University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

UCARE Research Products

UCARE: Undergraduate Creative Activities & Research Experiences

Spring 4-13-2020

Examining Phenotypic Structural Traits as Indicators for Reproductive Longevity Success in Sows

Lindsay Kate Peters University of Nebraska - Lincoln, lindsaykpeters98@gmail.com

Melanie Dawn Trenhaile-Grannemann University of Nebraska - Lincoln, melanie.trenhaile-grannemann@unl.edu

Benny Edd Mote University of Nebraska - Lincoln, benny.mote@unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/ucareresearch

Part of the Animal Sciences Commons, Animal Studies Commons, and the Genetics and Genomics Commons

Peters, Lindsay Kate; Trenhaile-Grannemann, Melanie Dawn; and Mote, Benny Edd, "Examining Phenotypic Structural Traits as Indicators for Reproductive Longevity Success in Sows" (2020). *UCARE Research Products*. 170. https://digitalcommons.unl.edu/ucareresearch/170

This Poster is brought to you for free and open access by the UCARE: Undergraduate Creative Activities & Research Experiences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in UCARE Research Products by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Examining Phenotypic Structural Traits as Indicators for Reproductive Longevity Success in Sows LK Peters, MD Trenhaile-Grannemann, and BE Mote

PROBLEM

- Structure is the second most common reason that sows are culled on swine operations.
- If a sow is culled before she achieves her third parity, then she was not an economic asset to the operation.
- After parity three, each piglet a sow raises gives a profit of two dollars and thirty cents.
- Sow longevity is also a major welfare issue for the pork industry.
- The longevity of sows is important to all sow farms locally, nationally, and internationally.

Materials and Methods

- 494 females in 4 reps were videoed for structure traits across 17 time points throughout their life.
- Still images were pulled from the videos when the sow was standing in her natural stance.
- The images were analyzed and interpreted objectively with ImageJ.
- Structural data was analyzed for association with reproductive efficiency and longevity traits using JMP statistical software.

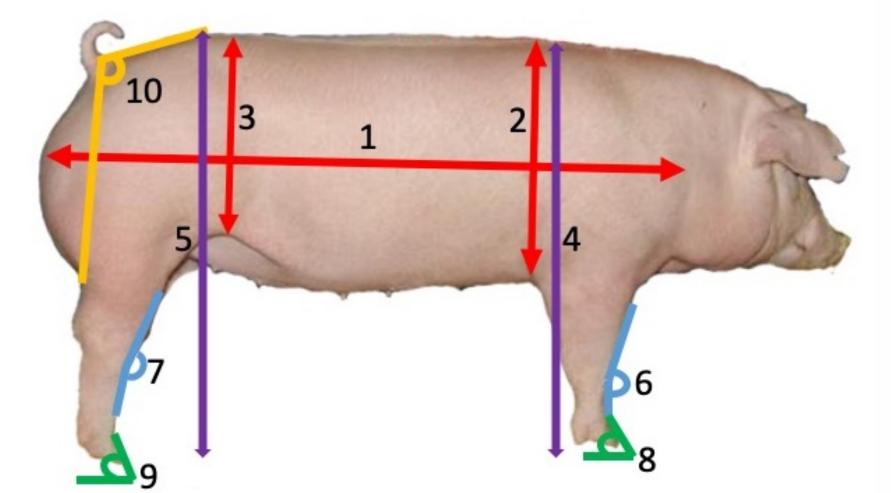


Figure 1. Structural traits measured. 1: body length, 2: body depth shoulder, 3: body depth flank, 4: height shoulder, 5: height flank, 6: knee angle, 7: hock angle, 8: front pastern angle, 9: rear pastern angle, 10: rump slope.

RESULTS

Significant associations (P < 0.05) are shown in red.

 \bullet

T2 T3 T1 T2 T3

T2 T3 T1 T2 T3

T2

T3

T2

T3

T1

T2

T3

T1

T2

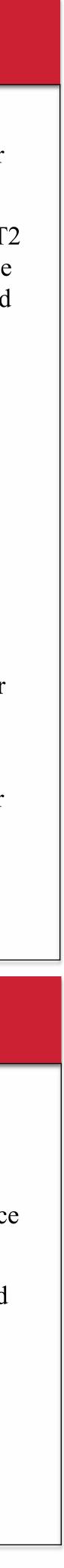
T3

Trait associations showing a trend for significance (P = 0.05 - 0.1) are shown in black.

Table 1. Association Between Body Size and Production Traits										
	P1		LT-	LT-	LT-			P1		
	Success	LTNP	NBA	TNB	PWM	LT-NW	P1 LFI	LWL	P1 WEI	
1 Length	0.18	0.13	0.18	0.24	0.47	0.76	0.96	0.82	0.72	
2 Length	0.22	0.56	0.57	0.54	0.6	0.36	0.96	0.56	0.24	
3 Length	0.52	0.28	0.54	0.82	0.76	0.23	0.81	0.56	0.03	
1 Depth Shoulder	0.18	0.03	0.18	0.25	0.17	0.61	0.73	0.89	0.48	
2 Depth Shoulder	0.16	0.57	0.1	0.88	0.42	0.09	0.04	0.11	0.12	
3 Depth Shoulder	0.49	0.09	0.3	0.45	0.14	0.07	< 0.01	0.03	0.85	
1 Depth Flank	0.18	0.06	0.19	0.26	0.25	0.82	0.92	0.61	0.27	
2 Depth Flank	0.29	0.69	0.41	0.29	0.09	0.05	0.1	0.21	0.03	
3 Depth Flank	0.33	0.38	0.69	0.95	0.01	< 0.01	0.07	0.31	0.57	
1 Height Flank	0.02	< 0.01	0.03	0.05	0.2	0.9	0.62	0.72	0.4	
2 Height Flank	0.45	0.05	0.09	0.14	0.12	0.09	0.91	0.52	< 0.01	
3 Height Flank	0.13	0.01	0.21	0.07	0.38	0.44	0.11	0.03	0.74	

Table 2. Association Between Body Angles and Production Traits										
	P1		LT-	LT-	LT-			P1		
	Success	LTNP	NBA	TNB	PWM	LT-NW	P1 LFI	LWL	P1 WEI	
1 Knee	0.82	0.68	0.97	0.9	0.98	0.16	0.15	0.06	0.3	
2 Knee	0.96	0.37	0.67	0.47	0.89	0.92	0.32	0.4	0.93	
3 Knee	0.09	0.02	0.11	0.08	< 0.01	0.1	0.88	0.52	0.64	
1 Hock	0.53	0.78	0.88	0.71	0.28	0.18	0.17	0.19	0.74	
2 Hock	0.45	0.15	0.11	0.1	0.89	0.8	0.99	0.24	0.54	
3 Hock	0.56	0.78	0.8	0.71	0.08	0.23	0.71	0.93	0.51	
1 Front Pastern	0.04	0.08	0.1	0.06	0.58	0.83	0.71	0.49	0.66	
2 Front Pastern	0.94	0.77	0.94	0.95	0.82	0.72	0.1	0.54	0.56	
3 Front Pastern	0.47	0.56	0.77	0.81	0.53	0.79	0.24	0.81	0.38	
1 Back Pastern	0.85	0.64	0.35	0.44	0.37	0.87	0.4	0.65	0.87	
2 Back Pastern	0.08	0.34	0.37	0.36	0.44	0.51	0.92	0.87	0.31	
3 Back Pastern	0.03	0.06	0.11	0.1	0.43	0.89	0.27	0.13	0.48	

P1 Success (Successfully produced to Parity 1), LTNP (Lifetime Number Parities Produced), LT-NBA (Lifetime Number Born Alive through 4 parities), LT-TNB (Lifetime Total Number Born though 4 parities), LT-PWM (Lifetime Preweaning Mortality through 4 parities), LT-NW(Lifetime Number Weaned through 4 parities), P1 LFI (Parity 1 Lactation Feed Intake), P1 LWL (Parity 1 Lactation Weight Loss), P1 WEI (Parity 1 Weaning to Estrus Interval), T1 (112 Days of Age), T2 (210 Days of Age), T3 (Early First Gestation).


DISCUSSION

- The height at the flank (Table 1) at all timepoints had a • significant impact on LTNP and it was also significant for P1 Success, LT-NBA, and LT-TNB at T1.
- The depth at the shoulder (Table 1) is significant at both T2 \bullet and T3 for P1 LFI and is also trending toward significance for LT-NW. Additionally, at T3 LTNP was trending toward significance.
- The depth at the flank (Table 1) at T2 and T3 is trending • toward significance for LT-LFI.
- The knee angle (Table 2) at T3 was significant for LTNP and LT-PWM and is trending toward significance for P1 Success, LT-TNB, and LT-NW. The T1 was was trending toward significance for P1 LWL.
- The hock angle (Table 2) at T2 was trending toward \bullet significance for TNB.
- The front pastern angle (Table 2) at T1 was significant for P1 Success trending toward significance for LTNP, LT-NBA, LT-TNB and was.
- The back pastern angle (Table 2) at T3 was significant for • P1 Success and is trending toward significance for LTNP and LT-TNB.
- The angle measurements on young sows are not as \bullet consistent as older, calmer sows.

CONCLUSION

- Front pastern angle was significantly associated with P1 Success at 112 days of age. This trait is critical to early survival before any animals are culled.
- Angles showed significance or trended toward significance predominately at the early first gestation timepoint.
- Height at flank at all timepoints is significantly associated with LTNP. The data (not shown) indicates that smaller animals have a greater success reaching parity 4 and significant advantages in lifetime reproduction traits compared to the larger animals. As producers are making selections on their replacement gilts, they should avoid selecting the largest females.

