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RESEARCH Open Access

MicroRNAs in bovine milk exosomes are
bioavailable in humans but do not elicit a
robust pro-inflammatory cytokine response
Ezra Mutai1, Amanda E. Ramer-Tait2 and Janos Zempleni1*

Abstract

Background: Bovine milk exosomes are studied for their roles as bioactive food compounds and as vehicles for drug
delivery. Both lines of investigation converge on immune function, e.g., immune regulation by absorption of
microRNAs encapsulated in milk exosomes across species boundaries, and the possibility of exosomes and their cargos
triggering an immune response if used in drug delivery. This study assessed the bioavailability of immune-related
microRNAs from bovine milk and changes in plasma cytokine concentrations after milk consumption in humans, and
the secretion of cytokines by human peripheral blood mononuclear cells (PBMCs) cultured with milk exosomes
transfected with immune-relevant microRNAs.

Results: Human plasma samples were collected before and at timed intervals after a milk meal and analyzed for
concentrations of six immune-relevant microRNAs and nine cytokines. The peak plasma concentrations of miR-15b-5p, miR-
21-5p, miR-106b-5p, and miR-223-3p were 60 ± 9.80% to 162 ± 31.80% higher after milk consumption (Ct values 23 ± 1.2 to
26 ± 1.1 cycles) compared to baseline values (P< 0.05). Plasma concentrations of TNF-alpha were not significantly different
before versus after milk consumption; eight other cytokines were below detection limit. PBMCs were collected before and
six hours after milk consumption and cultured with or without concanavalin A (ConA). TNF-alpha, IL-1β, IL-6 and IL-10 were
detectable in culture media, but concentrations did not depend on milk consumption prior to PBMC isolation (P> 0.05).
When PBMC cultures from fasted subjects were supplemented with milk exosomes that had been transfected with
immune-relevant microRNAs, the concentrations of IL-1β, IL-6, IL-10 and TNF-alpha were 29 ± 12% to 220 ± 33% higher
than controls cultured with non-transfected exosomes (P< 0.05), but cytokine concentrations were not different compared
with control exosomes transfected with scrambled microRNA (P> 0.05).

Conclusions: MicroRNAs in bovine milk exosomes are bioavailable. Milk exosomes do not elicit an increase of plasma
cytokines following oral administration.

Trial registration: ISRCTN registry ID: 16329971. Retrospectively registered on February 7th, 2019.

Keywords: Bioavailability, Bovine, Cytokines, Human, microRNA, Milk, Peripheral blood mononuclear cells

Background
Exosomes are nano-sized particles that play essential roles
in cell-to-cell communication [1]. Communication is
achieved through the transfer of diverse cargos such as vari-
ous species of RNAs, proteins, and lipids from donor to re-
cipient cells [1–3]. Among exosome cargos, microRNAs
(miRs) are of particular interest, because they hybridize

with complementary sequences in 3′-untranslated regions
in mRNA and silence genes through triggering mRNA deg-
radation or preventing translation of mRNA [4, 5]. More
than 60% of human (Homo sapiens, hsa) mRNAs contain
putative bindings sites for the approximately 2000 miRs
encoded in the human genome [6, 7]. MiRs regulate virtu-
ally every gene network in humans and are implicated in
numerous physiological and pathological conditions in
humans [8, 9]. The negative regulation of genes by miRs is
of particular importance for fine tuning regulatory circuit-
ries in the immune response [10].
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Traditionally, miRs have been considered endogenous
regulators of genes, consistent with observations that
miRs are encoded by endogenous genes and loss of miR
maturation in Dicer knockout mice is embryonic lethal
[11–16]. The paradigm that miRs are exclusively ob-
tained from endogenous synthesis has been challenged
in reports suggesting that dietary miRs in plants and bo-
vine (Bos taurus, bta) milk are bioavailable and contrib-
ute to the body pool of miRs in humans and animals
[17, 18]. For example, in 2012 evidence emerged that
MIR-168a from rice (Oryza sativa; osa-MIR-168a) is de-
tectable in human and animal sera, and osa-MIR-168a
decreases the expression of LDL receptor adapter pro-
tein 1mRNA, thereby inhibiting LDL receptor expression
in mouse liver [17]. Encapsulation of miRs in exosomes
confers resistance to the harsh conditions in dairy pro-
cessing plants and the human gastrointestinal tract and
subsequently facilitates the intestinal absorption of miRs
[19–22]. Discoveries regarding the bioavailability of milk
miRs were confirmed by five independent laboratories
(reviewed in [23]). That review also discusses the limita-
tions of studies that failed to demonstrate bioavailability
of milk miRs.
Studies of miRs and their exosome shells in bovine

milk have gained considerable traction in two lines of
investigation, namely the roles of miRs and exosomes
as bioactive food compounds and the use of milk exo-
somes as vehicles for drug delivery. For example, evi-
dence suggests that dietary depletion of milk exosomes
and RNA elicits phenotypes such as a 40-fold increase
of purine metabolites in human and murine body fluids
and tissues and a moderate loss of grip strength in mice
[24, 25]. Milk exosomes have been used to deliver drugs
to tumor sites in mice [26, 27]. Both lines of investiga-
tion converge in immune function, e.g., immune regula-
tion by miRs across species boundaries and the
possibility of adverse effects caused by administration
of immunogenic exosomes in drug delivery.
Bovine milk exosomes contain miRs that have been im-

plicated in immune function, e.g., miR-15b-5p, miR-21-5p,
miR-34a-5p, miR-106b-5p, miR-155-5p, and miR-223-3p
[7, 10, 28]. These miRs have nucleotide sequences identical
to the human orthologs and therefore will bind to comple-
mentary sequences in human mRNA [29]. This study
assessed the bioavailability of immune-related microRNAs
from bovine milk and immune responses to milk feeding in
humans as well as the secretion of cytokines by human per-
ipheral blood mononuclear cells (PBMCs) cultured with
miR-transfected milk exosomes.

Results
MiRs analyses in bovine milk and bovine milk exosomes
The amounts of the six miRs quantified using RT-qPCR
analyses were similar in bovine milk and bovine milk

exosomes. When using < 30 PCR cycles as detection
limit (Ct, detection limit), miR-15b, miR-21, miR-106b
and miR-223 were easily detectable in both milk and
exosomes, whereas miR-34a and miR-155 were border-
line detectable (Fig. 1).

Plasma levels of immune-related miRs
We assessed plasma levels of six immune-related miRs
before and at timed intervals after consumption of 1 L
milk by using reverse transcriptase quantitative PCR
(RT-qPCR) in 12 healthy subjects; miR-1-3p was used as
negative control because it is not detectable in bovine
milk. A synthetic miR, miSPIKE (IDT DNA, Inc.) was
added to plasma samples after denaturation with lysis
buffer and served as external standard. MiSPIKE was
used to normalize for miR extraction efficiency and any
losses occurring during extraction [18]. Four miRs were
detectable in human plasma when the detection limit
was defined as Ct = 30 PCR cycles: miR-15b-5p, miR-21-
5p, miR-106b-5p and miR-223-3p (Table 1); miR-34a-5p
and miR-155-5p were not detectable before and after
milk consumption. The Ct values for miR-1-3p and miS-
pike were not significantly different among time points.
Pharmacokinetics analysis of plasma concentration ver-
sus time curves (AUC) suggest that plasma levels vary
greatly among miRs, plasma levels peaked between three
and six hours, and the apparent bioavailability varied
among miRs (miR-223-3p >miR-21-5p > miR-15b-5p >
miR-106b-5p; Table 2). For example, the percent in-
crease of postprandial peak plasma concentration was
60 ± 9.80% and 162 ± 31.80% for miR-106b-5p and miR-

Fig. 1 Reverse transcriptase quantitative PCR analyses of immune-
related miRs in bovine milk and bovine milk exosomes from an
equal volume of milk. Values means ± SEM (n = 3). Ct
Cycle threshold

Mutai et al. ExRNA             (2020) 2:2 Page 2 of 9



223-3p, respectively. Taken together, the results indicate
that some, but not all, miRs in bovine milk exosomes
are bioavailable in humans after milk consumption.
A previous report suggested that miR analysis may be

confounded by contamination of NucleoSpin miR
plasma columns with microbial RNAs, but we could not
reproduce these findings [30]. We tested for column
contamination by passing molecular biology grade water
through hypochlorite-treated and non-treated columns
and compared the Ct values of the six miRs in the two
treatments by RT-qPCR (n = 5 per treatment). Ct values
were greater than 35 in all samples tested. Absence of
contamination notwithstanding, we erred on the side of
caution and treated columns with 0.5% sodium hypo-
chlorite prior to miR extraction from plasma [30].

Concentrations of cytokines in plasma
Consumption of milk had no effect on cytokine concen-
trations in human plasma. Nine cytokines were included
in the customized multiplex assay, based on the rationale
that distinct lineages of the immune cells secrete differ-
ent cytokines. Out of the nine cytokines tested, only
TNF-alpha was detectable in plasma collected before
and after milk consumption; the apparent increase of
plasma TNF-alpha concentrations three hours after milk
consumption compared with baseline was not statisti-
cally significant (p = 0.08 for one-way ANOVA; Fig. 2).
These results suggest that consumption of milk does not
elicit an increase in cytokine concentrations in human
plasma.

Concentrations of cytokines in PBMC culture media
Milk consumption alone did not prime PBMCs to increase
the net secretion of IL-1β, IL-6, IL-10 and TNF-alpha
compared with PBMCs collected before milk consump-
tion ex vitro. However, PBMCs from participants consum-
ing milk did produce significantly higher levels of these
cytokines following stimulation with concanavalin A
(ConA) for 24 h (Fig. 3). ConA treatment alone did not
elicit changes of cytokine concentrations in culture media.
For media collected at 48 h and 72 h, patterns of cytokine
concentrations were the same as for the first 24 h of cul-
ture (Additional files 1 and 2). The concentrations of IL-2,
IL-4, IL-5, IL-17A and interferon gamma (IFN-γ) at 24, 48
and 72 h from cultures of PBMCs isolated before and six
hours after a milk meal were not affected by milk con-
sumption or ConA (Table 3).
Cytokine concentrations in culture media were not al-

tered if PBMCs from fasted subjects were cultured with
exosomes transfected with equimolar concentrations of a
mixture of four immune-relevant miR or a scrambled miR
control compared to concentrations in media from
PBMCs incubated with non-transfected exosomes (Fig. 4).
For example, the concentrations of TNF-alpha were not
significantly different in media supplemented with 1010

/ml milk exosomes compared to media supplemented
with 105/ml exosomes. Likewise, co-stimulation with
ConA and transfection of exosomes with immune-
relevant miRs or scrambled miRs had no significant effect
on TNF-alpha concentrations in media. The apparent ab-
sence of effect was likely due to the large variation in
TNF-alpha concentrations among samples. We conducted

Table 1 Ct values of plasma miRs before and after milk consumption in healthy adults1

Ct values

Hours miSPIKE control miR-15b-5p miR-21-5p miR-106b-5p miR-223-3p miR-34a-5p miR-155-5p miR-1-3p

0 19 ± 2.1 28 ± 2.4 25 ± 2.3 28 ± 2.2 25 ± 2.8 33 ± 2.3 33 ± 1.9 34 ± 1.5

3 18 ± 2.0 26 ± 2.3 24 ± 1.5 26 ± 1.8 25 ± 1.7 35 ± 2.2 32 ± 2.3 34 ± 0.9

6 18 ± 1.1 25 ± 1.6a 23 ± 1.2a 26 ± 1.1a 24 ± 0.6a 35 ± 1.6 33 ± 2.4 33 ± 1.9

9 19 ± 1.9 27 ± 2.8 24 ± 1.9 27 ± 2.4 25 ± 1.8 35 ± 1.8 33 ± 2.9 33 ± 1.5
1Values are means ± SD, n = 12, aP < 0.05 vs. hour 0. Ct cycle threshold, miR microRNA

Table 2 Pharmacokinetics analysis of plasma miR time curves after milk meal in healthy adultsa

Variable miR-15b-5p miR-21-5p miR-106b-5p miR-223-3p miR-1-3p

Baselineb, fmol/L 682 ± 150 2048 ± 190 400 ± 110 822 ± 120 94 ± 9.8

Cmax, fmol/L 1289 ± 360 5048 ± 940b 641 ± 140 2152 ± 570a 99 ± 4.9

% increasec 89 ± 11.80 147 ± 23.20 60 ± 9.80 162 ± 31.80 –

tmax, h 3.7 ± 0.3 3.2 ± 0.6 4.1 ± 0.5 3.8 ± 0.7 –

AUCd, (fmol/L) × h 3018 ± 120c 12,669 ± 760c 1531 ± 48c 5377 ± 320c –
aValues are means ± SEM, n = 12. aP < 0.05, bP < 0.01, cP < 0.0001, vs. baseline. AUC Area under the plasma concentration versus time curve, Cmax Maximal plasma
concentration, miR MicroRNA, tmax Time of peak concentration
bPlasma concentration at time 0 h
cCmax vs. baseline
dFor hours 0–9
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a power calculation (α = 0.05, β = 0.8) using the mean ±
SD of TNF-alpha concentrations (53.2 ± 49.8 pg/ml) in
media from PBMCs incubated with 1010/ml naïve milk
exosomes without ConA. The test hypothesis was that in-
cubation of PBMC cultures with exosomes loaded with
immune-related miRs does not affect the net secretion of
cytokines. Fifty-nine samples would be needed to detect a
30% change of TNF-alpha concentrations. Patterns of
media concentrations of IL-1β, IL-6 and IL-10 were varia-
tions of that described for TNF-alpha, including patterns
of data variation. Taken together, our data suggest that
bovine milk exosomes elicit cytokine secretion by PBMCs
only if co-stimulated with ConA ex vivo in humans.

Discussion
This study represents an important advance in the field
of milk exosomes and their RNA cargos with respect to
two lines of investigation, bioactive food compounds in
human nutrition and drug delivery by milk exosomes.
Our results are notable because they suggest that some,
but not all, miRs in milk exosomes enter the plasma
space after milk consumption. A previous study sug-
gests that postprandial increases in miR plasma levels
are due to absorption of miRs from milk as opposed to
milk consumption stimulating endogenous synthesis
[31]. Beyond this idea, it has also been shown that diet-
induced stimulation of endogenous miR synthesis also
contributes to postprandial increases of plasma miRs
[32]. Our RT-qPCR analyses demonstrated the presence
of the six immune-related miRs in bovine milk and bo-
vine milk exosomes. Our analyses are consistent with
previous studies, which also detected the six miRs in
bovine milk [19, 28]. Our observed absence of a

postprandial increase for miR-34a-5p and miR-155-5p
in plasma should not be confused with an absence of
absorption, but may instead result from a first-passage
elimination in the intestinal mucosa or liver as pro-
posed previously for miR-375 [31, 33]. In addition, the
concentrations of miR-34a are low in bovine milk exo-
somes; theoretically, quantitatively minor increases in
plasma miR-34a concentrations might have escaped de-
tection [19]. The limitations of previous studies that
failed to detect absorption of miRs from milk are dis-
cussed in a recent review and were attributed to a lack
of miR encapsulation in exosomes, compromised sam-
ple integrity, first-passage elimination and biased bio-
informatics analysis [23]. It appears reasonable to
conclude that both absorption of miRs from milk and
milk-induced endogenous synthesis of miRs occur.
Our discoveries regarding the immunogenic potential

of milk miRs are important in the context of both milk
exosomes and miR cargos as bioactive food compounds
and exosomes for drug delivery. Previous studies have
revealed pathways by which select miRs elicit immune
responses by binding to toll-like receptors (TLRs) or via
surface antigen-mediated delivery of exosomes to im-
mune cells [34–36]. The binding of single-stranded RNA
to TLR3, TLR7 and TLR8 as well as the binding of
double-stranded RNA to TLR3 are hallmarks of an anti-
viral response [37–39]. RNA binding to TLRs may
trigger two distinct antiviral responses, i.e., NF-κB-
dependent expression of antiviral cytokines such as IL-
1β and TNF-alpha and interferon regulatory factor- 3
(IRF-3)-dependent expression of Type I interferons, in-
cluding interferon beta (IFN-β) [40, 41]. Foreign exo-
somes are known to accumulate in resident liver and
spleen macrophages and that human macrophages trans-
port milk exosomes and their miR and mRNA cargos
[42–44]. In the light of these previous studies, one may
not expect our observed absence of a net increase in
plasma cytokine concentrations following milk con-
sumption in humans and in PBMC cultures supple-
mented with naïve milk exosomes. Caution needs to be
exercised when interpreting these apparently contradict-
ory results. Our study examined the net (apparent) se-
cretion of cytokines into plasma and media without
considering the opposing effects of secretion and elimin-
ation. There is precedent for suggesting that an increase
of cytokine endocytosis may override an increase in se-
cretion. In a previous study, the essential nutrient biotin
caused an apparent decrease in the secretion of IL-2 by
PBMCs ex vivo, but the observed decrease was caused
by a biotin-dependent increase in IL-2 endocytosis by
PBMCs due to increased expression of IL-2 receptor-γ
[45, 46]. Future studies that perform a comprehensive
analysis of miR-dependent pathways of cytokine secre-
tion and endocytosis are warranted.

Fig. 2 Box plots of TNF-alpha plasma concentration before and at
timed intervals after a milk meal. Boxes represents the 5th and 95th
percentiles, horizontal bars are the medians, and error bars indicate
minimum and maximum values. p = 0.08 versus hour 0 (one-way
ANOVA and Sidak’s multiple comparisons posthoc test; n = 5). TNF-
alpha Tumor necrosis factor-alpha
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In drug delivery, the objective is to leverage exo-
some stability and bioavailability for delivering
siRNA and other drugs to cancer sites [27, 47].
Ideally, delivery is achieved without triggering an im-
mune response while allowing RNA-based drugs to
elicit a biological response in the recipient organism.

Our study suggests that milk exosomes meet these
criteria. First, supplementation of PBMC cultures
with naïve milk exosomes did not elicit an increase
in the apparent secretion of cytokines into culture
media. This observation is consistent with previous
studies suggesting absence of immune responses and
inflammation in mice treated with oral milk exo-
somes [26]. While we and others did not assess
immune reactions after intravenous exosome admin-
istration in this study, we have not observed frank
adverse reaction to intravenous milk exosome injec-
tions in mice in a previous study [31]. Second, upon
loading with pharmacological doses of miR, the
cargo was able to elicit a biological response in the
form of increased cytokine secretion by PBMCs
ex vivo. The secretion of cytokines was not specific
for pro-inflammatory cytokines but instead presented
as a general upregulation of PBMC activity that also
included increased production of the anti-
inflammatory cytokine IL-10 [48]. A major obstacle

Fig. 3 Secretion of TNF-alpha, IL-1β, IL-6, and IL-10 by human PBMC
cultures ex vivo. PBMCs were isolated before and six hours after milk
consumption and cultured with or without ConA for 24 h. Boxes
represents the 5th and 95th percentiles, horizontal bars are the
medians, and error bars indicate the maximum values. *p < 0.05,
**p < 0.01 versus milk-free and ConA-free controls. (Friedman rank
sum test followed by pairwise comparisons using Nemenyi multiple
comparison test; n = 12). ConA Concanavalin A, IL Interleukin, PBMC
Peripheral blood mononuclear cell, TNF-alpha Tumor
necrosis factor-alpha

Table 3 Cytokine concentrations in culture media of PBMCs
isolated before and after a milk meal in healthy adultsa

Cytokine Hours Pre-milk meal (pg/mL) Post-milk meal (pg/mL)

IL-2 24 2 ± 0.6 3 ± 1.6

48 4 ± 1.4 5 ± 1.9

72 1 ± 0.3 1 ± 0.15

IL-4 24 5 ± 1.1 6 ± 1.1

48 5 ± 1.3 6 ± 1.4

72 3 ± 0.7 3 ± 0.6

IL-5 24 4 ± 0.9 4 ± 1.8

48 4 ± 1.0 4 ± 1.1

72 1 ± 0.2 1 ± 0.1

IL-17A 24 3 ± 0.7 5 ± 2.1

48 13 ± 0.9 13 ± 8.8

72 1 ± 0.1 4 ± 3.1

IFN-γ 24 3 ± 0.8 4 ± 1.2

48 3 ± 0.7 4 ± 1.3

72 1 ± 0.2 1 ± 0.4
aValues are means ± SEM, n = 12 p > 0.05 for PBMCs collected before vs. after
milk consumption and treated with ConA for 24, 48 and 72 h. ConA
Concanavalin A, IFN-γ Interferon-gamma, IL interleukin
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in exosome-dependent delivery of drugs will be to
manipulate the homing of exosomes to sites of dis-
ease. Milk exosomes accumulate primarily in the in-
testinal mucosa, liver, spleen and brain in in mice
and pigs, making them an attractive vehicle for de-
livering cargo to these locations [31].

Conclusion
Milk exosomes should be considered further as a viable
option for the delivery of drugs and regulatory RNA
through diet.

Methods
Participants
Twelve apparently healthy adults participated in this
study [7 men, 5 women; age (mean ± SD, years): 28.8 ±
3.51; body mass index (mean ± SD, kg/m2): 23.9 ± 2.40].
For cytokine analyses in plasma, a sub-cohort of five
subjects was sampled [2 men, 3 women; age (mean ± SD,
years): 28.4 ± 0.58 y; body mass index (mean ± SD, kg/
m2): 22.4 ± 1.65]. Exclusion criteria included pregnancy,
smoking, milk allergies, and self-reported health prob-
lems. The Institutional Review Board at the University of
Nebraska- Lincoln approved this protocol and all sub-
jects signed an informed consent form. This study was
retrospectively registered as a clinical trial with ISCRTN
registry (ISRCTN16329971).

Study design
A within-subjects design was used, i.e., each subject
served as his or her own control (pre-treatment vs. post-
treatment samples). Subjects were instructed to avoid
milk and other dairy products for at least 12 h before
study begin and report to the study site after an over-
night fast. A fasting blood sample was collected (time 0
h, baseline control) after which subjects consumed 1 L of
1% fat bovine milk from a local grocery store in less than
10min. The dose of milk was based on a 26-y-old male
study subject (75 kg body weight, 1.83 m height) and was
adjusted for the other subjects so that all subjects re-
ceived the same does of milk (0.85 ± 0.05 L, mean ± SD)
per unit of total body water as described previously [49].
In a previous dose-response study (0.25–1.0 L milk), we
assessed the plasma-time courses of miR-29b, miR-200c
and miR-1 (negative control) in healthy adults [18]. The
data from the previous study informed us that i) post-
prandial increases of plasma miR concentrations were
detectable with doses as little as 0.25 L milk, ii) the in-
creases were more robust if 1.0 L milk was consumed
compared with 0.25 L, and iii) postprandial plasma con-
centrations peaked at about 3–4 h and returned to base-
line values 9 h after milk consumption. Based on these
previous observations we rationalized that a dose of 1.0
L milk and postprandial blood collections at t = 3, 6 and
9 h are appropriate choices for this study. Blood samples
were collected in EDTA tubes to avoid loss of miRs by
binding to heparin and inhibition of PCR by heparin res-
idues [50, 51]. PBMCs and plasma were collected by
using gradient centrifugation [52].

Fig. 4 Cytokine concentrations in media from PBMCs cultured with
naive bovine milk exosomes, or exosomes transfected with
equimolar concentrations immune-stimulatory miRs or scrambled
miR. PBMCs were isolated from fasted subjects and cultured with or
without ConA for 24 h. Values are means ± SEM (n = 5). Means
without a common letter differ from one another (p < 0.05,
Friedman rank sum test followed by pairwise comparisons using
Nemenyi multiple comparison test). ConA concanavalin A, Exo
exosomes, IL interleukin, PBMCs peripheral blood mononuclear cells,
TNF-alpha Tumor necrosis factor-alpha
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Quantification of miRs in bovine milk and bovine milk-
derived exosomes
We determined presence of the immune-related miRs in
bovine milk and bovine milk exosomes by using reverse
transcription quantitative PCR (RT-qPCR). Bovine milk
(1% fat) was obtained from a local grocery store. Exo-
somes were isolated by ultracentrifugation as previously
described with minor modifications [21]. RNA was iso-
lated from bovine milk and bovine milk exosomes and
reverse transcribed by using the miScript Reverse Tran-
scription Kit following the manufacturer’s instructions
(Qiagen). RT-qPCR analyses for six immune-related
miRs were performed using SYBR Green (Qiagen) and
the universal reverse primer included in the kit plus
primers specific for individual miRs (Table 4).

Plasma miR analysis
The vast majority of bovine miRs have nucleotide se-
quences identical to their human orthologs. Therefore,
reverse transcription quantitative PCR (RT-qPCR) did
not distinguish between bovine and human mature miR-
15b-5p, miR-21-5p, miR-34a-5p, miR-106b-5p, miR-155-
5p, miR-223-3p and miR-1-3p [29]. MiR-1 is not detect-
able in bovine milk and was used as negative control
[53, 54]. MiRs were isolated from plasma by using the
NucleoSpin miRNA plasma kit (Macherey-Nagel) and
assayed by reverse transcription quantitative PCR (RT-
qPCR) as described above. Heintz-Buschart et al. re-
ported that spin columns for RNA purification may be
contaminated with microbial RNAs and produce false
positive results in miR analysis [30]. Although we could
not reproduce contamination of spin columns, we opted
to err on the side of caution and purified columns with
0.5% sodium hypochlorite prior to use [30]. The areas
under the curves (AUCs) of plasma miRs concentration
vs time curves were calculated by using the linear trap-
ezoidal rule, and were used to assess the apparent bio-
availability of miRs [55].

Cytokine analysis
PBMCs were collected before and six hours after milk
consumption and suspended in RPMI-1640 supple-
mented with 10% (by volume) autologous plasma, 1%
penicillin/streptomycin, and 0.1% sodium pyruvate.
PBMCs were grown in T25 culture flasks in a final vol-
ume of 5 ml media at a density of 2 × 106 cells/ml. Two
aliquots were prepared; one aliquot was treated with
ConA at a final concentration of 15 μg/ml and the sec-
ond aliquot was treated with solvent (vehicle control).
Cells were cultured for up to three days and media su-
pernatants were collected at 24 h, 48 h and 72 h after
culture initiation. Cytokine concentrations in cell-free
supernatants were determined using a customized Milli-
plex Map Human Cytokine/Chemokine Magnetic Bead
Panel Immunoassay Kit (EMD Millipore) for IL-1β, IL-2,
IL-4, IL-5, IL-6, IL-10, IL-17A, IFN-γ and TNF-alpha ac-
cording to the manufacturer’s instructions (Millipore
Billerica, Inc). Samples were analyzed using a Bio-Plex
Magpix reader system and Bio-Plex Manager software
(Bio-Rad, Inc.).

PBMC cultures with miR-loaded exosomes
PBMCs from human fasted blood were cultured with
milk exosomes or exosomes that were transfected with a
mixture of synthetic immune-relevant miRs (miR-15b-
5p, miR-21-5p, miR-155-5p and miR-223-3p) or scram-
bled miR at a cell density of 105 cells /ml as described
previously [31]. The scrambled miR was designed by
randomization of the nucleotide sequences from the four
immune-related miRs. Two different concentrations of
exosomes (1 × 105 or 1 × 1010 exosome particles/ml)
were used in PBMC cultures. Exosome-supplemented
PBMC cultures were treated with ConA or solvent as
described above. Cell-free culture supernatants were col-
lected 24 and 48 h after culture initiation and analyzed
for cytokines by using the Milliplex kit.

Statistical analyses
Two-way ANOVA and one-way ANOVA were used
when testing the effects of two and one independent var-
iables, respectively. Sidak’s posthoc test was used when
comparing treatments to a designated control, whereas
Tukey’s posthoc test was used when comparing all
groups. AUCs were calculated by using GraphPad Prism
6 (GraphPad Software). Pharmacokinetics data were ana-
lyzed by using repeated-measures ANOVA Fisher’s pro-
tected least significant difference test for post hoc
comparisons. For cytokine analysis, Friedman rank sum
test was used, followed by pairwise comparisons using
Nemenyi multiple comparison test. Data are reported as
means ± SEM. Effects of treatment were considered sta-
tistically significant, if P < 0.05.

Table 4 Primers used for the quantification of microRNAs in
human plasmaa

Amplicon Forward Primer

miSPIKE CTCAGGATGGCGGAGCGGTCT

miR-1-3p TGGAATGTAAAGAAGTATGTAT

miR-15b-5p TAGCACATCATGGTTTACA

miR-34a-5p TGGCAGTGTCTTAGCTGGTTGT

miR-106b-5p TAAAGTGCTGACAGTGCAGAT

miR-155-5p TTAATGCTAATCGTGATAGGGGT

miR-21-5p GCTAGCTTATCAGACTGATGTTGA

miR-223-3p CTGTCAGTTTGTCAAATACCCCA
aThe reverse primer is provided in the miScript SYBR Green kit (Qiagen) and its
nucleotide sequence is proprietary information
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Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s41544-019-0041-x.

Additional file 1. Box plots of TNF-alpha, IL-1β, IL-6, and IL-10 concen-
trations secreted by human PBMCs ex vivo. PBMCs were isolated before
and six hours after milk consumption and incubated with or without
ConA for 48 h. Boxes represents the 5th and 95th percentiles, horizontal
bars are the medians, and error bars indicate the maximum values. *p <
0.05, **p < 0.01 versus milk-free and ConA-free controls. (Friedman rank
sum test followed by pairwise comparisons using Nemenyi multiple com-
parison test; n = 12). ConA Concanavalin A, IL Interleukin, TNF-alpha Tumor
necrosis factor-alpha.

Additional file 2. Box plots of TNF-alpha, IL-1β, IL-6, and IL-10 concen-
trations secreted by human PBMCs ex vivo. PBMCs were isolated before
and six hours after milk consumption and treated with or without ConA
for 72 h. Boxes represents the 5th and 95th percentiles, horizontal bars
are the medians, and error bars indicate the maximum values. *p < 0.05
versus milk-free and ConA-free controls. (Friedman rank sum test
followed by pairwise comparisons using Nemenyi multiple comparison
test; n = 12). ConA Concanavalin A, IL Interleukin, TNF-alpha Tumor necro-
sis factor-alpha.
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