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Application of permutations to lossless
compression of multispectral thematic
mapper images

Ziya Arnavut
University of Nebraska/Omaha
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Sunil Narumalani
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Department of Geography
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Abstract. The goal of data compression is to find shorter representa-
tions for any given data. In a data storage application, this is done in
order to save storage space on an auxiliary device or, in the case of a
communication scenario, to increase channel throughput. Because re-
motely sensed data require tremendous amounts of transmission and
storage space, it is essential to find good algorithms that utilize the spa-
tial and spectral characteristics of these data to compress them. A new
technique is presented that uses a spectral and spatial correlation to
create orderly data for the compression of multispectral remote sensing
data, such as those acquired by the Landsat Thematic Mapper (TM)
sensor system. The method described simply compresses one of the
bands using the standard Joint Photographic Expert Group (JPEG) com-
pression, and then orders the next band’s data with respect to the pre-
vious sorting permutation. Then, the move-to-front coding technique is
used to lower the source entropy before actually encoding the data. Ow-
ing to the correlation between visible bands of TM images, it was ob-
served that this method yields tremendous gain on these bands (on an
average 0.3 to 0.5 bits/pixel compared with lossless JPEG) and can be
successfully used for multispectral images where the spectral distances
between bands are close. © 1996 Society of Photo-Optical Instrumentation Engi-
neers.

Subject terms: permutations; sorting; lossless compression; multispectral im-
ages; spectral distances.
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1 Introduction

With the development of remote sensing systems that can
transmit large volumes of data, the transmission and stor-
age requirements of these data have become a significant
concern. For example, it is estimated that the Earth Obser-
vation System Data and Information System~EOSDIS! will
generate more than one terabyte (1012 bytes! of data per
day.1 To handle these quantities, there is a critical need for
data compression.

The goal of data compression is to represent the given
image data with the minimum number of bits. Compression
schemes can be broadly classified into two categories—
lossy and lossless. For many applications, the loss of infor-
mation that is not perceptually significant can be easily tol-
erated if a good visual approximation to the original is pre-
served. Conversely, some applications, such as medical
imaging and remote sensing, cannot tolerate any loss of
information. Lossless compression, as the name implies,
provides compression without losing any information~i.e.,
when the data are uncompressed, the original information is
obtained!.

A lossless image compression technique consists of two
main components—modeling and encoding.2 A model cap-
tures the structure inherent in the raw data and extracts it.
The residual, also callederror, is then encoded using an
entropy encoding technique. Shannon3 showed that the

minimum average rate at which the output of a source can
be coded is its entropy. If an image is modeled as a source
of independent pixels, then the first-order entropy defines
the average information~bits/pixel! by which an image can
be encoded. Well-known encoding techniques, such as
arithmetic and Huffman encoding, can encode a source op-
timally ~closer to its first-order entropy!. Hence, the critical
task in data compression is modeling.

For a typical image, since the values of adjacent pixels
are often highly correlated, a significant amount of infor-
mation about a pixel value may be obtained by examining
the neighboring pixels. One of the most popular techniques
in image compression is the linear predictive technique,
which exploits the correlations among the neighboring pix-
els. This technique scans the image in a fixed order~usually
raster order! and predicts the current pixel by taking a lin-
ear combination of neighboring pixels that have been pre-
viously transmitted. The Joint Photographic Expert Group
~JPEG! still picture compression standard4 uses linear pre-
dictive techniques in its lossless mode, and has eight dif-
ferent schemes, which are listed in Table 1. The first
scheme makes no prediction. The next three are one-
dimensional predictors, which scan the image in raster, ver-
tical, and diagonal order, while the last four schemes are
two-dimensional predictors. In this work, we use first-order
entropy as a measure to compare our work with the well-
known techniques, such as JPEG.
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The correlation of adjacent pixels implies spatial corre-
lation, and well-known image compression techniques,
such as JPEG, utilize this spatial correlation to decorrelate
image data before actually encoding it. However, unlike
single-band images, multispectral images also have spectral
correlation between adjacent spectral bands. In the case of
Landsat Thematic Mapper~TM! data, it is well recognized
that bands 1, 2, and 3 are highly correlated with each other
as also are bands 5 and 7. Although much work has been
done toward developing algorithms for compressing single-
band image data,5,6 the multidimensional~spatial and spec-
tral! nature of multispectral remotely sensed data has not
been thoroughly explored.7,8 A review of the literature in-
dicates that some recent studies have examined the spectral
relationships in multiband data and have developed algo-
rithms that take advantage of such relationships.7–10

Tate9 used spanning trees to order the bands before us-
ing linear prediction among the bands in the decorrelation
step. Wang, Zhang, and Tang10 calculated the standard cor-
relation (r ) between the bands to classify the bands of a
TM image prior to using multivariate regression on spatial
and spectral neighbors to determine the optimal coefficients
for prediction in the decorrelation step. Memon et al.8 took
a different approach. Instead of using linear or regression-
based predictive techniques, they stated that since the bands
are imaging the same physical structure, they should have
similar patterns that could be captured by some structure.
Hence, if a structure can optimally decorrelate one of the
bands, such as prediction trees, then that structure could be
used for other bands. Their observations proved to be cor-
rect based on the results presented.

This research investigated the spectral and spatial corre-
lation for the Landsat TM multispectral image data using
permutations. A new spectral scheme is proposed that uti-
lizes permutations for the visible bands of Landsat TM
data. The results indicate that on an average, an additional
0.3 bit per pixel or more may be saved over the standard
lossless JPEG technique.

2 Permutations for Image Compression

In the study of sorting algorithms, permutations are of spe-
cial importance since they represent unsorted input data.11

Knuth11 explains this relationship with respect to different
sorting algorithms. Given a setS, of sizen5uSu, there are
n! unique possible orderings of the setS. Let P be an
n3n digital image, that is,Pi , j is a pixel representing the

i ’th row and j ’th column, for i , j51, . . . ,n, and suppose
thatPi , j is a byte representing any of 256 brightness~gray!
values~BVs!. Similarly, a multispectral image may be rep-
resented by a three-dimensional array wherePi , j ,b repre-
sents the pixel value along rowi , column j , in bandb. We
convert a two-dimensional square array into a linear array
P8 in the usual way wherePk8 5 Pi , j for i , j51, . . . ,n and
k5( i21)n 1 j . Thus,k ranges over the set$1,2, . . . ,n2%.
In this way, each pixel position has an integer
index, and we can regard the image as a sequence of
gray values, @P18 ,P28 , . . . ,Pj8 , . . . ,Pn2

8 #. If p is a
permutaion of $1,2, . . . ,n2% that sorts the sequence
@P18 ,P28 , . . . ,Pj8 , . . . ,Pn2

8 # in ascending order, then the
sorted sequence is

Pp1
8 <Pp2

8 < . . .<Ppn
28 .

Sincen2 is in fact much larger than the numberg of gray
values, the sorted sequence gives rise to a partition of
$1,2, . . . ,n2% into blocks,B1 ,B2 , . . . ,Bg wherePb8 5 i for
all b P Bi . In other words,

Pp1
8 5Pp2

8 5 . . .5Ppk1
8 ,Ppk111

8 5 . . .5Ppk11k2
8

, . . .,Ppk11k21 . . .1kg11
8 5 . . .5Ppn2

8 ,

whereki5uBi u for 1< i<g.
Here there areg21 jumps, whereg is the number of

gray values attained in the image. This generates a partition
of indices, as in Fig. 1. Note that the indices within each
block can be arranged in any order. Hence, they can be
arranged in ascending order. This sorting permutation
based onP8 is called thecanonical sorting permutation
and is represented withps.

Depending onuP8u, and the number of gray values~in-
tensities!, there may be more than one sorting permutation.
Indeed, if all the 256 possible gray values occur with some
frequencyf i , then the number of sorting permutations is:

)
i50

255

f i ! .

Since this number is very large for a typical image, we
chose the canonical sorting permutation in order to create a
unique correspondence between the transmitter and re-
ceiver.

On single images, one can compress the data by sorting
it and then taking the differences of consecutive elements.
If we assume that all possible 256 intensities occur in an
image, then upon sorting the image, blocks off 0 elements
with value 0,f 1 elements with a value 1, and so on, result.
In that case, if the differences of consecutive elements are

Fig. 1 View of data after sorting.

Table 1 Lossless JPEG predictors.

Mode Prediction for xi,j

0 No Prediction

1 xi21,j

2 xi,j21

3 xi21,j21

4 xi,j211xi21,j2xi21,j21

5 xi,j21 1 (xi21,j2xi21,j21)/2

6 xi21,j1 (xi,j212xi21,j21)/2

7 (xi,j211xi21,j)/2
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taken, only 0s and 1s will remain, and owing to the high
frequency of 0s, the data are likely to be coded at a very
low cost rate. In fact, the simulation results show that such
data can be coded at a rate of 0.015 to 0.035 bits/pixel in
the case of 2563256 images. For bigger images, the cost
range is even smaller.

Although such tremendous minimization of data is pos-
sible, the additional cost that results from transmitting a
sorting permutation reverses the process to an overall loss.
However, in the case of multispectral images, we do not
encounter the transmission cost of a sorting permutation,
and as we will demonstrate in later sections, we even have
gains.

3 Permutations for Multispectral Image
Compression

In the case of multispectral images, the pixel values in
neighboring bands may be different; however, the relation-
ship between a pixel and its spatial neighbors may be very
similar in adjoining spectral bands. If spectrally such a re-
lationship occurs between the adjoining spectrally different
pixels and their respective neighbors, then the relationship
can be captured by permutations. From the correlation ma-
trices of the images~Tables 2 to 7!, it is clear that the
visible bands~bands 1 to 3! have high correlation, as do the
middle-infrared bands~bands 5 and 7! of a TM image. The
correlation between the visible and mid-infrared bands is
well recognized by the remote sensing community. In fact,
the classification algorithm used by Wang, Zhang, and
Tang10 creates four classes: bands$1, 2, 3%, $4%, $6% and$5,
7%. It is generally accepted that if the correlation among
two vectors is high~e.g.,.0.8!, then the sorting permuta-
tions are closer. Therefore, the sorting permutations of vis-
ible and mid-infrared bands may create more orderly data
~which have locality of reference! when applied to the next
band in the order.

When data have locality of reference, then the move-to-
front coding may be a good choice12 for transforming the
original source data into another source that may have
lower first-order entropy with respect to the original source.
Consequently, if the spectral correlation can be captured by
permutations, we may transform the source data in some
bands to a different ordering using the canonical sorting
permutations of some other band, so that the move-to-front
coding can generate a lower source entropy.

In this section, we present an algorithm based on permu-
tations and move-to-front coding to compress a multiband
image.

The encoder uses the following steps:

1. Obtain the canonical sorting permutation,p1
s of band

b1 ~wherebx represents the imagePi , j ,x).

2. Compressb1 with JPEG. Encode the data and trans-
mit them to the decoder along with 3 bits to indicate
which JPEG operator was used.

3. Starting fromx52, obtain in the canonical sorting
permutation,px

s , of bandbx . Then, applypx21
s to

bx , to getbx8 .

4. Apply move-to-front coding tobx8 ; encode the result-
ing data; then transmit them to the decoder.

The decoder:

1. Decodeb1 to undo the effect of the JPEG operator
and obtain thep1

s .

2. Starting fromx52, for each band received, decode
the data, undo the effect of the move-to-front coding,
and usingpx21

s , reorder the data and construct band
bx .

From the above algorithms it is clear that permutations do
not require an additional overhead for encoding or decod-
ing purposes for the multispectral images.

4 Simulation Results

For our simulations, we used the TM images ‘‘Omaha,’’
‘‘Chernobyl,’’ ‘‘Butler,’’ and ‘‘Crescent Lake,’’ which
were obtained from the Center for Advanced Land Man-
agement Information Technologies~CALMIT ! at the Uni-
versity of Nebraska, Lincoln. The ‘‘Washington D.C.’’ im-
age is well known among the data compression community
and was supplied by K. Zhang.10 The test images, shown in
Fig. 2, differ in terms of size and are as follows: ‘‘Omaha,’’
132331325; ‘‘Butler,’’ ‘‘Chernobyl,’’ and ‘‘Washington
D.C.,’’ 5123512; ‘‘Crescent Lake,’’ 3763331; and
‘‘Wyoming,’’ 7803664.

In Table 8, results of the original source entropy of
bands 2 to 7, and the results obtained by applying our al-
gorithm defined in the last section, are presented for some
of the test images. The results clearly indicate that there is
consistent gain with respect to first-order entropy of the
image data. In addition, there is tremendous gain with re-
spect to the original source entropy for the visible bands,

Table 2 Correlation matrix for the Chernobyl image.

TM Bands
(mm)

1
0.45–0.52

2
0.52–0.60

3
0.63–0.69

4
0.76–0.90

5
1.55–1.75

7
2.08–2.35

1 1.00

2 0.96 1.00

3 0.93 0.98 1.00

4 0.64 0.73 0.70 1.00

5 0.74 0.83 0.86 0.86 1.00

7 0.78 0.86 0.91 0.75 0.97 1.00
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Table 3 Correlation matrix for the Butler image.

TM Bands
(mm)

1
0.45–0.52

2
0.52–0.60

3
0.63–0.69

4
0.76–0.90

5
1.55–1.75

7
2.08–2.35

1 1.00

2 0.89 1.00

3 0.96 0.92 1.00

4 20.38 20.23 20.47 1.00

5 0.77 0.66 0.79 20.30 1.00

7 0.85 0.78 0.90 20.46 0.93 1.00

Table 4 Correlation matrix for the Crescent Lake image.

TM Bands
(mm)

1
0.45–0.52

2
0.52–0.60

3
0.63–0.69

4
0.76–0.90

5
1.55–1.75

7
2.08–2.35

1 1.00

2 0.98 1.00

3 0.96 0.98 1.00

4 0.50 0.56 0.55 1.00

5 0.81 0.85 0.89 0.76 1.00

7 0.90 0.93 0.97 0.64 0.96 1.00

Table 5 Correlation matrix for the Wyoming image.

TM Bands
(mm)

1
0.45–0.52

2
0.52–0.60

3
0.63–0.69

4
0.76–0.90

5
1.55–1.75

7
2.08–2.35

1 1.00

2 0.98 1.00

3 0.97 0.98 1.00

4 0.18 0.24 0.16 1.00

5 0.86 0.87 0.89 0.19 1.00

7 0.88 0.88 0.92 0.02 0.95 1.00

Table 6 Correlation matrix for the Omaha image.

TM Bands
(mm)

1
0.45–0.52

2
0.52–0.60

3
0.63–0.69

4
0.76–0.90

5
1.55–1.75

7
2.08–2.35

1 1.00

2 0.94 1.00

3 0.93 0.97 1.00

4 20.31 20.28 20.38 1.00

5 0.44 0.50 0.47 0.34 1.00

7 0.75 0.79 0.80 20.11 0.81 1.00

Table 7 Correlation matrix for the Washington DC image.

TM Bands
(mm)

1
0.45–0.52

2
0.52–0.60

3
0.63–0.69

4
0.76–0.90

5
1.55–1.75

7
2.08–2.35

1 1.00

2 0.92 1.00

3 0.86 0.92 1.00

4 0.07 0.23 0.33 1.00

5 0.36 0.50 0.56 0.79 1.00

7 0.65 0.73 0.78 0.49 0.85 1.00
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which is obtained by simply taking the linear order of the
bands in a TM image.

It has been pointed out that a linear order may not yield
the best possible compression. For example, Tate9 has pre-
sented an algorithm for ordering multispectral images
based on spanning trees, prior to applying predictive opera-
tors to spectrally ordered bands. He obtained better com-
pression gain than just using the linear order of the bands.
Wang, Zhang, and Tang10 used correlation among the
bands for ordering them. There are a few well-known met-
rics to measure how closely two permutations are related.
These distance metrics are Spearman’sr,13–15 Hamming
distance,15 and exc and mse.14,15 However, these well-
known metrics did not indicate any meaningful relationship
between the canonical sorting permutations of different
bands. For example, Spearman’sr50.016 for the canoni-
cal sorting permutations of bands 1 and 2 of the Washing-
ton D.C. image. The results obtained from hamming dis-
tance, exc, and mse are poor as well. While these results
indicate that the canonical sorting permutations are not re-
lated, such conclusions are misleading. If the canonical
sorting permutations are not related, we would not have
obtained any positive results.

There are two possible sorting permutations for a given
pair of bands. It is important to determine which one may

yield more orderly data when applied onto the other band,
and consequently may yield a higher compression ratio. To
determine this, we tried each band’s canonical sorting per-
mutation on the other 6 bands, followed by the move-to-
front coding. Empirical results indicated that for almost all
the TM images, the canonical sorting permutation of band 2
generates more orderly data on bands 1 and 3. Also, the
canonical sorting permutation of band 7 yields more or-
derly data on band 5 than the canonical sorting permutation
of band 5 on band 7. Although the correlation among bands
5 and 7 is high (.0.8), and applying the canonical sorting
permutation followed by the move-to-front coding yields
compression, it does not always yield a higher compression
ratio than predictive techniques, such as JPEG. This is be-
cause bands 5 and 7 have a spectral distance of 0.33mm
and a wider spectral range than the visible bands.

In Table 9, under the columns of band 1 and band 3, we
list the results obtained in terms of first-order entropy when
we applied the canonical sorting permutation of band 2 to
band 1 and band 3, followed by move-to-front coding.
Also, in Table 9, for comparison purposes we present the
results of the best operator of the standard lossless com-
pression technique JPEG, when applied to bands 1 and 3.
As can be seen, for most of the images we obtained sub-
stantial gain over JPEG. By applying the canonical sorting
permutation of band 1 to band 2, and band 2 to band 3 in
linear order, improvements over JPEG technique were ob-
served in most cases~Table 8!. However, the results ob-
tained by the canonical sorting permutation of band 2 to
bands 1 and 3 yield more gain over JPEG.

One of the factors that makes band 2 the pivotal band is
the number of gray values. Among the visible bands, band
2 has the lowest range of gray values. For test images, the
number varies between 40 and 80, while for bands 1 and 3
the values range between 75 and 200. The canonical sorting
permutation of band 2 then has 40 to 80 blocks (Bi), as
opposed to 75 to 200. Therefore, the sorting permutation of
band 2 creates less perturbation on the data of bands 1 and
band 3, and forms more orderly data. The other factor is the
distribution of the TM bands in the electromagnetic spec-
trum ~EMS!. The EMS is a continuum, and the TM bands
have been selected as representative components of this
continuum based on their utility for a variety of terrestrial
applications. TM bands 1, 2, and 3 represent the visible
portion of the EMS in almost a continuous manner and
because band 2 is located between bands 1 and 3, it serves
as a link or a transition between them. Therefore, the spec-
tral distances between the bands are minimal. For example,

Fig. 2 Landsat TM band 4 (near-infrared) images used for testing
our algorithm. (a) Chernobyl, (b) Butler, (c) Crescent Lake, (d) Wyo-
ming, (e) Omaha, (f) Washington, D.C.

Table 8 Original entropy versus entropy obtained by applying our
method.

TM Image Band 2 Band 3 Band 4 Band 5 Band 6 Band 7

Chernobyl 4.83 5.53 6.08 7.10 5.04 6.54

2.93 3.39 5.12 6.04 4.32 5.96

Crescent 4.91 5.50 5.54 6.49 4.91 6.05

Lake 2.63 3.02 4.57 5.62 4.07 5.16

Washington 3.85 4.31 5.43 5.68 3.44 4.76

DC 2.89 3.21 5.32 5.35 3.28 4.67
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the spectral separation between bands 1 and 2 is 0.00mm
and between 1 and 3—is 0.11mm. However, the spectral
separation between bands 2 and 3 is only 0.02mm. With a
minimal spectral distance between bands 1 and 2, and 2 and
3, band 2 would be the pivotal point where correlations
among the three bands are maximized. This is also evident
from the correlation matrices for the six images used in this
research~Tables 2 to 7!.

5 Conclusion and Future Research

In the past, predictive methods utilizing spatial and spectral
characteristics and a combination of these characteristics
have been used to decorrelate multispectral images. The
only method that did not use predictive operators is the
prediction tree method described by Memon, Sayood, and
Magliveras.8 This study introduced permutations as a new
scheme for compression of multispectral images.

It was demonstrated that for the visible bands of a TM
image, permutations can capture the spectral correlation
and yield considerable improvement over the standard
JPEG compression technique. Owing to the high correla-
tion between the visible bands, their narrower spectral
bandwidths, and their continuity in the EM spectrum, the
canonical sorting permutation of band 2 can be used to
increase the locality of reference of data in bands 1 and 3.
Hence, the move-to-front coding generates a lower source
entropy.

It is worth noting that although bands 5 and 7 are highly
correlated, such correlation alone may not always yield a
substantial gain over JPEG using permutations. This is ob-
vious from the wavelength distances between the bands as
described by Jensen.16 The wavelengths for bands 5 and 7
are 1.55 to 1.75mm and 2.08 to 2.35mm, respectively. In
this case, not only is the spectral range for band 7 larger
~0.27mm! than that for band 5~0.20mm!, but the spectral
distances are much greater than those for the visible bands
~i.e., 0.33mm compared with 0.0mm between bands 1 and
2; 0.03mm between bands 2 and 3; and 0.11mm between
bands 1 and 3!. Therefore, even though we may obtain
gains over JPEG, when applying the canonical sorting per-
mutation of band 7 to band 5, the results are not always
favorable.

We have demonstrated that canonical sorting permuta-
tions can capture spectral relationships. Indeed, there are
many sorting permutations that can be derived, and it is
possible that some of them may generate higher locality of
reference than the canonical sorting permutation, which in
turn may yield a higher compression ratio. This may be
done with a small overhead, depending on the number of
possible sorting permutations that can be chosen. Hence,
the determination of which permutations may effectively
capture such spectral relationships is worth pursuing as a
future research problem.

Another possible research problem is to combine predic-
tion with permutations. We mentioned that different bands
have different numbers of blocks based on their range of
BVs. Thus, their predictive operators may create prediction
errors with higher variance. Because permutations can cap-
ture spectral relationships, one may construct a pseudo im-
age of the previous band using the gray value frequencies
of the current band~knowledge of gray frequencies of the
current band requires small overhead; for example, for an
image of size 5123512, the overhead is 0.02 bits/pixel!
and the canonical sorting permutation of the previous band.
Using the pixel values of the pseudo image, we may predict
the current image to a higher degree of precision. This may
minimize the variance of the prediction errors and may
yield higher compression gain.
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Table 9 Entropy of applying p2
s to TM bands 1 and 3, followed by

move-to-front coding, versus best JPEG.

Image Band 1 JPEG Band 3 JPEG

Butler 3.53 3.78 3.81 3.93

Chernobyl 3.49 3.77 3.39 3.83

Crescent Lake 3.28 3.58 3.02 3.52

Omaha 3.80 4.23 3.21 3.98

Washington D.C. 3.71 3.75 3.21 3.45

Wyoming 3.39 3.98 2.84 3.94

Average 3.49 3.79 3.24 3.76

Compression Ratio 2.29 2.11 2.46 2.13
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