
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Computer Science and Engineering: Theses,
Dissertations, and Student Research

Computer Science and Engineering, Department
of

Spring 4-20-2020

Open Dynamic Interaction Network: a cell-phone based platform Open Dynamic Interaction Network: a cell-phone based platform

for responsive EMA for responsive EMA

Gisela Font Sayeras
University of Nebraska - Lincoln, gfontsayeras2@huskers.unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/computerscidiss

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Font Sayeras, Gisela, "Open Dynamic Interaction Network: a cell-phone based platform for responsive
EMA" (2020). Computer Science and Engineering: Theses, Dissertations, and Student Research. 187.
https://digitalcommons.unl.edu/computerscidiss/187

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and
Engineering: Theses, Dissertations, and Student Research by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/computerscidiss
https://digitalcommons.unl.edu/computerscidiss
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F187&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F187&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F187&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscidiss/187?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F187&utm_medium=PDF&utm_campaign=PDFCoverPages

OPEN DYNAMIC INTERACTION NETWORK: A CELL-PHONE BASED

PLATFORM FOR RESPONSIVE EMA

by

Gisela Font Sayeras

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professors Jitender Deogun and Bilal Khan

Lincoln, Nebraska

May, 2020

OPEN DYNAMIC INTERACTION NETWORK: A CELL-PHONE BASED

PLATFORM FOR RESPONSIVE EMA

Gisela Font Sayeras, M.S.

University of Nebraska, 2020

Adviser: Jitender Deogun and Bilal Khan

The study of social networks is central to advancing our understanding of a wide

range of phenomena in human societies. Social networks co-evolve concurrently

alongside the individuals within them. Selection processes cause network structure

to change in response to emerging similarities/differences between individuals. At the

same time, diffusion processes occur as individuals influence one another when they

interact across network links. Indeed, each network link is a logical abstraction that

aggregates many short-lived pairwise interactions of interest that are being studied.

Traditionally, network co-evolution is studied by periodically taking static snap-

shots of social networks using surveys. Unfortunately, participation incentives make

surveys costly to deliver, which makes it impractical to collect snapshots at fine tem-

poral resolution. On the other hand, collecting data at wider time intervals requires

participants to perform error-prone recall about long periods of time. This creates a

difficult research tradeoff between data cost and data quality.

More recently, techniques of Ecological Momentary Assessment (EMA) have been

developed, involving repeated sampling of subjects’ current behaviors and experiences

in real time, in subjects’ natural environments. This thesis project describes the

design, implementation, and validation of a new platform for responsive EMA.

The Open Dynamic Interaction Network (ODIN) platform is a cost-effective and

flexible cell-phone based platform to collect continuous time sensor data and deliver

contextual surveys to a study population. ODIN allows social and behavioral health

researchers to instrument study protocols by specifying both the questions to be

asked and the rules governing when questions should be asked over the duration

of the study. Researcher-specified rules can reference sensor data (e.g. time, GPS,

accelerometer-based activity, Bluetooth-based proximity to other participants, etc),

as well as the subject’s previous answers. ODIN is composed of four backend services,

two web user interfaces, and an Android application. A pilot study was conducted

over the course of 30 days with 14 participants to evaluate the system. The results

obtained from the pilot show that the system successfully collects relevant data for

the study as well as triggering questions according to the study needs.

iv

ACKNOWLEDGMENTS

ODIN was originally conceptualized and designed in 2013-2015 by an interdisciplinary

team of social and behavioral scientists as part of National Science Foundation project

SMA 1338485 (PI Khan). ODIN’s development was subsequently supported by the

National Institutes of Health through grant R01 GM118427 (PI Dombrowski, Khan)

during the period 2016-2019, and this M.Sc. thesis was funded in part by the latter

grant. As part of my thesis, I led a team of software developers through the iterative

process of implementing and testing the ODIN software platform. In the course of

doing this, I found that many aspects of the original design put forth in the NSF

funded project had to be modified in light of new end-user requirements and emerg-

ing cellphone technologies/constraints. This thesis documents the new requirements,

revised design, software implementation, and preliminary evaluation of the ODIN

system.

I want to thank Jitender Deogun for his support and motivation throughout my

master’s degree; Bilal Khan for encouragement and guidance throughout the last 3

years working on ODIN; The other members of the social research group that were

involved in the aspects of computer programming of the system. This work would

not have been possible without the collaborations and input of the software devel-

opment team: Alekhya Bellam, Yijie Yan, Kin Pi, Maisha Jaunering, Daniel Schae-

fer, Anthony McIntosh, Michael Shanahan, Kim Nguyen, Emery Tanghanwaye, Max

Nguyen, Andrew Bueide, and Navya Singh; earlier versions of the ODIN system were

developed by Andy Peng, Hasan Eray Dogan, Carlos Castilla, Mateusz Opalinski,

and Anna Wisniewska; Devan Crawford, Patrick Habecker, and James Lindsay for

their help with the design of the ODIN website and the phone application; Trey An-

drews, Becca Brock, and Kim Tyler for giving feedback and making the ODIN pilots

v

possible. These last 3 years have been challenging, but working with the SNRG team

made it enjoyable.

I would also like to thank my friends, especially the Barteks, that supported me

throughout this journey and Pedro Albuquerque for his love and support. Finally,

I would like to thank my parents and grandparents for all their love and support

throughout these years despite the distance. My father is an inspiration for this

thesis because he has Parkinson Disease, and he is a participant on a research project

that uses a phone application weekly for 2 years to examine his progress. I hope

that ODIN would help other patients and researchers in the areas of psychology and

medicine.

vi

GRANT INFORMATION

This work was originally conceptualized and designed in 2013-2015 by an interdisci-

plinary team of social and behavioral scientists as part of National Science Foundation

project SMA 1338485 (PI Khan). ODIN’s development was subsequently supported

by the National Institutes of Health through grant R01 GM118427 (PI Dombrowski,

Khan).

vii

Table of Contents

List of Figures xi

List of Tables xviii

1 Background and motivation 1

2 Requirements 8

2.1 Use-cases . 9

2.1.1 Web UI . 9

2.1.2 Phone application . 19

2.2 Extensibility for sensors . 23

2.3 Extensibility for rules . 23

3 System architecture and overview 25

4 Backend server 29

4.1 Design . 30

4.2 Details . 34

4.2.1 Database Schema . 34

4.2.2 Rules Engine . 45

4.2.2.1 Scheduler . 49

4.2.3 Sliding Window . 52

viii

4.2.3.1 Rules . 59

4.2.3.2 Filters . 64

4.2.3.3 Sensors . 65

5 Android 68

5.1 Design . 69

5.2 Details . 74

5.2.1 Database Schema . 74

5.2.2 Rules Engine (Intent-based) 76

5.2.2.1 Scheduler . 76

5.2.3 Scenarios . 77

5.2.3.1 Application launch 79

5.2.3.2 Registration . 81

5.2.3.3 Consent form . 83

5.2.3.4 Start ODIN . 85

5.2.3.5 Start services . 87

5.2.3.6 Construction of service 88

5.2.3.7 AbstractStatefulService 89

5.2.3.8 Phone power on/off 92

5.2.3.9 Service is killed . 94

5.2.3.10 User removes task 96

5.2.3.11 Backend push notification 98

5.2.3.12 Consent states . 100

5.2.4 Services and Sensors . 101

5.2.4.1 Upload Service . 102

5.2.4.2 Rule Question Service 103

ix

5.2.4.3 GPS . 105

5.2.4.4 Bluetooth . 106

5.2.4.5 Beacon . 108

5.2.4.6 Activity Recognition 109

5.2.4.7 Empatica E4 . 109

6 Web 111

6.1 Design and User experience . 112

6.2 Details . 115

6.2.1 RESTful service using HTTP as a transport layer 115

6.2.2 MVC . 117

6.3 Communication and Network Protocols 120

6.3.1 Between App and Server . 122

6.3.2 Between Web UI and Server 123

7 Consistency across app and server database 126

8 Concurrency 128

8.1 Thread management and deadlock avoidance in the Server 129

8.2 Thread management and deadlock avoidance in the App 130

9 Testing Strategies 132

9.1 Unit Testing . 133

9.2 Integration Testing . 134

9.3 Acceptance Testing . 135

9.4 System Testing . 136

10 System Evaluation and Validation 137

x

10.1 Scalability for the number of participants 137

10.2 Scalability for the number of researchers 137

10.3 Scalability for question instances . 138

10.4 Scalability for rule types . 138

10.5 Scalability for sensor types . 139

11 Distributed Logging and Error Detection 141

12 Security 147

12.1 Network transport Security . 148

12.2 Android Security . 148

12.3 Server Security . 150

13 Experiments and results 152

13.1 Sensor performance . 156

13.2 Rules performance . 160

14 Conclusion and future work 165

Bibliography 222

xi

List of Figures

2.1 ODIN Web UI use case Diagram . 10

2.2 ODIN App use case Diagram . 20

3.1 ODIN’s system architecture. The left side of the figure shows the two

web interfaces, the center contains the backend server, and the right side

depicts the Android application. 26

4.1 Backend services and packages. The right side of the figure displays the

different services running on Tomcat, and the left side shows their structure. 30

4.2 PhoneAppService structure. The left side of the figure shows the service

structure and the right side displays the RulesEngine package, which uses

the ODINCommon module. 31

4.3 ODIN database ER diagram . 36

4.4 Study database ER diagram . 40

4.5 Rules Engine class diagram . 47

4.6 Rule Engine backend Scheduler sequence diagram. Ent1 is the sender and

Ent2 the receiver of event A; Ent2 is the sender and Ent1 the receiver of

event B. 49

xii

4.7 Example of sliding Window method IShape. The mark underneath the

graph represents the sliding window. The black dots represent the data

which can be either 0 (F) or 1 (T), while the red dots represent the rule

firings. 56

4.8 Example of sliding Window method LShape. The mark underneath the

graph represents the sliding window. The black dots represent the data

which can be either 0 (F) or 1 (T), while the red dots represent the rule

firings. 58

5.1 ODIN Android app overview. This diagram shows how the activities and

services connect to the database. The jar files that are shared with the

backend. The right side of the figure represents how the app receives

notifications from the backend. The highlighted box is later used to relate

it to Fig 5.18. The outer rectangle represents the APK. 69

5.2 Diagram of Business Logic communicating with the backend over the net-

work. The left side shows the BL classes in ODIN Android. The right side

represents the PhoneAppService. 72

5.3 Diagram that represents the structure of the DAO layer. The sensor tables

are registered into the SensorRegistry and implement IPeriodicSenorData-

Source. It shows the difference between a non-senor table (ConsentTable)

and a sensor related table (GPSTable). 73

5.4 Android database schema . 74

5.5 Rule Engine Android Scheduler sequence diagram. Ent1 is the sender and

Ent2 the receiver of event A; Ent2 is the sender and Ent1 the receiver of

event B. 78

5.6 Application launch scenario . 79

xiii

5.7 Registration scenario . 81

5.8 Consent form scenario . 83

5.9 Start ODIN scenario . 85

5.10 Start services scenario . 87

5.11 Construction of services scenario . 88

5.12 AbstractStatefulService scenario . 90

5.13 Phone power on/off scenario . 92

5.14 Service killed scenario . 94

5.15 Start services scenario . 96

5.16 Backend push notification scenario . 98

5.17 Frontend and backend consent states . 100

5.18 Example of the structure of ODIN Services in Android 101

5.19 Upload Service diagram. The left side shows how it uploads the data to

the server and the right side represents the other services registering to

the UploadService. 103

5.20 Rule Question service diagram. It shows the different states (Initial,

Ready, and Reload) and classes involved in the Rule Question service.

It displays how the service retrieves the questions from the server, and the

server notifies the application through SNS when there is a rule firing. . . 104

5.21 GPS Service diagram. The left side shows how the only state of the ser-

vice (PeriodicGetLocation) sends data to the database and retrieves the

location from the GPSDataCollector. 105

5.22 Bluetooth Service diagram. It contains three states; Initial, Discovering,

and CleanUp. The ProximityBluetoothBroadcastReceiver class notifies

the Discovering state when there is an update. 107

xiv

5.23 Beacon service diagram. It contains only the Initial state which writes to

the database. 108

5.24 Activity Recognition service diagram. It contains only the ActivityRecog-

nitionPeriodic state which writes to the database. 109

5.25 Empatica E4 service diagram. It contains only the EmpaticaE4 state

which writes to the database. 110

6.1 ODIN frontend MVC design and communication to the server via REST 112

6.2 HTTP request-response behavior [1] . 116

6.3 ResearcherUI Controllers design . 118

6.4 ResearcherUI Models design . 118

6.5 ResearcherUI Views design . 119

6.6 ResearcherUI REST design . 120

6.7 User Login sequence diagram of Web UI communication to ResearcherService125

11.1 Class diagram for logging. The Controller sends a list of log files to the

LoggerManager. MyLogger implements ILogger interface, and MyLogger-

Factory implements ILoggerFactory interface. 143

11.2 Logger Manager data members objects 144

11.3 Diagram of a thread logging into a file 145

13.1 GPS and Bluetooth average sensor interval for each coupon throughout

the study. The horizontal axis represents the participants of the study and

the vertical axis is percentage deviation from expected interval. 157

13.2 Intervals between GPS samples. The horizontal axis represents the par-

ticipants and the vertical axis represents the difference between intervals.

The two figures show the same data but at a different scale. 158

xv

13.3 Intervals between Bluetooth samples. The horizontal axis represents the

participants and the vertical axis represents the difference between inter-

vals. The two figures show the same data but at a different scale. 159

13.4 Subject and phone performance. The horizontal axis represents the sub-

ject performance and the vertical axis represents the phone performance

as a percent. The dots represent the study participants. 161

.54 ResearcherUI Questions addQuestion post success 169

.56 ResearcherUI Questions delete success 169

.58 ResearcherUI Questions editFilters post success 169

.60 ResearcherUI Questions editQuestion post success 169

.62 ResearcherUI Questions editRule post success 169

.64 ResearcherUI ReasearcherHome Leave failure 169

.66 ResearcherUI ResearcherHome CopyStudy success 169

.68 ResearcherUI ResearcherHome createStudy reset 169

.70 ResearcherUI ResearcherHome deleteStudy cancel 169

.72 ResearcherUI ResearcherHome deleteStudy success 169

.74 ResearcherUI ResearcherHome editStudy success 169

.1 ResearcherUI Account Logout . 170

.2 ResearcherUI Account ResetPassword post failure 171

.3 ResearcherUI Account ResetPassword post success 172

.4 ResearcherUI Account ValidateEmail post failure 173

.5 ResearcherUI Account validateEmail get 174

.6 ResearcherUI Account validateEmail post success 175

.7 ResearcherUI ConsentForm EnableConsentForm failure 176

.8 ResearcherUI ConsentForm EnableConsentForm success 177

xvi

.9 ResearcherUI ConsentForm failure . 178

.10 ResearcherUI ConsentForm get . 179

.11 ResearcherUI ConsentForm post success 1 180

.12 ResearcherUI ConsentForm post success 2 181

.13 ResearcherUI Contact . 182

.14 ResearcherUI Coupon get . 183

.15 ResearcherUI Coupon post failure . 184

.16 ResearcherUI Coupon post success . 185

.17 ResearcherUI Coupons EditCoupon failure 186

.18 ResearcherUI Coupons EditCoupon success 187

.19 ResearcherUI Coupons Revoke failure . 188

.20 ResearcherUI Coupons Revoke success 189

.21 ResearcherUI Coupons Withdraw failure 190

.22 ResearcherUI Coupons Withdraw success 191

.23 ResearcherUI Coupons get . 192

.24 ResearcherUI Faq . 193

.25 ResearcherUI Help . 194

.26 ResearcherUI Login failure . 195

.27 ResearcherUI Login success . 196

.28 ResearcherUI Participants Post sensor success 197

.29 ResearcherUI Participants post failure 198

.30 ResearcherUI Participants post sensor failure 199

.31 ResearcherUI Participants post survey success 200

.32 ResearcherUI Profile get . 201

.33 ResearcherUI Profile post failure . 202

.34 ResearcherUI Profile post success . 203

xvii

.35 ResearcherUI Questions AddFilters post failure 204

.36 ResearcherUI Questions AddFilters post success 205

.37 ResearcherUI Questions AddRule post failure 206

.38 ResearcherUI Questions AddRule post success 207

.39 ResearcherUI Questions Copy failure . 208

.40 ResearcherUI Questions Copy success . 209

.41 ResearcherUI Questions DeleteChoice failure 210

.42 ResearcherUI Questions DeleteRule failure 211

.43 ResearcherUI Questions DeleteRule success 212

.44 ResearcherUI Questions Delete failure 213

.45 ResearcherUI Questions DisableQuestion failure 214

.46 ResearcherUI Questions DisableQuestion success 215

.47 ResearcherUI Questions DisableRule failure 216

.48 ResearcherUI Questions DisableRule success 217

.49 ResearcherUI Questions Publish failure 218

.50 ResearcherUI Questions Publish success 219

.51 ResearcherUI Questions addChoice post failure 220

.52 ResearcherUI Questions addChoice post success 221

xviii

List of Tables

1.1 Feature comparison of EMA applications 4

2.1 Use case description for Login . 11

2.2 Use case description for Create Study . 11

2.3 Use case description for Edit Study . 12

2.4 Use case description for Create Survey 12

2.5 Use case description for Add Question 13

2.6 Use case description for Edit Question 13

2.7 Use case description for Delete Question 14

2.8 Use case description for Disable Question 14

2.9 Use case description for Add Rule . 15

2.10 Use case description for Edit Rule . 15

2.11 Use case description for Delete Rule . 16

2.12 Use case description for Disable Rule . 16

2.13 Use case description for Generate Coupons 17

2.14 Use case description for View Participants 17

2.15 Use case description for View Answers 17

2.16 Use case description for View Sensor Data 18

2.17 Use case description for Edit Consent . 18

2.18 Use case description for Edit Contact . 19

xix

2.19 Use case description for Register . 20

2.20 Use case description for Sign Consent . 21

2.21 Use case description for Record Sensor Data 21

2.22 Use case description for Prompt Question 21

2.23 Use case description for Select Question 22

2.24 Use case description for Answer Question 22

2.25 Use case description for Skip Question 22

2.26 Use case description for Answer Later . 23

4.1 InterpolatedPredicate example using GPS data. The predicate is the par-

ticipant is at AH. 53

4.2 Sample data for the IShape method . 56

4.3 Sample data for the LShape method . 58

6.1 REST calls between APK and Server . 122

13.1 Sensors with corresponding parameters from the SONA study pilot . . . 155

13.2 Questions with associated rules and filters from the SONA study pilot . . 155

13.3 GPS and Bluetooth average reliability among all the participants. 157

13.4 Results of average subject, phone, and pilot performance metrics. 161

13.5 Rules average metrics results among all the participants. 161

1

Chapter 1

Background and motivation

The study of social networks is central to understanding human behavior and social

connections. There is a vast body of research on people’s social conduct [2, 3], but

quantitative studies involving longitudinal surveys are often hampered by data qual-

ity issues stemming from biases in a recall. In more recent years, social scientists have

made use of the Experience Sampling Method (ESM), and Ecological Momentary As-

sessment (EMA). ESM/EMA has been particularly fruitful in psychology, sociology,

and medicine because it allows for the collection of data in situ over long periods

[4, 5, 6, 7, 8]. Myin-Germeys et al. (2009) state that “The Experience Sampling

Method (ESM) allows us to capture the film rather than the daily life reality of

patients” [9].

Traditional surveys are more susceptible to the collection of biased data since they

do not incorporate contextual information about the subject’s natural environment.

According to Krosnick et al., participants tend to change their answers during in-

person surveys to feel more “socially desirable” [10]. Another factor that produces

different answers in participants is tracking the pace at which the subject is being

interviewed [11]. For instance, a person could feel more stressed in the morning

and more relaxed in the afternoon, and thus, taking the survey at different times, we

obtain conflicting results to short-timed surveys. In all of these cases, the participant’s

2

context leads to bias and the absence of relevant data. As researchers, we want

participants to feel more engaged in the study and researchers to obtain more accurate

data.

Increasing the data collection difficulties is the growing need to collect more fine-

grained data on populations and their interconnections, over long timescales. In the

past, Social Network Analysis (SNA) has sought to render social relationships as tak-

ing place in mostly stable networks [2, 3]. Indeed, most of the 50,000 studies registered

in ClincalTrails.gov [12] were conducted via in-person, which produces a static snap-

shot, and requires a lot of researcher and field team expenses. The financial burdens

of these approaches limits the feasible sample size. To date, financial considerations

have made impossible to collect high resolution data about a social network over long

time scales. To alleviate the issues surrounding longitudinal data collection, method-

ologies like ERGM [13, 14, 15, 16] and SIENA [17] adopt an approach of analyzing a

sequence of snapshots of social networks to infer conclude their simulated dynamics.

However, network snapshots fail to capture the interactions which underlie them (the

evidence relationships), and are thus likely to miss some of the processes at play.

Additionally, big companies started creating applications to overcome these dif-

ficulties for users to record their data. For example, Google bought Behavio1 which

is an Android phone application developed by MIT that records sensor data such as

location, activity, proximity, etc and analyzes this data to draw conclusions based

on anomalies in the subjects behavior. Another example, Microsoft implemented a

web-based application (HealthVault2) for users to record their health information.

However, it was officially shut down in November of 2019 due to its low popularity.

The fact that it was not designed to run on a mobile platform was one of the reasons

1http://www.behav.io
2https://international.healthvault.com

3

for its failure.

The different methods applied for real-time data collection to understand a sub-

ject’s behavior in their natural environment is known as EMA [18]. EMA is becoming

more popular due to the increase of population owning smartphones and Internet ac-

cess [19]. Existing research on the cell phone application Enhanced New Mothers

Network (ENMN) shows that subjects who own smartphones seem to be comfortable

with phone surveys [20, 21]. The main features of EMA are data collection over the

subject’s daily life, reporting of the participant’s current state, questions prompted

when there is an event of interest, and multiple surveys completed throughout a pe-

riod that provide changes in the subject’s behavior [22]. For example, in a study of

drug abuse using EMA could involve recording GPS and Bluetooth data to know how

actively the participant is using, and if there is any relationship established among

other subjects within the same study. Additionally, the participant might use EMA to

report when they are considering taking drugs or any other relevant events. Because

EMA methodology provides more accurate data on the subject’s life, it facilitates

better research across a wide range of areas of study.

EMA’s novel approach provides more data for researchers to analyze but brings

new challenges that researchers and developers need to consider [23]. To date, there

have been a large number of EMA surveys, but there is little literature analyzing the

difficulties with EMA itself [23]. Van Berkel et al. state that phone-based EMA is

not yet fully developed, and researchers face considerable difficulties during the use

of phones in EMA studies, due to the lack of suitable software availability [23].

In this thesis, we present ODIN, a software system that overcomes these limitations

and allows researchers to collect more accurate and meaningful realtime data about a

population. ODIN is an innovative software platform that participants register on a

phone application and carry throughout the study, which could vary from several days

4

mPower PACO TEMPEST Jeeves ODIN
Researcher-editable surveys x

Sensor data recording x x
Time-based prompting

Sensor-data based prompting x
Live data review & visualization x x x x

Built-in sensorial services x x x x

Table 1.1: Feature comparison of EMA applications

to months. The long-time surveys result in more accurate data since many questions

are asked during the day.

To date, there has been some literature based on phone applications similar to

ODIN. On the one hand, there exist phone applications that collect sensor data and

immediate context-based questions for particular domains. One example of this is

mPower [24]; a mobile application used to study Parkinson Disease (PD). Other ex-

amples of applications are MobiClique, BlueAware, and E-Small Talker which use

Bluetooth sensor proximity to form social graphs based on ad hoc social networks

[25, 26, 27]. In addition to specialized platforms, there are other more general-purpose

systems like MyExperience [28] and EmotionSense [29]. Unfortunately, these systems

require researchers to have some programming knowledge. For example, MyExperi-

ence requires writing complex scripts in XML files. Likewise, EmotionSense facilitates

the design of ESM applications but still requires some programming skills and ability

to do Android development. As a result, researchers’ expenses are increased due to

the need to purchase software or hardware [30, 31, 32], as well as the expertise of

on-staff programmers [33] to instrument the surveys.

Table 1.1 presents a list feature comparison of other systems similar to ODIN. The

applications have been chosen based on the most recent and similar to ODIN; mPower,

PACO, TEMPEST, and Jeeves. The main features that make ODIN stand out from

5

the other systems are researcher-editable surveys, sensor data recording, time-based

prompting, sensor-data based prompting, live data review and visualization, and

built-in sensor services. Next, each of these features is described and compared with

the other systems in more detail.

Ideally, researchers should be able to program their surveys without the need to

hire developers. Systems like Paco [34], Jeeves [35], and TEMPEST [36] try to pro-

vide this feature by supporting a user interface that facilitates the study creation by

researchers. Jeeves uses block-based visual programming for the creation of surveys.

In contrast, TEMPEST uses a user-friendly interface, but researchers still need to

have basic programming knowledge of if statements since they are necessary to create

conditionals. ODIN provides a web user interface that does not require any pro-

gramming knowledge. The researcher can create new questions and rules by simply

selecting them from the dropdown and filling out the required fields. Each rule is

described in a few sentences at the top of the pop-up. Then, the user has to fill in

the blanks.

Unlike many existing EMA-related applications, ODIN allows constant recording

of sensor data. Paco is limited because it does not support sensor data [35], relying

principally on primary Android app usage and phone status: phone on and off, in-

coming calls, messages, and notifications. On the other hand, mPower sensor data is

only collected during specific tasks or prescribed activities such as tests of memory,

tapping, voice, and walking, which participants are asked to perform 3 times a day.

The most characteristic feature in EMA studies is the time-based prompting of

questions. The comparison Table 1.1 shows all the applications provide time-based

questions. mPower supporting asking questions only at the beginning of the study

and then on a daily basis. Other systems (e.g. TEMPEST) contain a built-in function

to count the number of days that have passed since the beginning of the study. Both

6

of these features are available in ODIN. The researcher can specify the precise date

and time at which to prompt with a question, or based on the amount of time that

has elapsed since the participant’s registration with the study.

Another essential feature in EMA studies is sensor-based based prompting. Be-

cause this is more complicated to implement than time-based prompting, it is not

commonly found in existing systems. While mPower records sensor data during spe-

cific tasks, it does not ask questions based on sensor recordings. However, in ODIN,

researchers can create new rules based on the values being recorded via sensors, and

new sensors can be supported over time.

ODIN provides real-time visualization of the participants’ data, a feature which

is not available in other systems. Jeeves allows the researchers to download the data,

but it is only after the participant completes the survey. A study on dietary behavior

change was run using Jeeves and reported limitations on the application, such as

“synchronization issues and problems with the visualization of the questions [37]. In

contrast, in ODIN, each phone is periodically (every 20min) pushing its data to the

server, where it becomes available for the researcher to review.

Software libraries are used in most applications to collect sensor data, but ODIN

provides its own built-in sensor services. Several software libraries have been devel-

oped to facilitate the creation of EMA studies and to allow any person to be able

to participate in a given study from anywhere in the world by using their mobile

device [38]. Some examples of these libraries are Aware Framework [39], ResearchKit

[40], ResearchStack [41], Survalytics [42], Purple [43], and funf library from MIT

(http://www.funf.org). For example, mPower uses library ResearchKit. TEMPEST

and Jeeves require other libraries to use some of their available sensors. By using a

custom sensor library, ODIN is able to maintain fine-grained control over the data it

uses to continuously assess each participants current context.

7

To date, there is no other system that has all the functionalities of ODIN. Some

software and libraries have some of the ODIN’s features, but no system contains all

of them. Some systems are missing the data interpretation and visualization (e.g.

TEMPEST). Others have a fixed palette of questions but they are not based on

context (e.g. mPower). Others still are missing built-in sensor services (e.g. Jeeves).

In designing ODIN, we attempted to sidestep all these limitations.

ODIN enables continuously recording sensor data and prompting contextual ques-

tions. It consists of 2 main applications: 1) a Web UI where the researchers can create

studies with sensors, questions, and rules, and visualize the participants’ data in real-

time, 2) a Phone application in which participants register to a study and contextual

questions are prompted. We focus on describing the structure and details of each of

these applications in the system.

This thesis follows the next outline. Chapter 2 covers the requirements of ODIN.

Chapter 3 gives an overview of the system architecture. Chapter 4 focuses on the

backend server design. Chapter 5 describes our Android application in detail. Chapter

6 explains the Web UI design, how the information is exchanged between the UI and

the phone app with the server via HTTP. Chapter 7 describes the database design

(and its consistency). Chapter 8 covers the thread management in the server and the

phone application. Chapter 9 explains the different testing strategies we have used

as part of our development process. Chapter 10 covers the evaluation and validation

of the system. Chapter 11 describes different debugging and auditing strategies,

including logging. Chapter 12 focuses on security in all aspects of the ODIN system.

Finally, Chapter 13 covers the experiments and results.

8

Chapter 2

Requirements

ODIN has different applications that enable researchers and participants to be en-

gaged in studies. First, we give a high-level overview of the different modules in the

system, and then we present each in greater detail in subsequent chapters. ODIN can

be divided into three main applications.

• Web UI: Web interface using which researchers create one or more studies with

researcher-customized sensors, questions, and rules. Once a study is created,

coupons may be generated and are distributed to participants wishing to par-

ticipate in the study. The researchers can view real-time data collected by the

app, including sensor measurements and participant answers to context-based

survey questions.

• ODIN App: Android application using which the users register and participate

in a research study. The ODIN app prompts the subject with questions dy-

namically based on the study rules and the subject’s context as determined by

sensor measurements and prior answers.

• ODIN Cloud Server: Ubuntu Virtual Machine running a suite of custom and

off-the-shelf services that are responsible for storing the data and interacting

with the Web UI and all instances of the ODIN app.

9

This section describes the requirements of the ODIN system, starting with the use

cases, followed by the extensibility for sensors and rules.

2.1 Use-cases

2.1.1 Web UI

We first present the use case of the Web UI, where the researcher can create and

modify studies. Fig 2.1 shows the use case diagram of the ODIN Web UI followed

by the use case descriptions. First, the Researcher enters the user credentials to

log in (Table 2.1) to the Web UI. Then, a new study is created (Table 2.2). Then,

modifications to the study can be made by updating the information (Table 2.3),

creating a survey (Table 2.4) by adding, editing, deleting and disabling questions and

rules (Tables 2.5-2.12), generating coupons (Table 2.13), viewing the participants

(Table 2.14), viewing the answers (Table 2.15) and viewing the sensor data (Table

2.16), updating the consent forms (Table 2.17), or updating the contact information

(Table 2.18).

10

Figure 2.1: ODIN Web UI use case Diagram

11

Use case name Login
Participating actors Initiated by the Researcher
Flow of events 1. User fills in username and password on “Login” screen

and clicks the Login button.
2. The ODIN Web UI receives the username and password
information and hashes the password. The credentials are
then sent to the ODIN Cloud Server.
3. The ODIN Cloud Server validates the user and stores
the credentials with the password hash in the database.

Entry condition The user is logged out of the system.
Exit condition The user is redirected to the “Home” page.
Security Requirements The password is hashed.

Table 2.1: Use case description for Login

Use case name Create Study
Participating actors Initiated by the Researcher
Flow of events 1. The Researcher selects the Create Study button.

2. The ODIN Web UI displays the create study form.
3. The Researcher enters the study name, duration, de-
scription, and selects the sensors they plan to use in this
newly created study. This information is sent to the ODIN
Cloud Server.
4. The ODIN Cloud Server creates the study if the infor-
mation is valid.

Entry condition The Researcher is logged in and in the Home page.
Exit condition The Researcher stays in the “Home” page.
Security Requirements The size of the input is restricted and the data is validated.

Table 2.2: Use case description for Create Study

12

Use case name Edit Study
Participating actors Initiated by the Researcher
Flow of events 1. Researcher selects the Edit icon in a specific study.

2. The ODIN Web UI redirects the user to the “Info”
page.
3. The Researcher edits the study name, description, du-
ration, adds other researchers to the study, edits, or adds
new sensors to the study and moves the study phase.
4. The ODIN Web UI sends the information to the ODIN
Cloud Server, which validates the information and stores
it in the database.

Entry condition The Researcher has navigated to “Info” page.
Exit condition The information has been updated successfully and the

Researcher stays in the “Info” page.
Security Requirements The size of the input is restricted and the data is validated.

Table 2.3: Use case description for Edit Study

Use case name Create Survey
Participating actors Initiated by the Researcher
Flow of events 1. Researcher selects the Survey page in the navigation

menu.
2. The ODIN Web UI displays the list of questions and rules
added to the study.

Entry condition The Researcher has navigated to “Info” page.

Table 2.4: Use case description for Create Survey

13

Use case name Add Question
Participating actors Initiated by the Researcher
Flow of events 1. Researcher selects the Add Question button page in

the navigation menu.
2. The ODIN Web UI displays a form in which the Re-
searcher can enter the question details.
3. The Researcher fills out the form and selects the button
Create Question.
4. The ODIN Web UI sends information to the ODIN
Cloud Server.
5. The ODIN Cloud Server validates the information and
stores it in the database.

Entry condition The Researcher has navigated to the “Survey” page
Exit condition The information has been updated successfully and the

Researcher stays in the “Survey” page.
Security Requirements The size of the input is restricted and the data is validated.

Table 2.5: Use case description for Add Question

Use case name Edit Question
Participating actors Initiated by the Researcher
Flow of events 1. Researcher selects the Edit Question button page in

the navigation menu.
2. The ODIN Web UI displays a form in which the Re-
searcher can enter the question details.
3. The Researcher fills out the form and selects the button
Update Question.
4. The ODIN Web UI sends information to the ODIN
Cloud Server.
5. The ODIN Cloud Server validates the information and
stores it in the database.

Entry condition The Researcher has created a question, and the study is
in preparing state.

Exit condition The information has been updated successfully and the
Researcher stays in the “Survey” page.

Security Requirements The size of the input is restricted and the data is validated.

Table 2.6: Use case description for Edit Question

14

Use case name Delete Question
Participating actors Initiated by the Researcher
Flow of events 1. Researcher selects the Delete Question button page in

the navigation menu.
2. The ODIN Web UI sends information to the ODIN
Cloud Server.
3. The ODIN Cloud Server validates the information and
updates the database.

Entry condition The Researcher has created a question and the study is in
preparing state.

Exit condition The information has been updated successfully and the
Researcher stays in the “Survey” page.

Security Requirements The size of the input is restricted and the data is validated.

Table 2.7: Use case description for Delete Question

Use case name Disable Question
Participating actors Initiated by the Researcher
Flow of events 1. Researcher selects the Disable Question button page in

the navigation menu.
2. The ODIN Web UI sends information to the ODIN
Cloud Server.
3. The ODIN Cloud Server validates the information and
updates the database.

Entry condition The Researcher has created a question and the study is
in-progress state.

Exit condition The information has been updated successfully and the
Researcher stays in the “Survey” page.

Security Requirements The size of the input is restricted and the data is validated.

Table 2.8: Use case description for Disable Question

15

Use case name Create Rule
Participating actors Initiated by the Researcher
Flow of events 1. Researcher selects the Add Rule button page in the

navigation menu.
2. The ODIN Web UI displays a form in which the Re-
searcher can enter the rule details.
3. The Researcher fills out the form and selects the button
Create Rule.
4. The ODIN Web UI sends information to the ODIN
Cloud Server.
5. The ODIN Cloud Server validates the information and
stores it in the database.

Entry condition The Researcher has navigated to the “Survey” page.
Exit condition The information has been updated successfully and the

Researcher stays in the “Survey” page.
Security Requirements The size of the input is restricted and the data is validated.

Table 2.9: Use case description for Add Rule

Use case name Edit Rule
Participating actors Initiated by the Researcher
Flow of events 1. Researcher selects the Edit Rule button page in the

navigation menu.
2. The ODIN Web UI displays a form in which the Re-
searcher can enter the question details.
3. The Researcher fills out the form and selects the button
Update Rule.
4. The ODIN Web UI sends information to the ODIN
Cloud Server.
5. The ODIN Cloud Server validates the information and
stores it in the database.

Entry condition The Researcher has created a rule and the study is in
preparing state.

Exit condition The information has been updated successfully and the
Researcher stays in the “Survey” page.

Security Requirements The size of the input is restricted and the data is validated.

Table 2.10: Use case description for Edit Rule

16

Use case name Delete Rule
Participating actors Initiated by the Researcher
Flow of events 1. Researcher selects the Delete Rule button page in the

navigation menu.
2. The ODIN Web UI sends information to the ODIN
Cloud Server.
3. The ODIN Cloud Server validates the information and
updates the database.

Entry condition The Researcher has created a rule and the study is in
preparing state.

Exit condition The information has been updated successfully and the
Researcher stays in the “Survey” page.

Security Requirements The size of the input is restricted and the data is validated.

Table 2.11: Use case description for Delete Rule

Use case name Disable Rule
Participating actors Initiated by the Researcher
Flow of events 1. Researcher selects the Disable Rule button page in the

navigation menu.
2. The ODIN Web UI sends information to the ODIN
Cloud Server.
3. The ODIN Cloud Server validates the information and
updates the database.

Entry condition The Researcher has created a rule and the study is in-
progress state

Exit condition The information has been updated successfully and the
Researcher stays in the “Survey” page.

Security Requirements The size of the input is restricted and the data is validated.

Table 2.12: Use case description for Disable Rule

17

Use case name Generate Coupons
Participating actors Initiated by the Researcher
Flow of events 1. The Researcher has selected Coupons button in the nav-

igation menu.
2. The ODIN Web UI displays a form to generate coupons.
3. The Researcher generates new coupons.
4. The ODIN Web UI sends information to the ODIN Cloud
Server.
5. The ODIN Cloud Server validates the information and
stores it in the database.

Entry condition The Researcher has navigated to “Info” page.
Exit condition New coupons have been updated successfully and the Re-

searcher stays in the “Coupons” page.

Table 2.13: Use case description for Generate Coupons

Use case name View Participants
Participating actors Initiated by the Researcher
Flow of events 1. The Researcher selects the Participants option from the

navigation menu.
2. The ODIN Web UI asks the ODIN Cloud Server for the
data and the Server returns the data requested by the user
and displays the list of coupons registered in the study.

Entry condition The Researcher has navigated to “Info” page.
Exit condition The Researcher stays in the “Participants” page.

Table 2.14: Use case description for View Participants

Use case name View Answers
Participating actors Initiated by the Researcher
Flow of events 1. The Researcher selects a coupon from the list of coupons

that have registered to the study.
2. The ODIN Web UI asks the ODIN Cloud Server for the
data, and the server returns the data requested by the user.
3. The Researcher selects the Survey option.
4. The ODIN Web UI displays the list of answers of the
selected participant.

Entry condition The Researcher has selected Participants button in the nav-
igation menu.

Exit condition The Researcher stays in the “Participants” page.

Table 2.15: Use case description for View Answers

18

Use case name View Sensor Data
Participating actors Initiated by the Researcher
Flow of events 1. The Researcher selects a coupon from the list of coupons

that have registered to the study.
2. The ODIN Web UI asks the ODIN Cloud Server for the
data, and the server returns the data requested by the user.
3. The Researcher selects a sensor from the list.
4. The ODIN Web UI displays the sensor data of the selected
participant.

Entry condition The Researcher has selected Participants button in the nav-
igation menu.

Exit condition The Researcher stays in the “Participants” page.

Table 2.16: Use case description for View Sensor Data

Use case name Edit Consent
Participating actors Initiated by the Researcher
Flow of events 1. The Researcher selects Consent from the navigation

menu.
2. The ODIN Web UI asks for the consent form informa-
tion to ODIN Cloud Server, which retrieves and returns the
information.
3. The Researcher modifies the consent information and
selects the Update button.
4. The ODIN Web UI sends the updated data to the ODIN
Cloud Server.
5. The Server validates and stores the information in the
database.

Entry condition The Researcher has navigated to “Info” page.
Exit condition The information is updated successfully and the Researcher

stays in the “Consent” page.

Table 2.17: Use case description for Edit Consent

19

Use case name Edit Contact
Participating actors Initiated by the Researcher
Flow of events 1. The Researcher selects Contact button in the navigation

menu.
2. The ODIN Web UI asks for the consent form informa-
tion to ODIN Cloud Server, which retrieves and returns the
information.
3. The Researcher adds new contact information, updates
existing data, or deletes unnecessary contact information.
4. The ODIN Web UI sends the updated data to the ODIN
Cloud Server.
5. The Server validates and stores the information in the
database.

Entry condition The Researcher has navigated to “Info” page.
Exit condition The information is updated successfully and the Researcher

stays in the “Contact” page.

Table 2.18: Use case description for Edit Contact

2.1.2 Phone application

Next, we present the use case diagram of the ODIN phone app in Fig 2.2 followed by

the use case descriptions. First, the participant registers to the study (Table 2.19).

There is the possibility that the study has the consent forms enabled in which case,

the participant has to sign them (Table 2.20). Afterwards, sensor data starts being

recorded (Table 2.21) which causes rule firings that result in prompted questions

(Table 2.22). Then, the participant selects a question (Table 2.23) and has the option

to either answer (Table 2.24), skip (Table 2.25) or answer later (Table 2.26).

20

Figure 2.2: ODIN App use case Diagram

Use case name Register to Study
Participating actors Initiated by the Study Participant
Flow of events 1. User fills in coupon number and clicks the Register button

2. The ODIN App responds by sending the coupon number
to the ODIN Cloud Server which uses this information to
validate the Participant

Entry condition
Exit condition The user is redirected to either the “Consent Form” screen

or “Welcome” screen.

Table 2.19: Use case description for Register

21

Use case name Sign Consent
Participating actors Initiated by the Study Participant
Flow of events 1. The Participant goes through the Consent by pressing

the Next button and finally signs the Consent form.
2. The ODIN App responds by sending the information to
the ODIN Cloud Server and receiving the study data that
the Researcher created

Entry condition The Study Participant has registered to the app.
Exit condition The user is redirected to the Welcome activity.

Table 2.20: Use case description for Sign Consent

Use case name Record Sensor Data
Participating actors Initiated by the System
Flow of events 1. If the study that the participant is registered to has sen-

sors enabled, then the ODIN App records sensor data every
X minutes which is specified by the Researcher during the
creation of the study.

Entry condition The Researcher has registered and signed the Consent (if
enabled).

Exit condition The Researcher has completed the Study.

Table 2.21: Use case description for Record Sensor Data

Use case name Prompt Question
Participating actors Initiated by the ODIN App or ODIN Cloud Server
Flow of events 1. The ODIN App prompts a question to the user when

all the conditions of the rule attached to that question have
been satisfied.

Entry condition The Researcher has registered and signed the Consent (if
enabled).

Exit condition The Researcher has completed the Study.

Table 2.22: Use case description for Prompt Question

22

Use case name Select Question
Participating actors Initiated by the Participant
Flow of events 1. The Participant selects a question from the list of ques-

tions.
2. The ODIN App displays the question selected.

Entry condition A question has been prompted to the Participant.
Exit condition The Participant is in the “Question” activity.

Table 2.23: Use case description for Select Question

Use case name Answer Question
Participating actors Initiated by the Participant
Flow of events 1. The Participant selects or types an answer for the

prompted question, and selects the Submit button.
2. The ODIN App stores the answer in the system’s
database.

Entry condition The participant selected a question.
Exit condition The Participant gives an answer to the question.

Table 2.24: Use case description for Answer Question

Use case name Skip Question
Participating actors Initiated by the Participant
Flow of events 1. The Participant does not select nor type any answer from

the prompted question, and selects the Submit button.
2. The ODIN App stores the skipped answer in the system’s
database.

Entry condition The participant selected a question.
Exit condition The Participant decides to not answer the question.

Table 2.25: Use case description for Skip Question

23

Use case name Answer Later
Participating actors Initiated by the Participant
Flow of events 1. The Participant decides to answer the question later and

selects the Back button.
2. The ODIN App keeps the question in the “Questions”
activity for the user wants to answer later.

Entry condition The participant selected a question.
Exit condition The Participant decides to answer the question later.

Table 2.26: Use case description for Answer Later

2.2 Extensibility for sensors

ODIN can grow in terms of the number of sensors since it is based on questions being

prompted due to rule firings. Some of the rules use sensors as the conditions to be

satisfied. By incrementing the number of sensors, we can obtain more accurate data

from the participant. From date, the following sensors are available in ODIN: GPS,

Bluetooth proximity, beacon proximity, activity recognition, and Empatica E4 wrist

band. Each of the sensors are described in Chapter 4.2.3.3 in more detail. Our system

has been designed to increase the number of sensors easily. For this reason, we plan

to keep implementing new sensors so that it increases the studies that can be created

since ODIN can obtain a wider range of data.

2.3 Extensibility for rules

ODIN prompts questions to the user if the rule conditions are satisfied. The rules in-

crease as the number of sensors grows. We can obtain more data from the participant,

and questions can be asked in an extended range of contexts. We have implemented

time-based, report, follow-up, and sensor-based rules. The complete list of rules with

their descriptions can be found in Chapter 4.2.3.1. For this reason, making the rules

24

extensible is a feature that increases the range of studies that can be used in ODIN.

We obtain more accurate data from the user with a more significant number of rules.

As mentioned previously, adding new sensors in the ODIN system is relatively sim-

ple. Similarly, we have designed the ODIN system to be able to incorporate new rules

easily.

25

Chapter 3

System architecture and overview

The main functionality of ODIN is to collect data from study participants using

prompted questions based on the sensors’ data. The rules engine periodically checks

the data stored in the database, and prompts the user with appropriate questions

whenever the corresponding conditions (i.e rules) are satisfied. The app can sup-

port an unlimited number of sensors. For the time being, we have implemented the

following: GPS location, Bluetooth proximity (phone to phone), beacon proximity

(phone to beacon device), activity recognition, and E4 wrist band. To provide these

services, we need a stable and reliable system, which requires making use of a range

of different strategies and techniques. One such example is periodic communication

between phone and backend. Other aspects of the design are further discussed in

later chapters of this thesis.

We developed a client/server application where the backend is implemented in

Java, the frontend in ASP.NET MVC, and Java for the Android application. The

client/server architecture is composed of only one server (running multiple services)

and many clients [1, 44]. The server is always running, and it waits for the client to

initiate the communication. The clients can communicate with other clients, but the

packets need to be sent to the server first, and then the server distributes the packets

to the specified destination. This architecture differs from peer-to-peer, as it does not

26

distinguish clients and servers, allowing direct communication among the hosts [1].

Figure 3.1: ODIN’s system architecture. The left side of the figure shows the two
web interfaces, the center contains the backend server, and the right side depicts the
Android application.

The architecture of ODIN is depicted in Fig 3.1. Each of the terms highlighted in

bold in this section correspond to an element of the Fig 3.1. The system consists of

four backend services, two web user interfaces, and an Android application. Two of

the backend services support their own user interfaces, and all of the services share

the same database, which is also hosted in the backend server. In addition, there is

another backend service for the Android application. The app itself maintains its own

on-phone database. While much of the data in each apps database eventually finds

its way to the server, some of the app data remains local to the phone. The Web UIs

and the app make connections with the services over the network, opening an HTTP

session in which there are multiple REST calls.

To make this system functional, we need researcher accounts. The administra-

27

tors of the system can create, edit, and delete researchers using the web interface

AdminUI, which talks to AdminService to retrieve and manipulate data from the

database.

The next step is to create studies to which participants to register. The researchers

(whose accounts were created by the administrators), can access the web interface Re-

searcherUI where they can manage studies. Similar to AdminUI, ResearcherUI

talks to ResearcherService to obtain and provide a researcher-centric interface to

database information. Part of creating a study involves defining its questions and

rules, as well as generating coupons that the researcher can hand out to suitable

participants.

The ODIN app consists of an APK that can be downloaded and installed on

participants phones. Finally, when one or more studies have been set up, participants

can register for the study using the ODIN app installed on their Android smartphones.

Registration happens by way of a coupon number that is provided by the researcher to

the participant. After the consent agreement, data collection begins using the sensors,

as specified when the study was created via the ResearcherUI. The collected data is

periodically pushed to the PhoneAppService. Simultaneously, PhoneAppService

periodically notifies the APK when a rule firing happens at the server, or when a

researcher wants to contact a study participant.

The server also contains another service that has not been mentioned previously,

named TestingService. As the name indicates, this service includes some endpoints

that are useful for testing purposes only. These endpoints are called from SOAPUI

test suites, and they are used as helper functions enabling tests.

All the data from the administrators, researchers, and study participants is stored

in the server database. The server contains multiple databases; the ODIN database

and each study have its separate database. The backend database runs on MySQL

28

Server [45] and can be administered via PhpMyAdmin [46]. Each instance of the

APK contains its own SQLite database whose schema is quite similar to the schema of

the study databases in the backend. However, the SQLite database also contains some

specific information that is only used on the phone. More details about the database

schema in the backend can be found in Section 4.2.1 and the phone database in

Section 5.2.1.

Different technologies have been used for the implementation and verification of

ODIN. The backend services are part of a Java Maven [47] project using Spring

framework [48] and developed in Eclipse IDE [49]. The Web user interfaces are

developed in Visual Studio [50], using ASP.NET MVC [51], which includes multiple

languages like C#, HTML, JavaScript, JQuery, etc. Lastly, the APK is part of an

Android Studio [52] project in which includes Java and XML. All transport takes

place using HTTP and makes heavy use of JSON encodings [53]. On the verification

side, SOAPUI [54] is used to test endpoints from the backend services, and Android

JUnit [55] and Bugfender [56] to test the APK. Jenkins [57] allows us to run daily

tests on both the backend (SOAPUI) and the APK (JUnit).

29

Chapter 4

Backend server

As mentioned previously, ODIN follows a client/server paradigm. This kind of ar-

chitecture consists of a server and one or more clients. Our backend services run

either within the Tomcat web server, while the UI-related services are self-hosted by

the C# Dotnet Core 2.1 runtime. Communication with these services happens via

HTTP [58]. The author Mosberger et al. describes the challenges that were faced

with creating a tool for calculating the performance of a Web server [59]. Distributed

systems are more complex due to concurrency, and it is dynamic since most of the

components such as the server, client, web content, etc. change. For this reason,

designing and developing ODIN’s backend server was a difficult task, but we had to

make sure the design was stable since it is the base of our system.

In previous sections, we referred to the backend as the ODIN Cloud Server without

making any distinctions on the services running on the Cloud. Fig 4.1 illustrates the

different services running in the server and where they are hosted. The Figure also

shows each of the packages that are common among all of the services. In this

section, we present an overview of the server’s design and a description of all the

backend components.

30

Figure 4.1: Backend services and packages. The right side of the figure displays the
different services running on Tomcat, and the left side shows their structure.

4.1 Design

We can observe in Fig 4.1 that the backend is composed of 4 services: AdminService,

ResearcherService, TestingService, and PhoneAppService. The first three share the

same organizational structure. The PhoneAppService schema (shown in Fig 4.2),

however, differs from the other three services. The subjects carrying the APK need to

communicate with PhoneAppService to upload the data, and PhoneAppService needs

31

to asynchronously notify the APKs when rules fire. Supporting this bidirectional

communication creates the need for a different structure for PhoneAppService.

Figure 4.2: PhoneAppService structure. The left side of the figure shows the ser-
vice structure and the right side displays the RulesEngine package, which uses the
ODINCommon module.

The backend services are deployed into the Tomcat web server, which runs on

a Ubuntu Virtual Machine. The services have been implemented in Java, and thus

each runs in separate JVM under the Java Runtime Environment (JRE). WAR (Web

Archive) [60] files for the different services are deployed into Tomcat [61]. We use

Phpmyadmin [46] as an administration tool for the database that runs on MySQL

server [45].

The services are each composed of three main packages: Controller, Service, and

ODINCommon. The Controller package contains all the endpoints that are used to

32

communicate from the Web UIs or the APK via REST calls. We need a layer between

the Controller and the Data Access Objects (DAO) layer so that there is no direct

communication to the database tables. For this reason, we have the Service layer,

which is used as an intermediary between Controller and ODINCommon packages.

Further, ODINCommon is a project that is shared among all the services and the

APK, allowing for shared encodings and utilities between the APK and the backend

services. Next, we describe the different packages in the ODINCommon project and

their respective functionality.

• Factory contains generation and validation methods for specific data. For

example, it contains the RuleValidation class, which is used every time the

AddRule endpoint is called from the web UI to verify that the rule is valid and

the system can proceed to insert it in the database.

• Exception Handling package handles notifying the developers whenever there

is an exception in any of the backend services via email. It sends the IP address

where the service is running, the name of the endpoint as the subject field of

the email, and the stack trace is in the body.

• Push Notifications package handles the notifications that need to be delivered

to the phone. The phone is notified in the following cases: 1) A PhoneWakeUp

request is sent every 15 minutes to all the phones active in the study to make

sure that the services continue running and 2) when there is a rule firing in the

backend.

• Logging manages all the application logs. More details can be found in Chapter

11.

33

• The Model package is the Data Transfer Object (DTO), which is shared

between the APK, ResearcherUI, and AdminUI. This package contains the

database attributes that need to be transferred via REST calls as JSON objects.

• The Utils package contains all the helpful methods for data validation or con-

version. It also has assertion classes to assist with the debugging.

• Description package holds the classes that generate user-friendly rule descrip-

tions shown in the Web UI after a rule has been added.

• The Data Source package contains the DAO interfaces that are shared between

the APK and the backend. These interfaces are an important part of the design

since both the APK and the backend services (e.g. the PhoneAppService) share

the same RulesEngine package, which retrieves JSON encoded data from the

database.

• The DAO layer is in charge of retrieving and manipulating the data in the

database.

The four backend services are in separate projects sharing the ODINCommon

package. They follow the structure of a multimodule project: there is a parent

project, and the children are the services and ODINCommon. It is complicated

to maintain a standard package in 4 different services. For this reason, we use git

submodules [62], which allows the developer to share the same git repository [62]

among different projects. This approach makes it easier to keep the ODINCommon

project consistent among the four services since we just have to make sure the project

points to the correct commit [62]. Without this approach, whenever we would make a

small change in ODINCommon of one project, we would have to manually propagate

the changes across all 4 different projects.

34

We can observe from Fig 4.2 that the PhoneAppService presents a similar structure

to the rest of the services with the addition of the RulesEngine package. The RulesEn-

gine exists both within each APK and in the backend within the PhoneAppService.

The same interfaces are used, but the implementation of the Scheduler is different

depending on the platform where the RulesEngine is instantiated. The RulesEngine

validates and then adds specified rules to the corresponding Scheduler. The RulesEn-

gine thread runs in an infinite loop, sleeping and waking up when it is time to run

the next job (rule). When it wakes up, it checks the conditions of the rules and fires

if all the conditions are satisfied. More details about the RulesEngine can be found

in section 4.2.2.

4.2 Details

In this section, we describe the following three main components in the backend:

Database, RulesEngine, and Sensors. The main purpose is to show the differences

between these three critical components of the system (which are instantiated both

at the backend server and within each APK). Details of the APK can be found in

Chapter 5.

4.2.1 Database Schema

Within the ODIN system, the MySQL database management system maintains multi-

ple database instances. The main one is odin database, which contains the researcher

account information along with information that is common across all studies. The

odin database may be viewed as a central coordination database (i.e. even if no

studies have been created, the odin database exists). Beyond this, each study that is

created has a new dedicated database where just that study’s data resides.

35

In Fig 4.3, we can observe the ODIN database schema with its corresponding

tables and attributes. Next, we describe the functionality of each table.

36

Figure 4.3: ODIN database ER diagram

37

• When an administrator creates a new researcher account, the information is

stored in the researcher table.

• Afterwards, the researcher logs in to the ResearcherUI and a new sessionkey is

generated and saved in the sessiontoresearcher table with the researcherid

attribute as a foreign key to the id attribute in researcher table.

• The researcher then decides to create a new study, a new entry to the study

table is inserted with the following fields: study id, study name, study descrip-

tion, leader, createdDate, and studynamealias. There are some other attributes

in this table that have default values for all the studies like uploadheartbeatin-

terval, rulequestionhearbeatinterval, and uploadinterval. These values are sent

to the APK as a response to a registration REST call. They represent the

intervals for recording the heartbeat of the two default services on the phone:

Upload, and RuleQuestion. More details about these services are explained in

Chapter 5.

• Another feature supported by ODIN is that the creator of a study can add

participants to a study, and can control the permissions that these collaborators

have (e.g. they can manage or view the study data). Each participant is

assigned a set of specific actions that they can do for that study. The study

leader is stored in the study table, and all the other researchers added to that

study are stored in the participant table. When a new participant is added, a

new row is inserted into this table. This table contains a map of researcherid,

(which is a foreign key of id in researcher table) to studyid (which is a foreign key

of studyid in study table). Moreover, the table contains a list of entitlements

in a JSON format, which are actions that the researcher has been granted

permission to perform (by the owner of the study).

38

• The sensortypes table contains all the information about the supported sensors

that can be added to a study.

• Each sensor contains some specific sensor parameters; for example, the interval

between successive readings of the sensor. These parameters values are specified

by the researcher when creating the study. The following information is stored in

studytosensor table: studyid (foreign key to studyid of study table), sensorid

(foreign key to sensorid of sensortypes), sensorparams, sensorheartbeatinterval.

The sensorparams field is stored as a JSON format, and the sensorheartbeat-

interval is a constant value set currently to 5 minutes to track the life of the

sensor service in the APK.

• After the study is created, the researcher can generate new coupons, which are

stored in the coupontodbname table with a map of couponNumber to dbname.

The attribute dbname is a foreign key to dbname in the study table, which is

a way to map the coupons to their corresponding studies. The purpose of this

table is to allow the backend services to “route” the incoming all registrations

to the appropriate study database.

• When the study has been created, and its questions and rules fully specified - it

is then moved to in-progress state, which is reflected by changing the appropriate

row of the study table (in the odin database). Afterward, subjects can register

by using the coupon number given to them by the research. When the subject

types in their coupon and presses the “Register” button on the phone app, the

registration REST call executes, and a new session key is generated for that

coupon, which maps to a study database. This information is stored in the

sessiontodbname table. The purpose of this table is to allow incoming REST

39

calls (all of which specify a session key as argument 1), to be multiplexed and

act on the appropriate study database.

• We need a way to collect performance information from phones and use this

data to classify the phone status as “ok”, “pending,” “timeout,” or “error.”

For this reason, we use the “ping” and “pingAll” endpoints. When “ping”

or “pingAll” is called, we insert a new entry in couponnotificationstatus

table with an auto-generated id and a guid ; the latter would be sent in the

push notifications. When the phone receives the push notification, it calls the

“postAcknowledment” endpoint by sending that guid and the sessionkey, which

would be used to retrieve the couponnumber. The phone status is updated to

either “ok”, “error,” ‘timeout,” or “pending”. The first happens if the results

are as expected. The second, if they are incorrect. The third one if the phone

has not responded within a specified timeout interval. The pending status is

used when the timeout interval has not yet expired.

When a researcher creates a new study, a new dbname is generated (it is a random

GUID), and this unique name is stored in the study table. A new database is created

with this name. The database schema for a study database is in Fig 4.4. Note that

the schema is quite different from that of the central coordinating database. The

study database contains the following tables:

40

Figure 4.4: Study database ER diagram

• The main goal of the system is to prompt questions to the subject carrying the

phone. When a researcher creates a new question to the study, a new row is

inserted in questions table with values set by the researcher in the following

fields: questiontext, alias, questiondesc, and questiontype. For the time being,

we have implemented the following question types: multiple choice (single-select

or multi-select), and fill text. There are other attributes in the questions table

that are not specified by the researcher (e.g. the questionid, which is auto-

generated in the backend). The nextchoiceid is a foreign key to choiceid in

the choices table. The modifiedtime is generated in the backend when inserting

41

a new row. Questions can be disabled when the study is in progress, so the

isActive field is set to true when the question is created, and we update it to

false if the question is disabled. The researcher also has the option to add

questions while the study is in progress; hence, we use the published field to

know if a question is ready to be sent to the APK as part of the next update.

There are two different scenarios; the researcher can add a question when the

study is in preparing state or they can add it while the study is in-progress.

In the former case, we set it to true when the study is moved to in-progress

state via the ResearcherUI. In the latter case, the field is set to true when the

researcher selects the “Publish” button in the ResearcherUI.

• If the researcher decides to add a multiple-choice question, then response options

can be added to that question. When a new response option is added, a new

row is inserted in the choices table, with the value specified by the researcher

in choicetext. This table also contains a choiceid (which is auto-generated) and

questionid (which is a foreign key to questionid in questions table). There are

3 special response options; 1) “skipped” when the user decides not to answer

the question, 2) “expired” when the participant runs out of time to answer the

question, and 3) “unset” when the question is prompted, but the time limit

never expired (this can happen, for example because the phone runs out of

battery while the question is showing).

• For the questions to be prompted on the subject’s phone, rules need to be at-

tached to the question to determine when it should be shown to the subject.

When a researcher adds a rule, the following fields can be specified: ruletype,

ruletext, maxanswertime, and ruleRegistrationPlatform. We describe the mean-

ing of each of these fields in more detail in Section 4.2.3.1. A new row is

42

inserted with the values determined by the researcher for the above fields into

rules table. There are other attributes like ruleid (which is auto-generated)

and questionid (which is a foreign key to questionid in questions table). The

fields disabled and published are inserted and updated in the same manner as

the questions table described previously. There are other fields that are not be-

ing currently used like sequencenumber, ruletextcompliable and disablepostfiring,

but could potentially be used in the future.

• The researchers have the option to add a consent form to the study or let the user

start using the app without having to go through the consent process in the app

(this can happen if consent is being obtained by some other means, like paper

forms). The default consent form data is stored in the studyconsentform

table. It contains an auto-generated field consentid. The rest of the fields are

related to the consent form data, the headingName is the title of the section,

the longFormData contains all the detailed description of the data, and the

shortFormData is a short description of the section. The researcher has the

option to update the last two fields. The subject first sees the short description

(shortFormData) and can choose to view a more detailed description of the

section (longFormData). The field studyid is currently not being used.

• After the researcher has created questions, rules, and decided on the consent,

the study can be moved to in-progress state, and subjects can start registering

using coupons. When a researcher creates a coupon, a new row is inserted in

the coupon table. Coupon table fields are automatically generated; hence, the

researcher cannot specify any values in the attributes of the coupon table. The

couponid is auto-generated in the backend. The other fields in the coupon table

are updated when the subject registers on the phone. A new session key is gen-

43

erated for that subject and stored in the sessionkey field. The fields that are

updated during registration are the following: IMEI, hashphone, consentstatus,

phonemodel, apkversion, osversion, sleepinterval, phonedetails, timeofregistra-

tion, timeoflastregistration, getQuestionsLastCall, lastheartbeatrequesttime, last-

heartbeatresponsetime, answercounttofunsentanswers, answercounttofskippedan-

swers, noofuploadattempts, noofuploalarmtriggered,and phonestatus. A more de-

tailed description of each one of these fields is presented in Chapter 5.

• If the researcher decided to have a consent form in the study, then the subject’s

information entered in the consent would be stored in the userconsentdetails

table. The attributes updated with the subject values are name and signature.

The consentagreeddate is automatically set when the user completes the study

consent form. If the user later decides to withdraw from the study, the con-

sentwihdrawndate field would be updated with the date and time of the user’s

action. This table also contains couponid which is a foreign key to couponid in

the coupon table.

• After the subject has completed the registration and the consent form, questions

can begin to appear (based on contextual rules). As the subject responds to

these questions, the responses would be prompted, and the subject would have

to respond to those questions, which would be stored in the answers table.

For each answer, we need to know the ruleid (foreign key to ruleid in the rules

table), questionid (foreign key to questionid in the questions table), choiceid

(foreign key to choiceid in the choices table) and answertext, rulefiredtime, no-

tificationreceivedtime as well as the timeofanswer. All the answers from all the

phones in the study will get aggregated into a single table in the backend study

database. Thus, while the APK has its own autoincremented answerid in its

44

version of the answers table, we need a way to keep a unique identifier in the

backend. For this reason, we use the sequencenumber field, which maps to the

answerid on the phone. However, the phone database might have been deleted,

and it could be missing some answers. Accordingly, the backend always sends a

starting sequence number to the APK, which maps that specific coupon. When

the answer is sent to the backend, the uploadtime field is updated.

• Some of the logic of the sliding window algorithm (which is used within the

RulesEngine to efficiently check if a rule should fire) requires to keep track of

some information like the sensorrulefiredtime and currentrulefiredtime for each

couponid (foreign key to couponid in coupons table) and ruleid (foreign key to

ruleid in rules table). All this information is stored in the couponrulefired-

details table.

• All the studies have default services, but the total number of services varies

based on the study requirements. Each sensor has its service. Hence, we need

a way to keep track of all the services in the APK. For this reason, we have a

services table in which we store the servicename and its corresponding serviceid

which is unique across APK services and is auto-generated.

• Each subject registered in the study has an app, and within the APK there will

in general be multiple services running. For ODIN to perform well, we need

to make sure these services stay alive. This is achieved by having each service

send itself an intent. We refer to these intents as “heartbeats”. To keep track of

whether a service is still running, we keep a record of the last time they received

a heartbeat intent, number of heartbeats that have occurred, etc. This informa-

tion is maintained in the table servicetoheartbeat to store the heartbeattime,

heartbeatcount, appstarttime, lasthearbeatcount, and lastuploadtime. It also con-

45

tains an auto-generated field heartbeatid, couponid (foreign key to couponid in

coupon table), and serviceid (foreign key to serviceid in service table). All this

information can be used to analyze this data and derive conclusions regarding

the performance of the APK and its constituent services.

• coupontopicdetails table contains the details about AWS needed to notify

the APK. When a coupon is registered, a token is sent to PhoneAppService

as part of the registration REST call response. The backend uses that token

to create an endpoint. This endpoint registers the coupon in the SNS service

[63]. Then, SNS generates endpointarn and subscribearn when the endpoint is

created, which identifies the endpoint for that coupon. We know that these

details map to a coupon using the couponid, which is a foreign key to couponid

in the coupons table. This information is necessary to send push notifications

anonymously to the phone, delete the endpoint or unsubscribe the coupon to

the endpoint.

4.2.2 Rules Engine

In this section, we go over the details of the backend RulesEngine. First, we give an

overview of the structure of the system, then we describe the scheduler, and lastly,

we go over each one of the rule types and filters that the system currently supports.

The user can add multiple rules to a question, and each rule can have many filters.

The rules engine treats each rule as a separate job; a rule is an object that contains

the rule type, all the rule parameters with its corresponding values, and all the filters

attached to that rule. The main difference between a rule and a filter is that rules are

primary, being triggered by applying logic to data from a single sensor, while filters

are secondary checks that can cause the suppression of a rule firing based on recent

46

data from other sensors (hence the term “filter).

We also have to consider the case in which the user adds questions when the study

is in-progress. Recall that the researcher can add questions to a study (along with

associated rules/filters) long after the study has been moved to in-progress. Because

of this, we need a way to notify the PhoneAppService to register any new rules in its

RulesEngine, and to disseminate these new rules to phones that are registered to the

relevant study. The PhoneAppService waits for a periodic “reload” to be initiated by

each phones APK. The reload action involves a REST call to the PhoneAppService

endpoint named “getQuestions.” Then, the PhoneAppService adds the rules in the

backend RulesEngine. The phone “reload” is explained in more detail in Chapter 5.

The Rules Engine being used in the backend and in the phone follow the same

class structure, which is shown in Fig 4.5 and is described below:

47

Figure 4.5: Rules Engine class diagram

• The parent class of the rules, filters, and scheduler extend the SimEnt class. It

contains the following methods; send, recv, deliveryAck, and suicide. The first

two are described in more detail in the scheduler diagram in Figure 5.5. Deliv-

eryAck is called right after recv, and suicide when a rule has to be deregistered

from the RulesEngine.

• The parent class of all the rules and filters is the RulesSimEnt class, which

is a child of SimEnt. RuleSimEnt keeps a list of all the filters that need to

be checked before the rule firing. It iterates over the list of filters and checks

48

whether all the filters’ conditions have been met. If the rule and all the filters

conditions are met, then the rule fires.

• AbsRuleImplementation is a child class of RuleSimEnt, and it contains the

abstract methods used by the rule classes. AbsRuleImplementation contains the

SlidingWindow method, which is used in all the sensor-based rules. The rule

types generated with SlidingWindow are “while”, “while NOT”, “on arrival”,

and “on departure”. The first two are part of the submethod IShape, and the

other two are part of the submethod LShape. More information about the

sliding window, and these two methods can be found in Section 4.2.3.

• The Scheduler class is in charge of handling the jobs in the RulesEngine. It is

explained in more detail in the next section 4.2.2.1.

• The Scheduler implements the IScheduler interface, which is used to hide

implementation differences between the backend RulesEngine and the APK

RulesEngine.

• The RulesEngine is the abstract class that contains the methods for registering

the rules.

Now that we have the big picture of the Rules Engine, we can describe the backend

Scheduler in more detail.

49

4.2.2.1 Scheduler

Figure 4.6: Rule Engine backend Scheduler sequence diagram. Ent1 is the sender and
Ent2 the receiver of event A; Ent2 is the sender and Ent1 the receiver of event B.

We describe the RulesEngine backend scheduler. The operation follows the standard

pattern of a discrete event schedule [64]. Fig 4.6 shows an example of how it works.

50

First, Ent1 is registered with event A, its receiver is Ent2, and it has a time of 5

seconds. Then, Ent2 is registered with event B, its receiver is Ent1, and it has a time

of 1 second. This diagram represents a thread in an infinite loop. Next, we describe

the sequence of events:

1. There is a new EventHandle instance created. This instance contains the event

”A,” the receiver entity “Ent2”, and it creates a UniqueDouble, which contains

time NOW + 5.0. Then is the time that the thread sleeps. After time NOW +

5.0, the thread wakes up and fires the rule.

2. Scheduler class contains 3 maps. All of the maps contain the event handle “A”

as a value, and the keys are described below:

• from2set: this map contains the registered entity “Ent1” as a key.

• to2set: this map contains the receiver entity “Ent2” as a key.

• ud2handle: this map contains a unique double.

3. Since A is the first event that was added to the queue; it is the first one to be

taken from the queue. We check the wait time of A; it is still greater than 0, so

we update the wait time and put it back in the queue.

4. Create a new EventHandle instance, just like we did for event A, but this time

is for event B, and the receiver is Ent1 with 1.0 seconds.

5. Add the new event with its corresponding values to all the maps, just like we

did for event A.

6. B is the new event in the queue; hence, we take B from the queue and check its

wait time. We see that the wait time is greater than 0, so we update the wait

time and put it back in the queue.

51

7. The thread sleeps for 1 second since it is the time left from event B.

8. Scheduler notifies the thread to wake up. Then, we take B since it is the top

one in the queue and check the wait time. We see that the wait time is 0. The

scheduler thread always takes the shortest time from all the jobs in the queue

to sleep. But we need to check the wait time when the thread awakes because

it could be due to a new job that was recently added into the queue. In that

case, the wait time is greater than 0, and we have to put the job back into the

queue.

9. Since the wait time for event B is 0, we deregister event B from the queue and

update the time now.

10. Ent2 notifies the receiver Ent1 with event B.

11. Event A is the only one left in the queue. Then we take A from the queue and

check the wait time; we see that the wait time is greater than 0, so we update

the wait time and put event A back to sleep.

12. Sleep for 4 seconds

13. Take A from the queue, and we see that the wait time is 0.

14. Deregister event A from the queue and update the time now.

15. Ent1 notifies the receiver Ent2 with event A.

We have described the sequence of steps of the scheduler. When the receiver entity

is notified, then the conditions of that rule are examined. The sensor-related rules use

the sliding window algorithm to determine the rule firings, which is what is described

next.

52

4.2.3 Sliding Window

The key problem in supporting context-based rules is knowing when to check to see

if the context matches a rule. Checking all rules all the time would result in too

much battery being used (for rules operating in each APK RulesEngine) and too

much CPU being used (for rules operating in the backend RulesEngine). The sliding

window algorithm described in this section is an attempt to check rules in a smart

way so that we do not use too many resources to check if a context matches a rule

specification. Laguna et al. have done similar work by using a dynamic sliding window

on different sensors for activity recognition [65]. Their results in good performance

because the amount of data examined is reduced. For this reason, we too choose a

sliding window approach.

We can observe in Fig 4.5 that all the rules extend AbstractAtomicRule that

extends AbsRuleImplementation. This class contains the sliding window methods,

which are used by sensor-related rules. A more detailed description of the rules can

be found in Section 4.2.3.1. Here we focus on the design of the sliding window.

The reason we need to use an algorithm like a sliding window for sensor-related

rules is since we need to go back in time to check if there has to be a rule firing due

to previous sensor data rows in the database. Hence, we need a smart algorithm that

iterates through just the relevant data but skips the unnecessary rows. To accomplish

it, we have implemented the InterpolatedPredicate class.

Table 4.1 shows an example of the values that are kept in the two data members

(sensorTimeToPredicate and sensorTimeToDuration) given some sensor data.

We assume that the sensors record data every 5 minutes, and we are trying to see if

the user is at home (AH). The columns in the table represent the time the location

was recorded along with the two maps values. We see the first map contains the time

53

as the key and the predicate (boolean) as the value. In this example, all the data

that contains AH would be true (T), and everything else false (F). The other map

also contains the time as the key and the duration that the predicate stayed constant.

For example, we can observe that the predicate at 9:30 stays F for 20 minutes = 1200

seconds, and the predicate at 9:00 is T only for 10 minutes = 600 seconds. We assume

that the predicate after the recorded time stays the same until the next recording.

Time Data Map<time,predicate> Map<time,duration>
9:00 AH 9:00 ->T 9:00 ->9:10-9:00 = 600
9:10 Gym 9:10 ->F 9:10 ->9:20-9:10 = 600
9:20 AH 9:20 ->T 9:20 ->9:30-9:20 = 600
9:30 Gym 9:30 ->F 9:30 ->(9:40-9:30)+600 = 1200
9:40 Gym 9:40 ->F 9:40 ->9:50-9:40 = 600
9:50 AH 9:50 ->T 9:50 ->(10:00-9:50)+600 = 1200
10:00 AH 10:00 ->T 10:00 ->(10:10-10:00) = 600
10:10 Gym 10:10 ->F 10:10 ->0

Table 4.1: InterpolatedPredicate example using GPS data. The predicate is the
participant is at AH.

Now that we have two different maps, we can obtain the predicate and its duration

only in real-time. However, there could be cases where the time is not the same as

the recording time since sliding window checks at the same rate as the sensor interval,

which in this example is 10 min. For this reason, we have implemented the following

methods to deal with this issue:

• getVal(time): returns the predicate for a given time. It uses the sensorTime-

ToPredicate map to return the correct value. Consider the example where

time=9:15. The algorithm first divides the map sensorTimeToPredicate in two

such that headMap contains all the values before 9:15 and tailMap contains

all the values after or equal to 9:15. Then, we get the last element from the

54

headMap (lowerBoundaryTime=9:10) and the first element from the tailMap

(upperBoundaryTime=9:20). There are a few cases that we need to consider:

– lowerBoundaryTime is null which means the time given is before the first

sensor data row, then we return the predicate of upperBoundaryTime

– upperBoundaryTime is null which means the time given is after the last

sensor data row, then we return the predicate of lowerBoundaryTime.

– Neither of them is null, then we return the predicate of lowerBoundary-

Time.

Therefore, in our example of 9:15, it returns the predicate of lowerBoundary-

Time so it returns True.

• getDuration(time): returns the number of seconds that the predicate remains

the same. It uses the sensorTimeToDuration map to return the correct dura-

tion. Consider the example where time=9:15. The algorithm first divides the

map sensorTimeToPredicate in two such that headMap contains all the values

before 9:15 and tailMap contains all the values after or equal to 9:15. Then,

we get the last element from the headMap (lowerBoundaryTime=9:10) and the

first element from the tailMap (upperBoundaryTime=9:20). There are a few

cases that we need to consider:

– lowerBoundaryTime is null, which means the time given is before the first

sensor data row, then we assume it is the same predicate of the first sen-

sor data row, and we calculate that time until it ends. For example, if

time=8:45, then it returns 9-(8:45)+getDuration(9).

– upperBoundaryTime is null, which means is after the last sensor data row,

then we return infinite value to break out of the sliding window loop.

55

– Neither of them is null, then if we use the example of 9:15, it returns

9:10-(9:15-9:10) = 600-(300) = 300.

In the previous section, we have mentioned that the sliding window contains two

different methods. We explain the algorithm of these two methods with some exam-

ples.

• IShape: it is used to determine whether a condition is true for minTruePeriod

amount of time. If so, then it slides the window of true values by maxAn-

swerTime, which is a parameter specified by the user. Consider the example

given in Table 4.2 with minTruePeriod=20min and maxAnswerTime=20min.

Fig 4.7 represents the data translated into a graph with 0 if F and 1 if T. The

beginning of the sliding window corresponds to the currentTime. The sliding

window starts at the lastRuleFiredTime, which in this case is 9:00. It checks the

predicate at that time, which is only T for 10 minutes, hence, it slides forward

in time to the next time the predicate is T (9:20) as can be seen in Fig 4.7. At

9:20, the predicate is T until 9:40, which means the minTruePeriod is satisfied,

thus, the new lastRuleFiredTime is 9:40. Since the minTruePeriod has been

satisfied, we need to check for the minTimeSinceLastFired. Sliding window be-

gins at 9:40, shown in Fig 4.7, the predicate is T for at least 20 minutes. Hence,

the lastRuleFiredTime is updated again to 10:00.

56

Time Data
9:00 T
9:08 T
9:10 F
9:13 F
9:20 T
9:30 T
9:40 T
9:50 T
9:52 T
10:00 T
10:10 T

Table 4.2: Sample data for the IShape method

[The conditions are not satisfied so slide forward in time to the next T.]

[The condition for minTruePeriod is satisfied so the rule fires at 9:40.]

[The condition of minTimeSinceLastFire is satisfied so the rule fires at 10:00.]

Figure 4.7: Example of sliding Window method IShape. The mark underneath the
graph represents the sliding window. The black dots represent the data which can be
either 0 (F) or 1 (T), while the red dots represent the rule firings.

57

• LShape: it is used to determine whether a condition is false for minFalsePeriod

and true for minTruePeriod. The window slides until there is a transition from

false to true and checks if the parameters of minFalsePeriod and minTruePeriod

are satisfied. Let’s consider an example given the data in Table 4.3. We obtain

the graph in Fig 4.8, which represents 0 (False) or 1 (True). We can see the

transitions of the sliding window in Fig 4.8. In this example, the sliding window

length is 40 minutes since it is necessary to have a F predicate for 20 minutes

(minFalsePeriod) followed by T for 20 minutes (minTruePeriod). The sliding

window starts at the lastRuleFireTime, which is 9:00 in this case. The beginning

of the sliding window corresponds to the currentTime. The first step is to check

the duration of the T predicate at 9am, since it is less than 20 minutes, it slides

to 9:10 where the predicate is F as we can see in Fig 4.8. At that time, the

predicate is F for 10 minutes, hence, it skips F and T since it does not matter

the duration of the T predicate if the F is not at least 20 minutes. Therefore, the

sliding window starts at 9:30 where the predicate is F as can be seen in Fig 4.8.

In this case, it is F for at least 20 minutes and then T for at least 20 minutes.

Hence, the new lastRuleFireTime is set to 9:50 since it is the transition from

F to T. Then, the next time the sliding window begins at 9:50 since it is the

lastRuleFireTime.

58

Time Data
9:00 T
9:08 T
9:10 F
9:13 F
9:20 T
9:30 F
9:40 F
9:50 T
9:52 T
10:00 T
10:10 F

Table 4.3: Sample data for the LShape method

[The conditions are not satisfied so slide forward in time to the next F.]

[The conditions are not satisfied so slide forward in time to the next F.]

[The conditions minFalsePeriod and minTruePeriod are satisfied so the rule fires at
9:50.]

Figure 4.8: Example of sliding Window method LShape. The mark underneath the
graph represents the sliding window. The black dots represent the data which can be
either 0 (F) or 1 (T), while the red dots represent the rule firings.

59

4.2.3.1 Rules

RulesEngine contains different rule types as we can observe in Fig 4.5. Each of

the rules have different parameters as well as a maxAnswerTime field, which is the

maximum number of seconds to show the question for. When a researcher adds a

new rule, the ruletype, parameters, and the filters are serialized into a JSON object.

The generated object is stored in the ruletext field in the database.

Upon recurring time interval (Cron Rule) The time-based rule uses a Cron

expression [66] to calculate the time from now until it is supposed to fire, and it fires

at the time specified in the cronString.

Upon given day of study participation (timeSinceEnrollment) The researcher

enters the number of days duration and the time that this rule has to fire (hourOf-

day), then when the subject registers on the app and signs the consent, it calculates

the time it needs to sleep until the rule has to fire.

Upon end of study (endOfStudyRule) This rule uses the number of days the

study lasts (studyDuration), which is entered by the researcher when creating the

study. Finally, when the subject registers, the rule takes the number of days and

calculates how much time the thread needs to sleep for before the study ends. When

the time has passed, the rule fires and the subject has completed the study, meaning

that no more questions would be asked, and no more data would be recorded.

Upon specific/any answer to an asked question (follow-up, excluding exit

interview follow-up) (ChainRule) A question with this rule type is used to spec-

ify that it should be asked with a specific delay after the participant has answered

60

a specific multiple-choice question (excluding exit interview) with specific choice re-

sponse.

Upon specific/any answer to an asked end of study question (exit interview

follow-up) (EndOfStudyChainRule) A question with this rule type is used to

specify that it should be asked with a specific delay after the participant has answered

a specific end-of-study multiple-choice question with specific choice response.

The following rules are sensor-based rules, meaning that their conditions

are based on sensor data.

Location This rule type contains the following parameters: latitude, longitude,

radius, and minTimeSinceLastFire, which is only used in WhileAt and WhileNotAt.

The logic in which these parameters are being interpreted is based on the different

types of location rules:

• While at specified location (WhileAt): A question with this rule type is

asked every “minTimeSinceLastFire” while the participant is WITHIN “radius”

of the given location (“latitude” and “longitude”), after the participant has been

within “radius” of the given location for at least “minTruePeriod”.

• While NOT at specified location (WhileNotAt): A question with this

rule type is asked every “minTimeSinceLastFire” while the participant is NOT

within “radius” of the given location (“latitude” and “longitude”), after the

participant has not been within “radius” of the given location for at least

“minTruePeriod”.

• Upon arrival at specified location (OnArrival): A question with this

rule type is asked when the participant has been WITHIN “radius” of the

61

given location (“latitude” and “longitude”) for at least “minTruePeriod”, but

immediately prior WAS NOT WITHIN ”radius” of the given location for at

least “minFalsePeriod”.

• Upon departure from specified location (OnDeparture): A question

with this rule type is asked when the participant has NOT been within “radius”

of the given location (“latitude” and “longitude”) for at least “minTruePeriod”,

but immediately prior WAS WITHIN “Y” of the given location for at least

“minFalsePeriod”.

Bluetooth This rule type contains the following parameters: delay, RSSI, and

count. The logic in which these parameters are being interpreted is based on the

different types of bluetooth rules:

• Upon forming/joining a group of participants (OnArrival) A question

with this rule type is asked “delay” seconds after the following: the participant

was WITHIN “RSSI” of “count” (or more) other participant(s) for at least

“minTruePeriod” seconds, but immediately prior WAS NOT WITHIN “RSSI”

of these same participant(s) for at least “minTruePeriod”.

• Upon someone leaving a group of participants (OnDeparture) A ques-

tion with this rule type is asked “delay” seconds after the following: the par-

ticipant was NOT WITHIN “RSSI” of “count” (or more) other participant(s)

for at least “minTruePeriod” seconds, but immediately prior WAS WITHIN

“RSSI” of these same participant(s) for at least “minTruePeriod”.

Beacon This rule type contains the following parameters: delay, RSSI, minor,

minTimeSinceLastFire, which is only used in WhileAt and WhileNotAt. The logic in

62

which these parameters are being interpreted is based on the different types of beacon

rules:

• While in the proximity of beacon device(s) (WhileAt) A question with

this rule type is asked every “mminTimeSinceLastFire” while the participant is

WITHIN “RSSI” of any beacon(s) with “minor”. Ask this question for the first

time “delay” after the participant has been within “RSSI” of any (other or the

same) beacon(s) with “minor” for at least “minTruePeriod”.

• While NOT in the proximity of beacon device(s) (WhileNotAt) A

question with this rule type is asked every “mminTimeSinceLastFire” while

the participant is NOT WITHIN “RSSI” of any beacon(s) with “minor”. Ask

this question for the first time “delay” after the participant has NOT been

within “RSSI” of any (other or the same) beacon(s) with “minor” for at least

“minTruePeriod”.

• Upon being in the proximity of beacon device(s) (OnArrival) A ques-

tion with this rule type is asked “mminTimeSinceLastFire” seconds after the

following: the participant was WITHIN “RSSI” of any beacon(s) with “minor”

for at least “minTrue”, but immediately prior WAS NOT WITHIN “RSSI” of

any (other or the same) beacon(s) with “minor” for at least “minFalse” seconds.

• Upon leaving beacon device(s) (OnDeparture) A question with this rule

type is asked “mminTimeSinceLastFire” seconds after the following: the par-

ticipant was NOT WITHIN “RSSI” of any beacon(s) with “minor” for at least

“minTrue”, but immediately prior WAS WITHIN “RSSI” of any (other or the

same) beacon(s) with “minor” for at least “minFalse” seconds.

63

Activity Recognition This rule type contains the following parameters: delay,

activity, minTimeSinceLastFire, which is only used in WhileAt and WhileNotAt.

The logic in which these parameters are being interpreted is based on the different

types of activity recognition rules:

• While doing specified activity (WhileAt) A question with this rule type is

asked every “minTimeSinceLastFire” while the participant is doing “activity”.

Ask this question for the first time “delay” after the participant has been doing

“activity” for at least “minTruePeriod”.

• While NOT doing specified activity (WhileNOTAt) A question with

this rule type is asked every “minTimeSinceLastFire” while NOT the partici-

pant is doing “activity”. Ask this question for the first time “delay” after the

participant has NOT been doing “activity” for at least “minTruePeriod”.

• Upon starting specified activity (OnArrival) A question with this rule

type is asked “delay” after the following: the participant was “activity” for at

least “minTruePeriod”, but immediately prior WAS NOT “activity” for at least

“minFalsePeriod”.

• Upon finishing specified activity (OnDeparture) A question with this rule

type is asked “delay” after the following: the participant was NOT “activity”

for at least “minTruePeriod”, but immediately prior WAS “activity” for at least

“minFalsePeriod”.

E4 (physiology) Rules This rule type contains the following parameters: time,

threshold, delay, minTimeSinceLastFire. The last one is only used in WhileAt and

WhileNotAt. The logic in which these parameters are being interpreted is based on

the different types of activity recognition rules.

64

• While GSR above average (While) A question with this rule type is

asked every “minTimeSinceLastFire” while the participant’s GSR is “thresh-

old” ABOVE the average GSR over the last “time.” Ask this question for the

first time “delay” after the participant’s GSR is “threshold” ABOVE the aver-

age over the last “time” seconds for at least minTruePeriod.

• While GSR below average (While) A question with this rule type is asked

every “minTimeSinceLastFire” while the participant’s GSR is “threshold” BE-

LOW the average GSR over the last “time”. Ask this question for the first time

“delay” after the participant’s GSR is “threshold” BELOW the average over

the last “time” seconds for at least minTruePeriod.

• Upon GSR above average (OnArrival) A question with this rule type is

asked “delay” after the following: the participant’S GSR WAS ABOVE “thresh-

old” of the average in the last “time” for at least “minTruePeriod,” but imme-

diately prior WAS BELOW “threshold” in the last “time” for at least “min-

FalsePeriod”.

• Upon GSR below (OnDeparture) A question with this rule type is asked

“delay” after the following: the participant’s GSR WAS BELOW “threshold”

of the average in the last “time” for at least “minTruePeriod,” but immediately

prior WAS ABOVE “threshold” in the last “time” for at least “minFalsePeriod.”

4.2.3.2 Filters

The Rules Engine contains the following types of filters:

Time A question with this filter is asked when the participants context matches

the rule and all associated filters, and, additionally, the time of day is between the

65

startTime and endTime.

Location A question with this filter is asked when the participants context matches

the rule and all associated filters, and, additionally, the participant is within radius

of the given location (latitude and longitude).

Answer A question with this filter is asked when the participants context matches

the rule and all associated filters, and, additionally, the most recent response to

question was answer.

4.2.3.3 Sensors

ODIN supports different sensors to collect data and store it in the database, and this

data is then used to test to see if rules should be fired. Each sensor has different

parameters to determine when the sensor measurements should happen. These pa-

rameters are stored in the sensorparams field in studytosensor table. We have the

following sensor types:

GPS location The GPS [67] sensor is used to track the location of the subject.

It records the latitude and longitude coordinates. The researcher can specify the

following parameters in the ResearcherUI: time and distance. The first one is how

often we need to record GPS data from the subject. The second one is the distance

(meters) that the user has to move to record data. If 0 meters is selected, GPS

records every selected number of seconds regardless of location and movement. The

GPS sensor is only used if it is enabled in the study. If the GPS sensor is enabled,

then there exists a GPS table in the study database. This table contains the fields

id, time, data and coupon. There are multiple subjects registered in the study, each

66

one carrying a phone which belongs to a coupon. Hence, the backend keeps all the

GPS data from all the coupons associated with a study in a single table within the

studys database. The coupon field in the table helps to differentiate them.

Bluetooth Proximity The Bluetooth [68] sensor is used to determine phone to

phone Bluetooth proximity. It records the Bluetooth name of the other devices

in the Bluetooth range and the RSSI. The researcher can specify the time in the

ResearcherUI, which is how often the Bluetooth scanning from phone to phone should

happen. This sensor is only used if the Bluetooth sensor is enabled in the study. If

the Bluetooth sensor is enabled, then there exists a Bluetooth proximity table in

the study database. This table contains the fields id, time, data and coupon. Hence,

the backend keeps all the Bluetooth data from all the coupons associated with a study

in a single table within the studys database. The coupon field in the table helps to

differentiate them.

Beacon Proximity The Beacon [69] sensor is used to determine beacon to phone

proximity. It records the Beacon details and the RSSI. The researcher can specify

the time in the ResearcherUI, which is how often the Bluetooth scanning from phone

to beacon should happen. This sensor is only used if the Beacon sensor is enabled in

the study. If the Beacon sensor is enabled, then there exists a Beacon proximity

table in the study database. This table contains the fields id, time, data and coupon.

Hence, the backend keeps all the Beacon data from all the coupons associated with

a study in a single table within the studys database. The coupon field in the table

helps to differentiate them.

Activity Recognition The Activity Recognition [70] sensor is used to determine

the different activities that the subject performs throughout the day. It records the

67

different activities that the user could be performing and the confidence level

for each activity. The researcher can specify the time in the ResearcherUI, which is

how often the Activity recognition sensor should record the activities in the phone

database. This sensor is only used if the Activity recognition sensor is enabled in

the study. If the activity recognition sensor is enabled, then there exists a Activ-

ity Recognition database. This table contains the fields id, time, data and coupon.

Hence, the backend keeps all the Activity Recognition data from all the coupons as-

sociated with a study in a single table within the studys data. The coupon field in

the table helps to differentiate them.

Empatica E4 (physiology) The Empatica E4 [71] sensor is used the determine

specific measures from the subject. It records the GSR and the skin temperature

of the subject. The researcher can specify the time in the ResearcherUI, which is how

often the Empatica E4 sensor should record data in the phone database. This sensor

is only used if the Empatica E4 sensor is enabled in the study. If the Empatica E4

sensor is enabled, then there exists a EmpaticaE4 database. This table contains

the fields id, time, data and coupon. Hence, the backend keeps all the Empatica E4

data from all the coupons associated with a study in a single table within the studys

database. The coupon field in the table helps to differentiate them.

68

Chapter 5

Android

Android [52] is an Operating System; it can also be considered an open-source plat-

form that separates the software from the hardware to make it easier for developers

to design mobile applications using the Android Software Development Kit (SDK)

[72]. An application is composed of the following components [72]:

• Activity: a screen that the user sees on the phone. An application contains

multiple activities.

• Intent: used to communicate among the components or other applications.

• Service: runs in the background and can perform actions that do not require to

show a screen.

• Content Provider: an interface to retrieve and manage the data in the phone’s

SQLite database.

• Broadcast Receiver: an Android implementation of an Observer pattern; it

only executes when there is an event that triggers it. For example, starting an

application or running low on battery.

These are brief descriptions of each component, but we see later in this Chapter better

examples while describing ODIN.

69

In this Section, we present the structure of the ODIN Android application. We

start by giving an overview of the design, and then in the next Section, we describe

into more detail all the components of the application.

5.1 Design

The design of the ODIN Android application can be seen in Fig 5.1, which shows the

packages included in the ODIN APK along with the different components. The main

ones we can observe are the following: Activity, Service, and Content Provider,

which is represented in the figure as the communication to the database.

Figure 5.1: ODIN Android app overview. This diagram shows how the activities and
services connect to the database. The jar files that are shared with the backend.
The right side of the figure represents how the app receives notifications from the
backend. The highlighted box is later used to relate it to Fig 5.18. The outer rectangle
represents the APK.

The activities component in the ODIN app are made visible in the following or-

der: the participant registers, signs the consent form, welcome screen, and questions.

70

When the participant opens the app, they see the Registration screen where they

can enter the coupon number. After the participant selects the register button, the

application redirects to the Consent screen. Some studies do not require a consent

screen form. In that case, the participant is redirected to the Welcome activity right

after registration. Once the participant has agreed to the terms and conditions of

the study, then the Welcome activity is shown, and questions are prompted later on.

When a rule fires, the phone is notified in the Firebase class, and then a question

is prompted in the Question PopUp activity. There are also other activities in the

menu list like Settings, FAQ, etc.

ODIN runs a different number of services depending on the study created by the

researcher. There are some services that run by default in all the studies like Rule-

QuestionService and UploadService. We say that the number of services depends on

the study because the sensors vary among studies. Each sensor has its own dedicated

service in the application. Each service is designed as a Finite State Machine

(FSM) design.

The BL and Persistence layers are an intermediate layer within the activities,

services, and the database. The activities and the services talk to the Business

Logic (BL). BL is a layer between the upper layer activities and the lower layer

content provider. The persistence layer asks for the necessary information from

the corresponding database tables and sends it to the BL.

Content providers help manage the communication with the database to re-

trieve, insert, or update data. Each table has a content provider that contains the

basic MySQL queries to perform actions such as insert, update, or delete.

Notifications from the backend are sent through Amazon Simple Notification Sys-

tem (SNS), which are received through Firebase. The application receives push

backend notifications every 15 minutes to ensure all the services are running. Also,

71

when there is a rule firing in the backend (in the backend RulesEngine), then the

phone receives a notification to prompt the question associated with that rule.

The application contains two jar files to share between the backend and the phone:

ODINCommon and RulesEngine. As mentioned in Chapter 4, ODINCommon is

shared among all the services, and the RulesEngine is part of the PhoneAppService.

Business Logic is a layer in between the activities and the DAO to retrieve or

update the database. It is in charge of making REST calls to the server to request or

send information over the network. Fig 5.2 presents the diagram of the business logic

layer. All the business layer classes send information periodically to the backend.

They also request information from the server, for example, when the participant

registers for the first time. We can also observe there is a Hardware class that goes

to the mobile hardware and retrieves some information needed like the phone model,

OS version, and some other relevant information. This data is sent to the server and

is stored in the database.

72

Figure 5.2: Diagram of Business Logic communicating with the backend over the net-
work. The left side shows the BL classes in ODIN Android. The right side represents
the PhoneAppService.

The Persistence Layer retrieves and updates the phone database; Its structure

varies depending on the type of table: sensor or non-sensor. Each database table

has a custom Table class (extends AbstractTable), as well as ReaderWriter, and

ContentProvider classes. The Content Provider calls the AppDatabase, which creates

and updates the tables using SQLite. We can observe in Fig 5.3 that there are

two types of classes: no sensor-related (Consent or Answers) and the classes that

implement the “ISensor” interface which is the GPS or Bluetooth. We differentiate

these two because some methods are required if the table type is a sensor. For

example, if the rule is while at a specific location, then we need to retrieve all the

sensor data to check if the conditions are satisfied.

73

F
ig

u
re

5.
3:

D
ia

gr
am

th
at

re
p
re

se
n
ts

th
e

st
ru

ct
u
re

of
th

e
D

A
O

la
ye

r.
T

h
e

se
n
so

r
ta

b
le

s
ar

e
re

gi
st

er
ed

in
to

th
e

S
en

so
r-

R
eg

is
tr

y
an

d
im

p
le

m
en

t
IP

er
io

d
ic

S
en

or
D

at
aS

ou
rc

e.
It

sh
ow

s
th

e
d
iff

er
en

ce
b

et
w

ee
n

a
n
on

-s
en

or
ta

b
le

(C
on

se
n
tT

ab
le

)
an

d
a

se
n
so

r
re

la
te

d
ta

b
le

(G
P

S
T

ab
le

).

74

5.2 Details

We have described the main components of the ODIN Android application. The next

Section explains in more detail the database schema, the rules engine instance that

is operating in each phone, different scenarios, and the services.

5.2.1 Database Schema

We can observe the database schema in Fig 5.4 of a study that contains a GPS

sensor. It contains the following tables: Choices, Questions, Answer, Rule, KeyValue,

ServiceData, Consent, and GPS.

Figure 5.4: Android database schema

• When the user registers, the phone receives the consent form data, which is

75

stored in the Consent tables. This table matches the Consent table in the

backend.

• After the consent agreement, the phone makes a REST call to the backend to

receive all the questions and rules. The questions are stored in the Questions

table.

• Each question contains a list of choices that are stored in the Choices table.

• The questions have a set of rules associated with them. These rules are stored

in the Rule table.

• When a rule fires either in the backend or on the phone, the user is prompted

with a question from the Questions table. The answer is stored in the Answer

table.

• Some of the rules may be associated with sensors. Each sensor has a different

table with the fields associated with that sensor. In this example, we have a

study involving use of the GPS sensor; thus, the GPS table contains the fields:

latitude and longitude.

• The KeyValue table is used to store data about the services and the statistics

of the phone. For example, the heartbeat count of the service, the intervals that

the alarms are scheduled, the last time the phone was restarted, etc.

• The ServiceData table stores the instance of each service in the serviceName

field, the serviceData attribute contains all the alarms for that service and the

current state since the services follow an FSM design. We cannot keep this

information in memory because the application could be killed or the phone

76

could power off. Hence, we need to store it so that if it is not in memory

anymore, we can get it from disk.

5.2.2 Rules Engine (Intent-based)

Designing a functional and reliable scheduler on Android was one of the most chal-

lenging tasks in the development of the ODIN system. We tried using the same

scheduler as the backend for Android, but we came across some issues due to the

sleeping time of the thread. The OS was killing the thread, and rules would never

fire. For this reason, we decided to use a different Rules Engine design by scheduling

alarms instead of making the thread sleep.

5.2.2.1 Scheduler

Fig 5.5 represents the sequence diagram of how the Android Scheduler works. Assume

we have two events (A and B) and two entities (Ent1 and Ent2). First, the sender

entity registers the event with the receiver entity and the number of seconds until it

has to fire. Then, we create a new event, and we add it to the queue. In this case,

we have two entities registered, Ent1 with 5 seconds and Ent2 with 1 second. We

take the first one from the queue and schedule an alarm passing the wait time to the

OS. Since we registered A first, then we schedule an alarm for event A and then B.

When the time is up, the broadcast receiver collects an intent, and it is notified that

the thread needs to start its execution. In our example, it would be event B since

it has only 1 second of wait time. Subsequently, the broadcast receiver initiates a

new job in the Scheduler, which checks the GUID, whether it is a RulesEngine from

a previous intent or it is still the same RulesEngine instance. This is done to avoid

duplicate rule firings. The RulesEngine can be killed at any time by the OS, so if we

see that the RulesEngine has died, we start it again, which leads to new scheduling

77

of alarms. To keep track of the RulesEngine instance that we are currently running,

we create a GUID for every RulesEngine instance. When the rule fires, we compare

the GUID to know if it is from a previous instance or the current one. Finally, when

the job has terminated, we deregister it from the scheduler, and the event is sent to

the receiver. These methods are synchronized to avoid scheduling a new job during

this process since we can have many entities scheduling alarms with the same wait

time.

Despite the issues we faced in the beginning, by using the Scheduler from the

backend, we have a stable Scheduler running indefinitely in our ODIN application.

We accomplished it by using alarms and keeping track of the RulesEngine instance.

5.2.3 Scenarios

This Section covers important app scenarios that we need to consider to understand

how all the components of the APK work together. We cover 11 different scenar-

ios that can range from any event like the subject’s first registration to killing the

application. There are some common behaviors in the scenarios:

• If a REST call fails, we register the class in WifiStatusReceiver if it is not

already registered, wait for Wifi and retry.

• When the user has completed the Registration and Consent activities, we pre-

vent the participant from going back to those activities by calling the method

finish().

Next, the different scenarios are described in detail.

78

F
ig

u
re

5.
5:

R
u
le

E
n
gi

n
e

A
n
d
ro

id
S
ch

ed
u
le

r
se

q
u
en

ce
d
ia

gr
am

.
E

n
t1

is
th

e
se

n
d
er

an
d

E
n
t2

th
e

re
ce

iv
er

of
ev

en
t

A
;

E
n
t2

is
th

e
se

n
d
er

an
d

E
n
t1

th
e

re
ce

iv
er

of
ev

en
t

B
.

79

5.2.3.1 Application launch

Figure 5.6: Application launch scenario

The first scenario is when the user selects the ODIN icon to launch the application.

We can observe in Fig 5.6 that the classes StartActivity and OdinApplication are

executed in the first place. The latter initializes ResearchStack [41] and Bugfender

(our logging system). The former calls the ODINCapabilities class to find out the

coupon state that the participant is using to register. There are three possible states:

• First-time registration: redirects to the registration activity for the participant

80

to enter the coupon and begin the study.

• Second-time registration: redirects to consent activity so that the user can agree

to the terms and conditions of the study.

• Participation in that study has concluded: redirects to the main activity where

the user can answer the questions, report events, or view other menu options.

Afterward, we check all the services’ heartbeat and set their status to DEAD if

the last heartbeat is too old. Finally, we broadcast a start action intent to all

the services.

81

5.2.3.2 Registration

Figure 5.7: Registration scenario

Fig 5.7 illustrates the sequence of events during the registration process. The partic-

ipant opens the ODIN application and sees the RegsitrationActivity with an input

text box to enter the coupon number. After typing the coupon number, the Register

button is selected. When this happens, a new thread is created to set all the services

to DEAD and set the flag for the first time, starting the app to true. In parallel,

82

the main thread initiates a REST call to the backend server to send the registration

details. If the REST call is successful, the backend returns a session key to be able

to identify the phone in every REST call made after this point. This key is stored in

the local database on the phone. Additionally, the coupon state is retrieved from the

database and we check if the researcher enabled the consent form. Different scenarios

are depending on the value of the consent state:

• CONSENTAGREED: the ODIN system is started by sending a start broadcast

message in the KeepAliveOneShotReceiver class. Then, the user is redirected

to the main activity (BottomNavigationActivity) that contains the prompted

questions, events to report, and other menu options.

• NOT CONSENTAGREED: initiate a REST call to the backend to retrieve the

consent details.

In both cases, we save the information to the local database and change the coupon

status to CONSENTGET.

83

5.2.3.3 Consent form

Figure 5.8: Consent form scenario

After the coupon status has changed to CONSENTGET (end of section 5.2.3.2), the

Consent Activity is started. There are two possible cases as can be seen in Fig 5.8:

84

• If the user has already signed the consent form previously or the researcher has

disabled it.

• The consent status is CONSENTPENDING: set up consent details in the Re-

searchStack library and show the consent to the participant. If the user chooses

not to consent, it goes back to the initial page of the consent. If the user agrees

to the terms and conditions of the study, then the consent state is updated to

CONSENTSIGNED.

In both cases, the consent information is sent to the backend. If the REST call is

successful, the coupon state is updated to CONSENTFINISHED.

85

5.2.3.4 Start ODIN

Figure 5.9: Start ODIN scenario

86

When the coupon status has been set to CONSENTFINISHED, the services can start

running in the ODIN application. This process is illustrated in Fig 5.9 and described

in this section.

The participant is redirected to the main activity (BottomNavigationActivity).

We send a broadcast to start ODIN in the KeepAliveOneShotReceiver class that

sends a start intent. Then, the database is set up, and the wifi status is recorded to

the local database. The same class receives the intent and uses the ServiceManager

class to start the services. It then checks if the sensor’s information is in the local

database.

• Sensor data is present: use the enum class to fetch all the enabled sensors.

• Sensor data is not present: execute REST call to retrieve the sensor data.

The necessary application data is stored in the local database, and the enabled

sensors are added.

Afterward, there are two possible scenarios:

• Phone reboot: all the services statuses are set to STARTING.

• Not a phone reboot: check all the services statuses and set them to DEAD if

the last heartbeat is too old. If the service is DEAD, we need to create a new

launcher, and then the status can be updated to STARTING.

Finally, send an intent to all the services enabled with the STARTING state.

87

5.2.3.5 Start services

Figure 5.10: Start services scenario

Up to this point, the services are in the STARTING state, but they have not yet

started actually running. To accomplish this, the ODIN System class uses the Ser-

viceManager to start the services, as can be seen in Fig 5.10. Then, the service

manager sets up the sensor information and iterates over each service and initiates

an intent. The OS delivers the start service intent to the StartServiceReceiver class,

which notifies each service to start.

88

5.2.3.6 Construction of service

Figure 5.11: Construction of services scenario

89

This Section covers the construction of service, as can be seen in 5.11. In this scenario,

every time we get the service data, the method makeComplete is called, which is used

to handle previous intents. Each Service class has a static block that runs at the

beginning of the application. In this block, we check if the Service has service data.

If it does, the service data instance is retrieved. If it does not, a new instance of

service data is created and this is saved to the ServiceData table within the APK’s

local database at the current time. If it is the first time that this service is being

created, then the AbstractStatefulService class constructor is executed. We get the

service data from the local database and store it in a local variable. Finally, we

set the current states owner, generate a new GUID, and create a new instance of

ODINExecutorService, which is the class that manages all the service jobs.

5.2.3.7 AbstractStatefulService

Fig 5.12 represents the standard workflow among all the services. Each service extends

the AbstractStatefulService class, which records the heartbeat, flushes the database,

and the ODINExecutorService is in that class. When a service begins its execution,

the Android framework calls the service method onStartCommand, which creates a

worker thread that calls onHandleIntent in AbstractStatefulService. This method

checks for the action code of the intent received. There are four possible action codes

that a service receives in an intent:

• ACTION START SERVICE: call handleStart method and flush all the neces-

sary jobs in the queue. Then, call the current service states handleStart which

calls enteringFrom. We create a new pending intent with its corresponding ac-

tion code and schedule an alarm. Finally, all the information about the alarm

is stored in the ServiceData table. Then we wait for the alarm to trigger and

90

F
ig

u
re

5.
12

:
A

b
st

ra
ct

S
ta

te
fu

lS
er

v
ic

e
sc

en
ar

io

91

go back to onStartCommand.

• ACTION STOP SERVICE: call handleStop in the abstract class and the service

class, then call leavingTo and set the current state to null.

• ACTION DEFERRED TASK: this task is used for submitting answers and

writing into the database.

• If the action is none of the above then, we call handleIntent abstract method

and service method. Check the intent action code if it has an alarm prefix:

– If it does, check if the action code is in the service data.

– If it is not there, ignore the alarm. If it is there, call processAlarm and

check the alarm code. Finally, a new alarm is scheduled and follows the

same workflow as ACTION START SERVICE after creating a new intent.

92

5.2.3.8 Phone power on/off

Figure 5.13: Phone power on/off scenario

93

Two possible intents can initiate this scenario, as illustrated in Fig 5.13. In both cases,

the OS sends an intent to BroadcastReceiver PhoneOnOffReceiver, and onReceive is

called, then we get the action code from the intent.

• Phone turns on (ACTION BOOT COMPLETED): check the coupons state. If

it is CONSENTFINISHED, record the phones restart time in the local database

and the last heartbeat. Set all of the services to DEAD. Create a new intent

with action ACTION START SERVICE and broadcast it to all the services

using KeepAliveOneShotReceiver.

• Phone turns off (ACTION SHUTDOWN): Create new intent with action AC-

TION STOP SERVICE and broadcast it by using KeepAliveOneShotReceiver.

94

5.2.3.9 Service is killed

Figure 5.14: Service killed scenario

95

The services running in the background may be killed at any time by the OS or by the

participant. We present the workflow which occurs when a service is killed (Fig 5.14.

Most of the time when this occurs, the OS calls onDestroy, but it is not guaranteed.

We check the value of the current state. If it is null, skip until the services onDestroy

method is called. If it is not null, then the service calls onHandleIntent method and

sends the intent ACTION STOP SERVICE. After checking for the action code in the

handle intent method, the method handleStop is called, which sets the current state

to null. Afterwards, the services handleOnDestroy method is called. Each service

has its own implementation of handleOnDestroy. All the services unregister from

the upload registry except for UploadService that does not perform any task. Each

service checks if its service name is registered to the upload registry. If it is registered,

we (1) remove it from the list, (2) serialize it and (3) store the serialized form in the

service data table. If it is not registered, only steps (2) and (3) are executed.

96

5.2.3.10 User removes task

Figure 5.15: Start services scenario

97

This scenario is initiated when the user removes the app task from the task manager

(Fig 5.15. The OS calls onTaskRemove method in AbstractStatefulService. In this

method, the service calls onHandleIntent and sends the intent ACTION STOP SERVICE.

Then, the service calls handleOnTaskRemove, which creates a new pending intent to

start the service and sets a new alarm with the pending intent. Finally, we call

stopSelf method to stop the service. The workflow continues in Section 5.2.3.9.

98

5.2.3.11 Backend push notification

Figure 5.16: Backend push notification scenario

99

The backend notifies the phone when a rule has fired by sending a push notification. If

a rule fires in the backend, the messaging service on the phone receives a notification

with RULE FIRED ACTION which sends a new intent to RuleQuestionService with

the same action code as can be seen in Fig 5.16. If the current state is ready or

reload, then we initialize the rules engine if it is not already running. The information

is retrieved from the notification and sent to the QuestionNotify, then retrieve the

current question from the database using the questionid. We expect the question

to be present in the local database. Afterward, we calculate the question start time

and the question end time, a new answer is inserted into the Answer table with

the value UNSET in the local database, and two alarms are scheduled based on

the questions start and end time. The first alarm starts showing the question, and

the second alarm stops showing the question. These two alarms are received in the

ShowQuestionBroadcastReceiver and then handled accordingly.

100

5.2.3.12 Consent states

Figure 5.17: Frontend and backend consent states

Figure 5.17 shows the sequence of coupon states in the phone and the backend

throughout the participation of a study. The initial state is both phone and backend,

101

is unregistered. When the user registers, the backend state is moved to registered

while the phone still considers itself unregistered. The state stays as unregistered

because the phone still needs to receive the consent form information to go to the

next screen. The phone asks for the consent forms, and the backend state is moved to

consentPending, and when the phone receives the forms from the server, it changes

its state to consentPending. The participant goes through the consent and agrees

to the terms and conditions, and then the phone state is moved to consentSigned.

The phone sends the participants consent signature to the backend, and the backend

changes its state to consentAgreed. Finally, when the phone receives a successful

response from the backend, the phone too changes its state to consentAgreed.

5.2.4 Services and Sensors

State 3

Services

State 2

State 3

State 1

Service

...

Persistence
Persistence

Upload

State 1

Service

Persistence

RuleQuestion

State 1

Service

Persistence

Sensors

GPS

State 1

Service

Bluetooth

State 2

Figure 5.18: Example of the structure of ODIN Services in Android

102

This Section describes the different services in the Android application. Previously,

we have mentioned that each sensor has a dedicated service within the phone app. Fig

5.18 shows an overview of the design of the services; each service has an FSM schema,

and the sensors are also represented as services. These are the default services (Up-

loadService and RuleQuestionService), which exist in every study and other services

that are only present in the studies that have the corresponding sensors enabled.

Next, we describe each of the services in detail:

5.2.4.1 Upload Service

The upload service is used to schedule periodic data uploads to the server. Fig 5.19

shows the diagram of the upload service. It consists of only one state (PeriodicU-

pload). All the other services like GPS, and Bluetooth register to this service to

upload the sensor data and the RuleQuestion service registers to send the answers to

the server. Then, the UploadService schedules alarms for each service to upload the

data, and calls upon the registered services when it is time to upload, it retrieves the

data from the database and initiates a POST request to the PhoneAppService with

the data. Finally, the REST call returns a response to the request and whether the

request was successful or not; the service schedules a new alarm to upload more data

later.

103

Figure 5.19: Upload Service diagram. The left side shows how it uploads the data to
the server and the right side represents the other services registering to the Upload-
Service.

5.2.4.2 Rule Question Service

The Rule Question service handles showing the questions to the user when there is a

rule firing and makes sure that the Rules Engine is always running. Fig 5.20 represents

the sequence of events in the Rule Question service. The RulesEngine starts when

the RuleQuestion service is first created. The Initial state initiates a GET request

with the PhoneAppService to get the questions when the user first registers. Then,

if the request fails, we schedule a new alarm to make the REST call again later. If

the request succeeds, then we move to the Ready state. In that state, we handle the

rule firings and schedule a reload alarm. When there is a new reload alarm, it moves

to the Reload state, which makes a GET request to get the new questions (recall

104

the questions can be disabled and new questions can be added while a study is in

progress). The reload happens to keep the questions and rules up to date in case

the researcher has created new questions or previous disabled ones. If the request is

successful, the service moves back to the Ready state, and if it fails, it schedules an

alarm to retry the upload. Finally, if there is a rule firing that happens during the

Upload state, it is also properly handled.

Figure 5.20: Rule Question service diagram. It shows the different states (Initial,
Ready, and Reload) and classes involved in the Rule Question service. It displays
how the service retrieves the questions from the server, and the server notifies the
application through SNS when there is a rule firing.

105

5.2.4.3 GPS

The GPS sensor records the geographic history data. The GPS Service is used to

track the latest participant’s location periodically. Fig 5.21 shows the diagram of

the GPS service. We can observe that there is only one state (PeriodicGetLocation),

which periodically gets the location from the GPSDataCollector class, which keeps

track of the latest latitude and longitude coordinates. After retrieving the location,

it inserts it as a new row in the GPS database. Finally, it schedules a new alarm to

get the location.

Figure 5.21: GPS Service diagram. The left side shows how the only state of the
service (PeriodicGetLocation) sends data to the database and retrieves the location
from the GPSDataCollector.

106

5.2.4.4 Bluetooth

The Bluetooth service’s purpose is to find other devices nearby that are also enrolled

in the ODIN study and running the ODIN app. To accomplish it, we have designed a

Bluetooth service shown in Fig 5.22. This service begins in the Initial state in which

the Bluetooth is enabled to start discovering, and the Bluetooth name is replaced

by a new unique name so that other devices can identify it. Afterward, the service

moves to the Discovering state. The Bluetooth Broadcast Receiver class notifies this

state if the discovery has finished or a new device is found. In the latter, the devices

found are stored in memory, and a new alarm is scheduled to start discovering again.

The service moves back to the Initial state if the Bluetooth name is incorrect or the

discovery has completed. However, if there is a timeout or if the Bluetooth has been

disabled, it transitions to the CleanUp state. Before leaving the Discovering state, it

writes to the database the devices found. The CleanUp state takes care of resetting

the Bluetooth name to the original and the state (enabled or disabled). After the

reset, it moves to the Initial state.

107

Figure 5.22: Bluetooth Service diagram. It contains three states; Initial, Discovering,
and CleanUp. The ProximityBluetoothBroadcastReceiver class notifies the Discover-
ing state when there is an update.

108

5.2.4.5 Beacon

The Beacon service scans and finds Beacon devices already included in the ODIN

study. Fig 5.23 presents the diagram of the Beacon service. We can observe it

contains only one state. In the Initial state, the Bluetooth is enabled if needed, and

scanning begins. Afterward, two alarms are scheduled to restart the Bluetooth scan,

stop the scan, and write the devices found to the database.

Figure 5.23: Beacon service diagram. It contains only the Initial state which writes
to the database.

109

5.2.4.6 Activity Recognition

The Activity Recognition service is used to obtain the latest participant’s activity.

Fig 5.24 shows the diagram of the Activity Recognition service which contains only

one state: ActivityRecognitionPeriodic. We can observe that there are two alarms,

one to update the latest activity recognition and another alarm to insert the latest

activity recognition into the database. This state periodically updates and inserts the

activity recognition by scheduling the alarms every time this is done.

Figure 5.24: Activity Recognition service diagram. It contains only the Activi-
tyRecognitionPeriodic state which writes to the database.

5.2.4.7 Empatica E4

The Empatica E4 is a wristband that tracks physiological signals in real-time. The

E4 service only takes care of recording the E4 data periodically since it is assumed the

110

E4 is connected previously by the user. The participant is notified of the unpaired

sensors after registration. If the E4 is not connected, the user follows instructions

on the application to connect it. Then, the E4 service only records the E4 data and

writes it into the database if the device is connected to ODIN, and the participant

is wearing it on the wrist. These actions happen in a single state EmpaticaE4. The

service continuously schedules a new alarm to periodically go through this process of

recording E4 data and writing it into the database.

Figure 5.25: Empatica E4 service diagram. It contains only the EmpaticaE4 state
which writes to the database.

111

Chapter 6

Web

The Internet was first used only in academics and research, and it was unknown

outside of those areas [1]. It was not until the 1990s that the World Wide Web [73]

was invented. When that happened, the Web became very popular due to the many

features that it provides, such as on-demand, easy to publish content, applications

like YouTube, Facebook, etc. [1]. We have access to all these features thanks to the

HyperText Transfer Protocol (HTTP), which is part of the application-layer protocol.

HTTP/1.0 [74] was the first “sophisticated” protocol, and it was afterward improved

by in HTTP/1.1 [75], which is the version that we use nowadays. We need a client

and a server to be able to exchange messages over HTTP.

In our application, the client represents the two web user interfaces; AdminUI

and ResearcherUI. The server is the backend service, in this case, ResearcherService.

They talk to each other by exchanging messages over HTTP. In this chapter, we focus

mostly on the ResearcherUI since AdminUI is a straightforward application that the

administrators use to add new researchers with only a couple of endpoints. However,

both of them follow the same design.

112

6.1 Design and User experience

The ResearcherUI has been implemented in ASP.NET MVC. We can clearly see the

Model View Controller (MVC) [76] structure in Fig 6.1. There is a REST layer

that contains all the REST APIs to talk to the backend server. The user submits

a form, the Model class of the form is sent to the Controller with its corresponding

data. Then, the Controller makes a REST call (if necessary) to update or retrieve

data. Other main files that we can observe in the diagram are the appsettings and

the startup. The frontend is hosted in the same Ubuntu Virtual Machine than the

backend services and runs on dotnet core service. The developer uses the appsettings

file to specify the IP address of the backend. The startup is the class that contains

the port number of the frontend and starts the application.

Figure 6.1: ODIN frontend MVC design and communication to the server via REST

Now that we have a high-level picture of the frontend’s design, we describe all the

steps that the researcher has to follow to create a study.

The first step is to Login to the application. The user must enter the username

113

and password. There is the option to recover the password in case the user has

forgotten. After logging in, if it is the first time, it redirects to a welcome page

where the user can choose to create the first study. Otherwise, the user goes to the

home page where he can see the list of leading and participating studies. The studies

created by a researcher are its leading studies. While studies created by others that

added a researcher as a member are participating studies. The leading researcher

can choose the privileges of the members. When the researcher clicks on ”create

study” button, a pop up shows up where the user can specify the name of the study,

duration, description, and select the sensors that would like to include in the study.

A more detailed description of the sensors can be found in 4.2.3.3. After the study

is created, the user can start editing it. Then, a new navigation menu appears at

the top with the following fields: Info, Survey, Coupons, Participants, Consent Form,

and Contact. Next, we describe each of the pages and the actions that the user can

take in each one:

• Info: The user can edit the study name, description, duration, sensors, add

members to the study, and move the study phase.

• Survey: This is the most important page because it is where the researcher

creates the survey. The first step is to add a question; Multiple Choice or Fill

Text. Some other fields can be specified if it is Multiple Choice questions such

as randomization type for the responses, the number of choices to be selected,

and adding special choices like ”None of the above.” The user enters a tag,

which is a keyword that describes the question. The researcher can also enter a

description to have more information about the question. The subject does not

see either the tag nor the description. After the question is created, the user

can add response options if it is a multiple-choice question. Finally, the user has

114

to add the rules to the existing questions. There can be many rules for a single

question. The system displays different fields for a specific rule when the user

selects a rule type. The user has the option to add filters to the rule. By adding

filters, new conditions are being added to determine whether the rule has to fire

or not. A better description of filters and rules can be found in Section 4.2.3.1.

• Coupons: Generate the coupons that are given to the subjects to register on

the phone.

• Participants: The researcher can view the data of the subjects that have

registered to the study. First, a coupon from the list has to be selected. Lastly,

the user has to choose the data that they want to view: survey or sensors.

• Consent: The researcher can choose if the subject has to go through a consent

form and sign it after registration. Also, the researcher can edit the text of the

different sections of the default consent form text.

• Contact: Enter the contact information of researchers that the subject can

reach out while in the study.

When the user has completed all these steps, the study can be moved to in-

progress (which is done on the Info tab), so that subjects can register. Most of the

study settings cannot be modified after it has been moved to in-progress. But the

researcher can add new questions, rules, and disable (not delete) previous questions

and rules. Also, the researcher can download data from the study on the Info page.

The data is a list of CSV files with all the study tables. Finally, the researcher can

move the study to a completed state when it has concluded. From that point onwards,

the researcher can only view the data but cannot make any modifications.

115

6.2 Details

In this section, we give some background on RESTful services and explain the HTTP

requests being sent over the network. Finally, we focus on a more detailed description

of the structure of the system in MVC.

6.2.1 RESTful service using HTTP as a transport layer

Our application has a client-server architecture where the client is the ResearcherUI,

and the server is the ResearcherService. Before going into detail on how they exchange

messages over HTTP, we first need to know some necessary information about the

Web.

A Web page is a document that contains a group of objects, such as files, images,

etc. The URL contains the hostname and the path, which references the objects. In

our application, the hostname would be the IP address of where the ResearcherService

is located, and the path is the object that we want to access the server. HTTP allows

clients to request objects from the servers and the servers can return the requested

information to the client with an HTTP response as can be seen in Fig 6.2 [1]. HTTP

uses TCP, which is explained in more detail in Section 6.3.

116

Figure 6.2: HTTP request-response behavior [1]

The way that client and server exchange information is the following; First, the

client has to initiate a TCP connection with the server, then they have access to it

through their socket interfaces. Hence, when the server or the client sends/receives a

message, it goes through their socket interface. During the HTTP request/response,

the server doesn’t store any information about the client. For this reason, we say it

is a stateless protocol (RESTful services) since they don’t know anything about the

client after the request is completed [1]

Different HTTP request methods are used to indicate the CRUD (create, read,

update, and delete) function executed [77]. The methods are GET, POST, PUT, and

DELETE. GET is used to retrieve information, PUT is used to insert and update

stored data, POST is used to create a new object and store it in the database, and

DELETE is used to delete data.

117

6.2.2 MVC

The Web UI follows an MVC paradigm [76]. We start describing the different Con-

trollers in ResearcherUI, which can be seen in Fig 6.4. We can observe that we have

the following: Account, Pages, Question, ResearcherHome, Study.

• Account: This Controller contains the Login, Logout, and other account-

related actions like password reset.

• Pages: It contains actions of fundamental pages in the application such as the

Help or Contact pages that redirect to some other website where we have the

documentation.

• Question: Contains all the question and rule related operations like add, edit,

delete, disable, etc.

• ResearcherHome: All the operations from the home page where the re-

searcher sees the list of all the studies. Some examples of these are created,

edit, view, or delete studies.

• Study: This class manages all the operations that the researcher can perform

in the study, like generating coupons or modifying the consent form.

We observe that all the classes extend the ODINController class, which handles all

the JSON responses from the backend. It checks whether the operation was successful

or failed. In case of failure, the system shows an error to the user.

118

Figure 6.3: ResearcherUI Controllers design

All the information received in the Controller from the backend is stored in a

Model class. Then, the Controller sends this data to the View and displays it to the

user. Fig 6.4 shows all the model classes that are used to transfer the information

form the Controller to the View. Also, we need a way to transfer the data to the

backend in the REST calls, which is through the DTO classes.

Figure 6.4: ResearcherUI Models design

119

After the Controller has received the data from the backend and stored it in an

instance of a Model class, the View receives the data, and it can be displayed to the

user. We can observe in Fig 6.5 that the View contains HTML, CSS, JavaScript and

the images. In HTML, we specify the structure of the page, CSS allows to change

the styling of the page, and JavaScript generates animation.

Figure 6.5: ResearcherUI Views design

The Controller initiates a connection with the backend, sends, and receives data.

We need REST calls from the frontend Controller to the backend. To accomplish it,

we created the same class structure from the backend in the frontend so that it is

easier to write the REST calls in the frontend. Fig 6.6 shows the REST classes in the

frontend that contain all the REST calls being used in the application, which is the

same in the backend.

120

Figure 6.6: ResearcherUI REST design

6.3 Communication and Network Protocols

ODIN requires communication from the Web UI to the server and from the phone

app to the server. In this section, we give a detailed description of the network

protocols used to exchange messages in these two applications. We begin by giving

some background information about the different protocols. There are two types of

transport protocol: UDP and TCP.

TCP (Transmission Control Protocol) [1] provides a reliable, connection-oriented

service to the application. TCP uses flow control, sequence numbers, acknowledge-

ments, and timers and ensures that data is correctly and orderly delivered from the

121

sending process to the receiving process. Furthermore, TCP provides congestion con-

trol by regulating the rate at which the sending sides of TCP connections can send

traffic into the network. It also provides flow-control service to its applications to

eliminate the possibility of the sender overflowing the receivers buffer. Compara-

tively, TCP is a more complex protocol than UDP. The TCP segment has 20 bytes

of header overhead.

User Datagram Protocol (UDP) [1] is a Transport Layer protocol that is unreliable

and connectionless. The connection is not established before data transfer is used for

an application that is latency intolerant but loss tolerant. It is used for real-time

services like computer gaming, voice or video communication, live conferences. No

error checking in UDP permits packets to be dropped instead of processing delayed

packets. UDP is more efficient than TCP in terms of both latency and bandwidth.

UDP has only 8 bytes of overhead.

We can see the main differences between the two protocols by looking at their

descriptions and some research that has been done in this area; TCP is more reliable

than UDP, but UDP is latency intolerant, which is not the case in TCP. Hence, it

depends on the application that we choose one protocol or the other. Some applica-

tions like video call use UDP since it cares about the fast delivery of the messages;

however, some other applications like instant-messaging, cares about reliability, so we

need to use TCP. There has been some research done on the network performance by

comparing different transport protocols [78, 79].

Moreover, other research papers that have compared TCP and UDP on different

applications by sending different types of packets. For example, The Performance

Comparison of PRSCTP, TCP, and UDP for Mpeg-4 Multimedia Traffic in Mobile

Network [80] it has been reported that when transmitting reliable and unreliable

data TCP re-transmits all the lost frames which increase the transmission delay of

122

the image. At the same time, UDP does not re-transmit any of the lost packets

regardless of the type. Thus, worsening the quality of the image.

In ODIN, the messages are exchanged among different applications via REST calls.

In other words, they use HTTP as a way to communicate, and HTTP uses TCP as

the transport protocol. Therefore, the app and the Web UI exchange messages with

the server via TCP. Next, we describe how this communication is handled in each

application and when it happens.

6.3.1 Between App and Server

We know that TCP is reliable; however, there are external factors that make the

communication between the app and server unreliable. For example, the user can run

out of data, power off the phone, or the application could have died. Let’s explore

what happens in each of these cases. But first, we need to know how often the

communication happens. As mentioned in the Android section, different services are

running, and they make REST calls at different times, as we can see in Table 6.1.

Service REST Interval
Upload putAnswers 20min
Upload insertSensorsData 20min
RuleQuestion getQuestions 1h

Table 6.1: REST calls between APK and Server

Other REST calls happen when the user registers when the consent is signed, and

right afterward, getQuestions is called for the first time. However, we don’t expect

issues with these REST calls since the user is actively using the application at that

time. The problem begins when the user stops using the application and the phone.

The main issue is that the services running in the background could die at any time.

For this reason, the server sends push notifications to the phone via SNS to keep

123

the services alive. However, the user could run out of data. In this case, the phone

would not receive the push notifications from the server. If the application is still

running, we keep collecting data, but we fail to send the data to the server. Finally,

the worst case is if the phone is off, then there is nothing we can do, no data would

be collected, and there would be no communication with the server. Therefore, even

using a reliable protocol like TCP, we cannot guarantee reliability in our application

since many external factors could make it unreliable.

6.3.2 Between Web UI and Server

Fortunately, the communication between the Web UI and the server is more straight-

forward than the app and the server. In the previous section, we showed the different

REST classes. The endpoints from the backend reside in those classes. The Web UI

initiates a communication with the backend every time the user makes a request. For

example, when the user Logs in or creates a new study. Every action the researcher

makes it requires at least one REST call. Sometimes, we make more than one REST

call in one request. For example, when the Survey page loads. In that case, we

need all the labels, questions, rules, and filters, which require multiple REST calls.

Since all of these requests happen via TCP, and there are no external factors, we can

guarantee that they are delivered.

There are some other details about the communication to the server in the Web

UI that we need to be aware of. When the user makes a request, it goes through

two different servers; the Web server and ResearcherService. The Web server takes

care of all the Controller classes in the Web UI, and those classes send requests to

ResearcherService. We can see an example in Fig 6.7. The user selects the Login

button; then, a POST Login request is initiated with the Web server, which hashes

the password and sends the credentials in a GET request to ResearcherService to

124

authenticate the credentials. The server generates a session key, which is stored in

the database and send sent back as a response to the Web UI. Finally, it proceeds

accordingly with the message received.

125

F
ig

u
re

6.
7:

U
se

r
L

og
in

se
q
u
en

ce
d
ia

gr
am

of
W

eb
U

I
co

m
m

u
n
ic

at
io

n
to

R
es

ea
rc

h
er

S
er

v
ic

e

126

Chapter 7

Consistency across app and server database

The developer faces many challenges when implementing a Distributed Database

System (DDBS) since it is is difficult to ensure both correctness and performance

[81]. One of the reasons is because the same data resides on the phone and the

backend database. Hence, we need to have an efficient protocol to ensure that we do

not end up with inconsistencies between the phone app and the backend databases,

and we do not lose any data during the process.

In previous sections, we have described the phone and backend databases, and we

can observe the similarity in their database tables. They share the same Questions,

Choices, Rules, Answers, and Sensor table. The main goal is to ensure all the data

on the phone reaches the backend since the phone is a temporary storage device.

We have implemented some protocols to guarantee no data loss nor duplications.

These are some challenges that we face that led us to have the protocols. We make

sure that the phone only sends the data that has not been uploaded to the server

yet. The phone uploads the data every 20 minutes. For example, if, for some reason,

the phone does not receive the response from the backend, it does not know that the

data was uploaded successfully. When the phone uploads again the data, it sends the

same data that is already on the server. If we do not have a protocol we could end

up with duplicate data in the backend. As a result, each sensor data has an id which

127

is used in the backend to avoid duplicates. When the data is sent to the backend,

then it checks all the entries and makes sure that everything inserted in the database

is new data. The server sends back all the ids that have been successfully inserted

in the database. It is more complicated for the answers because the phone stores

them when the question is first prompted with a unique answer id. In this case, the

backend allows the same id to be inserted because it could have been updated later

by the user.

Keeping a consistent database is challenging due to many different factors like

data duplication or edition. For this reason, we have our protocol to ensure the

system does not end up with missing data in the backend and no inconsistencies in

the data.

128

Chapter 8

Concurrency

Concurrent programming can be defined as multiple independent tasks being exe-

cuted in parallel [82]. It is a challenging task to debug a concurrent system because

the output may vary every time the program executes with the same input. For

this reason, there has been some research on ways to help programmers with this.

One such example is Kendo, which provides deterministic multithreading of parallel

programs [83]. This software makes it easier for developers to debug and test their

applications.

First, we define two terms that we are going to use throughout the chapter: dead-

lock and race-condition. Deadlock happens when a thread A is waiting for resource

X while holding on to resource Y, but some other thread B is holding on to resource

Y while waiting for resource X. In effect the two threads A and B are caught wait-

ing for each other indefinitely [84]. A race-condition happens when multiple threads

are accessing the same data simultaneously, but the side-effects depend on the order

that the threads access it, which is not deterministically controlled. The usual man-

ner in which these tricky situations are avoided is by careful and deliberate thread

synchronization [84].

Concurrency plays a big task in the ODIN system. In Android, multiple services

are running in parallel in an infinite loop. In the server, many researchers might

129

be using the ResearcherUI, and many subjects have registered on their individual

phones. REST calls originating at each phone wind their way through the backend

server codebase and all hit the MySQL database layer. Therefore, it is crucial to

managing our multithreading system to avoid deadlock in our applications. In this

section, we describe the thread management mechanisms that have been used in the

server and the phone.

8.1 Thread management and deadlock avoidance in the Server

Every REST call in the backend, either from the researcher or the participant, starts

a new thread. There exists a thread pool in each backend service, handled by the

JVM, and whenever a there is a new in-coming HTTP request, then a thread is taken

from the thread pool and starts its execution in the REST call. Hence, we can have

many threads being executed at the same time.

Global variables with unsynchronized methods increase the risk of race condition.

The backend can have many threads being executed simultaneously. Accordingly, not

using global variables in ODIN services decreases the chances of having multithreading

issues. However, there are classes in which we need to have global variables (public

singletons). In such situations, we make sure that the methods which access the

global variables are synchronized, or the public static data member is surrounded by

a mutex so that it can only be accessed by one thread at a time. Therefore, we use

local variables and synchronization to have thread-safe services.

The other area that is important to manage multithreading properly is in the

database. As mentioned previously, PhpMyAdmin holds the ODIN database. The

ODIN database runs in the MySQL server in the Ubuntu VM. We keep track of

the database connections happening simultaneously. We do this by incrementing the

130

count every time a connection is opened and decrementing every time it is closed.

This variable helps us ensure that the connection is always closed when the database

transaction has been completed. The number of database connections is a constant

which can be incremented in the service properties file. Each REST call initiates one

connection, which is closed at the end, and the database queries happen in separate

methods, so there is no risk of a race condition.

These mechanisms help us ensure that ODIN would not suffer from race conditions

nor deadlocks and, therefore, it operates as a multithreaded, yet thread-safe system.

8.2 Thread management and deadlock avoidance in the App

During designing and implementing the Android application, deadlock avoidance has

been one of the biggest challenges we have faced. The application would run for a

certain amount of time, and then it would stop working without showing any excep-

tions or errors. Even by adding and enabling all the logs, we could not figure out

what would be the cause of the issue. The only solution is by reading and under-

standing the code and trying to find the bug. We have done this many times during

the implementation of ODIN. We believe we finally have a thread-safe application.

The challenge in the phone app is that many services are running in parallel. In the

Android Chapter 5, we explained all the services that are running in the application,

and each service has its own FSM. Therefore, each service runs independently with

no shared variables, so there is no risk of deadlock. However, the challenge is when

the services use the DAO layer to access the app’s SQLite database.

Like the server, the Android App also has to read and write to the database.

Multiple services can read the same table simultaneously, and each table has its

class. Also, the PersistenceLayer class exposes methods from the table classes. These

131

methods have signatures that are shared with the backend. PersistenceLayer and the

Table classes have all their methods synchronized to make sure that we are not reading

and writing simultaneously to the same table. Finally, the app also keeps track of the

number of connections opened and closed. One connection is opened in the startup

of the application, and then it follows the same algorithm described previously for

the server in Section 8.1. Then, it asserts that the number of connections is never 0.

This way, we are aware if there are any multithreading issues in the DAO layer.

Multithreading in Android has been one of the biggest challenges in developing

ODIN. However, after several months of debugging and re-designing the structure of

the application, we finally have a working thread-safe system.

132

Chapter 9

Testing Strategies

Software development is not like other businesses where the client might appreciate

our effort and enjoy the final product [85]. In software development, the client expects

a perfect system and would complain if there are bugs, it could potentially mean losing

the client [86, 87, 88].

It is essential to distinguish between testing and debugging. Debugging implies

finding the bug in the code that resulted in a test case failure, while testing is based

on coming up with different scenarios and making sure that the system works as

expected [89, 85].

ODIN is a sophisticated infrastructure in which many external factors can break

the system. Accordingly, testing is a crucial task to ensure the system is working as

expected.

There are different testing techniques, but we focus on correctness testing in this

section. Sawant et al. describe the different forms of under correctness testing [89],

which depends on how much the tester knows about the software [90]: white box,

grey box, and the black box. In the white box, the tester knows everything about the

implementation, while in the black box, the developer does not know anything, and

the grey box is somewhere in between. These testing techniques differ on the testing

strategy used; unit testing, integration testing, system testing. In this section, we

133

give some background on each testing strategy and we describe in detail how it is

applied into our system.

9.1 Unit Testing

Unit Testing is the smallest one of the testing strategies since it requires to test the

smallest number of lines of code. It is known as white box testing since the tester

must know the insights of the implementation to test it [89]. Next, we describe how

we apply this strategy into different applications.

• Backend services: We use SOAPUI as a software tool to do unit testing on the

endpoints from all the services. There are four SOAPUI projects, one for each

service. SOAPUI allows the tester to create test suites that contain different

test cases that can have multiple test steps. For unit testing, the tester only

creates one test step, which is the endpoint that is being implemented. These

are the steps that need to be followed to create unit test cases in SOAPUI.

Consider the Login endpoint as an example:

1. Think about the different test cases. In this case, we have a successful

login and failure.

2. Document the test cases. The input is a username and password, and the

expected output is a JSON response with code and message. Then, we

write to them as follows:

– Login(username=”correct”, password=”correct”)− > code=200, mes-

sage=”ok”

– Login(username=”incorrect”, password=”incorrect”) − > code=500,

message=”error”

134

If we run these test cases and all the outputs match, the test suite has passed,

if there is any mismatch, it fails.

• Web: Unfortunately, we cannot test the Web services (ResearcherUI and Ad-

minUI) using SOAPUI. Instead, the tester pretends to be a researcher using the

Web UI and checks if there are any issues with the implementation. For exam-

ple, the tester goes to the Login page and tries to login with a strong password

and an incorrect password and checks if it is going to the correct Controller

(Account) and Action (Login) with the expected input and output.

• Android: JUnit is the framework used for testing the ODIN phone application.

We have two types of testing: Unit and UI testing. The main difference is that

with UI, we can test Android code while on Unit, we test general Java classes.

An instance of Unit testing would be to assert that we receive a successful

message from the backend. On the other hand, checking the error message

displayed on the screen if the coupon is less than 10 digits would be a UI

Testing example.

9.2 Integration Testing

The next testing strategy is integration testing, which requires putting together some

parts of the system while checking for errors in the interface [89]. Again, we divide it

into different applications:

• Backend services: We use SOAPUI as a software tool to do the integration

testing, but it is a bit more complex. For integration testing, the tester creates

multiple test steps, which are the endpoints that are being implemented. Let’s

give a simple example if we want to create a test case for the CreateQuestion

135

endpoint. The first step is to create a CreateQuestion test suite. Then, we come

up with different test cases: successful and failure. For the researcher to create

a question, there is a sequence of steps that need to happen: the researcher first

needs to login, then create a study, and finally create a question. Each of these

is a step under the test case. Hence, we follow the same protocol as unit testing

described previously. If we run and all the outputs in each test step matches,

then the test case has passed, if there is any mismatch in any test step, then

the test case fails.

• Web: We follow a similar procedure than the unit testing. The main difference

is that the tester checks that it redirected to the correct page instead of checking

that it went to the correct Controller and Action. In other words, it successfully

connected to the backend, and it performed accordingly with the response.

• Android: For integration testing in Android, we need to put together the

PhoneAppService and the phone application. The tester registers on the phone

and runs different scenarios to make sure that it is successfully talking to the

backend and acting accordingly with the responses received.

9.3 Acceptance Testing

Acceptance testing is done to ensure that the product meets the criteria specified

by the customer [91]. This type of testing is considered black-box testing since the

user doesn’t know anything about the implementation. Hence, we let the researchers

interested in our system play with it and make sure it satisfies their needs. They start

by creating a study on the ResearcherUI and then register on the phone. Finally, they

make sure that all features meet their criteria.

136

The users carry the phone throughout the study, so we use Bugfender [56] to look

at the logs since our access to user phones is restricted. Bugfender facilitates finding

and fixing the bugs [56]. One of the most useful features that we use from Bugfender

is being able to set a coupon code for each phone. As a result, we can search for the

desired participant by typing their coupon number. Then, we can see the number of

logging lines by level, which is helpful to determine if a phone is continually crashing

because the number of error logs would be very high. Bugfender is a handy tool to

analyze the phone performance for each participant. It helps the developers to find

errors during the acceptance testing period and system testing, which is described

next.

9.4 System Testing

The last type of testing also falls in the black box testing, and it is done after a fully

functional system already exists [89]. The main goal is to run different test cases on

the system to make sure it is not fragile, and confirm that it is stable. For this type

of testing, we have users and developers that do not know everything about all parts

of the code to run different test cases on the entire system to ensure its correctness.

On top of these techniques, we use Jenkins to run daily automation tests. The

backend tests in SOAPUI execute on a JUnit test suite so that they can be deployed

into Jenkins. The Android tests are already implemented in the JUnit framework so

they can automatically be deployed into Jenkins. Jenkins is running on an Ubuntu

Virtual Machine, which is different from the backend and the frontend. There exist

some scripts that automatically deploy the binaries after building them into the IDE.

Hence, it is simple to update the latest binaries into Jenkins and run the test cases

to make sure the system is continuously stable.

137

Chapter 10

System Evaluation and Validation

System evaluation and scalability is a complicated job. Liu et al. state that it takes

five years for software engineering to develop the expertise skills for scalability [92].

However, it is a crucial feature to ensure the satisfaction of the client. For this reason,

ODIN must be scalable. In this section, we describe the scalability of different ODIN

features: participants, researchers, questions, rules, and sensors.

10.1 Scalability for the number of participants

The number of participants increases as more users register to the ODIN phone app.

Each participant is running its instance of ODIN on the phone. Hence, the backend

database is the only part of the system that is shared among the participants. For

this reason, we need to look into increasing the load in the REST calls, which can

be accomplished using SOAPUI, and the system successfully ran a big load of REST

calls simultaneously.

10.2 Scalability for the number of researchers

The number of researchers using the Web UI increases as we have more users interested

in ODIN. The ResearcherUI talks to the ResearcherService in the backend. We need

138

to follow a similar protocol to the scalability of participants. SOAPUI can help us

perform a load test to simulate multiple users using the Web UI.

10.3 Scalability for question instances

Increasing the number of questions in a study affects the ResearcherUI and the phone

application. We can show that those two are scalable in terms of question instances.

If the researcher has created many questions, the main issue is retrieving them from

the database. We have tested adding many questions to the database, and we can

see that the retrieving time does not increase drastically as the number of questions

increases. On the phone side, increasing the number of questions does not affect the

user experience as long as the user has enough storage on the phone to support all

the questions. Each question is prompted independently of the others, so increasing

the number doesn’t have any effect on the APK.

10.4 Scalability for rule types

The most complex scalability is the rules since it affects the rules engine. The rules

engine registers the rules at the beginning, which the performance decreases as the

number of rules increases. We have designed an efficient architecture to be able to

support a new rule type within ODIN. In the backend, we need the following changes:

• 1. Update two properties files in ODINCommon: sensorNameToRuleType.properties

and ODIN-RuleLabels.json.

• 2. Create a new class that extends CronRule, and implement the following

methods:

– notifyCouponAdded: registers the rules in the scheduler

139

– handleTrigger: get the sensor rows from last rule fired time to the last

sensor row and calls the sliding window.

– checkPredicate: checks if the condition for the rule is satisfied. This

method is not needed if the rule is non-sensor related. In the case that we

want to write a negation rule, we modify the checkPredicate method.

• Update generateRuleSimEnt method in the RuleFactory class, which is the class

that creates the rule object.

We can observe that new rules can be easily added to the system, and it does not

affect the rest. Hence, even by increasing the number of rule instances drastically, it

would not take a long time to process them.

10.5 Scalability for sensor types

Increasing the number of sensors does not affect the performance either of the Web UI

or the phone application. In our ODIN design, each sensor is treated independently.

In the backend, we create a separate table for each sensor, and on the phone is a

separate service. The following are the changes needed in the backend to add a new

sensor:

• 1. Update four properties files: sensortypes.properties, sensorNameToSensor-

HeartBeatNames.properties, and sensorHeartBeatIntervals.properties, and ODIN-

SensorLabels.json

• 2. Create three new classes: Model, DAO, and Params. The Model class

should extend the SensorData class. The DAO class should contain all the

methods to read and write into the database. The Params class contains all the

140

parameters of this sensor. These parameters should be validated in the methods

isValidParams and isValidJsonObject().

• 3. Add three new fields in the Constants file: sensor name, sensor DAO package,

and sensor param package path.

• 4. Update the constructor in the StudyDao class to add properties of the DAO

package and param classes for the new sensor.

On the phone side, we need to create a new service, a new table, and add the sensor

type in the Sensor enum class. We can see that adding new sensors does not affect the

system. Hence, the system is reliable as we increase the number of sensor instances.

141

Chapter 11

Distributed Logging and Error Detection

Logging is an essential task to recognize failures in the system. The developer uses

logging to investigate the programs’ behavior during runtime and decide whether

there is any failure. However, deciding the logging statements is not an easy job. On

the one hand, if we choose to log very little information, the system might fail, and

the developer would have a hard time finding the cause of the failure [93]. On the

other hand, logging too many causes other issues such as slower performance due to

writing to CPU [94], or making it difficult to find the cause of the error due to many

irrelevant logs [95]. For this reason, there has been some research done on this area

to help developers automate logging. An example is the Microsoft Research Team

that has developed a tool that learns how to log from existing logging instances [96].

However, there is still more work to be done to be able to automate logging fully.

In this section, we describe the logging practices we have designed and imple-

mented in the system. Logging has been one of our most valuable resources to debug

ODIN. We have faced many issues in the development process, and logging has been

the most useful tool to overcome those difficulties. Android and Web logging are

pretty straightforward, each application has a log file in the file system, and they

write to it. Although, things become more complicated in the backend, which is not

as simple as printing all the logs in a single file. We have designed a distributed

142

logging system that consists of many log files, which makes it easier for the developer

to track down the problem.

The motivation behind having distributed logging is that it gives us some hope

to manage the complexity of the ODIN system. In PhoneAppService, multiple users

are making calls to the backend regularly, so if there is an issue in one of the phones,

it is nearly impossible to find anything if all the logs are written on a single file. In

ResearcherService, there could be many researchers creating studies daily. If one of

them encounters an issue in a study, it is easier to find the problem if we have a

dedicated log file for each study than looking through a single file with all the logs.

Hence, we have chosen to use a distributed system to simplify the task of finding the

cause of the failure.

First, we describe the big picture of the logging system. Fig 11.1 shows the

overview of the Logging structure. We can observe that the Controller sends the

log file names (studyID, coupon, and mainLog) to the LoggerManager class. Then,

LoggerManager calls MyLogger class to write to the file. MyLoggerFactory is used to

determine the application that is logging, which could be the phone or the backend.

This approach was because the Logging classes reside in ODINCommon, which is a jar

file used on the APK. Hence, the phone and the backend have their implementation

of the ILogger and ILoggerFactory interfaces. As mentioned previously, the phone

only logs to a single file while the backend follows the distributed logging design.

143

Figure 11.1: Class diagram for logging. The Controller sends a list of log files to
the LoggerManager. MyLogger implements ILogger interface, and MyLoggerFactory
implements ILoggerFactory interface.

Now that we have a high-level picture of the logging system let’s dive into more

details of the Logger Manager class. We can observe in Fig 11.2 that the Logger

Manager contains three maps as data members; fileToCount, threadToFiles, and file-

ToLogger. We need to keep track of the threads because each REST call initiates

a thread execution and terminates when the REST call concludes. Thus, in the be-

ginning, and at the end of every REST call, we call the method “beginThread” with

the log file names and “endThread” respectively, which reside in MyLogger class. At

the beginning of the REST call, a new entry is inserted in threadToFiles Map. The

map contains the currentThread as the key and the list of file names as the value.

Additionally, one entry per file name is inserted in fileToCount, and the count for

each file is increased. Finally, at the end of the REST call, the thread is removed

from threadToFiles map, and we check the files that were linked to this thread in

fileToCount. If the count becomes 0 after decreasing it at the end of the REST call,

then we remove that entry from the map, and we also remove the entry that matches

the files where the count is 0 in fileToLogger.

144

Figure 11.2: Logger Manager data members objects

We have mentioned the map fileToLogger, but we do not know how it is generated.

As described previously, the Controller first sends the list of file names to MyLogger,

and generates all the Maps. Afterward, we make a call to the Logger object to log,

Fig 11.3 displays the process followed in the execution of that call. First, MyLogger

makes a call to LoggerManager which checks the fileToLogger map to see if we already

have an instance of the Logger for that file. There are two possible outcomes:

• The Logger exists, then we add it to a list of MyLogger instances, iterate through

each of them and write to the file.

• It is the first time writing to this file, so we create a new Logger instance and

add an appender with the name of the file that we want to write. Afterward,

it adds the new instance to MyLogger list. Then, iterates through each of the

145

instances and writes to the file.

Figure 11.3: Diagram of a thread logging into a file

Even using these logging practices is complicated to detect errors if there is no

difference from an info log than an error. For this reason, we have multiple levels of

logging; debug, info, warning, and error. By having different levels, we encounter a

couple of benefits. 1) It is easier to remove unnecessary logs in production like debug

and info, and 2) simpler to search for errors. Therefore, the logging levels are critical

to performing error detection successfully.

If we are aware that there is an issue in the system, it is easier to detect by

using distributed logging; however, we might not know that there is an error in the

first place. Accordingly, we have incorporated exception notifications in our system.

When there is an exception in any of the backend services, we retrieve the list of

developers to notify them. The list is in the properties file of each service. It makes

life easier for the developers because they do not have to check the logs and search

146

for errors. Instead, they can keep working on the development of the application and

receive notifications when there is a failure in the system.

147

Chapter 12

Security

The definition of security in the software engineering field the practice of writing code

in a way that will prevent malicious attacks and thwart the attackers ability to steal

user’s private information. The developer has to design and implement software in

such a way that it is secure and reliable. In 2004, software security was considered a

relatively new research topic. According to [97], the first book on security in software

engineering was published in 2001. Hence, there were many years in which the soft-

ware had flaws. Bellovin et al. state that any program, even if it seems to be safe,

can have security deficiencies [98]. In the last two decades, there have been many

malicious attacks in trendy applications such as Facebook with 50 million profiles

affected [99], the IRS with 330,000 taxpayers of data compromised [100], and the

biggest data breach ever happened in Yahoo which compromised 1 billion accounts

[101]. Developers have become aware of the situation, and are devoting more time to

learning how to build more secure software. Companies are spending more money on

security. However, by looking at and understanding all the data breaches that have

happened in the last years, it is not enough. Computer scientists still have to learn

to design and implement better more secure software [102].

ODIN records and stores personal data; thus, we want to prevent data breaches in

our system by designing a reliable security system in each of our applications. In this

148

chapter, we start by describing the security in the Network transport layer during the

REST calls, then we focus on the Android security and finally the Server Security.

12.1 Network transport Security

ODIN system transfers much data over the network; from the Web UI to the Web

Server, from the Web Server to ResearcherService and from Android to PhoneAppSer-

vice. At present, the data is being transferred over HTTP, but we plan to transition

it to HTTPs. It is an improvement that is needed so that we can ensure security

from end-to-end security within the system. In other words, to provide security in

the REST calls, we need to ensure that all the data that is being transferred through

SSL [103] over the network.

12.2 Android Security

The main concern in an Android application is that there could be other malicious

applications trying to obtain personal information from ODIN. For this reason, we

need to be aware of these possible attacks and develop a safe application to prevent

them. In this section, we describe three security methods: build variants, prevention

of ICC attacks, and participants.

There are multiple releases of our application; developer, researcher, and partici-

pant. Developers have access to the database, status of the services, and the option to

crash the application. Neither the researcher nor the participant should have access

to this sensitive information. The researchers have access to the same features as the

participants and viewing all the questions to make sure the formatting is as expected.

Accordingly, we need to be able to maintain different versions of the application and

also make sure that participants do not have access to the developer’s features. To

149

achieve these multiple goals, we use build variants [104] that allow the developer to

choose the version of the APK to build, which is determined from the different pack-

ages. Therefore, build variants allow better app security because we ensure that each

type of user gets access to the appropriate subset of features.

In Android, the most common attacks are the Inter-Component Communication

(ICC) Attacks. There are two main categories:

• Unauthorized Intent Receipt: In this scenario, a vulnerable application

sends an intent which is intercepted by another malicious application that de-

clared it as an Intent Filter.

• Intent Spoofing: In this case, it is the malicious application that sends the

intent, and the vulnerable application then receives it.

Each of these attacks can happen in the different Android components; service,

activity, content provider, and broadcast receiver. Therefore, it is necessary to think

about these malware scenarios and prevent them. Next, we describe what we do in

our application to prevent those attacks from happening.

The best way to prevent these attacks is to use action and alarm codes. The

former is added to the intent and the latter to the scheduled alarms. In our Android

application, there are many alarms and intents being sent simultaneously. For this

reason, it is crucial to prevent an ICC attack. On the one hand, we always check the

action code of the intent when it is processed. On the other hand, the alarms have an

alarm code attached to them that is also checked every time an alarm is processed.

This mechanism ensures that a malicious application would intercept neither the

intents nor the alarms since they have a unique key attached to it. Moreover, by

checking all the intents and alarms, we ensure the application does not suffer from

150

intent spoofing. Therefore, the ODIN application should be secured from ICC attacks,

which are the most common ones.

Participants may attempt to obtain more incentive from the study, and they can

try to re-register the application with a different coupon or on another phone with

the same coupon. The backend stores the phone’s IMEI in the registration REST

call to prevent form these kinds of attacks. Every time a participant registers with

a coupon, the backend checks that the combination of studyid, couponnumber, and

IMEI is unique. This avoids the user attempting to issue a registration with the same

coupon on different phones or a duplicate registration on the same phone with the

same coupon. Thus, we prevent participant attacks on the ODIN system by using

the phone’s IMEI to detect such attacks.

12.3 Server Security

The server database is hosted in PHPMyAdmin, and it is secured with two different

login credentials. Moreover, we have multiple accounts, and the only account that is

granted all the privileges is root. Hence, an attacker would need to have both login

information, and only with the root account would be granted all the privileges.

To keep our users’ accounts safe, we use MD5 [105] encryption for the user’s

password when they log in before sending it to the server. Then, the encrypted

password is sent over the network, and it is saved in the server database. By using

this security mechanism, we ensure that no attacker has easy access to the actual

password of the user, which helps keep their accounts confidential.

Another essential security point in our system is the database access from a specific

IP address. MySQL can determine what IP address is being used for logging in.

Hence, each account is attached to an IP to make sure only that username coming

151

in from a specific IP can log in. We can also specify the bind-address, setting it to

the machine’s IP address. We do not set it to localhost because that increases the

security risks by making the database more accessible to attacks.

Finally, all the services can only be accessed from inside UNL or using the VPN,

and only the PhoneAppService has an “outside” IP address. This restriction helps

prevent the system from outside attackers since ResearcherService and AdminService

are only accessible from the inside.

We have described the security mechanisms that we have used up to date in ODIN.

However, there is still a lot more research that needs to be done in this area to ensure

the security of our users. To date, we have not had a very large number of concurrent

users, but as the number keeps increasing, we want to make sure we can have a safe

and reliable system which can help researchers and participants have trust in our

system and its ability to keep their data safe.

152

Chapter 13

Experiments and results

In this section, we present the experiment followed by the results obtained. First,

we present the list of metrics used to evaluate the performance of the ODIN system.

Second, we explain the pilot experiment. Third, the results obtained from the pilot are

presented. Finally, we draw conclusions based on the results acquired. The metrics

to examine the rules and sensors performance are presented below.

Note that the first three metrics in the rules section only take into account time-

based rules since this is the only rule type for which we can predict the expected

number of rule firings. Further research is needed to calculate these first three metrics

for other types of rules which reference sensor data.

• Sensor metrics

– Sensor recording interval: average difference between two consecutive

sensor recordings.

– Sensor reliability: average number of recordings that happened within

1% deviation divided by the total number of sensor recordings.

– Min time between recordings: average smallest time between sensor

recordings divided by the ideal time interval between sensor recordings

(specified by the researcher).

153

– Max time between recordings: average largest time between sensor

recordings divided by the ideal time interval between sensor recordings

(specified by the researcher).

• Rule metrics

– Subject performance: average number of answers divided by the num-

ber of actual questions asked only (based only on time-based rules).

– Phone performance: average number of actual questions asked divided

by the number of expected questions only (based only on time-based rules).

– Pilot performance: average number of answers divided by the number

of expected questions (based only on time-based rules). Note that Pilot

performance = Subject performance * Phone performance.

– Good ideal rule fired: average number of “good” rule firings divided

by the expected number of rule firings. A “good” rule firing is one that

happens with less than 60 seconds time deviation from the time the rule

ought to have fired. Note that the reason that rule firings are not all

“good” is because the Android OS does not provide real-time guarantees

as to when intents will be delivered.

– Good rule fired: average number of “good” rule firings divided by the

actual number of rule firings. We allow a 60 seconds time deviation from

the time the rule should have fired.

– Late rule fires: average number of times a rule fired late (by more than

480 seconds) divided by the total number of times that the rule actually

fired.

154

– Missed rule fires: average number of times a rule did not fire divided by

the total number of times the rule actually fired.

– Early rule fires: average number of times a rule fired early (by more than

480 seconds) divided by the total number of times that the rule actually

fired.

A pilot study was conducted on 14 undergraduate students over 30 days at the

University of Nebraska-Lincoln (UNL). Students psychology majors who were regis-

tered in the SONA Psychology Participation Program. Each student was assigned

a coupon to register on the ODIN phone application. The pilot started on October

17th and concluded on December 10th. The students received class credit as incen-

tive, which was not proportional to the number of answers; they received full credit

just by participating in the study. We had to go through the IRB process which

prevented us from letting them use their own phones. Instead, they were provided a

Moto G3 phone to register for the study and carry it throughout the study. Hence,

the participants were carrying two phones: their personal phone and the Moto G3.

Using the same phone model for all the participants allows us to obtain better con-

clusions about results since the OS functionality varies significantly among Android

phone models.

We can observe the sensor details of the study in Table 13.1. The sensors enabled

in the study are GPS and Bluetooth Proximity. The GPS sensor records every 5

minutes, and the Bluetooth Proximity records every 5 minutes. This GPS sensor is

used to track the participants’ location to know when they are on the UNL campus.

Also, we want to know when the participants are interacting socially by using the

proximity Bluetooth sensor.

Table 13.2 shows the survey details of the SONA pilot. We can observe the list of

155

questions along with the rules and filters associated with each question. The study

consists of 3 questions of two different types (Fill Text and Multiple Choice). The first

question is prompted either when the participant is on campus between 6 am - 8 pm

or is near another study participant on campus between 10 am - 2 pm. The second

question is asked 3 times a day at 9 am, 2 pm, and 7 pm, and when the participant

is near another participant on campus between 10 am - 2 pm. The third question is

a follow-up of the second question; it is prompted when the user provides an answer

to the second question. All the questions had a maxAnswerTime of 15 minutes. In

other words, the participant was given 15 minutes to answer the question before it

expired.

Sensor Parameters
GPS Every 5 minutes

Bluetooth Proximity Every 5 minutes

Table 13.1: Sensors with corresponding parameters from the SONA study pilot

Question Type Rules and filters

1 Fill Text

1. While on City Campus in between
the hours 6am-8pm (ask every 14h)
2. Upon joining another study participant
if on City Campus and in between
the hours 10am-2pm (5 minutes delay)

2 Multiple Choice

1. Everyday at 9am
2. Everyday at 2pm
3. Everyday at 7pm
4. Upon joining another study participant
if on City Campus and in between
the hours 10am-2pm (5 minutes delay)

3 Multiple Choice
1. When user answers any response from
question 2 (1 second delay)

Table 13.2: Questions with associated rules and filters from the SONA study pilot

Next, we present the results of the SONA pilot. This section is divided in two

156

parts: sensor performance, and rule performance. In the sensor performance we

describe the results of GPS and Bluetooth. On the other hand, the rule performance

presents the results of all the different rules in the study which are time-based rules,

GPS, and Bluetooth rules.

13.1 Sensor performance

The location and proximity to other participants are tracked using the GPS and

Bluetooth sensors. Both sensors are set to record at an interval of 5 minutes. Fig

13.1 shows the average sensor recording interval of each participant throughout

the 30 days. We can observe that, in most cases, it is above the expected interval of

5 minutes (expected interval). The sensors of participant 9 has a very high recording

interval, with an average of approximately 700 seconds (11.6 minutes). We can observe

in Table 13.3 that GPS and Bluetooth have an average sensor reliability above 90%.

Most of the other sensor recording intervals stay within 5 minutes as can be seen in

Fig 13.2 and 13.3. A vast majority of the outliers are above 5 minutes.

157

Participant

Pe
rc

en
ta

ge
 d

ev
ia

tio
n

fr
om

 e
xp

ec
te

d

0

50

100

150

200

250

2 4 6 8 10 12 14

GPS recording interval BT recording interval

Figure 13.1: GPS and Bluetooth average sensor interval for each coupon throughout
the study. The horizontal axis represents the participants of the study and the vertical
axis is percentage deviation from expected interval.

Sensor
Min time

between recordings
Max time

between recordings
Reliability

GPS -256.14% 41080.23% 93.86%
Bluetooth -247.19% 21502.45% 90.99%

Table 13.3: GPS and Bluetooth average reliability among all the participants.

158

Figure 13.2: Intervals between GPS samples. The horizontal axis represents the
participants and the vertical axis represents the difference between intervals. The
two figures show the same data but at a different scale.

159

Figure 13.3: Intervals between Bluetooth samples. The horizontal axis represents the
participants and the vertical axis represents the difference between intervals. The two
figures show the same data but at a different scale.

160

These outliers are due to either the phone being off or service faults. For example,

participant 9 has similar results for GPS and Bluetooth sensors since the max time

between recordings is 8x106. Hence, we can assume that the user had the phone

off for a few days. On the other hand, if we look at participant 6, the maximum GPS

difference in sensor interval is considerably large, but it is not the case for Bluetooth.

As a result, there was some fault in the GPS service, such as the service being dead or

the location being off. Additionally, we found the min time between recordings

for most of the participants to be -55 minutes. This negative distance was due to

daylight time savings that happened on November 3rd. The first 11 participants

registered before that date, but the last 3 completed the registration on a later date.

For this reason, the discrepancy is only found in some of the study subjects data.

Therefore, we can conclude that the sensor readings were successful during the pilot

since most of them happened every 5 minutes.

13.2 Rules performance

Recall the rules used in the study can be found in Table 13.2 which can be sum-

marized into four rule types: time-based, follow-up, GPS (onArrival), and Bluetooth

(onDeparture). Notice that some of the rules also have filters attached to them. The

filters used in the SONA pilot are time-based and GPS filters. The results of the rule

metrics of the SONA pilot are presented in this section. Table 13.4 shows the rule

metrics based on time questions, we also present a graph in Fig 13.4 based on the

previous metrics, and Table 13.5 shows the average rule metrics for each rule type

throughout the study.

161

Subject
performance

Phone
performance

Pilot
performance

47.60 % 76.19 % 36.26 %

Table 13.4: Results of average subject, phone, and pilot performance metrics.

Subject performance (%)

Ph
on

e
pe

rf
or

m
an

ce
 (%

)

0

25

50

75

100

30 40 50 60 70

Figure 13.4: Subject and phone performance. The horizontal axis represents the
subject performance and the vertical axis represents the phone performance as a
percent. The dots represent the study participants.

Avg metrics Time GPS BT Follow-up
Good ideal rule fired (%) 94.5 10.64 0 100

Good rule fired (%) 90.78 10.21 0 100
Late rule fires (%) 0 70.41 0 0

Missed rule fires (%) 12.5 11.79 100 0
Early rule fires (%) 0.39 0 0 0

Table 13.5: Rules average metrics results among all the participants.

We observe in Fig 13.4, perhaps surprisingly, that the subject’s performance

and the phone’s performance are proportional in most of the cases. Except for

162

the 5 outliers, there is a center group which is linearly correlated. The 8 points in

the center of the plot show that the two metrics are proportional. For example, a

participant has a subject’s performance lower than 40%, which could be the reason

the phone performance is low. The phone’s performance decreases if the user does

not make sure the phone is on. Hence, since the user’s performance is low, we could

expect that the participant is not taking care of the phone, which results in low phone

performance. Another example is the participant that has the highest phone perfor-

mance (close to 100%); the subject’s performance is relatively high compared with

the other participant’s phone’s performance. It is rare to have a phone performance

of 100% because it would mean that the user did not run out of battery nor turned

off the phone for 30 days. Low pilot performance is more likely to happen if the

participants use their phone for the study, but the users tend to forget about it since

this was a secondary phone that they had to carry. Additionally, they are college

students that are getting class credit only by participating in the study so it does not

make any difference to answer questions, which can skew the collected data.

The results from the time-based rules were good in terms of phone performance,

but subject performance was low. These conflicting results are seen in Table 13.4.

On the one hand, the results show the phone performance was 76% on average. Note

that external factors that can decrease phone performance, e.g the phone running out

of battery or the user turning it off. On the other hand, subject performance was

a much lower 47%. A reason that the subject performance is low could be due to

the limited time (15 minutes) to answer a question. This time interval might not be

enough since we need to consider that these are students, and they might be in class

at the rule firing time. Clearly, further research is required to improve the subject

performance, user experience, and make the user more engaged in ODIN, but this is

beyond the scope of this thesis.

163

The time-based and follow-up rules good ideal rule fire and good rule fire

metrics are high, but the same metrics have low values for GPS and Bluetooth rules.

Closer examination led us to discover (after the pilot was over) that this was due to

a flaw in the code. There was a bug in the code that calculates the distance between

two latitude-longitude coordinates. This bug does not only affect the GPS but also

the Bluetooth rules since they have a GPS filter (the IRB required that we only ask

students questions if they were on campus, and this was achieved by attaching a GPS

filter to the Bluetooth rule). Bluetooth has missed all the rules that should have

fired, and we realized after analyzing the data that this was due to the GPS filter

with the flawed distance calculation. We can observe in Table 13.5 that cron rule,

and follow-up have a good ideal rule fire and good rule fire above 90%. The

reason the cron rule’s performance is slightly lower than the follow-up rules is that

there is a time conversion on the server. Every time the answers are pushed to the

server, the server corrects the timestamps of the phones answers to its own timeframe

by adding an appropriate offset based on the difference between the server and phone

clock. Currently, we are not taking into account this correction in the data analysis,

and this can falsely lower the performance. For example, suppose the participants

carry phones that have time set to 9 am, but the current time in the server is 9:10

am (a 10 minute discrepancy). When there is a rule firing on the phone at 9 am,

the server changes it to 9:10 am, and the analysis would consider this rule to have

fired 10 minute late, when in fact from the vantage point of the phone clock, it fired

perfectly on time.

The results from the SONA pilot show that ODIN is a working system although

there are still some flaws in the code that need to be addressed. The SONA pilot

had four different rule types, and two sensors (GPS and Bluetooth). The results

show that the sensor recordings happened in the intervals determined. Moreover, the

164

rules fired as expected, except for GPS rules which also caused Bluetooth rules to not

fire as expected. This behavior was due to a flaw in the calculation of the distance

between the two coordinates. Finally, we compare the performance of the phone and

the subject performance on the time-based questions. We can conclude based on the

metrics results that ODIN is a working well, but there are metrics that need to be

improved such as the GPS rules. As the ODIN system continues to be developed, we

can use the framework of metrics presented in this chapter in future pilots to assess

if system performance has improved.

165

Chapter 14

Conclusion and future work

The study of social systems has evolved throughout the years, starting from popu-

lation studies using surveys, to methods that build network snapshots. Traditional

surveys involve high expenses and low data quality. New techniques are necessary to

collect fine-grained long-term data in order to develop mathematical models which

can lead to a better understanding of the complexity of human societies and the

individuals within them. For this reason, there has been a lot of effort devoted to

developing new ways to collect data on population samples, including methods such

as EMA which produce better quality fine-grained data over long time scales.

We have developed ODIN, a cell-phone based platform that allows researchers

to create responsive EMA studies that yield information about both individuals and

the networks of interaction between them. The system consists of a Web UI where

the researcher can create a study with questions and contextual rules that determine

when the questions are prompted. Then, the participant is given a coupon to enter

in the phone application where contextual questions are asked based on the study

requirements. A pilot study was conducted and shows that the phone’s average

performance is above 75%, which means that out of 100 expected questions, the

system asked 75 over questions. Additionally, we perform an analysis of the sensor

readings and rule firings. The sensor interval recording was exact the vast majority

166

of the time. The time-based rule and the follow-up rules also fired as expected.

The GPS and Bluetooth rules had low metric values, due to an undetected software

bug. These results lead us to conclude that the platform is functioning well, but

that external factors were at play in decreasing the systems performance metrics (e.g.

phones running out of battery, a lack of suitable incentives to participants, etc.).

Although ODIN successfully collected data and prompted questions for 30 days,

there is still work that needs to be done to improve the system and its overall perfor-

mance.

One open problem for ODIN is the design of meaningful performance metrics and

incentive thresholds. For complex rules, it is difficult to know how many times the

rule should have fired for any given participant. Even if this number is known and

computable, it may vary widely across participants in the same study. Typically,

researchers specify that some minimum percentage of questions have to be answered

for the participants to receive incentive payment. This is complicated in ODIN due

to the uncertainty of the expected number of questions that will be asked. If the

researcher only chooses time-based questions (which is essentially traditional EMA),

then it is possible to calculate the performance because the expected number of

questions is predictable. The implications of complex rules on performance metrics

and incentive thresholds is an important area of future research.

Another open problem for ODIN is maintaining and updating the system to keep

pace with new Android releases and vendor-specific constraints. A new Android OS

is released every year, and some older or newer models might not be compatible with

the system. Hence, there is a need to continue testing the phone application with new

OS versions and examine that it is still compatible with older versions if any changes

are made.

Another open area for ODIN is the support of new types of sensors and new types

167

of rules. This is needed to enable ODIN to be used in a wider range of studies.

To date, we have developed a platform with the following sensors: GPS, Proximity

Bluetooth, Beacon, Activity Recognition, and Empatica E4. There exist multiple

rules associated with each sensor. Nevertheless, new sensors and rules need to be

added to the system corresponding to new biosensors and research use-cases. Perhaps

there needs to be a way for the researcher to define new types of rules using a visual

programming language.

Another open area for future work is the modeling of data collected using ODIN.

At the end of the study, the researcher has a large amount of sensor data and answers.

Sophisticated data analysis will be required to reach rigorous conclusions from study

data. Techniques to make sense of longitudinal interaction data are still in their

infancy. Missing data is a statistically difficult issue in the ODIN studies, since the

missingness is likely to be missing not at random (MNAR). It is difficult to imagine

that the analytic tools that will be developed in the upcoming years will be universally

applicable to any ODIN study (simply because of the vast variety of ODIN studies that

can be made). Rather, the analytic procedures will probably have to be customized

for each study.

Another open area for ODIN are issues of privacy. In general, given a rule-based

survey protocol, it is very difficult to know whether information can leak out, espe-

cially if subjects come to understand the rules. A simple caricature example might

be: On Monday, ask each subject in the study if they have HIV. From Tuesday on-

wards, whenever two people are in Bluetooth proximity who both answered yes on

Monday, ask them question X, whereas whenever two people who answered no are in

Bluetooth proximity, ask them question Y. Clearly, such a protocol leaks information,

and if study participants knew the rules (and their own HIV status), they could figure

out everyone elses. Most scientific studies require the protocol to be approved by an

168

IRB, which seeks to evaluate the questions to determine if the subjects can be harmed

because of private information being revealed. When the study protocol consists of

not only questions, but rules as well, it is not clear how such a determination can be

made.

To conclude, ODIN is a novel platform that allows researchers to create responsive

EMA studies. We have developed an innovative system with 6 sensors and multiple

rules, and it is possible to extend it. The current version has already been tested,

and it is fully functional. We expect that ODIN will be used in many other research

projects in the future where it will facilitate data collection and analysis. There are,

however, still many difficult open problems to be resolved in the long term.

169

Appendix

Lo
gi

n
Vi

ew
SQ

L

re
tu

rn
 2

00

Ja
va

Sc
rip

t

re
tu

rn
 tr

ue

U
se

r

PO
ST

 /
cr

ea
te

Q
ue

st
io

n(
ke

y,
st

ud
yI

D
, Q

ue
st

io
n)

Js
on

 F
ile

PO
ST

 /
cr

ea
te

Q
ue

st
io

n(
st

ud
yI

D
, Q

ue
st

io
n)

Se
le

ct
 "A

dd
 Q

ue
st

io
n"

 b
ut

to
n

w
w

w

su
cc

es
s

m
es

sa
ge

PO
ST

 /
Q

ue
st

io
ns

(s
tu

dy
ID

, Q
ue

st
io

n)

on
C

lic
k(

)

Fi
ll

ou
t "

Ad
d

Q
ue

st
io

n"
 fo

rm
Sh

ow
 "A

dd
 Q

ue
st

io
n"

 p
op

up

Se
le

ct
 "C

re
at

e"
 b

ut
to

n

R
ES

T

F
ig

u
re

.5
4:

R
es

ea
rc

h
er

U
I

Q
u
es

ti
on

s
ad

d
Q

u
es

ti
on

p
os

t
su

cc
es

s

Lo
gi

n
Vi

ew
Js

on
 F

ile
R

ES
T

su
cc

es
s

m
es

sa
ge

PO
ST

 /
D

el
et

eQ
ue

st
io

n(
st

ud
yI

D
, q

ue
st

io
nI

D
)

w
w

w

re
tu

rn
 tr

ue

SQ
L

re
tu

rn
 2

00

Ja
va

Sc
rip

t
U

se
r

PO
ST

 /
re

m
ov

eQ
ue

st
io

n(
ke

y,
 s

tu
dy

ID
,

qu
es

tio
nI

D
)

PO
ST

 /
re

m
ov

eQ
ue

st
io

n(
st

ud
yI

D
, q

ue
st

io
nI

D
)

Se
le

ct
 "D

el
et

e"
 b

ut
to

n

F
ig

u
re

.5
6:

R
es

ea
rc

h
er

U
I

Q
u
es

ti
on

s
d
el

et
e

su
cc

es
s

Lo
gi

n
Vi

ew
U

se
r

G
ET

 /
ge

tF
ilt

er
s(

ke
y,

 s
tu

dy
ID

,
qu

es
tio

nI
D

, r
ul

eI
ID

)

Js
on

 F
ile

PO
ST

 /
ge

tF
ilt

er
s(

st
ud

yI
D

, q
ue

st
io

nI
D

, r
ul

eI
D

)

Se
le

ct
 "E

di
t"

bu
tto

n
ne

xt
 to

 ru
le

de
sc

rip
tio

n

w
w

w
Ja

va
Sc

rip
t

sh
ow

 Q
ue

st
io

ns
 d

at
a

G
ET

 /
Q

ue
st

io
ns

(s
tu

dy
ID

, q
ue

st
io

nI
D

, r
ul

eI
D

)

Fi
ll

ou
t "

Ed
it

R
ul

e"
 fo

rm

Se
le

ct
 "U

pd
at

e"
 b

ut
to

n

SQ
L

R
ES

T

re
tu

rn
 2

00
 a

nd
 L

is
t<

Fi
lte

rs
>

G
ET

 /
ge

tR
ul

es
(k

ey
, s

tu
dy

ID
,

qu
es

tio
nI

D
)

G
ET

 /
ge

tR
ul

es
(s

tu
dy

ID
, q

ue
st

io
nI

D
)

re
tu

rn
 L

is
t<

R
ul

es
>

re
tu

rn
 2

00
 a

nd
 L

is
t<

R
ul

es
>

Ite
ra

te
 o

ve
r L

is
t<

R
ul

es
>

an
d

cr
ea

te
 a

 n
ew

 R
ul

e
th

at
 h

as
 th

e
ru

le
id

re
tu

rn
 L

is
t<

Fi
lte

rs
>

G
ET

 /
ge

tF
ilt

er
s(

ke
y,

 s
tu

dy
ID

,
qu

es
tio

nI
D

, r
ul

eI
ID

)
PO

ST
 /

ge
tF

ilt
er

s(
st

ud
yI

D
, q

ue
st

io
nI

D
, r

ul
eI

D
)

re
tu

rn
 2

00
 a

nd
 L

is
t<

Fi
lte

rs
>

PO
ST

 /
Ed

itR
ul

e(
st

ud
yI

D
, q

ue
st

io
nI

D
, R

ul
e)

sh
ow

 Q
ue

st
io

ns
 d

at
a

re
tu

rn
 L

is
t<

Fi
lte

rs
>

Fi
ll

ou
t "

Ed
it

Fi
lte

rs
" f

or
m

Se
le

ct
 "U

pd
at

e"
 b

ut
to

n

re
tu

rn
 tr

ue

PO
ST

 /
up

da
te

R
ul

e(
st

ud
yI

D
, q

ue
st

io
nI

D
, R

ul
e)

re
tu

rn
 2

00

su
cc

es
s

m
es

sa
ge

PO
ST

 /
Ed

itF
ilt

er
s(

st
ud

yI
D

, q
ue

st
io

nI
D

, R
ul

e)
PO

ST
 /

up
da

te
R

ul
e(

ke
y,

 s
tu

dy
ID

,
qu

es
tio

nI
D

, R
ul

e)

F
ig

u
re

.5
8:

R
es

ea
rc

h
er

U
I

Q
u
es

ti
on

s
ed

it
F

il
te

rs
p

os
t

su
cc

es
s

Lo
gi

n
Vi

ew
Ja

va
Sc

rip
t

re
tu

rn
 tr

ue

U
se

r

PO
ST

 /
ed

itQ
ue

st
io

nA
nd

C
ho

ic
es

(k
ey

,
st

ud
yI

D
, Q

ue
st

io
n)

Js
on

 F
ile

PO
ST

 /
ed

itQ
ue

st
io

nA
nd

C
ho

ic
es

(s
tu

dy
ID

, Q
ue

st
io

n)

Se
le

ct
 "E

di
t"

bu
tto

n

w
w

w

su
cc

es
s

m
es

sa
ge

PO
ST

 /
Ed

itQ
ue

si
to

n(
ke

y,
 s

tu
dy

ID
, Q

ue
st

io
n)

on
C

lic
k(

)

Fi
ll

ou
t "

Ed
it

Q
ue

st
io

n"
 fo

rm
Sh

ow
 "E

di
t Q

ue
st

io
n"

 p
op

up

Se
le

ct
 "C

re
at

e"
 b

ut
to

n

SQ
L

R
ES

T

re
tu

rn
 2

00

F
ig

u
re

.6
0:

R
es

ea
rc

h
er

U
I

Q
u
es

ti
on

s
ed

it
Q

u
es

ti
on

p
os

t
su

cc
es

s

Lo
gi

n
Vi

ew

re
tu

rn
 L

is
t<

Fi
lte

rs
>

U
se

r

G
ET

 /
ge

tF
ilt

er
s(

ke
y,

 s
tu

dy
ID

,
qu

es
tio

nI
D

, r
ul

eI
ID

)

Js
on

 F
ile

PO
ST

 /
ge

tF
ilt

er
s(

st
ud

yI
D

, q
ue

st
io

nI
D

, r
ul

eI
D

)

Se
le

ct
 "E

di
t"

bu
tto

n
ne

xt
 to

 ru
le

de
sc

rip
tio

n

w
w

w
Ja

va
Sc

rip
t

sh
ow

 Q
ue

st
io

ns
 d

at
a

G
ET

 /
Q

ue
st

io
ns

(s
tu

dy
ID

, q
ue

st
io

nI
D

, r
ul

eI
D

)

Fi
ll

ou
t "

Ed
it

R
ul

e"
 fo

rm

Se
le

ct
 "U

pd
at

e"
 b

ut
to

n

SQ
L

R
ES

T

re
tu

rn
 2

00
 a

nd
 L

is
t<

Fi
lte

rs
>

G
ET

 /
ge

tR
ul

es
(k

ey
, s

tu
dy

ID
,

qu
es

tio
nI

D
)

G
ET

 /
ge

tR
ul

es
(s

tu
dy

ID
, q

ue
st

io
nI

D
)

re
tu

rn
 L

is
t<

R
ul

es
>

re
tu

rn
 2

00
 a

nd
 L

is
t<

R
ul

es
>

Ite
ra

te
 o

ve
r L

is
t<

R
ul

es
>

an
d

cr
ea

te
 a

 n
ew

 R
ul

e
th

at
 h

as
 th

e
ru

le
id

re
tu

rn
 tr

ue

PO
ST

 /
up

da
te

R
ul

e(
ke

y,
 s

tu
dy

ID
,

qu
es

tio
nI

D
, R

ul
e)

PO
ST

 /
up

da
te

R
ul

e(
st

ud
yI

D
, q

ue
st

io
nI

D
, R

ul
e)

re
tu

rn
 2

00

PO
ST

 /
Ed

itR
ul

e(
st

ud
yI

D
, q

ue
st

io
nI

D
, R

ul
e)

su
cc

es
s

m
es

sa
ge

F
ig

u
re

.6
2:

R
es

ea
rc

h
er

U
I

Q
u
es

ti
on

s
ed

it
R

u
le

p
os

t
su

cc
es

s

Lo
gi

n
Vi

ew
U

se
r

Se
le

ct
 "L

ea
ve

" i
co

n

Js
on

 F
ile

R
ES

T
w

w
w

SQ
L

Ja
va

Sc
rip

t

sh
ow

 d
ia

lo
g

re
tu

rn
 5

00

Se
le

ct
 "O

K"
 b

ut
to

n
on

C
lic

k(
)

PO
ST

 /
Le

av
e(

ke
y,

st
ud

yI
D

)

on
C

lic
k(

)

PO
ST

 /
le

av
eP

ar
tic

ip
an

t(k
ey

,s
tu

dy
ID

)

er
ro

r m
es

sa
ge

le
av

eP
ar

tic
ip

an
t(k

ey
, s

tu
dy

ID
)

re
tu

rn
 fa

ls
e

F
ig

u
re

.6
4:

R
es

ea
rc

h
er

U
I

R
ea

se
ar

ch
er

H
om

e
L

ea
ve

fa
il
u
re

Lo
gi

n
Vi

ew
U

se
r

re
tu

rn
 tr

ue
re

tu
rn

 2
00

Se
le

ct
 "C

op
y"

 ic
on

PO
ST

 /
co

py
St

ud
y(

ke
y,

st
ud

yI
D

)
G

ET
 /

C
op

y(
st

ud
yI

D
)

su
cc

es
s

m
es

sa
ge

co
py

St
ud

y(
ke

y,
 s

tu
dy

ID
)

Ja
va

Sc
rip

t
w

w
w

R
ES

T
SQ

L

F
ig

u
re

.6
6:

R
es

ea
rc

h
er

U
I

R
es

ea
rc

h
er

H
om

e
C

op
y
S
tu

d
y

su
cc

es
s

Lo
gi

n
Vi

ew

on
C

lic
k(

)

w
w

w

Se
le

ct
 "C

re
at

e
N

ew
" b

ut
to

n

on
C

lic
k(

)

U
se

r
R

ES
T

Ja
va

Sc
rip

t

sh
ow

 G
PS

 fi
el

ds

Fi
ll

ou
t G

PS
 fi

el
ds

Se
le

ct
 "R

es
et

" b
ut

to
n

fro
m

 p
op

 u
p

Js
on

 F
ile

SQ
L

on
C

lic
k(

)

re
se

t f
or

m

sh
ow

 p
op

up

Se
le

ct
 "G

PS
" c

he
ck

bo
x

F
ig

u
re

.6
8:

R
es

ea
rc

h
er

U
I

R
es

ea
rc

h
er

H
om

e
cr

ea
te

S
tu

d
y

re
se

t

Lo
gi

n
Vi

ew
w

w
w

R
ES

T
SQ

L

sh
ow

 d
ia

lo
g

Se
le

ct
 "C

an
ce

l"
bu

tto
n

on
C

lic
k(

)

Se
le

ct
 "D

el
et

e"
 ic

on

on
C

lic
k(

)

hi
de

 d
ia

lo
g

U
se

r
Ja

va
Sc

rip
t

F
ig

u
re

.7
0:

R
es

ea
rc

h
er

U
I

R
es

ea
rc

h
er

H
om

e
d
el

et
eS

tu
d
y

ca
n
ce

l

Lo
gi

n
Vi

ew
U

se
r

su
cc

es
s

m
es

sa
ge

de
le

te
St

ud
y(

ke
y,

 s
tu

dy
ID

)

Ja
va

Sc
rip

t
w

w
w

R
ES

T
SQ

L

re
tu

rn
 tr

ue

sh
ow

 d
ia

lo
g

re
tu

rn
 2

00

Se
le

ct
 "O

K"
 b

ut
to

n
on

C
lic

k(
)

PO
ST

 /
D

el
et

e(
st

ud
yI

D
)

Se
le

ct
 "D

el
et

e"
 ic

on

PO
ST

 /
de

le
te

St
ud

y(
ke

y,
st

ud
yI

D
)

on
C

lic
k(

)

F
ig

u
re

.7
2:

R
es

ea
rc

h
er

U
I

R
es

ea
rc

h
er

H
om

e
d
el

et
eS

tu
d
y

su
cc

es
s

Lo
gi

n
Vi

ew

G
ET

 /
ge

tS
el

ec
te

dS
tu

dy
D

et
ai

ls
(k

ey
,s

tu
dy

ID
)

w
w

w

ge
tS

el
ec

te
dS

tu
dy

D
et

ai
ls

(s
tu

dy
ID

)

Ja
va

Sc
rip

t
U

se
r

Se
le

ct
 "E

di
t o

r D
et

ai
ls

" i
co

n

Js
on

 F
ile

R
ES

T

G
ET

 /
ge

tS
en

so
rs

(k
ey

,s
tu

dy
ID

)

G
ET

 /
In

fo
(s

tu
dy

N
am

e)

re
tu

rn
 M

ap
<S

tri
ng

,S
en

so
rP

ar
am

D
et

ai
ls

>

re
tu

rn
 L

is
t<

R
es

ea
rc

he
r>

re
tu

rn
 S

en
so

rT
yp

es
D

et
ai

ls
re

tu
rn

 2
00

 a
nd

 S
en

so
rT

yp
es

D
et

ai
ls

re
tu

rn
 S

tu
dy

SQ
L

re
tu

rn
 2

00
 a

nd
 S

tu
dy

G
ET

 /
ge

tS
en

so
rT

yp
es

Sp
ec

(k
ey

)

ge
tS

en
so

rT
yp

es
D

et
ai

ls
()

ge
tS

en
so

rs
(s

tu
dy

ID
)

ge
tP

ar
tic

ip
an

tN
am

es
(k

ey
,s

tu
dy

ID
)

re
tu

rn
 L

is
t<

R
es

ea
rc

he
r>

ge
tA

llN
on

Su
pe

rU
se

rs
(k

ey
)

G
ET

 /
ge

tA
llN

on
Su

pe
rU

se
rs

(k
ey

,s
tu

dy
ID

)

re
tu

rn
 2

00
 a

nd
 L

is
t<

R
es

ea
rc

he
r>

re
tu

rn
 2

00
 a

nd
M

ap
<S

tri
ng

,s
en

so
rP

ar
am

D
et

ai
ls

>

G
ET

 /
ge

tP
ar

tic
ip

an
tN

am
es

(k
ey

,s
tu

dy
ID

)

re
tu

rn
 2

00
 a

nd
 L

is
t<

R
es

ea
rc

he
r>

re
tu

rn
 In

fo
 V

ie
w

F
ig

u
re

.7
4:

R
es

ea
rc

h
er

U
I

R
es

ea
rc

h
er

H
om

e
ed

it
S
tu

d
y

su
cc

es
s

170

F
ig

u
re

.1
:

R
es

ea
rc

h
er

U
I

A
cc

ou
n
t

L
og

ou
t

171

Lo
gi

n
Vi

ew

PO
ST

 /
up

da
te

R
es

ea
rc

he
rP

as
ss

w
or

d
(G

U
ID

, p
as

sw
or

d)

er
ro

r m
es

sa
ge

re
tu

rn
 fa

ls
e

w
w

w
R

ES
T

PO
ST

 /
R

es
et

Pa
ss

w
or

d(
G

U
ID

, p
as

sw
or

d)
En

te
r n

ew
 p

as
sw

or
d

SQ
L

re
tu

rn
 5

00

U
se

r
Ja

va
Sc

rip
t

up
da

te
R

es
ea

rc
he

rP
as

sw
or

d(
G

U
ID

, p
as

sw
or

d)

ha
sh

 p
as

sw
or

d

Js
on

 F
ile

F
ig

u
re

.2
:

R
es

ea
rc

h
er

U
I

A
cc

ou
n
t

R
es

et
P

as
sw

or
d

p
os

t
fa

il
u
re

172

Lo
gi

n
Vi

ew

PO
ST

 /
up

da
te

R
es

ea
rc

he
rP

as
ss

w
or

d
(G

U
ID

, p
as

sw
or

d)

PO
ST

 /
R

es
et

Pa
ss

w
or

d(
G

U
ID

, p
as

sw
or

d)

Js
on

 F
ile

su
cc

es
s

m
es

sa
ge

re
tu

rn
 tr

ue

w
w

w
R

ES
T

En
te

r n
ew

 p
as

sw
or

d

SQ
L

re
tu

rn
 2

00

U
se

r
Ja

va
Sc

rip
t

up
da

te
R

es
ea

rc
he

rP
as

sw
or

d(
G

U
ID

, p
as

sw
or

d)

ha
sh

 p
as

sw
or

d

F
ig

u
re

.3
:

R
es

ea
rc

h
er

U
I

A
cc

ou
n
t

R
es

et
P

as
sw

or
d

p
os

t
su

cc
es

s

173

Lo
gi

n
Vi

ew

G
ET

 /
va

lid
at

eE
m

ai
lF

ro
m

G
m

ai
l(e

m
ai

l)
PO

ST
 /

Va
lid

at
eE

m
ai

l(e
m

ai
l)

Js
on

 F
ile

er
ro

r m
es

sa
ge

re
tu

rn
 fa

ls
e

w
w

w
R

ES
T

En
te

r e
m

ai
l a

dd
re

ss

SQ
L

re
tu

rn
 5

00

U
se

r
Ja

va
Sc

rip
t

va
lid

at
eE

m
ai

lF
ro

m
G

m
ai

l(e
m

ai
l)

F
ig

u
re

.4
:

R
es

ea
rc

h
er

U
I

A
cc

ou
n
t

V
al

id
at

eE
m

ai
l

p
os

t
fa

il
u
re

174

Lo
gi

n
Vi

ew

G
ET

 /
va

lid
at

eE
m

ai
l()

sh
ow

 V
al

id
at

eE
m

ai
l d

at
a

Se
le

ct
 "F

or
go

t P
as

sw
or

d"
 li

nk

w
w

w
R

ES
T

Js
on

 F
ile

SQ
L

U
se

r
Ja

va
Sc

rip
t

F
ig

u
re

.5
:

R
es

ea
rc

h
er

U
I

A
cc

ou
n
t

va
li
d
at

eE
m

ai
l

ge
t

175

Lo
gi

n
Vi

ew

G
ET

 /
va

lid
at

eE
m

ai
lF

ro
m

G
m

ai
l(e

m
ai

l)

U
se

r
Ja

va
Sc

rip
t

va
lid

at
eE

m
ai

lF
ro

m
G

m
ai

l(e
m

ai
l)

PO
ST

 /
Va

lid
at

eE
m

ai
l(e

m
ai

l)

Js
on

 F
ile

su
cc

es
s

m
es

sa
ge

re
tu

rn
 tr

ue

w
w

w
R

ES
T

En
te

r e
m

ai
l a

dd
re

ss

Se
nd

 li
nk

 to
 e

m
ai

l
ad

dr
es

s
to

 re
se

t
pa

ss
w

or
d

SQ
L

re
tu

rn
 2

00

F
ig

u
re

.6
:

R
es

ea
rc

h
er

U
I

A
cc

ou
n
t

va
li
d
at

eE
m

ai
l

p
os

t
su

cc
es

s

176

Lo
gi

n
Vi

ew

PO
ST

 /
to

gg
le

C
on

se
nt

(k
ey

,s
tu

dy
ID

,
ar

eC
on

se
nt

Fo
rm

En
ab

le
d)

Js
on

 F
ile

R
ES

T

PO
ST

 /
En

ab
le

C
on

se
nt

Fo
rm

(s
tu

dy
N

am
e,

ar
eC

on
se

nt
Fo

rm
sE

na
bl

ed
)

w
w

w

to
gg

le
C

on
se

nt
(s

tu
dy

ID
,a

re
C

on
se

nt
Fo

rm
En

ab
le

d)

re
tu

rn
 fa

ls
e

SQ
L

re
tu

rn
 5

00

Ja
va

Sc
rip

t

er
ro

r m
es

sa
ge

U
se

r

ch
an

ge
()

hi
de

 "C
on

se
nt

 F
ie

ld
s"

Se
le

ct
 "S

av
e"

 b
ut

to
n

ne
xt

 to
"E

na
bl

e
C

on
se

nt
 F

or
m

"

U
nc

he
ck

 "E
na

bl
e

C
on

se
nt

 F
or

m
"

F
ig

u
re

.7
:

R
es

ea
rc

h
er

U
I

C
on

se
n
tF

or
m

E
n
ab

le
C

on
se

n
tF

or
m

fa
il
u
re

177

Lo
gi

n
Vi

ew

PO
ST

 /
to

gg
le

C
on

se
nt

(k
ey

,s
tu

dy
ID

,
ar

eC
on

se
nt

Fo
rm

En
ab

le
d)

U
se

r

U
nc

he
ck

 "E
na

bl
e

C
on

se
nt

 F
or

m
"

Js
on

 F
ile

R
ES

T

PO
ST

 /
En

ab
le

C
on

se
nt

Fo
rm

(s
tu

dy
N

am
e,

ar
eC

on
se

nt
Fo

rm
sE

na
bl

ed
)

w
w

w

to
gg

le
C

on
se

nt
(s

tu
dy

ID
,a

re
C

on
se

nt
Fo

rm
En

ab
le

d)

re
tu

rn
 tr

ue

SQ
L

re
tu

rn
 2

00

Ja
va

Sc
rip

t

su
cc

es
s

m
es

sa
ge

ch
an

ge
()

hi
de

 "C
on

se
nt

 F
ie

ld
s"

Se
le

ct
 "S

av
e"

 b
ut

to
n

ne
xt

 to
"E

na
bl

e
C

on
se

nt
 F

or
m

"

F
ig

u
re

.8
:

R
es

ea
rc

h
er

U
I

C
on

se
n
tF

or
m

E
n
ab

le
C

on
se

n
tF

or
m

su
cc

es
s

178

Lo
gi

n
Vi

ew

PO
ST

 /
ed

itC
on

se
nt

Fi
el

ds
(k

ey
,s

tu
dy

ID
,

C
on

se
nt

Fo
rm

)
to

gg
le

C
on

se
nt

(s
tu

dy
ID

,a
re

C
on

se
nt

Fo
rm

sE
na

bl
ed

)Js
on

 F
ile

re
tu

rn
 fa

ls
e

R
ES

T
SQ

L

re
tu

rn
 5

00

Ja
va

Sc
rip

t

er
ro

r m
es

sa
ge

U
se

r

on
C

lic
k(

)

C
ha

ng
e

fo
nt

 c
ol

or
,

hi
de

 p
re

vi
ou

s
co

ns
en

t
fie

ld
 d

at
a

an
d

sh
ow

ne
w

 d
at

a
Se

le
ct

 "S
av

e"
 b

ut
to

n
on

 th
e

bo
tto

m
rig

ht
 c

or
ne

r

Se
le

ct
 "F

ol
lo

w
 U

p"

PO
ST

 /
C

on
se

nt
Fo

rm
(s

tu
dy

N
am

e,
 C

on
se

nt
Fo

rm
)

w
w

w

F
ig

u
re

.9
:

R
es

ea
rc

h
er

U
I

C
on

se
n
tF

or
m

fa
il
u
re

179

Lo
gi

n
Vi

ew

G
ET

 /
ge

tS
el

ec
te

dS
tu

dy
D

et
ai

ls
(k

ey
,s

tu
dy

ID
)

U
se

r

Se
le

ct
 "C

on
se

nt
 F

or
m

"
fro

m
 n

av
ig

at
io

n
m

en
u

Js
on

 F
ile

R
ES

T

G
ET

 /
C

on
se

nt
Fo

rm
(s

tu
dy

N
am

e)

w
w

w

ge
tS

el
ec

te
dS

tu
dy

D
et

ai
ls

(s
tu

dy
ID

)

re
tu

rn
 L

is
t<

St
ud

yC
on

se
nt

Fo
rm

>
re

tu
rn

 2
00

 a
nd

 L
is

t<
St

ud
yC

on
se

nt
Fo

rm
>

re
tu

rn
 S

tu
dy

SQ
L

re
tu

rn
 2

00
 a

nd
 S

tu
dy

G
ET

 /
ge

tC
on

se
nt

Fi
el

ds
(k

ey
,s

tu
dy

ID
)

ge
tC

on
se

nt
Fi

el
ds

(s
tu

dy
ID

)

Ja
va

Sc
rip

t

sh
ow

 C
on

se
nt

Fo
rm

 d
at

a

F
ig

u
re

.1
0:

R
es

ea
rc

h
er

U
I

C
on

se
n
tF

or
m

ge
t

180

Lo
gi

n
Vi

ew

PO
ST

 /
ed

itC
on

se
nt

Fi
el

ds
(k

ey
,s

tu
dy

ID
,

C
on

se
nt

Fo
rm

)

Js
on

 F
ile

R
ES

T

PO
ST

 /
C

on
se

nt
Fo

rm
(s

tu
dy

N
am

e,
 C

on
se

nt
Fo

rm
)

w
w

w

to
gg

le
C

on
se

nt
(s

tu
dy

ID
,a

re
C

on
se

nt
Fo

rm
sE

na
bl

ed
)

re
tu

rn
 tr

ue

SQ
L

re
tu

rn
 2

00

Ja
va

Sc
rip

t

su
cc

es
s

m
es

sa
ge

U
se

r

ch
an

ge
()

ch
an

ge
 c

he
ck

bo
x

va
lu

e
to

 tr
ue

Se
le

ct
 "S

av
e"

 b
ut

to
n

ne
xt

 to
 "R

eq
ue

st
us

er
's

 n
am

e
an

d
si

gn
at

ur
e"

ch
ec

k
"R

eq
ue

st
 u

se
r's

 n
am

e
an

d
si

gn
at

ur
e"

F
ig

u
re

.1
1:

R
es

ea
rc

h
er

U
I

C
on

se
n
tF

or
m

p
os

t
su

cc
es

s
1

181

Lo
gi

n
Vi

ew

PO
ST

 /
ed

itC
on

se
nt

Fi
el

ds
(k

ey
,s

tu
dy

ID
,

C
on

se
nt

Fo
rm

)
to

gg
le

C
on

se
nt

(s
tu

dy
ID

,a
re

C
on

se
nt

Fo
rm

sE
na

bl
ed

)Js
on

 F
ile

re
tu

rn
 tr

ue

R
ES

T
SQ

L

re
tu

rn
 2

00

Ja
va

Sc
rip

t

su
cc

es
s

m
es

sa
ge

U
se

r

on
C

lic
k(

)

C
ha

ng
e

fo
nt

 c
ol

or
,

hi
de

 p
re

vi
ou

s
co

ns
en

t
fie

ld
 d

at
a

an
d

sh
ow

ne
w

 d
at

a
Se

le
ct

 "S
av

e"
 b

ut
to

n
on

 th
e

bo
tto

m
rig

ht
 c

or
ne

r

Se
le

ct
 "F

ol
lo

w
 U

p"

PO
ST

 /
C

on
se

nt
Fo

rm
(s

tu
dy

N
am

e,
 C

on
se

nt
Fo

rm
)

w
w

w

F
ig

u
re

.1
2:

R
es

ea
rc

h
er

U
I

C
on

se
n
tF

or
m

p
os

t
su

cc
es

s
2

182

Lo
gi

n
Vi

ew
Js

on
 F

ile
R

ES
T

SQ
L

U
se

r
Ja

va
Sc

rip
t

G
ET

 /
C

on
ta

ct
()

sh
ow

 C
on

ta
ct

 d
at

a

Se
le

ct
 "C

on
ta

ct
" f

ro
m

na
vi

ga
tio

n
m

en
u

w
w

w

F
ig

u
re

.1
3:

R
es

ea
rc

h
er

U
I

C
on

ta
ct

183

Lo
gi

n
Vi

ew

G
ET

 /
ge

tS
el

ec
te

dS
tu

dy
D

et
ai

ls
(k

ey
,s

tu
dy

ID
)

U
se

r

Se
le

ct
 "C

ou
po

ns
" f

ro
m

na
vi

ga
tio

n
m

en
u

Js
on

 F
ile

R
ES

T

G
ET

 /
C

ou
po

ns
(s

tu
dy

ID
)

w
w

w

ge
tS

el
ec

te
dS

tu
dy

D
et

ai
ls

(s
tu

dy
ID

)

re
tu

rn
 L

is
t<

C
ou

po
n>

re
tu

rn
 2

00
 a

nd
 L

is
t<

C
ou

po
n>

re
tu

rn
 S

tu
dy

SQ
L

re
tu

rn
 2

00
 a

nd
 S

tu
dy

G
ET

 /
ge

tR
eg

is
te

re
dO

rU
nr

eg
is

te
re

dC
ou

po
ns

(k
ey

, s
tu

dy
ID

, t
ru

e)
ge

tR
eg

is
te

re
dO

rU
nr

eg
is

te
re

dC
ou

po
ns

 (s
tu

dy
ID

, t
ru

e)

Ja
va

Sc
rip

t

cr
ea

te
 5

 L
is

t<
C

ou
po

n>
an

d
ad

d
co

up
on

s
to

 th
e

lis
ts

 b
as

ed
 o

n
th

e
st

at
e

re
tu

rn
 L

is
t<

C
ou

po
n>

re
tu

rn
 2

00
 a

nd
 L

is
t<

C
ou

po
n>

G
ET

 /
ge

tR
eg

is
te

re
dO

rU
nr

eg
is

te
re

dC
ou

po
ns

(k
ey

, s
tu

dy
ID

, f
al

se
)

ge
tR

eg
is

te
re

dO
rU

nr
eg

is
te

re
dC

ou
po

ns
 (s

tu
dy

ID
, f

al
se

)

sh
ow

 C
ou

po
ns

 d
at

a

F
ig

u
re

.1
4:

R
es

ea
rc

h
er

U
I

C
ou

p
on

ge
t

184

Lo
gi

n
Vi

ew
U

se
r

Se
le

ct
 "G

en
er

at
e"

 b
ut

to
n

Js
on

 F
ile

G
ET

 /
pr

in
tC

ou
po

ns
(k

ey
, s

tu
dy

ID
,

nu
m

be
rO

fC
ou

po
ns

)

R
ES

T

er
ro

r m
es

sa
ge

PO
ST

 /
G

en
er

at
eC

ou
po

ns
(s

tu
dy

ID
,

nu
m

be
rO

fC
ou

po
ns

)

w
w

w

ad
dC

ou
po

ns
(c

ou
po

ns
Li

st
, s

tu
dy

ID
)

re
tu

rn
 fa

ls
e

SQ
L

re
tu

rn
 5

00

Ja
va

Sc
rip

t

Ty
pe

 n
um

be
r o

f c
ou

po
ns

 to
 g

en
er

at
e

ge
ne

ra
te

 c
ou

po
ns

F
ig

u
re

.1
5:

R
es

ea
rc

h
er

U
I

C
ou

p
on

p
os

t
fa

il
u
re

185

Lo
gi

n
Vi

ew

G
ET

 /
pr

in
tC

ou
po

ns
(k

ey
, s

tu
dy

ID
,

nu
m

be
rO

fC
ou

po
ns

)

U
se

r

Se
le

ct
 "G

en
er

at
e"

 b
ut

to
n

Js
on

 F
ile

R
ES

T

su
cc

es
s

m
es

sa
ge

PO
ST

 /
G

en
er

at
eC

ou
po

ns
(s

tu
dy

ID
,

nu
m

be
rO

fC
ou

po
ns

)

w
w

w

ad
dC

ou
po

ns
(c

ou
po

ns
Li

st
, s

tu
dy

ID
)

re
tu

rn
 tr

ue

SQ
L

re
tu

rn
 2

00

Ja
va

Sc
rip

t

Ty
pe

 n
um

be
r o

f c
ou

po
ns

 to
 g

en
er

at
e

ge
ne

ra
te

 c
ou

po
ns

F
ig

u
re

.1
6:

R
es

ea
rc

h
er

U
I

C
ou

p
on

p
os

t
su

cc
es

s

186

Lo
gi

n
Vi

ew
w

w
w

ch
an

ge
C

ou
po

nD
es

cr
ip

tio
n(

co
up

on
D

es
c,

 s
tu

dy
ID

)

re
tu

rn
 fa

ls
e

Js
on

 F
ile

SQ
L

re
tu

rn
 5

00

G
ET

 /
ch

an
ge

C
ou

po
nD

es
cr

ip
tio

n(
ke

y,
 s

tu
dy

ID
,

co
up

on
D

es
c)

Ja
va

Sc
rip

t

Ty
pe

 c
ou

po
n

de
sc

rip
tio

n

R
ES

T
U

se
r

Se
le

ct
 "U

pd
at

e"
 b

ut
to

n

er
ro

r m
es

sa
ge

PO
ST

 /
Ed

itC
ou

po
nD

es
c(

st
ud

yI
D

,
co

up
on

D
es

c)

F
ig

u
re

.1
7:

R
es

ea
rc

h
er

U
I

C
ou

p
on

s
E

d
it

C
ou

p
on

fa
il
u
re

187

Lo
gi

n
Vi

ew
Js

on
 F

ile

G
ET

 /
ch

an
ge

C
ou

po
nD

es
cr

ip
tio

n(
ke

y,
 s

tu
dy

ID
,

co
up

on
D

es
c)

R
ES

T

su
cc

es
s

m
es

sa
ge

PO
ST

 /
Ed

itC
ou

po
nD

es
c(

st
ud

yI
D

,
co

up
on

D
es

c)

w
w

w

ch
an

ge
C

ou
po

nD
es

cr
ip

tio
n(

co
up

on
D

es
c,

 s
tu

dy
ID

)

re
tu

rn
 tr

ue

SQ
L

re
tu

rn
 2

00

Ja
va

Sc
rip

t

Ty
pe

 c
ou

po
n

de
sc

rip
tio

n

U
se

r

Se
le

ct
 "U

pd
at

e"
 b

ut
to

n

F
ig

u
re

.1
8:

R
es

ea
rc

h
er

U
I

C
ou

p
on

s
E

d
it

C
ou

p
on

su
cc

es
s

188

Lo
gi

n
Vi

ew
w

w
w

re
tu

rn
 fa

ls
e

Js
on

 F
ile

SQ
L

re
tu

rn
 5

00

Ja
va

Sc
rip

t
R

ES
T

on
C

lic
k(

)

sh
ow

 d
ia

lo
g

Se
le

ct
 "O

K"
 b

ut
to

n

U
se

r

on
C

lic
k(

)

PO
ST

 /
re

vo
ke

C
ou

po
n(

ke
y,

 c
ou

po
n)

PO
ST

 /
re

vo
ke

C
ou

po
n(

co
up

on
)

Se
le

ct
 "R

ev
ok

e"
 ic

on

er
ro

r m
es

sa
ge

PO
ST

 /
R

ev
ok

eC
ou

po
n(

co
up

on
)

F
ig

u
re

.1
9:

R
es

ea
rc

h
er

U
I

C
ou

p
on

s
R

ev
ok

e
fa

il
u
re

189

Lo
gi

n
Vi

ew

re
tu

rn
 tr

ue

Js
on

 F
ile

SQ
L

w
w

w

re
tu

rn
 2

00

Ja
va

Sc
rip

t
R

ES
T

on
C

lic
k(

)

sh
ow

 d
ia

lo
g

Se
le

ct
 "O

K"
 b

ut
to

n

U
se

r

on
C

lic
k(

)

PO
ST

 /
re

vo
ke

C
ou

po
n(

ke
y,

 c
ou

po
n)

PO
ST

 /
re

vo
ke

C
ou

po
n(

co
up

on
)

Se
le

ct
 "R

ev
ok

e"
 ic

on

su
cc

es
s

m
es

sa
ge

PO
ST

 /
R

ev
ok

eC
ou

po
n(

co
up

on
)

F
ig

u
re

.2
0:

R
es

ea
rc

h
er

U
I

C
ou

p
on

s
R

ev
ok

e
su

cc
es

s

190

Lo
gi

n
Vi

ew
Js

on
 F

ile
R

ES
T

er
ro

r m
es

sa
ge

PO
ST

 /
W

ith
dr

aw
C

ou
po

n(
co

up
on

)

w
w

w

re
tu

rn
 fa

ls
e

SQ
L

re
tu

rn
 5

00

Ja
va

Sc
rip

t

on
C

lic
k(

)

sh
ow

 d
ia

lo
g

Se
le

ct
 "O

K"
 b

ut
to

n

U
se

r

on
C

lic
k(

)

PO
ST

 /
w

ith
dr

aw
C

ou
po

n(
ke

y,
 c

ou
po

n)

PO
ST

 /
w

ith
dr

aw
C

ou
po

n(
co

up
on

)

Se
le

ct
 "W

ith
dr

aw
" i

co
n

F
ig

u
re

.2
1:

R
es

ea
rc

h
er

U
I

C
ou

p
on

s
W

it
h
d
ra

w
fa

il
u
re

191

Lo
gi

n
Vi

ew
U

se
r

Se
le

ct
 "W

ith
dr

aw
" i

co
n

Js
on

 F
ile

R
ES

T

su
cc

es
s

m
es

sa
ge

PO
ST

 /
W

ith
dr

aw
C

ou
po

n(
co

up
on

)

w
w

w

re
tu

rn
 tr

ue

SQ
L

re
tu

rn
 2

00

Ja
va

Sc
rip

t

on
C

lic
k(

)

sh
ow

 d
ia

lo
g

Se
le

ct
 "O

K"
 b

ut
to

n

on
C

lic
k(

)

PO
ST

 /
w

ith
dr

aw
C

ou
po

n(
ke

y,
 c

ou
po

n)

PO
ST

 /
w

ith
dr

aw
C

ou
po

n(
co

up
on

)

F
ig

u
re

.2
2:

R
es

ea
rc

h
er

U
I

C
ou

p
on

s
W

it
h
d
ra

w
su

cc
es

s

192

Lo
gi

n
Vi

ew

G
ET

 /
ge

tS
el

ec
te

dS
tu

dy
D

et
ai

ls
(k

ey
,s

tu
dy

ID
)

Js
on

 F
ile

R
ES

T

G
ET

 /
Pa

rti
ci

pa
nt

s(
st

ud
yI

D
)

w
w

w

ge
tS

el
ec

te
dS

tu
dy

D
et

ai
ls

(s
tu

dy
ID

)

re
tu

rn
 L

is
t<

C
ou

po
n>

re
tu

rn
 2

00
 a

nd
 L

is
t<

C
ou

po
n>

re
tu

rn
 S

tu
dy

SQ
L

re
tu

rn
 2

00
 a

nd
 S

tu
dy

G
ET

 /
ge

tR
eg

is
te

re
dO

rU
nr

eg
is

te
re

dC
ou

po
ns

(k
ey

, s
tu

dy
ID

, t
ru

e)
ge

tR
eg

is
te

re
dO

rU
nr

eg
is

te
re

dC
ou

po
ns

 (s
tu

dy
ID

, t
ru

e)

U
se

r
Ja

va
Sc

rip
t

cr
ea

te
 L

is
t<

C
ou

po
n>

an
d

ad
d

co
up

on
s

to
 th

e
lis

t w
ith

 a
 s

ta
te

 d
iff

er
en

t
th

an
 c

on
se

nt
 p

en
di

ng

re
tu

rn
 L

is
t<

Se
ns

or
Ty

pe
s>

re
tu

rn
 2

00
 a

nd
 L

is
t<

Se
ns

or
Ty

pe
s>

G
ET

 /
ge

tS
en

so
rs

 (k
ey

, s
tu

dy
ID

)
ge

tS
en

so
rs

 (s
tu

dy
ID

)

sh
ow

 P
ar

tic
ip

an
ts

 d
at

a

Se
le

ct
 "P

ar
tic

ip
an

ts
" f

ro
m

na
vi

ga
tio

n
m

en
u

F
ig

u
re

.2
3:

R
es

ea
rc

h
er

U
I

C
ou

p
on

s
ge

t

193

Lo
gi

n
Vi

ew

G
ET

 /
ge

tU
se

rF
aq

(k
ey

)
ge

tU
se

rF
aq

Q
ue

st
io

ns
()

Js
on

 F
ile

re
tu

rn
 L

is
t<

FA
Q

>

R
ES

T
SQ

L

re
tu

rn
 2

00
 a

nd
 L

is
t<

FA
Q

>

U
se

r
Ja

va
Sc

rip
t

G
ET

 /
Fa

q(
st

ud
yI

D
)

sh
ow

 F
AQ

 d
at

a

Se
le

ct
 "F

AQ
" f

ro
m

na
vi

ga
tio

n
m

en
u

w
w

w

F
ig

u
re

.2
4:

R
es

ea
rc

h
er

U
I

F
aq

194

Lo
gi

n
Vi

ew
SQ

L
Js

on
 F

ile
U

se
r

Ja
va

Sc
rip

t

G
ET

 /
H

el
p(

)

sh
ow

 H
el

p
da

ta

Se
le

ct
 "H

el
p"

 fr
om

na
vi

ga
tio

n
m

en
u

w
w

w
R

ES
T

F
ig

u
re

.2
5:

R
es

ea
rc

h
er

U
I

H
el

p

195

Lo
gi

n
Vi

ew

G
ET

 /
is

R
es

ea
rc

he
rE

xi
st

(u
se

rn
am

e,
pa

ss
w

or
d)

ge
tS

es
si

on
Ke

y(
us

er
na

m
e,

 p
as

sw
or

d)

Ja
va

Sc
rip

t
w

w
w

R
ES

T
SQ

L
U

se
r

re
tu

rn
 n

ul
l

ha
sh

Pa
ss

w
or

d(
pa

ss
w

or
d)

re
tu

rn
 5

00

re
di

re
ct

 to
ac

tio
n

Lo
gi

n

er
ro

r m
es

sa
ge

Ty
pe

 u
se

rn
am

e
an

d
pa

ss
w

or
d

Se
le

ct
 "L

og
in

" b
ut

to
n

PO
ST

 /
Lo

gi
n(

us
er

na
m

e,
 p

as
sw

or
d)

F
ig

u
re

.2
6:

R
es

ea
rc

h
er

U
I

L
og

in
fa

il
u
re

196

Lo
gi

n
Vi

ew
U

se
r Ty

pe
 u

se
rn

am
e

an
d

pa
ss

w
or

d

Se
le

ct
 "

Lo
gi

n"
 b

ut
to

n
PO

ST
 /

Lo
gi

n(
us

er
na

m
e,

 p
as

sw
or

d)

G
ET

 /
is

R
es

ea
rc

he
rE

xi
st

(u
se

rn
am

e,
pa

ss
w

or
d)

ge
tS

es
si

on
K

ey
(u

se
rn

am
e,

 p
as

sw
or

d)

Ja
va

Sc
rip

t
w

w
w

R
ES

T
SQ

L

re
tu

rn
 s

es
si

on
K

ey

ha
sh

Pa
ss

w
or

d(
pa

ss
w

or
d)

re
tu

rn
 2

00
 a

nd
 s

es
si

on
K

ey

re
di

re
ct

 to
 a

ct
io

n
R

es
ea

rc
he

rH
om

e

F
ig

u
re

.2
7:

R
es

ea
rc

h
er

U
I

L
og

in
su

cc
es

s

197

Lo
gi

n
Vi

ew

re
tu

rn
 L

is
t<

Se
ns

or
D

at
a>

Js
on

 F
ile

SQ
L

w
w

w

re
tu

rn
 2

00
 a

nd
 L

is
t<

Se
ns

or
D

at
a>

Ja
va

Sc
rip

t
R

ES
T

on
C

lic
k(

)

hi
gh

lig
ht

 c
ou

po
n

Se
le

ct
 "G

PS
" f

ro
m

 d
ro

pd
ow

n

U
se

r

on
C

lic
k(

)

G
ET

 /
ge

tS
en

so
rD

at
a(

ke
y,

 s
tu

dy
ID

, c
ou

po
n,

se
ns

or
N

am
e)

PO
ST

 /
ge

tS
en

so
rs

D
at

a(
st

ud
yI

D
,c

ou
po

n,
se

ns
or

N
am

e)

Se
le

ct
 c

ou
po

n

sh
ow

 S
en

so
rD

at
a

PO
ST

 /
Pa

rti
ci

pa
nt

s(
st

ud
yI

D
, c

ou
po

n,
se

ns
or

N
am

e,
 s

en
so

r_
st

at
s)

F
ig

u
re

.2
8:

R
es

ea
rc

h
er

U
I

P
ar

ti
ci

p
an

ts
P

os
t

se
n
so

r
su

cc
es

s

198

Lo
gi

n
Vi

ew
Ja

va
Sc

rip
t

R
ES

T

on
C

lic
k(

)

hi
gh

lig
ht

 c
ou

po
n

re
tu

rn
 n

ul
l

Se
le

ct
 "S

ur
ve

y"
 fr

om
 d

ro
pd

ow
n

U
se

r

on
C

lic
k(

)

G
ET

 /
ge

tA
ns

w
er

s(
ke

y,
 s

tu
dy

ID
, c

ou
po

n)

PO
ST

 /
ge

tA
ns

w
er

s(
st

ud
yI

D
,c

ou
po

n)

Se
le

ct
 c

ou
po

n

er
ro

r m
es

sa
ge

PO
ST

 /
Pa

rti
ci

pa
nt

s(
st

ud
yI

D
, c

ou
po

n,
an

sw
er

_s
ta

ts
)

SQ
L

Js
on

 F
ile

w
w

w

re
tu

rn
 5

00

F
ig

u
re

.2
9:

R
es

ea
rc

h
er

U
I

P
ar

ti
ci

p
an

ts
p

os
t

fa
il
u
re

199

Lo
gi

n
Vi

ew
SQ

L
w

w
w

re
tu

rn
 5

00

Ja
va

Sc
rip

t
R

ES
T

on
C

lic
k(

)

hi
gh

lig
ht

 c
ou

po
n

re
tu

rn
 fa

ls
e

Se
le

ct
 "G

PS
" f

ro
m

 d
ro

pd
ow

n

U
se

r

on
C

lic
k(

)

G
ET

 /
ge

tS
en

so
rD

at
a(

ke
y,

 s
tu

dy
ID

, c
ou

po
n,

se
ns

or
N

am
e)

PO
ST

 /
ge

tS
en

so
rs

D
at

a(
st

ud
yI

D
,c

ou
po

n,
se

ns
or

N
am

e)

Se
le

ct
 c

ou
po

n

er
ro

r m
es

sa
ge

PO
ST

 /
Pa

rti
ci

pa
nt

s(
st

ud
yI

D
, c

ou
po

n,
se

ns
or

N
am

e,
 s

en
so

r_
st

at
s)

Js
on

 F
ile

F
ig

u
re

.3
0:

R
es

ea
rc

h
er

U
I

P
ar

ti
ci

p
an

ts
p

os
t

se
n
so

r
fa

il
u
re

200

Lo
gi

n
Vi

ew
SQ

L
w

w
w

re
tu

rn
 2

00
 a

nd
 M

ap
<S

tri
ng

,L
is

t<
An

sw
er

>>

Ja
va

Sc
rip

t
R

ES
T

on
C

lic
k(

)

hi
gh

lig
ht

 c
ou

po
n

re
tu

rn
 M

ap
<S

tri
ng

,L
is

t<
An

sw
er

>>

Se
le

ct
 "S

ur
ve

y"
 fr

om
 d

ro
pd

ow
n

U
se

r

on
C

lic
k(

)

G
ET

 /
ge

tA
ns

w
er

s(
ke

y,
 s

tu
dy

ID
, c

ou
po

n)

PO
ST

 /
ge

tA
ns

w
er

s(
st

ud
yI

D
,c

ou
po

n)

Se
le

ct
 c

ou
po

n

sh
ow

 S
ur

ve
y

da
ta

PO
ST

 /
Pa

rti
ci

pa
nt

s(
st

ud
yI

D
, c

ou
po

n,
an

sw
er

_s
ta

ts
)

Js
on

 F
ile

F
ig

u
re

.3
1:

R
es

ea
rc

h
er

U
I

P
ar

ti
ci

p
an

ts
p

os
t

su
rv

ey
su

cc
es

s

201

Lo
gi

n
Vi

ew

G
ET

 /
ge

tR
es

ea
rc

he
rD

et
ai

ls
(k

ey
)

re
tu

rn
 R

es
ea

rc
he

r

R
ES

T
SQ

L

re
tu

rn
 2

00
 a

nd
 R

es
ea

rc
he

r

U
se

r
Ja

va
Sc

rip
t

ge
tR

es
ea

rc
he

rD
et

ai
ls

(k
ey

)

G
ET

 /
Pr

of
ile

()

Js
on

 F
ile

sh
ow

 P
ro

fil
e

da
ta

Se
le

ct
 "P

ro
fil

e"
 fr

om
na

vi
ga

tio
n

m
en

u

w
w

w

F
ig

u
re

.3
2:

R
es

ea
rc

h
er

U
I

P
ro

fi
le

ge
t

202

Lo
gi

n
Vi

ew

PO
ST

 /
up

da
te

R
es

ea
rc

he
r(k

ey
, p

as
sw

or
d,

R
es

ea
rc

he
r)

U
se

r
Ja

va
Sc

rip
t

up
da

te
R

es
ea

rc
he

r(k
ey

, p
as

sw
or

d,
 R

es
ea

rc
he

r)

PO
ST

 /
Pr

of
ile

()

Js
on

 F
ile

er
ro

r m
es

sa
ge

re
tu

rn
 fa

ls
e

En
te

r p
as

sw
or

d
in

 "C
ur

re
nt

 P
as

sw
or

d"

w
w

w
R

ES
T

Se
le

ct
 "E

m
ai

l"
ch

ec
kb

ox

SQ
L

re
tu

rn
 5

00

F
ig

u
re

.3
3:

R
es

ea
rc

h
er

U
I

P
ro

fi
le

p
os

t
fa

il
u
re

203

Lo
gi

n
Vi

ew

PO
ST

 /
up

da
te

R
es

ea
rc

he
r(k

ey
, p

as
sw

or
d,

R
es

ea
rc

he
r)

SQ
L

re
tu

rn
 2

00

U
se

r
Ja

va
Sc

rip
t

up
da

te
R

es
ea

rc
he

r(k
ey

, p
as

sw
or

d,
 R

es
ea

rc
he

r)

PO
ST

 /
Pr

of
ile

()

Js
on

 F
ile

su
cc

es
s

m
es

sa
ge

re
tu

rn
 tr

ue

En
te

r p
as

sw
or

d
in

 "C
ur

re
nt

 P
as

sw
or

d"

w
w

w
R

ES
T

Se
le

ct
 "E

m
ai

l"
ch

ec
kb

ox

F
ig

u
re

.3
4:

R
es

ea
rc

h
er

U
I

P
ro

fi
le

p
os

t
su

cc
es

s

204

Lo
gi

n
Vi

ew

Se
le

ct
 "A

dd
 R

ul
e"

 b
ut

to
n

w
w

w
Ja

va
Sc

rip
t

sh
ow

 Q
ue

st
io

ns
 d

at
a

PO
ST

 /
Ad

dR
ul

e(
ke

y,
 s

tu
dy

ID
, q

ue
st

io
nI

D
, R

ul
e)

U
se

r

on
C

lic
k(

)

Fi
ll

ou
t "

Ad
d

R
ul

e"
 fo

rm

Sh
ow

 "S
el

ec
t R

ul
e"

 p
op

up

Se
le

ct
 "C

re
at

e"
 b

ut
to

n

SQ
L

G
ET

 /
ge

tF
ilt

er
sT

yp
eS

pe
c(

ke
y,

 s
tu

dy
ID

,
ru

le
Ty

pe
)

R
ES

T

re
tu

rn
 2

00
 a

nd
 F

ilt
er

Ty
pe

D
et

ai
ls

Se
le

ct
 ru

le
 fr

om
 d

ro
pd

ow
n

Js
on

 F
ile

on
C

lic
k(

)

Sh
ow

 "A
dd

 R
ul

e"
 p

op
up

Se
le

ct
 "N

ex
t"

bu
tto

n

C
he

ck
 fi

lte
r

Fi
ll

ou
t "

Ad
d

Fi
lte

rs
" f

or
m

Sh
ow

 fi
el

ds
 fo

r f
ilt

er
 s

el
ec

te
d

ch
an

ge
()

re
tu

rn
 F

ilt
er

Ty
pe

D
et

ai
ls

Se
le

ct
 "A

dd
" b

ut
to

n
fo

rm
 p

op
up

PO
ST

 /
up

da
te

R
ul

e(
ke

y,
 s

tu
dy

ID
,

qu
es

tio
nI

D
, R

ul
e)

up
da

te
R

ul
e(

st
ud

yI
D

, q
ue

st
io

nI
D

, R
ul

e)

er
ro

r m
es

sa
ge

PO
ST

 /
Ad

dF
ilt

er
s(

ke
y,

 s
tu

dy
ID

, q
ue

st
io

nI
D

, R
ul

e)

ge
tF

ilt
er

sS
pe

c(
ru

le
Ty

pe
)

re
tu

rn
 5

00

re
tu

rn
 fa

ls
e

F
ig

u
re

.3
5:

R
es

ea
rc

h
er

U
I

Q
u
es

ti
on

s
A

d
d
F

il
te

rs
p

os
t

fa
il
u
re

205

U
se

r

G
ET

 /
ge

tF
ilt

er
sT

yp
eS

pe
c(

ke
y,

 s
tu

dy
ID

,
ru

le
Ty

pe
)

Js
on

 F
ile

ge
tF

ilt
er

sS
pe

c(
ru

le
Ty

pe
)

Se
le

ct
 "A

dd
 R

ul
e"

 b
ut

to
n

w
w

w
Ja

va
Sc

rip
t

sh
ow

 Q
ue

st
io

ns
 d

at
a

PO
ST

 /
Ad

dR
ul

e(
ke

y,
 s

tu
dy

ID
, q

ue
st

io
nI

D
, R

ul
e)

Lo
gi

n
Vi

ew

on
C

lic
k(

)

Fi
ll

ou
t "

Ad
d

R
ul

e"
 fo

rm

Sh
ow

 "S
el

ec
t R

ul
e"

 p
op

up

Se
le

ct
 "C

re
at

e"
 b

ut
to

n

SQ
L

R
ES

T

re
tu

rn
 2

00
 a

nd
 F

ilt
er

Ty
pe

D
et

ai
ls

Se
le

ct
 ru

le
 fr

om
 d

ro
pd

ow
n

on
C

lic
k(

)

Sh
ow

 "A
dd

 R
ul

e"
 p

op
up

Se
le

ct
 "N

ex
t"

bu
tto

n

C
he

ck
 fi

lte
r

Fi
ll

ou
t "

Ad
d

Fi
lte

rs
" f

or
m

Sh
ow

 fi
el

ds
 fo

r f
ilt

er
 s

el
ec

te
d

ch
an

ge
()

re
tu

rn
 F

ilt
er

Ty
pe

D
et

ai
ls

Se
le

ct
 "A

dd
" b

ut
to

n
fo

rm
 p

op
up

PO
ST

 /
up

da
te

R
ul

e(
ke

y,
 s

tu
dy

ID
,

qu
es

tio
nI

D
, R

ul
e)

up
da

te
R

ul
e(

st
ud

yI
D

, q
ue

st
io

nI
D

, R
ul

e)

su
cc

es
s

m
es

sa
ge

PO
ST

 /
Ad

dF
ilt

er
s(

ke
y,

 s
tu

dy
ID

, q
ue

st
io

nI
D

, R
ul

e)

re
tu

rn
 2

00

re
tu

rn
 tr

ue

F
ig

u
re

.3
6:

R
es

ea
rc

h
er

U
I

Q
u
es

ti
on

s
A

d
d
F

il
te

rs
p

os
t

su
cc

es
s

206

Lo
gi

n
Vi

ew
U

se
r

PO
ST

 /
ad

dR
ul

e(
ke

y,
 s

tu
dy

ID
,

qu
es

tio
nI

D
, R

ul
e)

Js
on

 F
ile

PO
ST

 /
ad

dR
ul

e(
st

ud
yI

D
, q

ue
st

io
nI

D
, R

ul
e)

Se
le

ct
 "A

dd
 R

ul
e"

 b
ut

to
n

w
w

w
Ja

va
Sc

rip
t

er
ro

r m
es

sa
ge

PO
ST

 /
Ad

dR
ul

e(
ke

y,
 s

tu
dy

ID
, q

ue
st

io
nI

D
, R

ul
e)

on
C

lic
k(

)

Fi
ll

ou
t "

Ad
d

R
ul

e"
 fo

rm

Sh
ow

 "S
el

ec
t R

ul
e"

 p
op

up

Se
le

ct
 "C

re
at

e"
 b

ut
to

n

SQ
L

R
ES

T

re
tu

rn
 5

00

Se
le

ct
 ru

le
 fr

om
 d

ro
pd

ow
n

on
C

lic
k(

)

Sh
ow

 "A
dd

 R
ul

e"
 p

op
up

Se
le

ct
 "N

ex
t"

bu
tto

n

re
tu

rn
 fa

ls
e

F
ig

u
re

.3
7:

R
es

ea
rc

h
er

U
I

Q
u
es

ti
on

s
A

d
d
R

u
le

p
os

t
fa

il
u
re

207

Lo
gi

n
Vi

ew

re
tu

rn
 tr

ue

U
se

r

PO
ST

 /
ad

dR
ul

e(
ke

y,
 s

tu
dy

ID
,

qu
es

tio
nI

D
, R

ul
e)

Js
on

 F
ile

PO
ST

 /
ad

dR
ul

e(
st

ud
yI

D
, q

ue
st

io
nI

D
, R

ul
e)

Se
le

ct
 "A

dd
 R

ul
e"

 b
ut

to
n

w
w

w
Ja

va
Sc

rip
t

su
cc

es
s

m
es

sa
ge

PO
ST

 /
Ad

dR
ul

e(
ke

y,
 s

tu
dy

ID
, q

ue
st

io
nI

D
, R

ul
e)

on
C

lic
k(

)

Fi
ll

ou
t "

Ad
d

R
ul

e"
 fo

rm

Sh
ow

 "S
el

ec
t R

ul
e"

 p
op

up

Se
le

ct
 "C

re
at

e"
 b

ut
to

n

SQ
L

R
ES

T

re
tu

rn
 2

00

Se
le

ct
 ru

le
 fr

om
 d

ro
pd

ow
n

on
C

lic
k(

)

Sh
ow

 "A
dd

 R
ul

e"
 p

op
up

Se
le

ct
 "N

ex
t"

bu
tto

n

F
ig

u
re

.3
8:

R
es

ea
rc

h
er

U
I

Q
u
es

ti
on

s
A

d
d
R

u
le

p
os

t
su

cc
es

s

208

Lo
gi

n
Vi

ew
Js

on
 F

ile

re
tu

rn
 fa

ls
e

w
w

w
R

ES
T

SQ
L

re
tu

rn
 5

00

Ja
va

Sc
rip

t
U

se
r

PO
ST

 /
co

py
Q

ue
st

io
n(

ke
y,

 s
tu

dy
ID

,
qu

es
tio

nI
D

)

PO
ST

 /
co

py
Q

ue
st

io
n(

st
ud

yI
D

, q
ue

st
io

nI
D

)

Se
le

ct
 "C

op
y"

 b
ut

to
n

er
ro

r m
es

sa
ge

G
ET

 /
C

op
yQ

ue
st

io
n(

st
ud

yI
D

, q
ue

st
io

nI
D

)

F
ig

u
re

.3
9:

R
es

ea
rc

h
er

U
I

Q
u
es

ti
on

s
C

op
y

fa
il
u
re

209

Lo
gi

n
Vi

ew

re
tu

rn
 tr

ue

w
w

w
R

ES
T

SQ
L

re
tu

rn
 2

00

Ja
va

Sc
rip

t
U

se
r

PO
ST

 /
co

py
Q

ue
st

io
n(

ke
y,

 s
tu

dy
ID

,
qu

es
tio

nI
D

)

Js
on

 F
ile

PO
ST

 /
co

py
Q

ue
st

io
n(

st
ud

yI
D

, q
ue

st
io

nI
D

)

Se
le

ct
 "C

op
y"

 b
ut

to
n

su
cc

es
s

m
es

sa
ge

G
ET

 /
C

op
yQ

ue
st

io
n(

st
ud

yI
D

, q
ue

st
io

nI
D

)

F
ig

u
re

.4
0:

R
es

ea
rc

h
er

U
I

Q
u
es

ti
on

s
C

op
y

su
cc

es
s

210

Lo
gi

n
Vi

ew
Js

on
 F

ile

re
tu

rn
 fa

ls
e

w
w

w
R

ES
T

SQ
L

re
tu

rn
 5

00

Ja
va

Sc
rip

t
U

se
r

PO
ST

 /
re

m
ov

eC
ho

ic
e(

ke
y,

 s
tu

dy
ID

, C
ho

ic
e)

PO
ST

 /
re

m
ov

eC
ho

ic
e(

st
ud

yI
D

, C
ho

ic
e)

Se
le

ct
 "D

el
et

e"
 ic

on
 n

ex
t t

o
ch

oi
ce

er
ro

r m
es

sa
ge

PO
ST

 /
D

el
et

eQ
ue

st
io

no
rC

ho
ic

e(
st

ud
yI

D
,

C
ho

ic
e)

F
ig

u
re

.4
1:

R
es

ea
rc

h
er

U
I

Q
u
es

ti
on

s
D

el
et

eC
h
oi

ce
fa

il
u
re

211

Lo
gi

n
Vi

ew

re
tu

rn
 fa

ls
e

w
w

w
R

ES
T

SQ
L

re
tu

rn
 5

00

Ja
va

Sc
rip

t
U

se
r

PO
ST

 /
de

le
te

R
ul

e(
ke

y,
 s

tu
dy

ID
, q

ue
st

io
nI

D
,

ru
le

ID
)

Js
on

 F
ile

PO
ST

 /
de

le
te

R
ul

e(
st

ud
yI

D
, q

ue
st

io
nI

D
, r

ul
eI

D
)

Se
le

ct
 "D

el
et

e"
 ic

on
 n

ex
t t

o
th

e
ru

le
de

sc
rip

tio
n

er
ro

r m
es

sa
ge

G
ET

 /
D

el
et

eR
ul

e(
st

ud
yI

D
, q

ue
st

io
nI

D
, r

ul
eI

D
)

F
ig

u
re

.4
2:

R
es

ea
rc

h
er

U
I

Q
u
es

ti
on

s
D

el
et

eR
u
le

fa
il
u
re

212

Lo
gi

n
Vi

ew
Js

on
 F

ile

re
tu

rn
 tr

ue

w
w

w
R

ES
T

SQ
L

re
tu

rn
 2

00

Ja
va

Sc
rip

t
U

se
r

PO
ST

 /
de

le
te

R
ul

e(
ke

y,
 s

tu
dy

ID
, q

ue
st

io
nI

D
,

ru
le

ID
)

PO
ST

 /
de

le
te

R
ul

e(
st

ud
yI

D
, q

ue
st

io
nI

D
, r

ul
eI

D
)

Se
le

ct
 "D

el
et

e"
 ic

on
 n

ex
t t

o
th

e
ru

le
de

sc
rip

tio
n

su
cc

es
s

m
es

sa
ge

G
ET

 /
D

el
et

eR
ul

e(
st

ud
yI

D
, q

ue
st

io
nI

D
, r

ul
eI

D
)

F
ig

u
re

.4
3:

R
es

ea
rc

h
er

U
I

Q
u
es

ti
on

s
D

el
et

eR
u
le

su
cc

es
s

213

Lo
gi

n
Vi

ew
w

w
w

Js
on

 F
ile

re
tu

rn
 fa

ls
e

R
ES

T
SQ

L

re
tu

rn
 5

00

Ja
va

Sc
rip

t
U

se
r

PO
ST

 /
re

m
ov

eQ
ue

st
io

n(
ke

y,
 s

tu
dy

ID
,

qu
es

tio
nI

D
)

PO
ST

 /
re

m
ov

eQ
ue

st
io

n(
st

ud
yI

D
, q

ue
st

io
nI

D
)

Se
le

ct
 "D

el
et

e"
 b

ut
to

n

er
ro

r m
es

sa
ge

PO
ST

 /
D

el
et

eQ
ue

st
io

n(
st

ud
yI

D
, q

ue
st

io
nI

D
)

F
ig

u
re

.4
4:

R
es

ea
rc

h
er

U
I

Q
u
es

ti
on

s
D

el
et

e
fa

il
u
re

214

Lo
gi

n
Vi

ew
w

w
w

Js
on

 F
ile

re
tu

rn
 fa

ls
e

R
ES

T
SQ

L

re
tu

rn
 5

00

Ja
va

Sc
rip

t
U

se
r

PO
ST

 /
re

m
ov

eQ
ue

st
io

n(
ke

y,
 s

tu
dy

ID
,

qu
es

tio
nI

D
)

PO
ST

 /
re

m
ov

eQ
ue

st
io

n(
st

ud
yI

D
, q

ue
st

io
nI

D
)

Se
le

ct
 "D

el
et

e"
 b

ut
to

n

er
ro

r m
es

sa
ge

PO
ST

 /
D

el
et

eQ
ue

st
io

n(
st

ud
yI

D
, q

ue
st

io
nI

D
)

F
ig

u
re

.4
5:

R
es

ea
rc

h
er

U
I

Q
u
es

ti
on

s
D

is
ab

le
Q

u
es

ti
on

fa
il
u
re

215

Lo
gi

n
Vi

ew
w

w
w

Js
on

 F
ile

re
tu

rn
 tr

ue

R
ES

T
SQ

L

re
tu

rn
 2

00

Ja
va

Sc
rip

t
U

se
r

PO
ST

 /
di

sa
bl

eQ
ue

st
io

n(
ke

y,
 s

tu
dy

ID
,

qu
es

tio
nI

D
)

PO
ST

 /
di

sa
bl

eQ
ue

st
io

n(
st

ud
yI

D
, q

ue
st

io
nI

D
)

Se
le

ct
 "D

is
ab

le
" b

ut
to

n

su
cc

es
s

m
es

sa
ge

G
ET

 /
D

is
ab

le
Q

ue
st

io
n(

st
ud

yI
D

, q
ue

st
io

nI
D

)

F
ig

u
re

.4
6:

R
es

ea
rc

h
er

U
I

Q
u
es

ti
on

s
D

is
ab

le
Q

u
es

ti
on

su
cc

es
s

216

Lo
gi

n
Vi

ew
SQ

L

re
tu

rn
 5

00

Ja
va

Sc
rip

t

re
tu

rn
 fa

ls
e

U
se

r

PO
ST

 /
di

sa
bl

eR
ul

e(
ke

y,
 s

tu
dy

ID
, q

ue
st

io
nI

D
,

ru
le

ID
)

Js
on

 F
ile

PO
ST

 /
di

sa
bl

eR
ul

e(
st

ud
yI

D
, q

ue
st

io
nI

D
, r

ul
eI

D
)

Se
le

ct
 "D

is
ab

le
" i

co
n

ne
xt

 to
 th

e
ru

le
 d

es
cr

ip
tio

n

w
w

w

er
ro

r m
es

sa
ge

G
ET

 /
D

is
ab

le
R

ul
e(

st
ud

yI
D

, q
ue

st
io

nI
D

, r
ul

eI
D

)

R
ES

T

F
ig

u
re

.4
7:

R
es

ea
rc

h
er

U
I

Q
u
es

ti
on

s
D

is
ab

le
R

u
le

fa
il
u
re

217

Lo
gi

n
Vi

ew

re
tu

rn
 tr

ue

w
w

w
R

ES
T

SQ
L

re
tu

rn
 2

00

Ja
va

Sc
rip

t
U

se
r

PO
ST

 /
di

sa
bl

eR
ul

e(
ke

y,
 s

tu
dy

ID
, q

ue
st

io
nI

D
,

ru
le

ID
)

Js
on

 F
ile

PO
ST

 /
di

sa
bl

eR
ul

e(
st

ud
yI

D
, q

ue
st

io
nI

D
, r

ul
eI

D
)

Se
le

ct
 "D

is
ab

le
" b

ut
to

n
ne

xt
 to

 ru
le

de
sc

rip
tio

n

su
cc

es
s

m
es

sa
ge

G
ET

 /
D

is
ab

le
R

ul
e(

st
ud

yI
D

, q
ue

st
io

nI
D

, r
ul

eI
D

)

F
ig

u
re

.4
8:

R
es

ea
rc

h
er

U
I

Q
u
es

ti
on

s
D

is
ab

le
R

u
le

su
cc

es
s

218

Lo
gi

n
Vi

ew
Ja

va
Sc

rip
t

re
tu

rn
 fa

ls
e

U
se

r

PO
ST

 /
pu

bl
is

hQ
ue

st
io

ns
An

dR
ul

es
(k

ey
,

st
ud

yI
D

)

Js
on

 F
ile

PO
ST

 /
pu

bl
is

hQ
ue

st
io

ns
An

dR
ul

es
(s

tu
dy

ID
)

Se
le

ct
 "P

ub
lis

h"
 b

ut
to

n

w
w

w

er
ro

r m
es

sa
ge

PO
ST

 /
Pu

bl
is

h(
st

ud
yI

D
)

R
ES

T
SQ

L

re
tu

rn
 5

00

F
ig

u
re

.4
9:

R
es

ea
rc

h
er

U
I

Q
u
es

ti
on

s
P

u
b
li
sh

fa
il
u
re

219

Lo
gi

n
Vi

ew

re
tu

rn
 tr

ue

U
se

r

PO
ST

 /
pu

bl
is

hQ
ue

st
io

ns
An

dR
ul

es
(k

ey
,

st
ud

yI
D

)

Js
on

 F
ile

PO
ST

 /
pu

bl
is

hQ
ue

st
io

ns
An

dR
ul

es
(s

tu
dy

ID
)

Se
le

ct
 "P

ub
lis

h"
 b

ut
to

n

w
w

w
Ja

va
Sc

rip
t

su
cc

es
s

m
es

sa
ge

PO
ST

 /
Pu

bl
is

h(
st

ud
yI

D
)

R
ES

T
SQ

L

re
tu

rn
 2

00

F
ig

u
re

.5
0:

R
es

ea
rc

h
er

U
I

Q
u
es

ti
on

s
P

u
b
li
sh

su
cc

es
s

220

Lo
gi

n
Vi

ew

re
tu

rn
 fa

ls
e

U
se

r

PO
ST

 /
ad

dC
ho

ic
e(

ke
y,

 s
tu

dy
ID

,
C

ho
ic

e)

Js
on

 F
ile

PO
ST

 /
ad

dC
ho

ic
e(

st
ud

yI
D

, C
ho

ic
e)

Se
le

ct
 "A

dd
 R

es
po

ns
e"

 b
ut

to
n

w
w

w
Ja

va
Sc

rip
t

er
ro

r m
es

sa
ge

PO
ST

 /
Q

ue
st

io
ns

(s
tu

dy
ID

, C
ho

ic
e)

on
C

lic
k(

)

Fi
ll

ou
t "

Ad
d

R
es

po
ns

e"
 fo

rm
Sh

ow
 "A

dd
 R

es
po

ns
e"

 p
op

up

Se
le

ct
 "C

re
at

e"
 b

ut
to

n

SQ
L

R
ES

T

re
tu

rn
 5

00

F
ig

u
re

.5
1:

R
es

ea
rc

h
er

U
I

Q
u
es

ti
on

s
ad

d
C

h
oi

ce
p

os
t

fa
il
u
re

221

Lo
gi

n
Vi

ew
Ja

va
Sc

rip
t

re
tu

rn
 tr

ue

U
se

r

PO
ST

 /
ad

dC
ho

ic
e(

ke
y,

 s
tu

dy
ID

,
C

ho
ic

e)

Js
on

 F
ile

PO
ST

 /
ad

dC
ho

ic
e(

st
ud

yI
D

, C
ho

ic
e)

Se
le

ct
 "A

dd
 R

es
po

ns
e"

 b
ut

to
n

w
w

w

su
cc

es
s

m
es

sa
ge

PO
ST

 /
Q

ue
st

io
ns

(s
tu

dy
ID

, C
ho

ic
e)

on
C

lic
k(

)

Fi
ll

ou
t "

Ad
d

R
es

po
ns

e"
 fo

rm
Sh

ow
 "A

dd
 R

es
po

ns
e"

 p
op

up

Se
le

ct
 "C

re
at

e"
 b

ut
to

n

SQ
L

R
ES

T

re
tu

rn
 2

00

F
ig

u
re

.5
2:

R
es

ea
rc

h
er

U
I

Q
u
es

ti
on

s
ad

d
C

h
oi

ce
p

os
t

su
cc

es
s

222

Bibliography

[1] James F Kurose and Keith W Ross. Computer networking: a top-down ap-

proach. Addison Wesley, 2013.

[2] Carter T Butts. Revisiting the foundations of network analysis. science,

325(5939):414–416, 2009.

[3] H Russell Bernard, Peter Killworth, David Kronenfeld, and Lee Sailer. The

problem of informant accuracy: The validity of retrospective data. Annual

review of anthropology, 13(1):495–517, 1984.

[4] Mihaly Csikszentmihalyi and Reed Larson. Validity and reliability of the

experience-sampling method. In Flow and the foundations of positive psychol-

ogy, pages 35–54. Springer, 2014.

[5] Matthew Wolf-Meyer. Therapy, remedy, cure: disorder and the spatiotempo-

rality of medicine and everyday life. Medical anthropology, 33(2):144–159, 2014.

[6] Arthur A Stone, Christine A Bachrach, Jared B Jobe, Howard S Kurtzman,

and Virginia S Cain. The science of self-report: Implications for research and

practice. Psychology Press, 1999.

[7] Scott Carter, Jennifer Mankoff, Scott R Klemmer, and Tara Matthews. Exiting

the cleanroom: On ecological validity and ubiquitous computing. Human–

Computer Interaction, 23(1):47–99, 2008.

223

[8] Paul Copley. Marketing Communications Management. Routledge, 2007.

[9] Inez Myin-Germeys, Margreet Oorschot, Dina Collip, Johan Lataster, Philippe

Delespaul, and Jim Van Os. Experience sampling research in psychopathology:

opening the black box of daily life. Psychological medicine, 39(9):1533–1547,

2009.

[10] Jon A Krosnick. Survey research. Annual review of psychology, 50(1):537–567,

1999.

[11] Don A Dillman, Roberta L Sangster, John Tarnai, and Todd H Rockwood.

Understanding differences in people’s answers to telephone and mail surveys.

New Directions for Evaluation, 1996(70):45–61, 1996.

[12] Trends, charts, and maps.

[13] Tom AB Snijders, Gerhard G Van de Bunt, and Christian EG Steglich. Intro-

duction to stochastic actor-based models for network dynamics. Social networks,

32(1):44–60, 2010.

[14] René Veenstra, Jan Kornelis Dijkstra, Christian Steglich, and Maarten HW

Van Zalk. Network–behavior dynamics. Journal of Research on Adolescence,

23(3):399–412, 2013.

[15] Ajith Abraham, Aboul-Ella Hassanien, and Vaclav Snášel. Computational social

network analysis: Trends, tools and research advances. Springer Science &

Business Media, 2009.

[16] David J Hand. Statistical analysis of network data: Methods and models by

eric d. kolaczyk. International Statistical Review, 78(1):135–135, 2010.

224

[17] Ruth M Ripley, Tom AB Snijders, Zsófia Boda, András Vörös, and Paulina

Preciado. Manual for rsiena. university of oxford, department of statistics,

2015.

[18] Arthur A Stone and Saul Shiffman. Ecological momentary assessment (ema) in

behavorial medicine. Annals of Behavioral Medicine, 1994.

[19] Sunny Consolvo, Beverly Harrison, Ian Smith, Mike Y Chen, Katherine Everitt,

Jon Froehlich, and James A Landay. Conducting in situ evaluations for and with

ubiquitous computing technologies. International Journal of Human-Computer

Interaction, 22(1-2):103–118, 2007.

[20] Christie Campbell-Grossman, Diane Brage Hudson, Kathleen M Hanna, Byrav

Ramamurthy, and Vishnu Sivadasan. Ease of use and acceptability of a smart-

phone app for young, low-income mothers. Journal of Technology in Behavioral

Science, 3(1):5–11, 2018.

[21] Diane Brage Hudson, Christie Campbell-Grossman, Sara Brown, Kathleen M

Hanna, Byrav Ramamurthy, Bhargav Gorthi, and Vishnu Sivadasan. Enhanced

new mothers network cell phone application intervention: interdisciplinary team

development and lessons learned. Comprehensive child and adolescent nursing,

40(2):126–135, 2017.

[22] Saul Shiffman, Arthur A Stone, and Michael R Hufford. Ecological momentary

assessment. Annu. Rev. Clin. Psychol., 4:1–32, 2008.

[23] Niels Van Berkel, Denzil Ferreira, and Vassilis Kostakos. The experience sam-

pling method on mobile devices. ACM Computing Surveys (CSUR), 50(6):1–40,

2017.

225

[24] Brian M Bot, Christine Suver, Elias Chaibub Neto, Michael Kellen, Arno Klein,

Christopher Bare, Megan Doerr, Abhishek Pratap, John Wilbanks, E Ray

Dorsey, et al. The mpower study, parkinson disease mobile data collected using

researchkit. Scientific data, 3(1):1–9, 2016.

[25] Anna-Kaisa Pietiläinen, Earl Oliver, Jason LeBrun, George Varghese, and

Christophe Diot. Mobiclique: middleware for mobile social networking. In

Proceedings of the 2nd ACM workshop on Online social networks, pages 49–54,

2009.

[26] Rui Zhang, Yanchao Zhang, Jinyuan Sun, and Guanhua Yan. Fine-grained

private matching for proximity-based mobile social networking. In 2012 Pro-

ceedings IEEE INFOCOM, pages 1969–1977. IEEE, 2012.

[27] Adam C Champion, Zhimin Yang, Boying Zhang, Jiangpeng Dai, Dong Xuan,

and Du Li. E-smalltalker: A distributed mobile system for social networking

in physical proximity. IEEE Transactions on Parallel and Distributed Systems,

24(8):1535–1545, 2012.

[28] Jon Froehlich, Mike Y Chen, Sunny Consolvo, Beverly Harrison, and James A

Landay. Myexperience: a system for in situ tracing and capturing of user

feedback on mobile phones. In Proceedings of the 5th international conference

on Mobile systems, applications and services, pages 57–70, 2007.

[29] Kiran K Rachuri, Mirco Musolesi, Cecilia Mascolo, Peter J Rentfrow, Chris

Longworth, and Andrius Aucinas. Emotionsense: a mobile phones based adap-

tive platform for experimental social psychology research. In Proceedings of the

12th ACM international conference on Ubiquitous computing, pages 281–290,

2010.

226

[30] Dale S Bond, J Graham Thomas, Beth A Ryder, Sivamainthan Vithiananthan,

Dieter Pohl, and Rena R Wing. Ecological momentary assessment of the rela-

tionship between intention and physical activity behavior in bariatric surgery

patients. International journal of behavioral medicine, 20(1):82–87, 2013.

[31] Jorinde Eline Spook, Theo Paulussen, Gerjo Kok, and Pepijn Van Empelen.

Monitoring dietary intake and physical activity electronically: feasibility, usabil-

ity, and ecological validity of a mobile-based ecological momentary assessment

tool. Journal of medical Internet research, 15(9):e214, 2013.

[32] Ingrid Kramer, Claudia JP Simons, Jessica A Hartmann, Claudia Menne-

Lothmann, Wolfgang Viechtbauer, Frenk Peeters, Koen Schruers, Alex L van

Bemmel, Inez Myin-Germeys, Philippe Delespaul, et al. A therapeutic appli-

cation of the experience sampling method in the treatment of depression: a

randomized controlled trial. World Psychiatry, 13(1):68–77, 2014.

[33] Megan A Moreno, Lauren A Jelenchick, Rosalind Koff, Jens C Eickhoff, Natalie

Goniu, Angela Davis, Henry N Young, Elizabeth D Cox, and Dimitri A Chris-

takis. Associations between internet use and fitness among college students: an

experience sampling approach. Journal of Interaction Science, 1(1):4, 2013.

[34]

[35] Daniel Rough and Aaron Quigley. Jeeves-a visual programming environment

for mobile experience sampling. In 2015 IEEE Symposium on Visual Languages

and Human-Centric Computing (VL/HCC), pages 121–129. IEEE, 2015.

[36] Nikolaos Batalas, Marije aan het Rot, Vassilis Javed Khan, and Panos

Markopoulos. Using tempest: End-user programming of web-based ecological

227

momentary assessment protocols. Proceedings of the ACM on Human-Computer

Interaction, 2(EICS):1–24, 2018.

[37] Giuseppe Carbonara. Mobile ecological momentary intervention (memi) for

dietary behaviour change under transtheoretical model.

[38] Michael R Powell and Wilson J To. Redesigning the research design: Acceler-

ating the pace of research through technology innovation. In 2016 IEEE Inter-

national Conference on Serious Games and Applications for Health (SeGAH),

pages 1–5. IEEE, 2016.

[39] Denzil Ferreira, Vassilis Kostakos, and Anind K Dey. Aware: mobile context

instrumentation framework. Frontiers in ICT, 2:6, 2015.

[40] Apple Introduces ResearchKit. Giving medical researchers the tools to revolu-

tionize medical studies.

[41] Researchstack.

[42] Vikas O’Reilly-Shah and Sean Mackey. Survalytics: an open-source cloud-

integrated experience sampling, survey, and analytics and metadata collec-

tion module for android operating system apps. JMIR mHealth and uHealth,

4(2):e46, 2016.

[43] Stephen M Schueller, Mark Begale, Frank J Penedo, and David C Mohr. Pur-

ple: a modular system for developing and deploying behavioral intervention

technologies. Journal of medical Internet research, 16(7):e181, 2014.

[44] Mehmet Reha Civanlar and Barin Geoffry Haskell. Client-server architecture

using internet and public switched networks, November 30 1999. US Patent

5,995,606.

228

[45] Michael Kofler. What is mysql? In MySQL, pages 3–19. Springer, 2001.

[46] Marc Delisle. Mastering phpMyAdmin 3.4 for effective MySQL management.

Packt Publishing Ltd, 2012.

[47] Frederic P Miller, Agnes F Vandome, and John McBrewster. Apache Maven.

Alpha Press, 2010.

[48] Rod Johnson, Juergen Hoeller, Keith Donald, Colin Sampaleanu, Rob Harrop,

Thomas Risberg, Alef Arendsen, Darren Davison, Dmitriy Kopylenko, Mark

Pollack, et al. The spring framework–reference documentation. interface, 21:27,

2004.

[49] Ed Burnette. Eclipse IDE Pocket Guide: Using the Full-Featured IDE. ”

O’Reilly Media, Inc.”, 2005.

[50] Bruce Johnson. Professional visual studio 2012. John Wiley & Sons, 2012.

[51] Jon Galloway, Phil Haack, Brad Wilson, and K Scott Allen. Professional ASP.

NET MVC 4. John Wiley & Sons, 2012.

[52] Belen Cruz Zapata. Android studio application development. Packt Publishing

Ltd, 2013.

[53] Paul Bryan and Mark Nottingham. Javascript object notation (json) patch.

RFC 6902 (Proposed Standard), 2013.

[54] Charitha Kankanamge. Web services testing with soapUI. Packt Publishing

Ltd, 2012.

[55] Petar Tahchiev, Felipe Leme, Vincent Massol, and Gary Gregory. JUnit in

action. Manning Publications Co., 2010.

229

[56] A Ventayol. The 3 methods for testing your mobile app, 2016.

[57] John Ferguson Smart. Jenkins: The Definitive Guide: Continuous Integration

for the Masses. ” O’Reilly Media, Inc.”, 2011.

[58] Roy Fielding. Hypertext transfer protocol. HTTP/1.1, Internet Request for

Comments (RFC) 2068, 1997.

[59] David Mosberger and Tai Jin. httperfa tool for measuring web server per-

formance. ACM SIGMETRICS Performance Evaluation Review, 26(3):31–37,

1998.

[60] Aleksa Vukotic and James Goodwill. Apache Tomcat 7. Springer, 2011.

[61] Jason Brittain and Ian F Darwin. Tomcat: The Definitive Guide: The Definitive

Guide. ” O’Reilly Media, Inc.”, 2007.

[62] Jon Loeliger and Matthew McCullough. Version Control with Git: Powerful

tools and techniques for collaborative software development. ” O’Reilly Media,

Inc.”, 2012.

[63] Jinesh Varia, Sajee Mathew, et al. Overview of amazon web services. Amazon

Web Services, pages 1–22, 2014.

[64] Mohsen Guizani, Ammar Rayes, Bilal Khan, and Ala Al-Fuqaha. Network

modeling and simulation: a practical perspective. John Wiley & Sons, 2010.

[65] Javier Ortiz Laguna, Angel Garćıa Olaya, and Daniel Borrajo. A dynamic

sliding window approach for activity recognition. In International Conference

on User Modeling, Adaptation, and Personalization, pages 219–230. Springer,

2011.

230

[66] cogNiTioN.

[67] Rashmi Bajaj, Samantha Lalinda Ranaweera, and Dharma P Agrawal. Gps:

location-tracking technology. Computer, 35(4):92–94, 2002.

[68] Jennifer Bray and Charles F Sturman. Bluetooth 1.1: connect without cables.

pearson Education, 2001.

[69] Nirupama Bulusu, John Heidemann, and Deborah Estrin. Adaptive beacon

placement. In Proceedings 21st International Conference on Distributed Com-

puting Systems, pages 489–498. IEEE, 2001.

[70] Jennifer R Kwapisz, Gary M Weiss, and Samuel A Moore. Activity recogni-

tion using cell phone accelerometers. ACM SigKDD Explorations Newsletter,

12(2):74–82, 2011.

[71] Cameron McCarthy, Nikhilesh Pradhan, Calum Redpath, and Andy Adler.

Validation of the empatica e4 wristband. In 2016 IEEE EMBS International

Student Conference (ISC), pages 1–4. IEEE, 2016.

[72] Marko Gargenta. Learning android. ” O’Reilly Media, Inc.”, 2011.

[73] Tim Berners-Lee, Robert Cailliau, Ari Luotonen, Henrik Frystyk Nielsen, and

Arthur Secret. The world-wide web. Commun. ACM, 37(8):7682, August 1994.

[74] Tim Berners-Lee, Roy Fielding, and Henrik Frystyk. Hypertext transfer

protocol–http/1.0, 1996.

[75] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter, Paul

Leach, and Tim Berners-Lee. Hypertext transfer protocol–http/1.1, 1999.

231

[76] Avraham Leff and James T Rayfield. Web-application development using the

model/view/controller design pattern. In Proceedings fifth ieee international

enterprise distributed object computing conference, pages 118–127. IEEE, 2001.

[77] Mark Masse. REST API Design Rulebook: Designing Consistent RESTful Web

Service Interfaces. ” O’Reilly Media, Inc.”, 2011.

[78] John Heidemann, Katia Obraczka, and Joe Touch. Modeling the performance of

http over several transport protocols. IEEE/ACM transactions on networking,

5(5):616–630, 1997.

[79] Henrik Frystyk Nielsen, James Gettys, Anselm Baird-Smith, Eric

Prud’hommeaux, H̊akon Wium Lie, and Chris Lilley. Network perfor-

mance effects of http/1.1, css1, and png. In ACM SIGCOMM Computer

Communication Review, volume 27, pages 155–166. ACM, 1997.

[80] Hongtao Wang, Yuehui Jin, Wendong Wang, Jian Ma, and Dongmei Zhang. The

performance comparison of prsctp, tcp and udp for mpeg-4 multimedia traffic

in mobile network. In International Conference on Communication Technology

Proceedings, 2003. ICCT 2003., volume 1, pages 403–406. IEEE, 2003.

[81] Daniel Abadi. Consistency tradeoffs in modern distributed database system

design: Cap is only part of the story. Computer, 45(2):37–42, 2012.

[82] Douglas Lea. Concurrent programming in Java: design principles and patterns.

Addison-Wesley Professional, 2000.

[83] Marek Olszewski, Jason Ansel, and Saman Amarasinghe. Kendo: efficient de-

terministic multithreading in software. ACM Sigplan Notices, 44(3):97–108,

2009.

232

[84] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating system

concepts essentials. John Wiley & Sons, Inc., 2014.

[85] Sahil Batra. Improving quality using testing strategies. Journal of Global Re-

search in Computer Science, 2(6):113–117, 2011.

[86] Cem Kaner, Jack Falk, and Hung Quoc Nguyen. Testing Computer Software

Second Edition. Dreamtech Press, 2000.

[87] Boris Beizer. Black-box testing: techniques for functional testing of software

and systems. John Wiley & Sons, Inc., 1995.

[88] Edward H Bersoff and Alan M Davis. Impacts of life cycle models on software

configuration management. Communications of the ACM, 34(8):104–119, 1991.

[89] Abhijit A Sawant, Pranit H Bari, and PM Chawan. Software testing techniques

and strategies. International Journal of Engineering Research and Applications

(IJERA), 2(3):980–986, 2012.

[90] Mohd Ehmer Khan. Different forms of software testing techniques for finding

errors. International Journal of Computer Science Issues (IJCSI), 7(3):24, 2010.

[91] Ajay Jangra, Gurbaj Singh, Jasbir Singh, and Rajesh Verma. Exploring testing

strategies. International Journal of Information Technology and Knowledge

Management, 4:297–299, 2011.

[92] Henry H Liu. Software performance and scalability: a quantitative approach,

volume 7. John Wiley & Sons, 2011.

[93] Ding Yuan, Soyeon Park, Peng Huang, Yang Liu, Michael M Lee, Xiaoming

Tang, Yuanyuan Zhou, and Stefan Savage. Be conservative: enhancing failure

233

diagnosis with proactive logging. In Presented as part of the 10th {USENIX}

Symposium on Operating Systems Design and Implementation ({OSDI} 12),

pages 293–306, 2012.

[94] Colin Eberhardt. The art of logging, Mar 2014.

[95] Jeff Atwood. Coding horror.

[96] Jieming Zhu, Pinjia He, Qiang Fu, Hongyu Zhang, Michael R Lyu, and Dongmei

Zhang. Learning to log: Helping developers make informed logging decisions.

In Proceedings of the 37th International Conference on Software Engineering-

Volume 1, pages 415–425. IEEE Press, 2015.

[97] Gary McGraw. Software security. IEEE Security & Privacy, 2(2):80–83, 2004.

[98] Steven M Bellovin and William R Cheswick. Network firewalls. IEEE commu-

nications magazine, 32(9):50–57, 1994.

[99] Carole Cadwalladr and Emma Graham-Harrison. Revealed: 50 million facebook

profiles harvested for cambridge analytica in major data breach. The guardian,

17:22, 2018.

[100] Tim Greene. Biggest data breaches of 2015. Network World, 2015:1–6, 2015.

[101] Sam Thielman. Yahoo hack: 1bn accounts compromised by biggest data breach

in history. The Guardian, 15:2016, 2016.

[102] Gary McGraw. Software security: building security in, volume 1. Addison-

Wesley Professional, 2006.

[103] Randall K Nichols, Panos Lekkas, and Panos C Lekkas. Wireless security.

McGraw-Hill Professional Publishing, 2001.

234

[104] Hana R Esmaeel. Apply android studio (sdk) tools. International Journal, 5(5),

2015.

[105] Zhao Yong-Xia and Zhen Ge. Md5 research. In 2010 second international

conference on multimedia and information technology, volume 2, pages 271–

273. IEEE, 2010.

	Open Dynamic Interaction Network: a cell-phone based platform for responsive EMA
	

	tmp.1587399851.pdf.lG0Ae

