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The goal of this thesis is to quantify the link between the design features (geometry), 

in-process signatures, and build quality of parts made using the laser powder bed fusion 

(LPBF) additive manufacturing (AM) process. This knowledge is the foundational basis 

for proposing design rules in AM, as well as for detecting the impending build failures 

using in-process sensor data.  

As a step towards this goal, the objectives of this work are two-fold:  

1) Quantify the effect of the geometry and orientation on the build quality of thin-wall 

features. To explain further, the geometry related factor is the ratio of the length of a 

thin wall (𝑙) to its thickness (𝑡) in the X-Y plane along which powder is deposited 

(raked or rolled), termed as the aspect ratio (length-to-thickness ratio, 𝑙/𝑡), and the 

angular orientation (θ) of the part which refers to the inclination of the part in the X-Y 

plane to the re-coater of the LPBF machine. 

2) Monitor the thin-wall build quality by analyzing the images of the part obtained from 

an in-process optical camera using a convolutional neural network.  

To realize these objectives, we designed a test part with a set of thin-wall features 

(fins) with varying aspect ratios from Titanium alloy (Ti-6Al-4V) material – the aspect 



 

 

 

ratio 𝑙/𝑡 of the thin-walls ranges from 36 to 183 (11 mm long [constant], and 0.3 mm to 

0.06 mm in thickness). These thin-wall test artifacts were built under three angular 

orientations, 0°, 60°, and 90°. Further, the parts were examined offline using X-ray 

computed tomography (XCT). Through the offline XCT data, the build quality of the thin-

wall features in terms of its geometric integrity was quantified as a function of the aspect 

ratio and orientation angle, which helped codify a set of design guidelines for building thin-

wall structures with LPBF. The resulting geometric design rules are summarized as 

follows. 

1) The orientation angle (θ) of 90° should be avoided while building thin-wall structures. 

2) The aspect ratio (𝑙/𝑡) of a thin wall should not exceed 73 (11 mm / 0.15 mm). 

3) The height of a thin wall should not be more than nine times its thickness. 

To monitor the quality of the thin-wall, in-process images of the top surface of the bed 

were acquired during the build process. The online optical images were correlated with the 

offline quantitative measurements of the thin walls through a deep learning convolutional 

neural network (CNN). The statistical correlation (Pearson coefficient, 𝜌) between the 

offline XCT-measured thin-wall quality, and the CNN predicted measurement ranged from 

80% to 98%. Consequently, the impending poor quality of a thin wall was captured from 

in-process data. 

The data for this work was acquired at Pennsylvania State University by Dr. Edward 

Reutzel and his research group in the Applied Research Laboratory.  
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CHAPTER 1 ‒ INTRODUCTION 

1.1 Background and Motivation 

This thesis aims to understand the link between part design features (geometry), in-

process sensor signatures, and build quality of parts made using the laser powder bed fusion 

(LPBF) additive manufacturing (AM) process, specifically focusing on thin-wall features. 

In LPBF (Figure 1-1), a thin layer of powder is raked or rolled across a build plate, and 

subsequently, this layer of powder is selectively melted using energy supplied by a laser 

beam [2]. The laser beam is typically focused on the powder bed through an F-theta lens, 

which maintains a fixed focal length irrespective of the angle of incidence of the laser beam 

[3]. For most materials processed in LPBF, the power of the laser beam is set in the range 

of 200 W to 500 W, and the velocity with which it travels ranges from 500 mm/s to 1000 

mm/s. Following the selective melting of a layer of powder, the build plate is moved 

downwards by a distance usually in the range of 50 µm to 100 µm, and another layer is 

deposited [4]. Thus, the part builds layer-by-layer. In LPBF, the part design, process 

parameters, thermal phenomena, and resulting part microstructure and mechanical 

properties are intertwined [5].  

 

Figure 1-1: Representation of the laser-based powder fusion process [1].  
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Thin-wall structures are extensively used in industrial applications, wherein there is 

a need to reduce the weight of a component without losing its structural integrity. Figure 

1-2 shows a titanium spinal implant consisting of thin-wall structures. The manufacture of 

such intricate geometry is difficult with subtractive and formative (conventional) 

manufacturing processes, and it is made possible through LPBF [6-9]. However, the 

process anomalies in LPBF, and the inherent geometry of thin-wall structures make these 

structures highly susceptible to failures, such as, collapse, super-elevation, porosity, poor 

structural quality etc. [10-12]. In this thesis, an attempt is made to analyze these defects in 

thin walls, in order to propose quantitative geometric design rules, and an in-situ 

monitoring system of thin-wall quality. 

 

Figure 1-2:  X-Ray computed tomography (XCT) scan of a titanium spinal implant 

consisting of thin-wall structures. 

In the context of this work, representative build defects observed in a test artifact 

with thin-wall features are shown in Figure 1-3.  The geometric integrity of the thin wall 

can be affected by the restricted heat flux due to its smaller cross-sectional area. The 

restricted heat flux leads to sharp thermal gradients, which in turn may cause cracking and 

warping (distortion) defects [13, 14]. Another common reason for the frequent failure of 
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thin-walls is the interaction of thermal and mechanical factors; the geometric distortion of 

the thin-wall due to the thermal gradients causes the part to protrude out of the powder bed, 

a phenomenon called super-elevation, which leads to contact of the part with the re-coater 

[15, 16]. The contact of the part with the re-coater is liable to damage the re-coater (re-

coater jam or crash), and the thin-wall features may fail as they are ill-disposed to resist 

the axial force exerted by the re-coater. Given these reasons, there is a compelling need to 

provide design rules for hard-to-build features, such as thin walls and overhang geometries, 

so that extensive process optimization is precluded. Within the same context, it is critical 

to detect imminent build failures and then implement opportunistic corrective actions in a 

hybrid AM machine [17, 18].  

1.2 Objectives 

In the context of the aforementioned scientific rationale concerning design rules and 

process monitoring in AM, the objectives of this work are as follows: 

1) Formulate geometric design rules for the manufacture of high aspect ratio (length-to-

thickness ratio, 𝑙/𝑡) thin-wall parts made using the LPBF process. These design rules 

take the following form: given a build orientation and height of a thin-wall feature, 

what should be its thickness. Alternatively stated, given an aspect ratio of a thin wall, 

what should be the maximum allowable build height, and corresponding build 

orientation. 

2) Detect the onset of build failures in thin-wall parts using data from in-process sensors 

built into the machine. 
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To achieve the first objective, we designed a test artifact having thin-wall features with 

an aspect ratio (length-thickness ratio, 𝑙/𝑡) ranging from 36 to 183; these corresponded to 

11 mm length and 0.3 mm thickness to 11 mm length and 0.06 mm thickness. The details 

of the test artifact are discussed in Chapter 3; a schematic of the thin wall shown in Figure 

3-1. Three such test artifacts were built, each differing in its angular orientation (𝜃) to the 

re-coater. Subsequently, we examined each of the thin-wall builds using X-ray computed 

tomography (XCT) (e.g. Figure 1-3(b)). The build quality of the thin wall was quantified 

using features extracted from layer-wise XCT slices with the help of image processing 

algorithms. These features were tracked across layers and were thereafter used as derived 

features of thin walls. Geometric design rules for thin-wall features were proposed based 

on these empirical quantitative measures. 

To address the second objective, we developed an in-process optical imaging setup that 

took a picture of the surface of the powder bed after each layer was deposited. These images 

were further analyzed using a convolutional neural network (CNN), which is a multi-

layered neural network which is used to detect low and high level pattern/features, such as 

line, curve, hand, text, etc., from an image. The feature detection process in CNN is based 

on the learning process that used in a feedforward artificial neural network (ANN). These 

networks have three primary layers, namely, input layer, hidden layer and output layer. The 

input layer forwards the data to the hidden layers that has non-linear activation functions. 

The output layer computes the error between the predicted outcome and the observed 

outcome. This error is sent back into the network to make parametric changes in the 

network in order to reduce the error. This technique of training a network is called 

backpropagation. Once the network is trained, i.e., lowest possible error is achieved for a 
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given configuration of the network, it is tested to calculate the accuracy. In this work, we 

used the in-process powder bed images to train the CNN to predict the build quality features 

extracted from XCT images from the first objective. As a consequence, the part quality, in 

terms of its geometric integrity could be tracked using the in-process data to pre-empt 

failure. 

The novel contribution of this work is that it makes the following key links in the laser 

powder bed fusion (LPBF) process chain in the specific context of thin-wall geometry 

parts. 

Part geometry + orientation → Process signatures → Part quality  

First, it provides new knowledge linking the part geometry and orientation to the build 

quality in laser powder bed fusion (LPBF). Specifically, it demarcates the effect of 

orientation angle and aspect ratio (length-to-thickness ratio) on manufacturability of thin-

wall parts using LPBF. This knowledge is valuable for practitioners, as it provides them 

with a design guideline for building thin-wall parts that are extensively used in engineering 

components, such as heat exchangers and lattice-like shapes. 

Second, this work links in-process signatures with the part quality. To explain further, the 

process signatures in this work relate to the in-situ optical images of the powder bed. A 

novel deep learning convolutional network is used to identify patterns of impending 

failures in the part from images of the powder bed.  

This work thus has two key outcomes:  

 (1) design guidelines for producing thin-wall parts in terms of the maximum height 

achievable given an aspect ratio, and recommendations for orientations of a thin wall 

orientation; and 

 (2) in-situ monitoring of thin-wall quality using layer-wise optical imaging.  
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Figure 1-3: (a) A schematic of various defects that may occur in LPBF of a thin-wall 

structure. (b) XCT scan of a thin-wall part at 60° orientation angle. The thin walls with 

aspect ratio of 55 (𝑙/𝑡, 11 mm/ 0.15 mm) and 36 (11 mm/ 0.1 mm) are shown (c1) and 

(c2) respectively. These images depict the different defects evident in thin-wall 

structures. 

1.3 Organization of the thesis 

The organization of this thesis is as follows: A brief summary of the relevant literature 

from the design for AM is provided in Chapter 2. This is followed by the description of the 

experimental procedure in Chapter 3, including a summary of the thin-wall test artifact, 

and a procedure for data acquisition.  Chapter 4 describes the methodology used for 

quantification of thin-wall build quality from XCT scan data, and the detailed analysis of 

the in-process powder bed images using a deep learning convolutional neural network 

(CNN). The results from this work are discussed in Chapter 5, in which the geometric 

design rules derived from the analysis of XCT scan slices are put forth, and the fidelity of 

the CNN in predicting the quality of the thin wall is quantified. Finally, the conclusions of 

this work, and further research directions are summarized in Chapter 6.   
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CHAPTER 2 ‒ LITERATURE REVIEW 

2.1 Design for additive manufacturing (DFAM) 

The powder bed fusion (PBF) additive manufacturing (AM) processes, despite their 

revolutionary potential, intrinsically have shortcomings, such as material constraints, 

surface finish, part accuracy and repeatability, which have impeded their use in a 

production environment [19]. Furthermore, parts that are additively manufactured have 

particular distinguishing characteristics, such as intricate geometries, custom part design, 

low production volume, and  complex material compositions [20]. One of the main 

bottlenecks in AM is the absence of design guidelines that can be used as rules-of-thumb 

by practitioners to avoid poor quality parts [21]. It is therefore essential to propose design 

guidelines for AM. According to Rosen, the design for additive manufacturing (DFAM) is 

defined as, “Maximizing  product performance through the synthesis of shapes, sizes, 

hierarchical structures, and material compositions, subject to the capabilities of AM 

technologies [20].”  

The conventional design for manufacturing (DFM) rules do not apply for AM parts as 

they are manufactured layer-by-layer, and are bottom-up processes, unlike the 

conventional methods, such as machining, which are top- down. Hence, the unique layer-

by-layer nature of AM mandates a different approach to part design compared to traditional 

manufacturing processes. Ponche et al. have introduced a general methodology for DFAM 

in which they primarily focus on the orientation of the part, its geometry which is 

established using topological optimization, and the process conditions, such as the laser 

parameters, that need to be employed for the part [22]. According to Ponche et al., part 

orientation refers to positioning the functional surfaces of a part being designed in such a 



8 

 

 

way that it leads to the best surface finish and accuracy. The part geometry can be 

potentially designed with the help of topological optimization, i.e., for a given design 

space, set of loads, set of constraints and boundary, the material layout is optimized to 

achieve high performance of the system [23]. Similarly, Kranz et al. have recommended 

design guidelines for laser additive manufacturing (LAM) by analyzing the effect of part 

orientation, size,  and position on the dimensional accuracy and surface finish of 

lightweight parts, such as, thin-walls, bars etc. [24]. The effect on surface quality of a part 

was studied by manufacturing parts with upward-and-downward-facing surfaces which 

were built at various orientation angles with reference to the build platform. Kranz et al. 

observed that parts with the smallest orientation angle had the lowest (best) surface 

roughness.  

To study the effect of part position in the powder bed on part accuracy, they designed 

test parts, which included a rectangular structure, a cylindrical structure, and a thin-wall 

structure (Figure 2-1 (a)), and placed this test part in five different locations on the powder 

bed namely, middle, upper right, upper left, lower right, and lower left (Figure 2-1 (b)). It 

was concluded that the part position had no discernable effect on the accuracy of the test 

geometry for this particular experimental setup. Further, to study the effect of orientation 

and size on part accuracy, parts with three different cross-sections, such as, elliptical, 

cylindrical, and rectangular were chosen, and the aspect ratios (length-to-thickness ratio, 

𝑙/𝑡) of each part were varied. For thin-wall structures (rectangular cross-section), it was 

observed that to obtain good quality, the thickness should be greater than 0.4 mm, the 

orientation angle with reference to the build platform should be 90°, and the orientation 

angle with reference to the re-coater device should be 45° (Figure 2-3). The study on bore 
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holes (cylindrical cross-section) showed that the highest part accuracy is obtained when it 

was built orthogonal to the build platform.  

A detailed study on design rules was done by Daniel Thomas in his doctoral dissertation 

[25]. The author studied fundamental geometries, such as overhang features, which could 

then be used for designing complex geometries. Through study of a simple cuboidal 

structure, the author observed that orientation of the part (with reference to the build 

surface) played an important role in the surface quality of the part. It was observed that 

support structures were required to avert build failure when surfaces were built under an 

orientation angle of 45° to the build platform. The optimum orientation angle to the build 

surface was seen to be 90° to the build platform (Figure 2-3). The author suggested that the 

up-facing surfaces had poor surface quality under the 45° orientation angle, but the surface 

quality abruptly improved at 0° to the build platform. To build geometries such as 

overhangs without support structures, the author suggested using features which eschew 

the need for support structures; namely, chamfers, and convex and concave radii. Thomas 

reported that chamfers can be built with an orientation angle (with reference to the build 

plate) of more than 45° (Figure 2-3). The convex and concave radii need to be built at 

varying bottom and top tangent angles of the radii to avoid support structures, and these 

angles can be found in a tabulated format in the author’s dissertation [25]. Further, to 

prevent surface merging while building parts such as, channels, slots, keyways etc., it is 

necessary to have a minimum gap between features which was found to be 0.3 mm in this 

research (Figure 2-3). Additionally, the author’s research conforms with the results 

obtained by Kranz et al., that the minimum thickness of the thin wall should be 0.4 mm 

[24, 25]. Subsequently, holes were also studied by Kranz et al. It was recommended that 
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the minimum hole size should be 0.7 mm diameter when they are built parallel (self-

supporting) to the build plate, and 1 mm when built perpendicular to the build plate. 

In a study by Adam et al., design rules for two types of structures, namely, element 

transitions, and aggregated structures, were formulated [26]. According to the authors, the 

combination of basic elements (e.g., cuboidal structures) are called element transitions 

(e.g., joints), and the arrangement of these element transitions along with multiple basic 

elements are called aggregated structures (e.g., overhangs). To study the effect of varying 

thickness and orientation on element transitions, a Y- shaped test specimen was designed 

(Figure 2-2). This test specimen was built in three different orientations as seen in Figure 

2-2, and the thickness (𝑇1, 𝑇2, 𝑇3) of the three elements was varied between 2 mm and 5 

mm, namely, 𝑇1 = 2 mm, 𝑇2 = 5 mm, 𝑇3 = 5 mm. the authors found no evidence that the 

aforementioned orientations affected the part quality. However, they concluded that 

thicknesses should be chosen so that the cross-sectional areas of element transitions in the 

build plane would remain the same size, or would reduce to avoid surface defects, i.e., the 

cross-sectional areas of elements 𝑇1 and 𝑇2 should remain same or be less in comparison 

to that of 𝑇3( Figure 2-3). Further, they studied the effect of edge morphology on part 

quality. It was concluded that to avoid defects, parts with sharp outer edges should be 

avoided, and similarly, parts should not have sharp inner edges for ease of removal of 

support structures and residual powder. Finally, structures which have non-bonded 

elements, should have the following minimum gap (𝐻𝐺) values for different AM process: 

laser sintering (SLS) (𝐻𝐺 ≥ 0.6 mm), laser melting (LPBF) (𝐻𝐺 ≥ 0.2 mm), and fused 

filament fabrication (FDM) (𝐻𝐺 ≥ 0.4 mm) (Figure 2-3).  In the case of aggregated 

structures (namely, overhang), to ensure a robust manufacturability the authors suggested 
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that the length of the overhang should be as follows: laser melting (𝐿𝑂𝐻 ≤ 2.0 mm), and 

fused filament fabrication (𝐿𝑂𝐻 ≤ 1.8 mm) .  

A summary of the design rules established from the above discussed works is given in 

Figure 2-3. Most of these pioneering works formulated design rules for AM based on 

measurements made with rudimentary instruments, such as calipers, which do not capture 

the geometric and build integrity in a more detailed manner. In this thesis, we introduce 

design rules by analyzing data from X-ray computed tomography (XCT) scan, and layer-

wise in-process images of the test specimen. 

 

 

Figure 2-1: (a) Test specimen designed by Kranz et al. to study the effect of part position 

on the accuracy of the part. (b) Different positions at which the test specimen was placed 

to study the effect of part position on the part accuracy [24] 
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Figure 2-2: Test specimen drawing adopted from Adam et al. [26]. The test specimen is 

built in three different orientations, namely, (a) depth of specimen along the X-Y axis, (b) 

height of the specimen along the Z-axis, and (c) height of the inverted specimen along the 

Z-axis of the build direction. 

2.2 In-situ sensing and monitoring in laser powder bed fusion (LPBF) 

Additive manufacturing (AM) processes have seen an exponential growth in industrial 

applications because of their ability to build lightweight parts with complex geometries. 

Owing to these capabilities, there is a demand for AM parts in the medical and aerospace 

industry. In these industries, it is mandatory that the parts should have high quality, and 

repeatability [10]. Despite their revolutionary capabilities, practitioners have found that 

AM processes are not sufficiently reliable and repeatable in production to replace their 

conventional manufacturing counterparts, as they result in formation of a high number of 

defects [4, 27-29]. To tackle this hurdle, it is necessary to implement in-situ sensing, 

monitoring, and feedback control techniques in AM processes. The use of in-process 

sensing and monitoring will facilitate understanding the effect of process conditions on 

defect formation, and thus the product quality. Upon recognizing the incipient formation 
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of flaws, a feedback control system can be designed to correct these defects in-situ (inside 

the machine), and thus reduce the scrap rate.  

Nassar et al., have developed a sensing system for defect detection during AM of Ti-

6Al-4V, wherein they employed optical emission spectroscopy to determine the occurrence 

of lack-of-fusion defects by correlating them with the line-to-continuum ratio of the 

spectral atomic line emissions[30]. The test specimen used in this study was a rectangular 

block which has an increasing hatch spacing from one end to the other; viz., 0.914 mm to 

1.829 mm with an increment of 0.229 mm after every 10 mm along the length. It was 

observed that the line emissions ranging from 625 nm to 395 nm were intense in regions 

with defects for ASTM grade 5 titanium (Ti-6Al-4V). 

 In another work by Nassar et al., they devised an in-situ sensing and monitoring 

technique, wherein they used a supervised machine learning approach to detect defects 

from in-situ optical images [31]. The authors proposed a methodology to predict defects, 

such as cracks, porosity, incomplete fusion etc., by first extracting them from the X-ray 

computed tomography (XCT) scan of the test specimen. These defect and nominal 

condition voxel locations were then mapped on to the layer-wise optical images; and then 

a binary classifier, called support vector machine (SVM), was used to predict the flawed 

and nominal locations in the optical images. The authors demonstrated that they achieved 

an accuracy of over 80% while testing this classifier to predict defect and nominal 

condition locations. 

 Abdelrahman et al., in a recent work, developed an in-situ flaw detection system that 

used layer-wise optical images of a powder bed fusion process [32]. This system captured 

images of the powder bed prior to and post re-coat of the layer, and each of these images 
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is captured in five different lighting schemes, so that the surface perturbations are 

magnified, and the defect detection is accurate. The test specimen had intentional defects 

in it, and these defects were detected by correlating the multiple lighting condition images 

of the multiple layers with a high true positive rate. 

  Montazeri and Rao, have developed a heterogeneous sensor-based process 

monitoring system, to detect defect formation in the laser powder bed fusion process [2]. 

In this study, the meltpool characteristics were monitored with help of a heterogeneous 

sensor array consisting of a thermal camera and photodetector, which monitored the 

thermal aspects of the meltpool, and a high speed camera which captured the meltpool 

shape and surrounding spatter pattern. The test specimen used in this work had a distinct 

overhang, and the authors tried to differentiate between the meltpool behavior while 

processing the overhang and non-overhang part. This was done by representing the signals 

from the three sensors as a multi-dimensional data set, and then using a spectral graph 

theoretic approach to analyze the data, and thus differentiating between build locations.  

Using the spectral graph theoretic approach, Montazeri et al., tried to detect material 

contamination in powder bed fusion with the help of photodetector signals [33]. To achieve 

this goal, the powder bed was intentionally contaminated, and then the hatch-by-hatch 

photodetector signals were analyzed to detect the contamination. Further, Imani et al., used 

a spectral graph theoretic and multi-fractal approach to monitor layer-wise in-situ process 

conditions with the help of optical images [1]. They predicted the process condition in 

which the part was being built with a statistical fidelity of over 80%. This was 

accomplished by gathering spectral graph theoretic, and multi-fractal features from the 

layer-wise powder bed images of test specimens being printed at various printing 
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conditions. A feedforward neural network was trained on the basis of these features to 

predict the build condition.  

Craeghs et al., have demonstrated a novel way of detecting defects such as deformation 

resulting from thermal stresses, and overheated overhang structures, by mapping the 

meltpool in terms of space and not time [34]. The meltpool radiation was split into two 

signal groups, namely, the infrared region, and the visible light region. The infrared region 

captured by the photodiode, translated the information of the meltpool temperature in the 

form of pixel intensity, and the location of the meltpool was monitored by the optical 

camera. These data sets from the two sensors were then used to create a layer-wise meltpool 

map.  
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Author(s) Description Unsuitable Suitable 

Adam et 

al. [26] 

The thickness of 

element transitions’ 

(explained in 

section 2.1) should 

be such that the 

cross-sectional area 

in the building 

plane remains 

constant or 

reduces. 

 
 

To obtain good 

outer edge 

morphology, 

smooth edges 

should be used 

instead of sharp 

edges.  
 

To remove support 

structures with 

ease, inner edges 

should be rounded. 

  

Minimum gap 

between two 

consecutive 

features should be 

more than 0.2 mm. 
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Daniel 

Thomas 

[25] 

Surfaces should be 

built vertical, i.e. 

orientation angle of 

90° to the build 

platform to get 

good surface finish. 

 

Thin-wall 

structures should 

have thickness 

greater than 0.4 

mm 
 

 

According to 

Thomas, the gap 

between 

consecutive 

features should be 

more than 0.3 mm. 
 

 

To build overhang 

geometries 

chamfers above the 

orientation angle of 

45° with respect to 

the build platform 

can be used as 

support structures.  
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Figure 2-3: A summary of the design rules formulated in works described in section 2.1.  

 

 

 

 

 

 

Kranz et  

al. [24] 

Thin-wall 

structures should 

be built at an 

orientation angle of 

90° with reference 

to the build 

platform, and 45° 

with reference to 

the re-coater blade 

direction to get 

good quality build. 
 

Similar to Daniel 

Thomas, Kranz et 

al. suggest that the 

thin-wall thickness 

should be more 

than 0.4 mm. 
 

 

 

Through bore holes 

should be preferred 

over blind holes. 

The bore diameter 

should exceed 2 

mm for well-

defined holes. 
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CHAPTER 3 ‒ EXPERIMENTAL STUDIES  

The data for this work was acquired at Pennsylvania State University by Dr. Edward 

Reutzel and his research group in the Applied Research Laboratory. The experiments 

described in this chapter were conducted on a sensor integrated EOS Direct Metal Laser 

Sintering (DMLS) Model M280, Laser Powder Bed Fusion Platform at the Center for 

Innovative Materials Processing Through Direct Digital Deposition. The experimental 

portion of this work was supported by the Air Force Research Laboratory through America 

makes under Agreement No. FA8650-12-2-7230. This work is supported in part by the 

National Science Foundation (NSF) Center for e-Design (Lockheed Martin) at 

Pennsylvania State University. 

3.1 Test-artifact with thin walls 

For building the titanium alloy Ti-6Al-4V thin-wall test artifacts the following process 

parameters were used: laser power, P = 340 W; layer thickness, T= 0.060 mm; hatch 

spacing, H= 0.12 mm; and laser velocity, V = 1250 mm/s, resulting in the volumetric 

energy density 𝐸𝑉 =  
𝑃

𝐻×𝑉×𝑇
= 37.8 𝐽 𝑚𝑚3⁄ . The parts were made using spherical ASTM 

B348 Grade 23 Ti-6Al-4V powder with a size distribution of 14 µm - 45 µm from LPW 

Technology, Inc. Parts with the geometry exemplified in Figure 3-1 were built in three 

angular orientations to the re-coater blade with the dimensions of 15 mm × 15 mm × 5.5 

mm. Each part included 25 thin-wall features whose thicknesses ranged from 0.06 mm to 

0.3 mm, while the corresponding height increased from 0.6 mm to 3 mm. The length of 

each thin wall was 11 mm, and they were built vertically upwards with a 60 µm layer 

thickness. The entire part was built in around 90 layers [35].  

In this work, two hatch patterns were used to build thin-wall structures as shown in 

Figure 3-5. The hatch pattern used to build thin-walls with an aspect ratio (𝑙/𝑡) ranging 

from 36 to 157, i.e., thickness of 0.07 mm to 0.3 mm (thin-wall number 2 to 25) is shown 

Figure 3-5 (a). This hatch pattern had an outer contour, inner contour, and hatches at the 
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same angle inside the inner contour. The hatch pattern used to build thin-wall number 1 

with aspect ratio (𝑙/𝑡) of 183, i.e., thickness of 0.06 mm is shown in Figure 3-5 (b). This 

thin wall is built with an outer contour, hatches at the same angle, but without an inner 

contour. 

 

Figure 3-1: Computer aided design (CAD) of thin walls in the test part. (a) Top view, (b) 

front view. (c) 3-D view of the test part along with the re-coater blade. 
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3.2 Setup for in-process powder bed imaging 

The in-process sensor data was acquired with the setup shown in Figure 3-2. The layer-

wise images of the powder bed were captured using a digital single-lens reflex camera 

(DSLR, Nikon D800E) with an effective resolution of 36.3 megapixels which was mounted 

in a custom made enclosure inside the machine [32]. The flash lamps were located at three 

different locations in the machine (EOS M280) as shown in Figure 3-2, and they were used 

to capture images of the powder bed at every layer in five distinct lighting conditions 

(Figure 3-2). These images were obtained after the laser scan and after the re-coating, and 

to capture images at these particular instances during the build, a proximity sensor was 

employed in the machine. This proximity sensor tracked the motion of the re-coated blade, 

and accordingly, the images were captured. For this work, we analyzed the images post 

laser scan with the lighting condition as shown in (Figure 3-3 (a)). The sample data 

acquired from the apparatus is shown in Figure 3-4. 

 

Figure 3-2: Illustration of the optical DSLR camera and flash lamps used for acquiring in-

situ data [1].
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Figure 3-4: In-process optical images of a layer of thin walls being manufactured at 

different orientation angles in the X-Y plane with respect to the re-coater blade direction, 

namely, (a) 0°, (b) 60°, (c) 90°. 

 

Figure 3-5: Schematic representation of the two different hatch patterns used to build thin 

walls. (a) Hatch pattern used to build thin walls with aspect ratio (𝑙/𝑡) ranging from 36 to 

157, i.e., thickness of 0.07 mm to 0.3 mm (thin wall number 2 to 25). (b) Hatch pattern 

used to build thin wall number 1 with aspect ratio (𝑙/𝑡) of 183, i.e., thickness of 0.06 mm. 
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CHAPTER 4  ‒ METHODOLOGY 

This chapter is stratified into two sub-sections, wherein section 4.1, discusses the 

methodology applied to the offline XCT scan image data, and section 4.2, describes the 

convolutional neural network used to analyze the layer-wise in-situ powder bed images. 

The research approach is schematically reported in Figure 4-1. 

Specifically, section. 4.1 has two phases, the first involves offline analysis of the XCT 

scan images of the thin-wall geometry (as seen in Figure 4-1), wherein certain quality-

related features are extracted from the XCT scan images. These features were then 

combined in the form of the Mahalanobis-squared distance which was used as a surrogate 

measure for tracking the build quality of the thin-wall. The next phase was to predict the 

thin-wall quality from online in-process images. A convolutional neural network (CNN) 

was used for this purpose, wherein the network was trained to predict the Mahalanobis-

squared distance given in-process images of thin-wall boundaries. This neural network 

known as deep learning convolutional neural network because of the use of convolutional 

filters on different scales, which learn the aspects of the image from coarse to smooth 

levels. The modalities of the neural network are discussed in detail in section 4.2. 
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4.1 Offline Analysis of build quality using layer-wise XCT scanned images 

Firstly, the XCT scan of each test artifact is visually (qualitatively) examined layer-

by-layer. The following inferences are rendered based on these visual observations. Figure 

4-2 shows the example of layer number 18 under the three different angular orientations.  

 Thin walls with thickness less than 0.1 mm, i.e., aspect ratio (𝑙/𝑡, length-thickness 

ratio) greater than 183, cannot be built irrespective of their orientation. The cause 

of this failure appears to be the overly thin cross-section of the thin-wall, which 

are too weak to resist the lateral force exerted by the re-coater. 

 From the visual inspection of the zoomed in portion of a thin-wall with aspect ratio 

𝑙/𝑡= 44 (Figure 4-2 (b1), (b2), and (b3)) it is evident that the parts printed at 

orientation angle of 90° generally have poor construct quality as compared to those 

printed in the other two orientation angles. The probable reason is that in the thin 

walls built at 0° and 60° orientation angle (θ) the resistance offered to the flow of 

the powder is less than that at 90°. 

These observations were further examined and confirmed by analyzing the sliced images 

of the fin pad XCT scans.
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Figure 4-3: The extraction of thin-walls from XCT scan images. Thin-wall images shown 

in (d) and (e) are used to extract features from thin walls to formulate design rules.  

At the outset, the XCT scan for each thin-wall part was sliced with a layer thickness 

of 10 μm, resulting in 300 images of each part. Subsequently, the CAD file for each test 

artifact was also sliced with an identical resolution of 10 μm to register the CAD and XCT 

scan of layer-wise images.  

Next, an intensity-based image registration approach was used to perform affine 

transformation and align the XCT scan image to the corresponding CAD slice. Further, 

individual thin walls were extracted from the registered images, and each thin-wall was  

further processed as depicted in Figure 4-3, to extract quantitative features as described 

shortly. The advantage of using these quantifiers is that they are based on two- dimensional 

image-based measurements, and involve simple matrix algebra, thus significantly reducing 

the computational burden involved for feature extraction. 
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Figure 4-4: Thin-wall features extracted from XCT scan images. (a) Thin-wall layer 

image (𝐼) showing thin-wall discontinuity, and highlighting two parts of the thin-wall 

illustrating other defects. (b) Binarized image of a thin-wall segment (𝐵𝑆) representing 

thin-wall thickness, thin-wall edge smoothness, and ideal thin-wall profile. (c) Image of 

thin-wall segment (𝐼𝑆) depicting thin-wall density. 

A brief explanation regarding these features is provided herewith. Consider an XCT 

scan image 𝐼 of a thin-wall of size 𝑥1 pixel × 𝑦1 pixel ( Figure 4-4(a)); the binarized 

segment of this image 𝐼 is 𝐼𝐵 (Figure 4-4 (a2)), and 𝐼𝐸 is a segment that depicts the edge of 

the thin-wall, as shown in Figure 4-4 (a1)). The 𝑦1 dimension for the thin-wall image 𝐼, 

and 𝑦2 dimension of the thin-wall image 𝐽 (Figure 4-4 (b)) are equal to 800 pixels and 

remain constant over all thin-wall images, i.e., if an image is considered to be a matrix with 
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each pixel representing a matrix element, the number columns remains constant. On the 

contrary, the 𝑥1 and 𝑥2 dimensions for thin-wall image 𝐼 and 𝐽, vary contingent to the thin-

wall thickness, but they remain constant throughout all layers for a given thin-wall, for 

example, 𝑥1 = 𝑥2 = 36 pixels for thin wall number 25, and 𝑥1 = 𝑥2 = 32 for thin wall 

number 20. 

Thin-wall thickness (𝑡): This feature quantified the average thickness of a thin wall as 

follows: The edge of the thin wall as shown in Figure 4-4(a1) and Figure 4-5, was obtained 

by using a Canny filter on a binarized image of thin-wall segment 𝐼𝐵. Further, the thickness 

of the thin-wall segment at a given location was determined by subtracting the first non-

zero entry in a column of image pixels by the last non-zero entry in the same pixel column, 

as represented in Figure 4-5. This procedure estimated the distance between two edges of 

the thin-wall at a given location. The average of the distance between two edges of the thin-

wall over the length (𝑦1) is termed as the thickness of a thin-wall segment (𝑡) (Eqn. (1)). 

 
𝑡 =  

∑ 𝛼1𝑖 − 𝛼2𝑖
𝑚
𝑖=1

𝑚
 

(1) 

where, 𝛼1𝑖 is the first non-zero row index, 𝛼2𝑖 is the second non-zero row index and 𝑚 is 

the number of columns. 

 

Figure 4-5: A representation of the thin-wall thickness feature. The pixels highlighted in 

red represent the pixels in the upper and lower edge of the thin wall. 
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Thin-wall density (𝜌𝑡): The thin-wall density quantified un-melted areas or areas 

devoid of sufficient material that resulted in pores in an individual thin wall (Figure 4-4 

(a2)) . To estimate this quantifier, the pixels within the boundary of the thin-wall image, 

were averaged to estimate 𝜌𝑡 (Eqn. (2)). 

 

𝜌𝑡 = {

∑ ∑ 𝐼(𝑖, j)𝑛
𝑗=1

𝑚
𝑖=1

𝑀
    𝑓𝑜𝑟  𝐼 > 0

0                                𝑓𝑜𝑟 𝐼 < 0 
      

(2) 

where, 𝐼(𝑖, 𝑗) is the pixel within the thin-wall, and 𝑀 is the number of pixels within 

the boundary of a thin-wall image. In Figure 4-4 (a2), a pixel in a thin-wall image is shown. 

Thin-wall edge smoothness (𝜎𝑠): This feature represented the degree of smoothness of 

the thin-wall XCT scan image boundary. The non-zero linear row indices of the upper edge 

(𝛼1i) and lower edge (𝛼2i) of the thin wall, as shown in Figure 4-5, were recorded. The 

degree of smoothness of a thin-wall edge was evaluated by calculating the standard 

deviation of the column indices of each edge. This standard deviation was interpreted as 

follows: the higher the standard deviation, the lower would be the edge smoothness, and 

vice-versa. 

The dotted-line in Figure 4-4 (a1) represents the edge of the thin-wall obtained from 

the computer-aided design (CAD) of the thin wall. As observed visually, the CAD thin-

wall edge had constant  𝛼1 and 𝛼2 values, and thus it had no standard deviation. Whereas, 

the thin-wall edges of the XCT-scanned images had highly varying values of edge indices, 

which resulted in high standard deviation, and in turn poor edge smoothness. 

Thin-wall  discontinuity (𝛿): The discontinuity of a thin wall is highlighted in a yellow 

dotted-box in Figure 4-4 (b). If there was discontinuity in the thin-wall edge, it indicated 
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that the thin-wall was highly likely to fail. It was defined as the number of instances (𝛿) 

that the non-zero row indices 𝛼1𝑖 and 𝛼2𝑖 (from Eqn. (1)) were not detected in a thin-wall. 

A near-zero value of a thin-wall segment discontinuity was preferred. 

The above four quantifiers for each thin-wall  XCT-scan image were arranged in a 

matrix called the quantifier matrix (Xθ), for each orientation θ = {0°, 60°, 90°}, as shown 

in Figure 4-6. The quantifier matrix of each orientation angle was compared with features 

extracted from the CAD images of the thin walls. The features extracted from the CAD 

thin-wall images were considered to be ideal, and hence, the features extracted from the 

XCT-scan images were compared with them. The metric used for this comparison is known 

as the Mahalanobis-squared distance (𝐷𝑀
2 )𝑖

𝜃 for orientation angle 𝜃 and thin-wall number 

t = {1, 2, 3…,25} as shown in Eqn. (3).  

The Mahalanobis-squared distance accounted for the variability in the data due to 

multiple quantifiers, both within and between quantifiers, with the help of the inverse of 

the variance-covariance matrix which is also known as the precision matrix.    

 (𝐷𝑀
2 )𝑡

𝜃 = (𝑋𝑖̅ − 𝜇𝑇𝑊)′𝑆−1(𝑋𝑖̅ − 𝜇𝑇𝑊) (3) 

where,  𝑋̅𝑡
𝜃  is the mean feature vector of a particular thin-wall image t for orientation θ = 

{0°, 60°, 90°} which is to be compared with the thin-wall features extracted from a CAD 

image of the thin wall. The features extracted from the CAD image are stored in 𝜇𝑇𝑊, and 

the 𝑆−1 is the precision matrix derived from the feature matrix of XCT scan images of a 

thin-wall with a particular orientation angle. The key idea is shown below in Figure 4-6. 
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Figure 4-6: A representation of the arrangement of the quantifier matrix for a thin-wall at 

0° orientation angle. The features extracted from the first XCT scan thin-wall image with 

a particular aspect ratio and an orientation angle of 0° is represented by 𝑋1
̅̅ ̅0°

. The vector 

with features extracted from the CAD images of a thin-wall with a particular aspect ratio 

is represented by  𝜇𝑇𝑊. 

4.2 Online Analysis of in-process powder bed images 

This section details the approach adopted to detect build failure in thin walls by two-

phase analysis of the in-process powder bed images: (1) the extraction of individual images 

of the thin wall from the noisy powder bed images, and (2) predicting the quality of these 

images as inputs to a convolutional neural network (CNN) which is trained to predict the 

build quality of the thin wall. 

We initially tried to de-noise the powder bed image with the help of graph diffusion. 

This technique uses the heat diffusion kernel to smoothen an image, and simultaneously, 

preserves the edges in the image. Due to the high level of noise in the powder bed images, 

the edges of the thin walls were not very well-defined, because of which the graph diffusion 
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technique failed to work. Consequently, we used an image filtering technique to sharpen 

the image and negate the noisy background as depicted in Figure 4-7.  

The resulting binary image had clearly demarcated edges for each of the thin walls. 

This step was done with the help of a linear filtering operation which is termed as 

convolution filter (not to be confused with a CNN). The convolutional filter (or 

convolutional kernel) is a weighted matrix which convolves around an image to give an 

output image whose pixels are a weighted sum of the input pixels. Shown below in Figure 

4-7, is the convolution filter (or kernel) used in this case where, 𝑥 is a variable which 

controls the intensity of the sharpening of the image i.e. the higher the value of 𝑥, the higher 

the erosion of the image.  

 

Figure 4-7: Schematic representation of image de-noising done by employing image 

sharpening. This technique uses a filter matrix which convolves around an image. 
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Convolutional neural network architecture 

This section will briefly contrast the concept of the convolutional neural networks 

(CNN), vis-à-vis conventional feed-forward artificial neural networks (ANN) before 

providing mathematical details. Artificial neural networks are neurophysiologically 

inspired machine learning algorithms with neurons as their elementary units [36]. These 

neurons receive multiple inputs from either the input data or other neurons, the latter of the 

two being recurrent, and subsequently create an output by employing a non-linear 

transformation. The learning process to obtain the weights of the neurons is carried out 

using an algorithmic approach [37]. In a feed-forward ANN, neurons in a layer are fully 

connected, i.e., a neuron will be connected to all the neurons in the preceding and 

succeeding layer, and are independent of each other. Due to this reason, ANNs are 

computationally expensive for implementing back-propagation when analyzing a high 

volume of data, and further, ANNs do not encapsulate the spatiotemporal correlation within 

the data, such as images. 

For example, when analyzing an image of size 200×200×3, the resulting number of 

weights for the neurons in an ANN would be 200×200×3= 120,000. Furthermore, a large 

number of neurons would be required, which would then lead to a high number of 

parameters, thus causing overfitting.  In contrast in a CNN, a neuron in one layer will only 

be connected to a certain number of neurons in the previous layer, thus avoiding full-

connectivity, and consequently, overfitting. Accordingly, CNNs are multi-layered neural 

networks that have been used in detecting patterns from image pixels, such as, faces, hands, 

logos, text etc. [38, 39]. 
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The CNN used in this work had four blocks along with a fully-connected layer, 

regression layer, input and output layer as seen in Figure 4-8. The input to the network was 

an image of a single thin-wall of size 28 pixels × 28 pixels which was extracted from a de-

noised layer-wise powder bed image, and the output is the corresponding Mahalanobis-

squared distance of the thin-wall at the given layer.  Each block had a 2D convolution layer 

with a rectified linear unit (ReLU), a batch normalization layer, and an average pooling 

layer.  

Convolutional layer 

The convolutional layer extracts features from an image by learning various 

convolving filters [38]. In this CNN architecture, we used an increasing number of filters 

in each convolutional layers to extract complex features from the images. A filter, is an 

𝑓 × 𝑓 matrix, which convolves around an image and creates a feature map by performing 

a dot product operation on the input image, as shown in Figure 4-9. The manner in which 

the filter convolves over the input image is determined by a hyper-parameter called stride. 

Figure 4-9 (b1), is an illustration of a filter sliding over an image with stride set to 1.  To 

preserve the dimensions of the images being convolved, the images are padded with zeros, 

i.e. the images are surrounded by zeros, before the convolution operation, and this hyper-

parameter is called padding.  

The CNN used in this thesis had four blocks, and each block had a convolutional 

layer in it, as shown in Figure 4-8 [37]. As the network got deeper, the number of filters in 

each convolutional layer increased to extract high-level features from the image. It is seen 

in Figure 4-11 that the input image had a depth of 1 as it is a grayscale image, but the first 

convolution layer had depth of 8 filters. The depth of a layer was a function of the number 
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of filters employed in a convolution layer, and in accordance, the last convolution layer in 

block 4 had a depth of 32 filters. 

 

Figure 4-8: Flow-chart of the architecture of the convolutional neural network employed 

in this thesis to predict Mahalanobis-squared distance. 
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Figure 4-9: Schematic representation of convolution operation. 

      Batch normalization layer 

The input given to a neural network is normalized, i.e. it has zero mean and unit 

variance, and this is done to quicken the learning process of the network. When the input 

variables of a network have extremely varying ranges, for example, one variable has a 

range of 1-1000, whereas the second one has a range of 1-2, the network parameters will 

have correspondingly wide ranges. This leads to a wide cost function in the direction of the 

variable with a wide range as this variable contributes more towards learning of the 

network. Due to this imbalance in the variables and the resulting elongated cost function, 

it becomes cumbersome to train a network. On the contrary, a neural network with 

normalized inputs has a circular cost function resulting in increased ease and speed of 

training. Likewise, it is advisable in deep neural networks to normalize the input to every 

layer of the network, with the help of a technique called batch normalization [40].  
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When updating weights in one layer in a deep neural network, it is assumed that the 

layer’s inputs will remain constant. However, the distribution of the input might change 

every time the weights are updated, as the previous layer parameters are updated as well. 

In deep models, even small changes in earlier layers amplify drastically in the later layer, 

which significantly changes the input distribution to the later layers as well, making it hard 

for them to adapt to the changes, and thus, hindering convergence. This phenomenon is 

referred to as internal covariate shift, and batch normalization layers are employed in a 

deep neural network to prevent it. 

In batch normalization, the inputs are firstly normalized to zero mean and unit variance 

as shown below in Eqn. (4)-(6). This normalization is not performed on the whole input 

population at once, but is done on the inputs in batches [40]. 

 
𝜇𝐵 =  

1

𝑛
∑ 𝑎𝑘

𝑛

𝑘=1

 
(4) 

 
𝜎𝐵

2 =  
1

𝑛
∑(𝑎𝑘 − 𝜇𝐵)2

𝑛

𝑘=1

 
(5) 

 𝑎𝑘̂ =  
𝑎𝑘 − 𝜇𝐵

√𝜎𝐵
2

 
(6) 

where, 𝜇𝐵 and  𝜎𝐵
2 are the mean and variance of the batch, respectively, 𝑎𝑘̂  is the 

normalized input value, and 𝑛 is the batch size. Subsequently, the normalized inputs (𝑎𝑘̂) 

are scaled and shifted to have an arbitrary mean and variance of the input distribution (Eqn. 

(7)). 

 𝑜𝑘 =  𝛿 𝑎𝑘̂ + 𝛼 (7) 
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where, 𝑜𝑘 is an output of the batch normalization layer, and accordingly is the input to 

the activation (ReLU) layer, 𝛿 is the scaling factor, and 𝛼 is the shifting factor; and these 

factors facilitate in randomizing the mean and variance of the batch inputs. Intuitively, it 

can be argued that these factors nullify the effect of normalization, as prior to batch 

normalization, the data had random mean and variance. Taking a step backward, we can 

see that the mean and variance without batch normalization are dependent on excessively 

high numbers of parameters, such as weights and biases of each neuron, activations, etc., 

but in the case of batch normalization they are dependent only on the two scaling and 

shifting factors which are trainable and learnable by the network. 

When testing the network, the 𝜇𝐵 and 𝜎𝐵
2 are not available, so the estimation of the 

population expectation and population variance are calculated as follows.  

 𝐸𝑘+1[𝑥] =  𝛿𝐸𝑘[𝑥] + (1 − 𝛼) 𝜇𝐵 (8) 

 𝑉𝑎𝑟𝑘+1[𝑥] =  𝛿𝑉𝑎𝑟𝑘[𝑥] + (1 − 𝛼) 𝜎𝐵
2 (9) 

In our neural network architecture used in this work, a batch normalization layer was 

employed, as shown in Figure 4-8.  

Rectified linear unit (ReLU) layer 

The rectified linear unit (ReLU) is an activation function (non-linearity) which sets all 

negative values to zero [41]. It is formally given as follows. 

 
𝑓(𝑥) = {

𝑥           𝑖𝑓 𝑥 ≥ 0
0           𝑖𝑓 𝑥 < 0 

 
(10) 

 The ReLU layers are preferred over other activation functions, such as the sigmoid 

function and hyperbolic tangent (tanh) function, because it is found that the ReLU layers 

significantly accelerate the convergence of the stochastic gradient descent, i.e., the ability 
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of the network to reach its cost/loss function minima [42]. Further, the ReLU layers are 

computationally inexpensive as they only involve thresholding an activation matrix, 

whereas on the contrary, the sigmoid and tanh functions need heavy computations. Also, 

the ReLU layers avoid vanishing the gradient which is quite evident in the hyperbolic 

tangent function and sigmoid. Neural networks that are trained with the help of gradient-

based learning method and the back-propagation method often encounter the vanishing 

gradient problem [41]. These methods provide the neurons with updated weights that are 

proportional to the partial derivative of the error function (the difference between the value 

predicted by the network and the actual value) with respect to the current weights of the 

neurons in each training iteration. When activation functions such as the tanh function and 

sigmoid function are used, the vanishing gradient problem is observed as they have 

gradients in the range (0, 1), and in the backpropagation method the gradients are computed 

by the chain rule. This results in the multiplication of 𝑛 of these small numbers to calculate 

gradients of the initial layers in an 𝑛-layer network, which means that the gradient (error 

signal) diminishes exponentially with 𝑛, thus leading to the initial layers being trained 

slowly. In other words, vanishingly small gradients prevent the training of the network as 

the weights remain constant after every iteration. In our network, we have used the ReLU 

layer in each block after the batch normalization layer as seen in Figure 4-8. 

Average pooling layer 

 The average pooling layers are used to down-sample the spatial arrangement of an 

image (Figure 4-11) to reduce the computation, and also to avoid over-fitting, i.e., the 

network gets highly fitted to the training data, and cannot adapt to the inputs of the testing 

data, thus performing poorly. The spatial reduction is performed as it is sufficient to know 
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the relative position of features with respect to other features, rather than knowing the exact 

feature location. Similar to a convolution layer, in an average pooling layer, filters of a 

given size move around an image in a non-overlapping manner, resulting in a single value 

which is the average of all values of the image in the given filter size (Figure 4-10) [38]. 

Along with filter size, another hyper-parameter that the average pooling layer employs is 

stride, which dictates the movement of the filter over the image. The layer individually 

operates on each of the depth slice of the input image, thus conserving that dimension 

(Figure 4-11), and also the feature data accumulated from various filters.          

In this work, we used average pooling layers in the first two blocks as seen in Figure 

4-8. This layer was not used in the succeeding layers to avoid significant reduction in the 

spatial dimensions of the image resulting in feature data loss. The pooling layers used a 

filter size of 2×2, and a stride of 2 in both blocks (Figure 4-10). This resulted in the 

reduction of the input image size from 28×28, to 7×7 at the end of the second block.  

 

Figure 4-10: Schematic representation of an average pooling operation. 

Fully connected layer 

In a fully connected layer, all the neurons in the adjacent layers are pairwise connected 

to each other, but neurons in the same layers are independent of each other. Unlike a 
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convolutional layer, the fully connected layer is a one-dimensional vector which has all the 

activations of the previous layer, as seen in Figure 4-11. Due to this drastic change in 

dimension, fully–connected layers are placed at the end of the network, and convolution 

layers cannot be placed after them. Each convolution layer identifies features such as, lines, 

edges, curves, and shapes, with the help of various filters, the fully-connected layer fuses 

these features together and comes up with a prediction close to the desired output.  The 

fully-connected layer in this network had 1568 inputs in it from the previous non-linearized 

(ReLU) convolution layer and had a single output which was passed to the regression layer. 

The mean squared error (MSE) is the difference between the predicted output and the 

desired output. In this regression layer, based on this MSE, weights of all neurons in the 

network were updated to obtain the optimum minima of the MSE. For training the network, 

values of hyper-parameters like maximum epochs (maximum number of iterations), and 

the learning rate for weights, were heuristically set to achieve the lowest value of MSE. 

The value of maximum epochs was chosen in such a way that it was avoided under the 

network training, and also avoided over-fitting. Similarly, the learning rate of weights, 

which is a hyper-parameter that controls the adjustment of the weights with respect to the 

cost function gradient, was set to an optimum level so as to preserve the network speed, 

and also not to miss out on a local minima of the cost function. 

For training the convolutional neural network, the input used was an individual thin-

wall extracted from de-noised, layer-wise powder bed images, and the output was the 

corresponding Mahalanobis-squared distance of the fin obtained from the XCT-scan image 

analysis. The data was allocated in the following manner: 75% for training the network 

(randomly selected), and 25% for testing the network.   
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CHAPTER 5 RESULTS 

This chapter reports the results from the XCT scan image analysis described in section 

4.1, in terms of the geometric design rules for thin-wall structures, and in-process 

monitoring of thin walls using the CNN described in section 4.2.  

5.1 Geometric design rules for thin-walls based on offline XCT scan images 

For a fixed aspect ratio, the thin walls oriented at 0° to the re-coater direction, had a 

superior build quality. In other words, when the long edge of the thin wall was parallel to 

the direction in which the re-coater moves, the thin-wall feature tended to build with fewer 

flaws compared to those thin-wall structures that were built with the broadside of the thin-

wall exposed to the re-coater. At an orientation of 90°, where the broadside of the thin wall 

was perpendicular to the re-coater motion, the build quality was worst. For example, 

consider Figure 5-1 (a); thin-wall built at orientation angle of 0º at layer number 22 was 

built without any discernable flaws, whereas those built at 60º and 90º depicted non-smooth 

edges and discontinuity. Furthermore, at layer number 25, irrespective of the orientation 

angle, the thin walls have completely collapsed.  

In contrast, for a smaller aspect ratio, the thin wall shown in Figure 5-1 (b), a 

discernable difference in the thin-wall quality at the three different orientations was seen 

only at layer number 35. Here, the thin wall built at 0º, as well as at 60º had distinctly better 

geometric integrity, compared to the thin wall built at 90º. An observation drawn from 

Figure 5-1 is that a threshold value of 15 can be arbitrarily set for the Mahalanobis-squared 

distance, beyond which the thin-wall quality is typically poor. We note that this observation 

is specific to this particular work. 
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Figure 5-1: Mahalanobis-squared distance for different orientations (𝜃) of different thin 

walls.(a) Thin wall number 10, with aspect ratio (𝑙/𝑡) of 73, i.e., length 𝑙= 11 mm and 

thickness 𝑡= 0.15 mm. (b) Thin wall number 20, with aspect ratio (𝑙/𝑡) of 44, i.e., length 

𝑙= 11 mm and thickness 𝑡= 0.25 mm. 
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Next, we have summarized the influence of the aspect ratio in Figure 5-2, which maps 

the build height versus the aspect ratio averaged across all orientation angles and 

recommended build height to achieve good geometrical integrity. Figure 5-3 depicts this 

information in greater detail with the recommended height for building thin-walls with 

good geometrical integrity, and the height at which thin walls collapse with respect to a 

given orientation and aspect ratio.  

The geometric design rules can be generalized as follows. 

a) Avoid building thin walls below 0.15 mm thickness, i.e., aspect ratio (𝑙/𝑡) above  

73, because they tend to collapse. 

b) Avoid building thin walls at angles inclined to the re-coater blade. In other words, 

avoid presenting the broadside of the thin wall to the re-coater. 

c) The maximum recommended height for a thin wall of thickness 𝑡 is approximately 

9× 𝑡. 

The design rules formulated from this work are summarized and pictorially represented in 

Figure 5-4. 

 

Figure 5-2: Maximum recommended height to build thin walls of good geometrical 

integrity with respect to aspect ratio (𝑙/𝑡).   
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Figure 5-3: Maximum build height of thin walls to get good geometrical integrity, and 

height at which thin walls collapse, with respect to aspect ratio and orientation angles. 

Description Unsuitable Suitable 

The orientation 

angle (θ) of 90° 

should be avoided 

while building thin 

wall structures. 

 

 
 

 

 

The aspect ratio 

(𝑙/𝑡) of a thin wall 

should not exceed 

73 (11 mm / 0.15 

mm). 
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The height of a 

thin wall should 

not be more than 

nine times its 

thickness. 

 

 

 

 

 

Figure 5-4: Summary and pictorial description of the geometric design rules formulated 

from this work for thin wall features built using laser powder bed fusion additive 

manufacturing process. 

5.2 Results from in-process powder bed image analysis 

In this section, we used the online layer-by-layer image data to detect the onset of 

defects in a thin-wall part. The key idea was to apply the convolutional neural network 

(CNN) described in Chapter 4 to predict the Mahalanobis-squared distance as a surrogate 

or derived measure of build quality. The network training procedure and network 

architecture are explained in great detail in section 4.2.  

Figure 5-5 shows the representative results for thin wall number 23 under three 

different orientations. These results indicated that the CNN derived Mahalanobis-squared 

distance results, closely tracked those obtained using XCT scan image analysis of the thin 

wall. As a consequence, instead of expensive post-process XCT scan measurements, the 

in-process image data could be used for detecting process defects in laser powder bed 

fusion. As a quantitative measure to ascertain the closeness between the observed and 

CNN-predicted Mahalanobis-squared distance trends, we used the Pearson coefficient. For 

trends shown in Figure 5-5, the Pearson correlation coefficient ranges from 80.26 % to 

98.89 %. 
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Figure 5-5: Mahalanobis-squared distance prediction via CNN regression for thin wall 

number 23 (𝑙/𝑡= 39, length= 11 mm, thickness= 0.28 mm) with (a) 0° orientation, (b) 60° 

orientation and (c) 90° orientation. 
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CHAPTER 6 ‒ CONCLUSIONS AND FUTURE WORK 

This work investigated the quality of thin-wall parts made using the laser powder bed 

fusion (LPBF) process as a function of their build orientation and aspect ratio (length-to-

thickness ratio, 𝑙/𝑡). Furthermore, in-process optical image data of the powder bed was 

acquired with the aim of detecting build flaws. Specific contributions from this work are 

as follows: 

1) The effect of aspect ratio and wall thickness was quantified by extracting statistical 

features from the offline X-ray computed tomography (XCT) scan images of thin-wall 

parts. The following results are reported herein from the perspective of the design of 

additive manufacturing (AM). The number of layers (vertical height) of a thin-wall part 

that can be built without damage was contingent on its aspect ratio and build 

orientation. It is recommended that a thin wall be built with 0° orientation with the re-

coater blade. In other words, the broadside of the fin should not, as far as possible, face 

the re-coater direction. The maximum vertical height of the thin wall should be less 

than 9 times its thickness. 

2) Four quantifiers were defined to characterize the geometric integrity of the thin wall. 

These quantifiers were aggregated in terms of the Mahalanobis-squared distance, 

which was positively correlated with the visual quality of the thin-wall. 

3) From the in-process quality monitoring vista, we trained a convolutional neural 

network (CNN) to predict the thin-wall quality (in terms of the Mahalanobis-squared 

distance) based on in-process optical images of the powder bed. For the representative 

cases tested, the Pearson correlation coefficient (𝜌) between the Mahalanobis-squared 
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distance measured from the XCT scan signatures, and the CNN-derived Mahalanobis-

squared distance was in the range of  80.26 % to 98.89 %. 

This work thus makes a foray into deriving quantitative rules for design of laser 

powder bed fusion parts, specifically thin-wall structures. Furthermore, we have forwarded 

a feature-free deep learning approach to detect build flaws in laser powder bed fusion parts. 

Consequently, this work makes an effort to complete the following link from the LPBF 

perspective: Part design → In-process data → Build quality. However, the following 

question remain to be addressed, which we will endeavor to answer in our future forays in 

the area: 

1) What is the generalizability of the design rules proposed for variation in material and 

thin-wall structures built with different process conditions such as, laser power and 

velocity? 

2)  How do the proposed design rules for thin walls carry over to internal thin-wall 

features, and thin walls with overhang geometries? 

3) What is the ability of the CNN proposed in this work to apply to other types of features 

through transfer learning? 
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