBSF. 

However, a tendency (P = 0.10) has been shown that LPS impacts tenderness of 

longissimus muscle early postmortem, as indicated by numerical differences in shear 

force at 1 day of aging. This tendency in early postmortem tenderization is reflected in 

the troponin-T degradation. Lonergan et al. (2001) indicated that degradation of troponin-

T early postmortem (~2 days) could be used as a consistent indicator of proteolysis and 

muscle tenderness throughout muscle aging time up to 14 days aging. The action of 

oxidative stress catalyzes apoptotic events, possibly upregulating enzymatic degradation 

of proteins such as troponin-T (Sierra and Olivan, 2013). The experiment found a 

statistical increase in troponin-T degradation at 1 day postmortem for LPS50 samples, but 

not for LPS100 samples. Our analysis suggests that early postmortem degradation of 

troponin-T can be impacted under certain conditions of increased oxidative stress, 

influencing shear force and overall tenderness of meat. While these data are promising 

when hypothesizing an oxidative stress – tenderness relationship, no differences were 

observed for additional components typically used to explain meat tenderness differences 

(desmin, free calcium, sarcomere length, pH, proximate analysis).  

It appears a lower level of oxidative stress induced by LPS50 was associated with 

lower shear force values compared to Control and LPS100 treatments. The statistical 

differences in troponin-T degradation at 1 day aging would support this change in WBSF 

early postmortem. Using much higher doses of LPS (3-6mg/kg) in poultry, Niu et al. 
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(2016) found greater WBSF in 1 day-aged samples than controls. In addition, the 

significant correlations found oxidative stress biomarkers (isoprostanes) to be positively 

associated with early postmortem tenderness and proteolytic degradation. Given this 

information, an argument can be made that different levels of LPS-mediated 

inflammation can induce different degrees of metabolic response across livestock species 

and therefore alter the impact on meat tenderness.  

The influence of oxidative stress on meat is likely dependent on the timeframe in 

which samples are exposed to an oxidative stress promoter. From the literature, 

tenderness has been examined from samples administered oxidative stress pre- and 

postmortem. Cook et al. (1998) and (Wang et al., 2018) found lower shear force values 

when injecting pre-rigor longissimus muscle with nitric oxide promoters and H2O2 

solution, respectively. It can be postulated that the overwhelming increase in reactive 

species exhausted antioxidant systems, and initiated expression of pro-apoptotic 

mechanisms (Bax, Bcl-2) responsible for organelle instability and mitophagy. 

Concomitantly, the degradation of organelle stability promotes efflux of molecular ions 

bound within organelles (cytochrome c), which facilitate calcium-dependent enzymatic 

degradation of proteins. Cottrell et al. (2008) identified increased tenderness in 

longissimus muscle when lambs were induced with nitric oxide inhibitors pre-slaughter. 

However, the same parameters resulted in higher shear force (less tender) values in 

semitendinosus samples. Suster et al. (2005) reported increasing the time to inject nitric 

oxide inhibitors prior to slaughter caused lower shear forces in both longissimus and 

semitendinosus muscles. These values paralleled increased myofibrillar fragmentation, an 

indicator of tenderness/proteolysis. Both experiments examined specific reactive species 
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in response to meat quality. Warner et al. (2005) postulated reactive nitrogen species 

(RNS), when working in concert with reactive oxygen species (ROS), can generate 

highly radical compounds capable of disrupting proteins responsible for organelle 

function pertinent to postmortem tenderization.  

From this analysis, a multitude of parameters were examined which could 

influence oxidative stress. Factors such as metabolizable energy in animal diets, fatty acid 

composition, and structure of muscle fibers have all been implicated to impact meat 

tenderness, with evidence suggesting that oxidative stress may accentuate changes in 

meat quality by altering these factors (Chauhan et al., 2016; Starkey et al., 2016; Ribeiro 

et al., 2019). These assays were conducted to ensure there were no confounding factors 

with oxidative stress when assessing the impact on tenderness. 

The results from this study suggest that LPS-mediated oxidative stress has the 

potential to model increased early postmortem tenderness, which is likely due to the 

intricate relationship between the prolonged generation of oxidative stress and in vivo 

alterations amongst biological mechanisms responsible for muscle tenderization within 

the myofibril postmortem. We speculate a few possible parameters responsible for 

oxidative stress impact on meat tenderness, including the duration of oxidative stress in 

vivo and degree of oxidative stress induced by the concentration of oxidative stress 

promoter, as shown in this experiment. Additionally, the isolation and analysis of 

individual muscles, as well as any additional extrinsic conditions used in normal 

management strategies which could promote oxidative stress, such as diet, temperature, 

exercise, or genetic selection of livestock. All of these conditions have been used in the 

literature as conditions to evaluate the impact of oxidative stress on meat quality. 
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However, the degree in which they manufacture oxidative stress in vivo is likely variable. 

Given the complexity of oxidative stress, it was valuable for our experiment to utilize a 

system to induce a controlled amount of oxidative stress, while elimination of 

confounding variables which could impact meat quality. 

 

Oxidative stress and stability of color and lipids (pH, isoprostanes) 

Given the degree of biological stressors produced during oxidative stress, it is 

critical to evaluate conditions which are detrimental to meat quality (Xing et al., 2019). 

Muscle pH was not greatly influenced by LPS treatment, suggesting our treatments did 

not generate sufficient stress to exhaust glycogen supplies and increase ultimate pH in 

meat.  Additionally, neither lipid nor protein oxidation were affected by LPS treatment. 

Correlation coefficients reinforced the relationship of lipid oxidation and pH, with some 

indication that lipid oxidation can coincide with increased proteolysis (troponin T, 

calcium). These data, along with color values, indicate that oxidative stress measures 

used were not detrimental towards color stability or lipid oxidation. With regards to our 

experiment, oxidative stress-induced samples tended to maintain color stability, 

exhibiting sustained redness (a*) and increased lightness (L*) in LPS treated chops 

compared to Control samples. This is supported by noticeably less discoloration in LPS-

treated lamb chops after aging. Oxidative stress damage was not supported by lipid 

oxidation, as there were no noticeable changes in malonaldehyde content. Interestingly, a 

numerical increase in oxidative biomarker (8-isoprostanes) content was seen in the 

absence of lipid oxidative differences, suggesting that oxidative stress occurred in greater 

capacity in LPS-treated lambs, but not to a degree to promote detrimental effects on lipid 
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oxidation. This observation conflicts with (Mitacek et al., 2019), as prolonged aging 

promoted mitochondrial degeneration, depletion of  color reducing enzymes, and 

decreased color stability in their study. 

 

Conclusion 

In conclusion, lipopolysaccharide-mediated oxidative stress triggered the onset of 

biochemical pathways responsible for muscle composition, proliferation, sustainability, 

and apoptotic mechanisms related to meat quality. Although there were few statistical 

differences in factors contributing to meat tenderization caused by LPS treatment, there 

was a trend that showed lambs subjected to lipopolysaccharides had lower shear force 

values early postmortem compared to the saline control group. These findings could be 

the result of greater proteolysis of troponin-T early postmortem in chops from lambs 

administered LPS50. While there were no detriments in lipid oxidation and color 

stability, the change in isoprostane content could indicate the increase in apoptotic 

mechanisms in vivo, increasing oxidative mechanisms taking place early postmortem, 

resulting in the onset of apoptotic and proteolytic events responsible for enhanced 

tenderness in aged meat. 
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Tables 

Table 1. Free calcium concentration ($&) of chops (L. lumborum) aged for 1 and 14 days 

from lambs administered saline control (0), 50, or 100ng/kg bodyweight of LPS. (n=29) 
   

µM Ca2+/µg mitochondrial protein 

Age   P-value 

  1 14 SEM Trt Age Trt x Age 

Control 46.72b 108.02a 4.2274 0.4955 <0.0001 0.88 

LPS50 40.70b 104.51a 4.456 

LPS100 43.63b 103.12a 4.2272       
 
a-b

Within a row, means without a common superscript differ at P < 0.0001 
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Table 2. Proximate Composition of lamb chops aged for 1 day from lambs administered 

saline control (0), 50, or 100 ng/kg bodyweight of LPS. (n=29) 

 

 

 

 

Proximate Composition 

 
Fat (%) Moisture (%) Ash (%) Protein (%) 

Control 8.18 75.1 1.59 15.13 

LPS50 8.29 75.51 1.77 14.43 

LPS100 8.99 75.45 1.66 13.91 

SEM 0.98 0.198 0.095 0.989 

P-value 0.8174 0.3134 0.4442 0.6828 
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Table 3. Amount
1
 of Fatty Acids from lamb chops (L. lumborum) aged for 1 day from 

lambs administered saline control (0), 50, or 100ng/kg bodyweight of LPS. (n=29) 

          

Dietary Treatments 

Fatty Acid Control LPS50 LPS100 P-value 

C 10:0 2.8 2.96 2.8 0.5146 

C 12:0 8.11 4.71 9.08 0.549 

C 13:0 1.41 0.96 0.002 0.5844 

C 14:0 181.12 183.25 213.03 0.6693 

C 14:1 14.54 13.17 16.72 0.7083 

C 15:0 38.15 33.03 40.04 0.5734 

C 15:1 72.22 64.09 63.96 0.8796 

C 16:0 1754.75 1786.67 1980.12 0.7341 

C 16: 1T 30.31 21.73 31.14 0.2356 

C 16:1 152.23 149.3 182.38 0.442 

C 17:0 156.03 134.15 151.33 0.6655 

C 17:1 174.3 151.26 173.56 0.703 

C 18:0 1099.64 1111.18 1117.99 0.9944 

C 18:1T 308.13 293.64 352.97 0.6015 

C 18:1 3195.42 3282.1 3543.1 0.7905 

C 18:1V 117.31 125.53 139.87 0.5919 

C 18:2T 26.38 30.49 34.56 0.3524 

C 18:2 493.34 547.45 584.04 0.6917 

C 18: 3w3 15.77 20.04 22.23 0.218 

C 18: 3w6 5.82 6.72 6.99 0.7998 

C 19:0 6.63 3.98 4.54 0.6645 

C 20:0 0.87 0.52 5.55E-17 0.4054 

C 20:1 35.2 36.45 37.92 0.9419 

C 20:2 12.62 12.88 9.48 0.6035 

C 20: 4w6 170.12 175.81 166.74 0.9781 

C 20:5 0.53 1.2 2.78E-18 0.5108 

C 22:0 10.92 11.34 9.97 0.8824 

C 22:5 13.64 14.1 14.71 0.9647 

C 22:6 0 1.09 0 0.3413 

C 24:0 19.96 19.59 18.83 0.9686 

C 24:1 0 1.64 3.33E-18 0.3413 

     
Total 8126.97 8249.87 8940.64 0.8164 

SFA 32889.07 3301.18 3560.29 0.8603 
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MUFA 4099.67 4138.91 4541.61 0.7737 

PUFA 738.23 809.78 838.74 0.8157 

Trans 364.82 345.86 418.67 0.5457 

 
1
Amount (mg/100 g tissue) of fatty acid in powdered loin samples determined by gas 

chromatography 
2
C16:1T: Palmitoleic acid; C18:1T: Elaidic acid; C18:1V: Vaccenic acid; C18:2T: Linolelaidic 

acid; C 18:3w3: �-Linolenic acid; C 18:3w6: :-Linolenic acid; C 20:4w6: Arachidonic acid ;SFA: 

Saturated Fatty Acids; MUFA: Monounsaturated Fatty Acids; PUFA: Polyunsaturated Fatty Acids 
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Table 4. Objective color (L*, a*, b*) and Discoloration (%) of chops (L. lumborum) aged 

for 1 and 14 days from lambs administered saline control (0), 50, or 100 ng/kg 

bodyweight of LPS. (n=29). 

 

   

    Treatment   P-value 

Measure Age Control LPS50 LPS100   Trt Age Trt x Age 

L* 
1 44.37 45.47 45.92 

 

0.0017 0.68 0.92 
14 44.36 45.73 46.06 

 

      
Mean   44.37b 45.6ab 45.97a   

a* 
1 13.70a 13.67a 13.31a 

 0.01 <.0001 0.0008 
14 15.00b 16.01a 15.7a   

b* 
1 6.93c 8.20a 7.39bc 

 0.12 0.12 0.02 
14 7.88a 7.55a 8.04a   

Discoloration 
1 7.81a 3.34a 9.27a 

 0.35 0.22 0.02 
14 16.43a 3.32b 5.58b   

  

 
a-c

Means within the same row for a single traint are different (P < 0.05) 
a-b

Overall means within the same row for a single measure different superscripts are different (P < 0.05) 

L*: SEM Control (0) = 0.2747; SEM LPS50 = 0.55; SEM LPS100 = 0.3256 

a*: SEM Control (0) = 0.1611; SEM LPS50 = 0.1698; SEM LPS100 = 0.1611 

b*: SEM Control (0) = 0.1788; SEM LPS50 = 0.3435; SEM LPS100 = 0.2066 

Discoloration: SEM Control (0) = 1.2415; SEM LPS50 = 1.3086; SEM LPS100 = 1.2415 
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Table 5. Percent Discoloration (%) across retail display. 

                    

Day 0 1 2 3 4 5 6 7 P-value 

Discoloration 

% 
0.03e 0.13e 0.57de 1.67de 4.41d 9.95c 18.66b 27.64a 

<0.0001 
 

a-e
Means denote significance between day (P < 0.05), SEM Day = 1.4598 
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Figures 

Legend 

 

Figure 1. Rectal Temperatures of lambs administered intravenous injections of Control, 

LPS50, or LPS100. Superscripts denote statistical differences (P < 0.05) within day. 

 

Figure 2. Transcriptomics expressed by Conical Pathways in Con vs 100ng LPS treated 

lambs. P-values for negative logarithmic (-log) expression set for (Praw < 0.05). 

 

Figure 3. Warner-Bratzler shear force (WBSF) of chops (L. lumborum) from lambs 

administered Control, LPS50, or LPS100. Superscripts within the same aging period are 

different (P=0.10 Day 1: SEM Control = 0.3694, SEM LPS50 = 0.3894, SEM LPS100 = 

0.3694; P = 0.90 Day 14: SEM Control = 0.1264, SEM LPS50 = 0.1332, SEM LPS100 = 

0.1264) 

 

Figure 4. Troponin-T degradation of chops (L. lumborum) aged 1 and 14 days from 

lambs administered Control, LPS50, or LPS100. Superscripts within the same aging 

period are different (P = 0.02 Day 1: SEM Control = 1.02, SEM LPS50 = 1.08, SEM 

LPS100 = 1.02; P = 0.78 Day 14: SEM Control = 7.90, SEM LPS50 = 8.33, SEM LPS100 

= 7.90) 

 

Figure 5. Desmin degradation of chops (L. lumborum) aged 1 and 14 days from lambs 

administered Control, LPS50, or LPS100. Superscripts within the same aging period are 

different (P = 0.85 Day 1: SEM Control = 1.41, SEM LPS50 = 1.49, SEM LPS100 = 1.41; 

P = 0.10 Day 14: SEM Control = 4.66, SEM LPS50 = 4.92, SEM LPS100 = 4.66) 

 

Figure 6. Total F2-8 isoprostanes content of chops (L. lumborum) aged 1 day from lambs 

administered Control, LPS50, or LPS100. (P = 0.2053); SEM Control = 29.0413, SEM 

LPS50 = 30.6122, SEM LPS100 = 29.0413) 

 

Figure 7. Sarcomere Length of lamb chops (L. lumborum) aged for 1 day from lambs 

administered Control, LPS50, LPS100. Superscripts within the same aging period are 

different (P > 0.05; SEM Control = 0.02378, SEM LPS50 = 0.02507, SEM LPS100 = 

0.02378) 

 

Figure 8. pH of lamb chops (L. lumborum) for 1- and 14-days aging from lambs 

administered Control, LPS50, LPS100. Superscripts within the same aging period are 

different (P > 0.05; Day 1: SEM Control = 0.03, SEM LPS50 = 0.03, SEM LPS100 = 

0.03; Day 14: SEM Control = 0.02, SEM LPS50 = 0.025, SEM LPS100 = 0.02) 

 

Figure 9. Malonaldehyde content of lamb chops (L. lumborum) for 1- and 14-days aging 

from lambs administered Control, LPS50, LPS100. Superscripts within the same day per 

aging periodare different (P > 0.05; SEM Control = 0.5491, SEM LPS50 = 0.5788, SEM 

LPS100 = 0.5491) 
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Figure 2: Conical Pathway Expression between Con and 100ng LPS treatments. Pathway Expressions 

are statistically significant (P < 0.05). 

Color Scheme: Orange – Upregulated to 100ng LPS; Blue – Upregulated to Con 

Numerical Values denote degree of z-score (Positive = Upregulated to 100ng LPS; Negative = 

Upregulated to Con) 



 162

 
 

 

Figure 3. Warner-Bratzler shear force (WBSF) of chops (L. lumborum) from lambs 

administered Control, LPS50, or LPS100. Superscripts within the same aging period are 

different (P=0.10 Day 1: SEM Control = 0.3694, SEM LPS50 = 0.3894, SEM LPS100 = 

0.3694; P = 0.90 Day 14: SEM Control = 0.1264, SEM LPS50 = 0.1332, SEM LPS100 = 

0.1264) 
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Figure 4. Troponin-T degradation of chops (L. lumborum) aged 1 and 14 days from 

lambs administered Control, LPS50, or LPS100. Superscripts within the same aging 

period are different (P = 0.02 Day 1: SEM Control = 1.02, SEM LPS50 = 1.08, SEM 

LPS100 = 1.02; P = 0.78 Day 14: SEM Control = 7.90, SEM LPS50 = 8.33, SEM LPS100 

= 7.90) 
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Figure 5. Desmin degradation of chops (L. lumborum) aged 1 and 14 days from lambs 

administered Control, LPS50, or LPS100. Superscripts within the same aging period are 

different (P = 0.85 Day 1: SEM Control = 1.41, SEM LPS50 = 1.49, SEM LPS100 = 1.41; 

P = 0.10 Day 14: SEM Control = 4.66, SEM LPS50 = 4.92, SEM LPS100 = 4.66) 
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Figure 6. Total F2-8 isoprostanes content of chops (L. lumborum) aged 1 day from lambs 

administered Control, LPS50, or LPS100. (P = 0.2053); SEM Control = 29.0413, SEM 

LPS50 = 30.6122, SEM LPS100 = 29.0413) 
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Figure 7. Sarcomere Length of lamb chops (L. lumborum) aged for 1 day from lambs 

administered Control, LPS50, LPS100. Superscripts within the same aging period are 

different (P > 0.05; SEM Control = 0.02378, SEM LPS50 = 0.02507, SEM LPS100 = 

0.02378) 
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Figure 8. pH of lamb chops (L. lumborum) for 1- and 14-days aging from lambs 

administered Control, LPS50, LPS100. Superscripts within the same aging period are 

different (P > 0.05; Day 1: SEM Control = 0.03, SEM LPS50 = 0.03, SEM LPS100 = 

0.03; Day 14: SEM Control = 0.02, SEM LPS50 = 0.025, SEM LPS100 = 0.02) 
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Figure 9. Malonaldehyde content of lamb chops (L. lumborum) for 1- and 14-days aging 

from lambs administered Control, LPS50, LPS100. Superscripts within the same day per 

aging periodare different (P > 0.05; SEM Control = 0.5491, SEM LPS50 = 0.5788, SEM 

LPS100 = 0.5491) 
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RECOMMENDATIONS FOR FUTURE RESEARCH 

Given the complexity of oxidative stress, there is a multitude of methods which could be 

used to evaluate its impact on meat quality. When analyzing in vivo oxidative stress on 

meat quality, I would recommend further exploration in the degree of oxidative stress by 

varying levels of lipopolysaccharide administration, as well as evaluate the amount of 

time in which animals are exposed to an oxidative stress challenge. Furthermore, I would 

explore the generation of oxidative stress markers in conjunction with known factors 

associated with oxidative stress in livestock, such as diet inclusions, housing techniques, 

and genetic backgrounding. Additionally, I would recommend the evaluation of oxidative 

stress by profiling the composition of reactive species generated within muscle tissue 

using a set of conditions known to induce oxidative stress. Finally, I would compare the 

overall impact of oxidative stress across a multi-muscle analysis. Given the vast 

differences in histochemical and morphological characteristics across muscles, an 

inherent change on the impact of meat quality due to oxidative stress is likely, and could 

expand our knowledge on the impact of oxidative stress factors and their relationship to 

pre- and postmortem mechanisms responsible for meat quality. 
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APPENDIX 

 

Appendix I: Lamb Diet Composition* 

 

Ingredient Unit (lb/Ton) Composition (%) 

Cracked Corn 1051 52.55 

Soybean Hulls 400 20 

Oats 300 15 

Soybean Meal – 

47% 

100 5 

Liquid Molasses 100 5 

Limestone 20 1 

Salt 10 0.5 

Urea 10 0.5 

Ammonium 

Chloride 

8 0.4 

Vitamin A-D-E 0.2 0.01 

 

Diet Nutritional Composition 

Crude Protein 13.57% 

Non-Detergent Fiber 24.28% 

Total Digestible Nutrients 8485% 

Calcium 0.56% 

Phosphorus 0.34% 

Potassium 0.78% 

  

*-Formulation Developed by Eastern Nebraska Research and Extension (1071 Co 

Rd G, Ithaca, NE 68033) 

*-Low quality brome hay was given to lambs daily as a 1% of total body weight 

to ensure proper gut maintenance. 
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Appendix II: Fabrication Map 

 

 

Fabrication map:  
 

                         

 
  

Foam trays for RD: 

 

 
 

Foam trays on RD per aging period = 30 trays per aging period 

• Total foam trays = 30 x 2 aging periods = 60 Total Trays 

NOTE:  RD tables hold 35 trays (with proper lighting up to 40 trays).  Therefore, we 

need 3 tables at every aging period.   

NOTES:  

• Fabrication map for 1 and 14 d 

age  

• WBSF and Lab chops (rib) will 

be 1”  

• Extra Lab chops (loin) will be 2” 

• Extra Lab chops (rack) will be 1” 
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Vacuum bags:  
Size: 6 x 12 

Lab samples: 32 animals x 2 aging periods x 2 lab samples = 128 bags 

Size: 14 x 24 

Loins: 32 samples x 1 (14 d age) = 32 bags  

Additional supplies:  

• Powdering bags (~32 x 2(age) x 2(RD) =  128 bags )  

• Liquid Nitrogen (~4-5 tanks) 

Tags needed: 

• At the meat lab (Sample # - Age – Purpose – Replication): 

o UNL Carcass Tags = Set of 1-32 

� Ex.  

• UNL 1 

• 32 tags total 

o Cardstock for WBSF  = Sets of 1-32 (laminated) 

� Ex: 

• 1-1-WBSF-1, 1-1-WBSF-2, 1-1-WBSF-3 

• 1-14-WBSF-1, 1-14-WBSF-2, 1-14-WBSF-3 

• 192 tags total 

o Cardstock for Aging = Set of 1-32 (1 day aged samples will not require 

tags, as samples will be fabricated for WBSF and Lab samples) 

(laminated) 

� Ex: 

• 1-14-Aging 

• 32 tags total 

o Cardstock for LAB samples  = Sets of 1-32 (laminated) 

� Ex: 

• 1-1-LAB 

• 1-14-LAB 

• 64 tags total 

o Cardstock for LAB (Rib) Extra samples = Sets of 1-32 (laminated) 

� Ex: 

• 1-1-LAB-Xtra 

• 1-14-LAB-Xtra 

• 64 tags total 

o Color/Discoloration (adhesive tags) = Sets of 1-32 

� Ex: 

• 1-1-Color-7RD-1 

• 1-1-Color-7RD-2 
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• 1-14-Color-7RD-1 

• 1-14-Color-7RD-2 

• 128 tags total 
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Appendix III 

RNA Extraction 

 

1. Heat Incubator to 55ºC. 

2. Clean work area with RNaseZap. 

3. Add 10 $L of �-mercaptoethanol, per 1 mL of Buffer RLT before use. 

a. Buffer RLT containing �-ME can be stored at room temperature (15-

25 ºC) for up to 1 month. 

b. For 16 samples, 50 $L into 5 mL. 

4. Clean weigh dish, tweezers and razor blade with 70% ethanol. 

5. Pull tissue out of -80 ºC freezer. Weigh ≤ 30mg tissue and put into 1.5mL 

tube. 

6. Add 300$L Buffer RLT solution. Vortex till broken up. 

7. Homogenize with hand-held pestle for ~30 seconds. 

8. Add 10 $L proteinase K solution. 

9. Add 590	$L RNase-free water and mix thoroughly by pipetting. 

10. Incubate at 55ºC for 10 minutes. 

11. Centrifuge for 3 minutes at 10,000 x g. 

12. Transfer the supernatant (approximately 900	$L) into a new 2.0mL 

microcentrifuge tube (not supplied). Avoid transferring any of the pellet. 

13. Add 0.5 volumes (usually 450	$L) of ethanol (96-100%) to the cleared lysate. 

Mix well by pipetting up and down. Do NOT centrifuge. 

14. Transfer 700 $L of the sample to an RNeasy Mini spin column placed in a 2 

mL collection tube. Centrifuge for 15 seconds. 

15. Repeat step 7 using the remainder of the sample. Discard the flow-through. 

16. Add 350 $L Buffer RW1 to the RNeasy spin column. Centrifuge for 15 

seconds at ≥ 8,000 x g to wash the membrane. Discard the flow-through. 

17. Add 10 $L DNase I stock solution to 70 $L Buffer RDD. Mix by gently 

inverting the tube, and centrifuge briefly to collect residual liquid from the 

sides of the tube. Note: DNase I is especially sensitive to physical 

denaturation. Mixing should only be carried out by gently inverting the tube. 

Do not vortex. 

18. Add the DNase I incubation mix (80 $L) directly to the RNeasy spin column 

membrane, and place on the benchtop for 15 minutes. Note: Be sure to add 

DNase I incubation mix directly to RNeasy spin column membrane. DNase 

digestion will be in complete if part of the mix sticks wo the walls or the O-

ring of the spin column. 

19. Add 350 $L Buffer RW1 to the RNeasy spin column. Centrifuge for 15 

seconds at ≥ 8,000 x g. Discard the flow-through. 

20. Add 500 $L Buffer RPE to the RNeasy spin column. Centrifuge for 15 

seconds at ≥ 8,000 x g. Discard the flow-through. 
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21. Add 500 $L Buffer RPE to the RNeasy spin column. Centrifuge for 2 minutes 

at ≥ 8,000 x g.  

22. Place the RNeasy spin column in a new 2 mL collection tube (supplied), and 

discard the old collection tube with the flow-through. Centrifuge at 14,000 x g 

for 1 minute. 

23. Place the RNeasy spin column in a new 1.5 mL collection tube (supplied). 

Add 30-50 $L RNase-free water directly to the RNeasy spin column 

membrane. To elute the RNA, centrifuge for 1 minute at ≥ 8,000 x g.  
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Appendix IV 

Objective color (L* a* b*) calibration instructions and helpful tips 

 

 

Minolta Calibration Procedures 

 

1. Before Calibration: 

Calibrate Minolta in the same temperature conditions as the measurements being 

taken. 

 

-Place the Minolta in the environment where samples will be measured about 5 to 

10 minutes before calibrating so it can become equilibrated with the temperature. 

 

Calibrate with the same materials as you will be taking measurements. 

 

-If the measurement will not be taken directly on the meat surface, you must 

calibrate the Minolta with the same material it will be measuring through. For 

example, if you want to take readings from samples that are wrapped in overwrap, 

you must put some overwrap around the measuring head “eye” while calibrating 

using the white tile. 

 

2. Turn the power to the measuring head ON. 

3. Turn the power to the data processor ON while holding down the 

[DELETE/UNDO] key at the same time. 

-Release the [DELETE/UNDO] key when you hear a BEEP. (This action deletes 

any previous data that might still be stored in the data processor) 

 

4. When the screen turns on, the question “Initial set ok?” appears, press the 

[Measure Enter] key. 

5. Once you get to the measurement screen, press the [Index Set] key. 

a. Use the arrows and the [Measure Enter] key to adjust all the following 

settings: 

i. Printer: On 

ii. Color Space: Off 

iii. Protect: On 

iv. Auto Average: However many readings wanted per sample (1-

30) 

v. Illuminant: D65 

vi. Back Light: Off 

vii. Buzzer: On 

viii. Disp. Limit 

b. Press the [Esc] key to return to the measurement screen. 
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6. Press the [Calibrate] key while in the measurement screen. 

7. Enter in the numbers listed on the calibrating white tile for the D65 setting 

using the following: 

a. [<>] keys and the numeric pad 

b. (The [<>] keys move the cursor) 

c. D65 settings: Y: 93.13 x: 0.3164 y: 0.3330 

8. Set up the measuring head so that it is resting on the LCD screen and the 

“eye” is facing up. 

a. Place the while calibration tile on the measuring head, near the middle 

of the tile. 

9. Press either the measurement button on the measuring head OR the [Measure 

Enter] key on the data processor after making sure the ready lamp is ON. 

a. Make sure the white tile is completely on the measuring head “eye”. 

b. The calibration is complete after the lamp flashes 3 times and the 

screen returns to the measurement screen. 

c. Do not move the measuring head during calibration. 

10. Press the [Color Space] key until the L* a* b* screen shows up. 

11. Calibration is finished and the Minolta is ready. 

a. To save battery life, turn both the measurer and data collector off after 

calibration is finished until you need it for measuring. The calibration 

and setting will not be erased. 

b. When turning back on for measurements, ONLY turn on the power 

buttons. DO NOT hold down the [DELETE/UNDO] key at the same 

time. This will delete the calibration and settings and all of the steps 

will have to be repeated. 

Cleaning: 

• Wipe machine down with a soft, clean dry cloth. Never use a solvents 

such as thinner or benzene. 

• If the white calibration tile becomes dirty, wipe it gently with a soft, 

clean dry cloth. If dirt is difficult to remove, wipe it with lens cleaner 

and cloth, then dry. 

 

Minolta Helpful Tips 

 

1. Make a separate date sheet 

a. The Minolta prints out data with sample numbers 1 to 2000. In order to 

correlate it back to a sample, you must make a separate data sheet that has 

a place to record meat sample i.d. and its corresponding Minolta number. 

2. Batteries 
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a. The measuring head requires 4 AAA batteries and the data processor 

requires 4 AA batteries. 

3. The auto protect setting 

a. The Minolta can only record and store up to 2000 readings, once you go 

past 2000 readings it will start deleting older readings. 

b. When the auto protect is on it will automatically prevent the 2001
st
 reading 

from being taken so you cannot accidentally overwrite other data. 

4. Auto Average Function 

a. During calibration, if you set the Auto Average function to a reading 

number above 1, for example 5, you only have to hit the measure button 

once and it will automatically take all 5 readings then print out the 

average. 

b. It only allows a second or two between readings so make sure you are 

paying attention and move the measuring head to where you want it before 

it automatically takes the next reading. 

5. Recalibrate regularly 

a. If using the Minolta all day, or for long periods of time, make sure to 

recalibrate it regularly. 

6. DELETE/UNDO KEY 

a. If you accidently take a reading, hitting the [DELETE/UNDO] key will 

delete the last reading. 

b. If you accidently delete a reading by hitting the [DELETE/UNDO] key, 

hitting the [DELETE/UNDO] key again will restore the previous reading. 

7. Printing Paper 

a. The paper that the data is printed on is sensitive to heat and light. The 

printed data should be kept in a dark cool place, like a desk drawer. In 

order to prevent losing any data, you must make a photocopy of the 

printout in order to preserve it for long-term storage. 

8. More than One Color Space on Print Out 

a. If you want to print more than 1 color space (Example: L* a* b* and 

XYZ) on the print out slip: 

i. Press the [Index Set] key. Use the arrows and the [Measure Enter] 

key to adjust all the following settings: 

1. Color Space: On 

2. Disp. Limit: press the [Measure Enter] key to select this 

option. 

3. Once inside the Disp. Limit option, go through the list and 

change all the color spaces that you DO NOT want to OFF. 

4. Press the [Esc] key until you return to the measurement 

screen. 
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9. Change Measurements to a Different Color Space 

a. If you get done measuring and realize that you meant to measure in a 

different color space (For example: measured everything using Yxy and 

meant to use L*a*b*), you can correct it using these steps: 

i. While in the measurement screen, press the [Color Space] key until 

your desired color space (in this example: L*a*b*) appears. 

ii. Press the [Data List] key while in the measurement screen. 

iii. Select the desired page using the up and down arrows. If you only 

have one page it will show up as P00, select this one. 

iv. Once you have the desired page selected, press the [Measure 

Enter] key. 

v. Press the [Print/Feed] key. 

vi. Select “All Meas. Data” using the up and down arrows. 

vii. Press the [Measure Enter] key. This will reprint all the stored data 

in your newly selected color space. 

viii. Press the [Esc] key to return to the measurement screen. 
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Appendix V: Guide for Percentage of Surface Discoloration 
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Appendix VI  

Fat extraction with Soxhlet method 

Warning: Ether is extremely flammable and produces explosive peroxides. Never bring 

a radio or any other potentially spark-producing item into the fat extraction room. 

 

1. Check ground glass connections. They should be wiped clean with a dry paper 

towel and given a then coating of stopcock grease. 

2. Each boiling flack must contain boiling stones. This helps prevent violent boiling 

of the solvent which could be dangerous. 

3. Load samples into Soxhlet tubes, arrange them so that no samples are above the 

level of the top bend in the narrower tubing on the outside of the Soxhlet. (The 

Soxhlet will only fill with the solvent up to this point before cycling back down 

into the boiling flask.) In general, the large soxhlets will hold about 20 two-gram 

samples and the small soxhlets from 4-6. 

4. Fill the large (500mL) boiling flasks with 400mL of solvent and the small 

(125mL) flasks with 100mL of solvent. Do this under the fume hood. 

5. Fit the Soxhlet onto the boiling flask. Very carefully, bring the assembly into the 

extraction room and fit it onto the condenser. Make sure all ground glass 

connections are snug and each boiling flask is resting on the heating element. The 

ceramic fiber sheet should be covering the bare metal surfaces on the burners 

completely. 

6. Turn on the water supply to the condensers (usually a quarter turn). Check later to 

make sure condensers are cool enough – if not, increase water flow. 

7. Turn heating element control dials between three and four. Each burner has its 

own dial. Never turn the burner beyond five. Ether has a very low boiling point 

and violent boiling is dangerous. Double check fittings, boiling stones, etc. 

8. Fat extraction will take from 24 to 72 hours depending on the sample. (Beef – 48 

hours, Bacon – 72 hours). Check extractions twice daily to see that everything is 

alright while they are running. 

9. When done, turn off the burners and let solvent cool completely before removing 

samples. 

10. After it has cooled down, slowly uncouple the flask and Soxhlet tube from the 

condenser. Cover the top of the Soxhlet with one palm so as to reduce ether 

vapors while transporting it to the fume hood. Air dry samples in the fume hood 

for two hours to get rid of the remaining ether in the samples. Pour ether back 

slowly into and approved container for reuse or discarding. Do not leave ether out 

of the hood or the flammable cabinet. 

11. Place samples in drying oven (105°C) for about four hours or overnight before 

weighing back. 

Calculation: ([(Original weight including filter paper and paper clip – Fat extracted 

sample weight)/ Sample weight] * 100) - % Moisture = % Fat 
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Appendix VII 

 

Minerals and Ash Determination 

 

1. Place crucible in drying oven at 100ºC for 4 hours and then in a desiccator. 

2. Place 2 grams of pulverized muscle tissue into the crucible in duplicates. 

3. Moisture and ash are determined with the following program: 

 

Name Covers Ramp Rate Ramp Time 

(minutes) 

Start Temp 

(ºC) 

End Temp 

(ºC) 

Moisture Off 6 d/m 17  25 130 

Ash Off 20 d/m 30 130 600 

 

 

Name Atmosp. Flow Rate Hold Time 

(minutes) 

Constant 

Weight  

Constant 

Weight 

Time 

(minutes) 

Moisture N High 0 0.05% 9 

Ash O High 0 0.05% 9 

 

Crucible density and cover density were set at 3.00, while sample density was set 

at 1.00. The calculations to determine moisture and ash are the following: 

 

Moisture = [(Initial weight – Dry weight)/Initial weight] * 100 

Ash = (Weight of ash/Initial weight) * 100 
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Appendix VIII 

Sarcomere Length of Powdered Meat Samples 

(Dolazza and Lorenzen 2014; Cross et al. 1981) 

 

1. Spread the powdered meat sample very lightly (just a few specks) on the 

microscope slide. 

2. Place a drop of 0.25M sucrose solution on the slide and cover with a 

coverslip. 

3. Place the slide on the stage of the laser stand (the distance between the slide 

and the base of the laser stand should be set to 100 mm). 

4. Place a piece of paper at the base of the laser stand. 

5. Move the slide back and forth through the laser light until a diffraction pattern 

is observed (Figure 1).  

 Figure 1. A projected sarcomere diffraction pattern on 

the paper. 

6. Mark the original and the two diffraction bands for 5 different sarcomeres 

from the sample. 

7. Measure the distances between the two diffraction bands and calculate 

sarcomere length using the following equation: 

 

<�=>?@A=A	BACDEℎ	($@) = 	0.6328	.	/
0F2/G

3 5 1
2  

D = distance in mm from slide to the base of the laser stand. 

T = ½ of the distance in mm from one first order band to the other first order 

band. 

8. Use the average of the 5 sarcomere lengths to determine the sarcomere length 

of the samples. 
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Appendix IX 

Fatty Acid Determination 

 

1. Weight out 1 gram of pulverized muscle tissue. If extracting subcutaneous fat, 

weight out 0.1 gram of pulverized subcutaneous fat into centrifuge tube. 

2. Add 5 mL of 2:1 chloroform: methanol (v/v) for muscle tissue for 3 mL for 

subcutaneous fat. 

3. Vortex for 5 seconds and let stand for 1 hour at room temperature. 

4. Filter homogenate through Whatman #2 filter paper into 13 x 150 mm screw 

cap tube bringing the final volume with chloroform: methanol to 10 mL for 

muscle lipid and 5 mL for subcutaneous fat extract. If stopping at this point, 

purge test tube with nitrogen, cap tube, and store at -80ºC. 

5. Add 2 mL of a 0.74% KCl solution for muscle lipid extract or 1 mL for 

subcutaneous fat tissue extract and vortex for 5 seconds. If stopping at this 

point, purge test tube with nitrogen, cap tube, and store at 0 ºC for no more 

than 24 hours. 

6. Centrifuge samples at 1,000 x g for 5 minutes. Following centrifugation, 

aspirate off the aqueous phase (top layer). If stopping at this point, purge test 

tube with nitrogen, cap tube, and store at -80ºC. 

7. Evaporate to dryness under nitrogen at 60ºC. 

8. Add 1 mL of a 0.5 M NaOH in methanol. Vortex for 5 seconds. Heat for 10 

minutes at 100ºC. 

9. Add 1 mL of boron trifluoride in 14% methanol. Vortex for 5 seconds. Heat 

for 10 minutes at 100ºC. 

10. Add 2 mL of a saturated salt solution and 2 mL of hexane. Vortex for 5 

seconds. 

11. Centrifuge samples at 1,000 x g for 5 minutes. Following centrifugation, 

remove hexane layer (top layer) making sure to not disrupt the aqueous 

phase (lower layer) and place in GC vial. Purge GC  vial with nitrogen, cap 

and crimp cap, and store at -80ºC until sample is ready to be read on the GC. 

 

GC Settings 

 

Column- Chromopack CP-Sil 88 (0.25mm x 100mm) 

Injector Temp- 270 ºC 

Detector Temp- 300 ºC 

Heat Pressure- 40 psi 

Flow Rate- 1.0 mL/minute 

Temperature Program- Start at 140 ºC and hold for 10 minutes. Following 10 minutes, 

raise temperature 2 ºC/minute until temperature reaches 220 ºC. At 220 ºC, hold for 20 

minute. 
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Appendix X 

Determination of Free-Calcium Level 

(Parrish et al. 1981. J. Food Sci. 46:38-311 with modifications) 

 

1. Analyze each sample in duplicates. 

2. Mince frozen steak by using a stainless-steel knife (avoid fat and connective 

tissues). 

3. Measure 3 g of minced meat into a thickwall polyallomer ultracentrifuge tube 

(13 x 55mm) and centrifuge at 196,000 x g for 30 min at 4 ºC. 

4. Pipette 700$L of the supernatant into an eppendorf tube. 

5. Treat the supernatant with 0.1 mL of 27.5% trichloroacetic acid and vortex for 

15 s. 

6. After standing for 10 min at room temperature, centrifuge eppendorf tubes at 

6,000 rpm for 10 min. 

7. Pipette 500$L of the supernatant into a plastic tube and bring up the volume 

to 5 mL with deionized ddH2O. 

8. Filter prepared samples through a 13 mm diameter Millex-LG 0.20 $m 

syringe filter (Millipore, Bedford MA) into a new tube. 

9. Send prepared samples to the Ward Laboratories (Kearney, NE) for calcium 

level determination. 

10. Calcium concentrations (ppm) of samples are quantified at the Ward 

Laboratories (Ward Laboratories, Kearney, NE) using the inductively-coupled 

plasma emission spectrometer (iCAP 6500 Radical; Thermo Electron 

Corporation, Cambridge, UK) with appropriate calcium concentration 

standards. 

11. Calcium concentrations are calculated as follows: 

 

Average ppm of Calcium in the sample           =  X ppm = X mg/L 

Molecular weight of Calcium                           = 40.078 g 

Micromolar ($M) concentration of calcium     = (X x 1000)/40.078  $M 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 187

 

Appendix XI 

Thiobarbituric Acid Reactive Substances Assay 
 

TEP solution (1,1,3,3-Tetraethoxypropane)(Make new weekly) 

   Stock Solution: Dilute 99$L TEP (97%) bring volume to 100 mL ddH2O. 

  Working Solution: Dilute stock solution to 1:3 (TEP Solution:ddH2O)(1 x 10
-3

M). 

 

TBA/TCA (2-Thiobarbaturic Acid/Trichloroacetic Acid) Stock Solution: 1L 

  15% TCA (w/v) and 20mM TBA (MW: 144.5) reagent in ddH2O. 

  Dissolve 2.88g TBA w/warm ddH2O first, then add TCA (150g) and ddH2O to 1L. 

 

BHA (Butylated Hydroxylanisole) stock Solution: 

  Make 10% stock solution by dissolving in 90% ethanol. 

  10 g BHA dissolved in 90 mL ethanol (90%) + 5 mL ddH2O. 

 

Standards: In duplicate                                                                        Moles of TEP 

Blank:              1 mL ddH2O 

Standard 5:      100 $L working TEP + 1.90 mL ddH2O                            (5 x 10
-5

 M) 

Standard 4:      1 mL Std. 1 + 1 mL ddH2O                                              (2.5 x 10
-5

 M) 

Standard 3:      1 mL Std. 2 + 1 mL ddH2O                                            (1.25 x 10
-5

 M) 

Standard 2:      1 mL Std. 3 + 1 mL ddH2O                                          (0.625 x 10
-5

 M) 

Standard 1:      1 mL Std. 4 + 1 mL ddH2O                                        (0.3125 x 10
-5

 M) 

  Remove 1 mL of Standard 1 and discard it, leaving 1 mL behind. 

Procedure: 

• Mix all reagent and standards before beginning. 

• Transfer 5 g or powdered sample into a 50 mL conical tube; add 14 mL of ddH2O 

and 1.0 mL of BHA. 

• Homogenize for 15 sec with a polytron. 

• Centrifuge for 2,000 x g for 5 min. 

• Transfer 1 mL of homogenate or standard to 15 mL conical tube. 

• Add 2 mL of TBA/TCA solution, vortex. 

• Incubate in a 70 ºC water bath for 30 min to develop color. 

• Cool samples in a cold water bath for 10 min. 

• Centrifuge tubes at 2,000 x g for 15 min. 

• Transfer duplicate aliquots of 200 $L from each tube into wells on a 96-well 

plate. 

• Read absorbance at 540 nm. 

Calculations: mg of malonaldehyde/kg of tissue 
 K(extraction) = (S/A) x MW x (10

6
/E) x 100 

Where, S = Standard concentration (1 x 10
-8

) moles 1,1,3,3-Tetraethoxypropane)/5 mL 

 A = Absorbance of standard  MW = MW of malonaldehyde (72.063 g/mole) 

 E = Sample equivalent (l)        P = Percentage recovery 

Final calculation: 0.012 x concentration x (72.063 x 10
6
) = mg of Malonaldehyde/kg of 

tissue 

Reagents (Sigma): TBA- T5500; TCA -T9159; TEP – T9889; BHA – B1253 
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Appendix: XII 

Isolation of Myofibrillar Proteins 

(Pietrzak et al., 1997, J. Anim. Sci. 75:2106-2116) 

 

1. Knife mince frozen steaks after trimming visible fats and connective tissues. 

2. Weigh 3 g of minced meat into a 50 mL plastic conical tube. 

3. Add 15 mL ice-cold rigor buffer (0.1M KCl, 2 mM MgCl2, 1mM EGTA, and 

10mM K2HPO4; pH 7.4) and homogenize using the polytron (POLYTRON 

Kinimatica CH-6010, Switzerland) at very low speed for 15 min. 

4. Filter the homogenate through double-layered cheese cloth to remove 

connective tissue and fats into a new 50 mL plastic conical tube. 

5. Pipette 1.4 mL homogenate into an eppendorf tube (2 mL safe-lock tubes; 

02236352, Eppendorf AG, Hamburg, Germany). 

6. Centrifuge eppendorf tubes at 4,000 x g for 5 min. 

7. Decant the supernatant and dismantle the pellet using a cleaned spatula after 

re-suspending in 1 mL of ice-cold rigor buffer. 

8. Vortex the mixture for 10 s and centrifuge for 5 min at 4,000 x g. 

9. Repeat step 6 and 7 three times to remove myoglobin as much as possible 

(until the supernatant is clear and free of myoglobin). 

10. Decant the supernatant and remove the leftover-supernatent using a pasture 

pipette. 

11. Re-suspend the pellet in 250 $L of ice-cold rigor buffer. 

12. Vortex thoroughly after diminishing the pellet. 

13. Store eppendorfs on ice for immediate use or in -80 ºC for later use. 

 

Reagent preparation: 

a. Rigor Buffer (0.1 M KCl, 2mM MgCl2, 1mM EGTA, and 10mM K2HPO4; pH 

7.4) 

Add 14.91 g of potassium chloride (KCl: MW 74.55), 380.84 mg of 

magnesium chloride (MgCl2: MW 95.21), 760.7 mg of ethylene glycol 

tetraacetic acid (EGTA: MW 380.35, and 3.484 g of potassium phosphate 

dibasic (K2HPO4): MW 174.18) into 1900 mL of deionized ddH2O and 

dissolved properly. Check the pH and volume up to 2000 mL. (if want to 

adjust pH to 7.4, adjust using conc. HCl). 
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Appendix XIII 

Troponin T Degradation 

Protein Isolation 

 

1. Weigh out 3 g powdered meat into a 50 mL plastic conical tube 

2. Add 15 mL rigor buffer: 0.1 M KCl, 2mM MgCl2, 1 mM EDTA, and 10 mM 

K2HPO4; pH 7.4. 

3. Homogenize using polytron (POLYTRON Kinimatica CH-6010, Switzerland) at 

medium speed (setting 6) for 5 sec bursts until fully mixed 

4. Filter homogenate through double layered cheese cloth into a new 50 mL plastic 

conical tube 

5. Pipette 1.4 mL homogenate into an eppendorf tube (2 mL safe-lock tubes; 

02236352, Eppendorf AG, Hamburg, Germany) 

6. Centrifuge Eppendorf tubes at 4000 x g for 5 min 

7. Decant supernatant 

8. Resuspend pellet in 1 mL rigor buffer 

9. Vortex for 10 sec or until pellet is sufficiently mixed into solution 

10. Centrifuge for 4000 x g for 5 min 

11. Repeat 6-10 two more times 

12. Decant supernatant fully 

13. Suspend pellet in 1 mL suspension buffer: 0.1M Tris, 1.25mM EDTA, 5% SDS; 

pH 8 

14. Vortex for 30 sec or until pellet is sufficiently mixed into solution 

15. Centrifuge for 5 min at 4000 x g 

16. Remove supernatant to new Eppendorf tube without removing remaining pellet. 

This is the myofibrillar stock sample. 

 

Protein Concentration 

 

17. Dissolve 100 µL of myofibrillar protein stock samples in 0.9 mL of suspension 

buffer (See step 13 in Protein Isolation) and vortex 10 sec 

18. Prepare a concentration series (20-2000 µg/mL) of bovine serum albumin (BSA) 

using suspension buffer 

19. Place 25 µL BSA standards and diluted myofibriliar protein samples on a 

microwell plate 

20. Add 200 µL BCA working reagents (50:1; Reagent A:Reagent B) into respective 

wells in the microwell plate 

21. Mix protein samples and BCA working reagents thoroughly on a plate shaker for 

30 sec 

22. Incubate the microwell plate at 37
o
C for 30-40 min and cool to room temperature 

23. Read absorbance at 562 nm on a microplate reader (SpectraMAX 250, Molecular 

devices, Sunnyvale, California) 

24. Protein concentrations are expressed as µg/mL 

25. Dilute protein to 2 µg/µL with ddd water in new tubes 
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26. Dilute protein to 1 µg/µL with Laemmli / betamercaptoethanol mixture: 950 µL 

Laemmli plus 50 µL betamercaptoethanol added. 

27. Heat the tube on a heating block at 95
o
C for 5 min. 

 

 

Gel Electrophoresis 

 

28. Remove the Mini-PROTEAN TGX Precast Gel 4-20% from the package 

29. Pull the tape off the bottom, remove the comb 

30. Place into electrode assembly with short plate inward 

31. Place second gel on the other end of the assembly 

32. Lock the two gels in place 

33. Place the assembly in the tank 

34. Fill the chamber with Bio Rad 1x Tris/Glycine/SDS # 161-0732 running buffer 

until the short plate is completely covered 

35. Add buffer to the outer tank to either 2 or 4 gel line, depending on how many gels 

you are running 

36. Load 10 µL Bio-Rad Kaleidoscope Pre-stained standards in the first well 

37. Load 5 µL sample into remaining wells 

38. Place lid on tank, aligning color coded banana plugs and jacks 

39. Set constant voltage to 200 V 

40. Run until tracking dye in the Laemmle buffer of each sample reaches the black 

finishing line (30 minutes to an hour) 

41. Turn off power supply 

42. Remove gel from assembly 

43. Remove gel by gently opening key provided in precast gel package 

 

Western Blot 

 

44. Equilibrate gel in transfer buffer (25 mM Tris-base, 192 mM glycine, 20% 

methanol at pH 9.2) for 20 min 

45. Soak precut filter paper (170-3932, Bio Rad Laboratories, Hercules CA) and fiber 

pads in transfer buffer for 5 min 

46. Wet PVDF membranes (IPFL20200, Millipore) in methanol for 15 second and 

rinse briefly in deionized water before soaking in transfer buffer 

47. Prepare the gel sandwich as follows: 

a. Place the cassette with the black side (anode) down in the transfer buffer 

in the cassette assembly box 

b. Place one pre-wetted fiber pad on the black side of the cassette 

c. Place filter paper on the fiber pad 

d. Place equilibrated gel on filter paper (roll out all bubbles) 

e. Place pre-wetted membrane on the gel (roll out all bubbles) 

f. Place the other filter paper (roll out all the bubbles) and fiber pad 

respectively 

48. Close the cassette firmly without moving the gel and filter paper sandwich and 

lock the cassette with the white latch 
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49. Place prepared sets in module 

50. Place module in tank and fill with transfer buffer 

51. Run Western blot for 60 min at a constant amperage of 180mA 

52. To prevent nonspecific antibody binding, block membranes with 10 mL Odyssey 

Blocking buffer (927-40100; LI-COR, Lincoln NE) for 120 mins at room 

temperature 

 

 

Primary Antibody Binding 

 

53. Anti-Troponin-T (JLT-12: Sigma Aldrich, St. Louis, MO) 

a. 1 µL in 10 mL Odyssey Blocking Buffer + 0.2% Tween20 (20µL) 

54. Incubate blots in diluted primary antibody for 60 min at room temperature while 

rocking 

55. Incubate blots overnight at 4°C while rocking 

56. Pour off primary antibody solution 

57. Wash membrane four times for 10 min each with 15 mL of 1x Tris buffered saline 

+ 0.1% Tween20 on rocking platform 

 

Labeling Primary Antibodies 

 

58. Reconstitute contents in the original IRDye 680LT conjugated goat anti-mouse 

IgG1 vial with 0.5 mL sterile distilled water  

59. Mix gently by inverting and allow rehydrating for at least 30 min before use (this 

is stable for three months at 4
o
C) DO NOT EXPOSE TO LIGHT 

a. 1 µL in 10 mL Odyssey Blocking Buffer + 0.2% Tween20 (20 µL) 

60. Incubate blots in diluted secondary antibody for 60 min at room temperature with 

gentle shaking (make sure not to expose to light) 

61. Pour off secondary antibody solution 

62. Wash membrane four times for 10 min each with 15 mL of 1x Tris buffered saline 

+ 0.1% Tween20 on rocking platform 

63. Wash membrane with 15 mL of 1x Tris buffered saline for 30 mins to remove 

residual Tween20 

 

Membrane Imaging 

 

64. Use Odyssey Infrared Imaging System (LI-COR Biosciences, Lincoln NE) at 700 

nm channel as integrated intensity 

65. Imaging conditions:  

a. Resolution: 169 nm 

b. Quality: low 

c. Focus: offset 0 mm 

d. Channels: 700 nm 

e. Intensity: 3.0 or 3.5 

f.  Image size: x-10 y-7 
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Appendix XIV 

 

DESMIN 

Whole-Muscle Protein Preparation 

 

1. Weigh out of 400mg (0.4g) of powdered meat sample into a 50 mL plastic conical tube 

2. Add 10mL of Whole-muscle Solubilizing Buffer ( 2%wt/vol SDS, 10mM sodium 

phosphate buffer, pH 7.0). 

3. Homogenize using polytron (POLYTRON Kinimatica CH-6010, Switzerland) at 

medium speed (setting 6) for 5 sec bursts until fully mixed. 

4. Filter homogenate through double layered cheese cloth into a new 50 mL plastic 

conical tube. 

5. Pipette 1.4 mL homogenate into an eppendorf tube (2 mL safe-lock tubes; 02236352, 

Eppendorf AG, Hamburg, Germany). 

6. Centrifuge samples at 1,500 x g for 15 min. at 25C to remove traces of insoluble 

components. 

7. Collect 1mL of supernatent, discard pellet. Place supernatent into 1.5mL eppendorf 

tube. 

 

Protein Concentration 

 

66. Prepare a concentration series (20-2000 µg/mL) of bovine serum albumin (BSA) 

using suspension buffer 

67. Place 25 µL BSA standards and diluted myofibriliar protein samples on a 

microwell plate 

68. Add 200 µL BCA working reagents (50:1; Reagent A:Reagent B) into respective 

wells in the microwell plate 

69. Mix protein samples and BCA working reagents thoroughly on a plate shaker for 

30 sec 

70. Incubate the microwell plate at 37
o
C for 30-40 min and cool to room temperature 

71. Read absorbance at 562 nm on a microplate reader (SpectraMAX 250, Molecular 

devices, Sunnyvale, California) 

72. Protein concentrations are expressed as µg/mL 

73. Dilute sample to 6.4mg/mL using whole-muscle solubilizing buffer.  

74. Dilute samples to a final protein concentration of 4mg/mL with 50% (volume of 

original soultion in step 8) of gel buffer (3mM EDTA, 3%[wt/vol]SDS, 

30%[vol/vol]glycerol, 0.001% pyronin Y [wt/vol], 30mM Tris-HCl, pH 8.0) and 10% 

of 2-mercaptoethanol.  

75. Heat samples for 15 minutes at approximately 50C and stored at -80C. 

 

SDS-PAGE Electrophoresis 

 

Supplies:  

 15% polyacrylamide separating gels. 
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 Running Buffer (25mM Tris, 192mM glycine, 2mM EDTA, and 0.1%[wt/vol] SDS). 

 

1. Remove the Mini-PROTEAN TGX Precast Gel 4-20% from the package 

2. Pull the tape off the bottom, remove the comb 

3. Place into electrode assembly with short plate inward 

4. Place second gel on the other end of the assembly 

5. Lock the two gels in place 

6. Place the assembly in the tank 

7. Fill the chamber with Bio Rad 1x Tris/Glycine/SDS # 161-0732 running buffer 

until the short plate is completely covered 

8. Add buffer to the outer tank to either 2 or 4 gel line, depending on how many gels 

you are running 

9. Load 10 µL Bio-Rad Kaleidoscope Pre-stained standards in the first well 

10. Load 40ug sample into remaining wells 

11. Place lid on tank, aligning color coded banana plugs and jacks 

12. Set constant voltage to 360 V 

13. Run until tracking dye in the Laemmle buffer of each sample reaches the black 

finishing line (30 minutes to an hour) 

14. Turn off power supply 

15. Remove gel from assembly 

16. Remove gel by gently opening key provided in precast gel package 

 

Western Blotting 
1. Equilibrate gel in transfer buffer (25 mM Tris-base, 192 mM glycine, 2mM EDTA, 

and 15% [vol/vol] methanol at pH 9.2) for 20 min 

2. Soak precut filter paper (170-3932, Bio Rad Laboratories, Hercules CA) and fiber 

pads in transfer buffer for 5 min 

3. Wet PVDF membranes (IPFL20200, Millipore) in methanol for 15 second and rinse 

briefly in deionized water before soaking in transfer buffer 

4. Prepare the gel sandwich as follows: 

a. Place the cassette with the black side (anode) down in the transfer buffer 

in the cassette assembly box 

b. Place one pre-wetted fiber pad on the black side of the cassette 

c. Place filter paper on the fiber pad 

d. Place equilibrated gel on filter paper (roll out all bubbles) 

e. Place pre-wetted membrane on the gel (roll out all bubbles) 

f. Place the other filter paper (roll out all the bubbles) and fiber pad 

respectively 

5. Close the cassette firmly without moving the gel and filter paper sandwich and lock 

the cassette with the white latch 

6. Place prepared sets in module 

7. Place module in tank and fill with transfer buffer 

8. Run Western blot for 90 min at a constant amperage of 90V 

9. To prevent nonspecific antibody binding, block membranes with PBS-TWEEN [10 

mL Odyssey Blocking buffer (927-40100; LI-COR, Lincoln NE) and 0.1% TWEEN 

20 (10uL)] containing 5% non-fat dry milk for 60 minutes at room temperature. 
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Primary Antibody 

 

1. Use Monoclonal Anti-Desmin (D1033: Sigma Aldrich, St. Louis, MO) 

 Dilute total concentration solution as a 1:40,000 ratio with PBS-TWEEN20 

solution. 

2. Let rock for an hour at room temperature. 

3. Let rock overnight at 4C (~12-18 hours). 

4. After primary incubation blots, wash in PBS-Tween 3 time for 10 minute intevals.  

 

Secondary Antibody 
 

1. Reconstitute contents in the original IRDye 680LT conjugated goat anti-mouse IgG1 

vial with 0.5 mL sterile distilled water  

2. Mix gently by inverting and allow rehydrating for at least 30 min before use (this is 

stable for three months at 4
o
C) DO NOT EXPOSE TO LIGHT 

a. 1 µL in 10 mL Odyssey Blocking Buffer + 0.2% Tween20 (20 µL) 

3. Incubate blots in diluted secondary antibody for 60 min at room temperature with 

gentle shaking (make sure not to expose to light) 

4. Pour off secondary antibody solution 

5. Wash membrane four times for 10 min each with 15 mL of 1x Tris buffered saline + 

0.1% Tween20 on rocking platform 

6. Wash membrane with 15 mL of 1x Tris buffered saline for 30 mins to remove 

residual Tween20 

 

Membrane Imaging 

 

1. Use Odyssey Infrared Imaging System (LI-COR Biosciences, Lincoln NE) at 700 

nm channel as integrated intensity 

2. Imaging conditions:  

a. Resolution: 169 nm 

b. Quality: low 

c. Focus: offset 0 mm 

d. Channels: 700 nm 

e. Intensity: 3.0 or 3.5 

f.  Image size: x-10 y-7 
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Appendix XV 

 

              ISOPROSTANES 

 

Sample Preparation: 

 

1. Immediately after sample collection, powder meat and store in -80°C. 

2. After storage, place 30 mg of powdered meat in 5 mL eppendorf tubes.  

3. Homogenize sample in 2 mL of 2 N NaOH using Micropolytron. Spin for 20 seconds.    

(Clean Micropolytron between each sample). 

4. Heat homogenized sample in water bath at 45°C for 2 h to ensure hydrolysis. 

5. After hydrolysis, cool tissue samples to room temperature (~20 minutes), then 

neutralize pH using 2 mL of 2N HCl. 

6. Split samples into two 2 mL eppendorf tubes. Using microcentrifuge, spin samples at 

10,000 x g for 15 min at 4°C. 

7. Before Assaying, check to be sure each neutralized sample is in the pH range of 6-8. If 

not, adjust the pH to this range by adding 100µL of the sample to 100µL of the provided 

Neutralization Solution. 

8. Use supernatant for Assay Protocol 

 

 

Preparation of 8-iso-PGF2α Standards: 

 

1. Prepare fresh standards by diluting the 8-iso-PGF2α Standard from 200µg/mL to 0.2 

µg/mL in Sample Diluent for a 1:1000 final dilution. (Example: Add 5 µL of 8-iso-

PGF2α Standard stock tube to 4.995 mL of Sample Diluent)  

2. Prepare a series of the remaining 8-iso-PGF2α standards according to Table 1.  

 

 

 

 

 

Standard Tubes 8-iso-PGF2α 

Standard 

(µL) 

Sample 

Diluent (µL) 

8-iso-PGF2α 

_Standard (pg/mL) 

7 1 µL of Standard Stock 4999 µL 40,000 

6 250 µL of Tube #1 750 µL 10,000 

5 250 µL of Tube #2 750 µL 2,500 

4 250 µL_of Tube #3 750 µL 625 

3 250 µL of Tube #4 750 µL 156.25 

2 250 µL of Tube #5 750 µL 39.0625 

1 250 µL of Tube #6 750 µL 9.7656 

0 0 µL 

 

200 µL 

 

0 
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Assay Protocol 

Note: Each 8-iso-PGF2α Standard and unknown samples should be assayed in duplicate 

or triplicate. A freshly prepared standard curve should be used each time the assay is 

performed.  

 

1a. Immediately before use, dilute the Anti-8-iso-PGF2α Antibody 1:1000 with Sample 

Diluent.  

1b. Add 100 µL of the diluted Anti-8-iso-PGF2α Antibody to the Goat Anti-Rabbit 

Antibody Coated Plate. Incubate 1 hour at 25ºC on an orbital shaker.  

2. Prepare 300 mL of 1x Wash Buffer by diluting 10x Wash Buffer Concentrate  

 - 30 mL 10x Wash Buffer Concentrate 

 - 270 mL Deionized Water 

    Warm Substrate solution to room temperature 

 

3. Make Preparation of Isoprostanes Standards as labeled in Preparation of 8-iso-

PGF2α. 

 

4. After incubation, remove the antibody solution from the wells. Wash wells 5 times 

with 300 µL 1X Wash Buffer per well. After the last wash, empty the wells and tap 

microwell plate on absorbent pad or paper towel to remove excess wash solution.  

Note: Thorough washing is necessary to remove all of the azide present in the antibody 

solution.  

5a. Immediately before use, dilute the conjugate 1:80 with Sample Diluent. Only prepare 

enough of the diluted conjugate for the number of wells immediately used. 

5b. Combine 55 µL of the 8-iso-PGF2α standard or sample and 55 µL of 8-iso-PGF2α-

HRP conjugate in a microtube and mix thoroughly. Transfer 100 µL of the combined 

solution per well. A well containing Sample Diluent can be used as a control. Incubate 1 

hour at 25ºC on an orbital shaker.  
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6. After incubation, remove the combined solution from the wells. Wash 5 times with 300 

µL of 1X Wash Buffer per well. After the last wash, empty wells and tap microwell plate 

on absorbent pad or paper towel to remove excess wash solution. 

7. Add 100 µL of Substrate Solution to each well. Incubate at room temperature for 15 

minutes on an orbital shaker.  

8. Stop the enzyme reaction by adding 100 µL of Stop Solution to each well. Results 

should be read immediately (color will fade over time).  

9. Read absorbance of each well on a microplate reader using 450 nm as the wavelength. 
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