
	 1 

ALTERED SPATIAL SUMMATION OPTIMIZES VISUAL 

FUNCTION IN AXIAL MYOPIA 

 
Victoria Stapley,1 Roger S. Anderson,1,2 Kathryn J. Saunders,1 Pádraig J. Mulholland*1, 2 

 
1 Centre for Optometry and Vision Sciences, Biomedical Sciences Research Institute, Ulster 

University, Coleraine, UK 
2 National Institute for Health Research (NIHR) Biomedical Research Centre, Moorfields Eye 

Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK 

 

 

 

CORRESPONDING AUTHOR: Pádraig J. Mulholland, Centre for Optometry & Vision 

Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, Northern Ireland 

Email: p.mulholland@ulster.ac.uk, Tel: +44 28 7012 3140 

 

 

 

KEYWORDS: Spatial summation, Ricco’s area, myopia, axial length, relative spectacle 

magnification, retinal ganglion cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 1 

ABSTRACT 

 
This study demonstrates significant differences between the area of complete spatial summation 

(Ricco’s area, RA) in eyes with and without non-pathological, axial myopia. Contrast thresholds 

were measured for six stimuli (0.01-2.07 deg2) presented at 10º eccentricity in 24 myopic subjects 

and 20 age-similar non-myopic controls, with RA estimated using iterative two-phase regression 

analysis. To explore the effects of axial length-induced variations in retinal image size (RIS) on the 

measurement of RA, refractive error was separately corrected with (i) trial lenses at the anterior 

focal point (near constant inter-participant RIS in mm), and (ii) contact lenses (RIS changed with 

axial length). For spectacle corrected measurements, RA was significantly larger in the myopic 

group, with a significant positive correlation also being observed between RA and measures of co-

localised peripheral ocular length. With contact lens correction, there was no significant difference 

in RA between the groups and no relationship with peripheral ocular length. The results suggest 

RA changes with axial elongation in myopia to compensate for reduced retinal ganglion cell 

density. Furthermore, as these changes are only observed when axial length induced variations in 

RIS are accounted for, they may reflect a functional adaptation of the axially-myopic visual system 

to an enlarged RIS.  
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INTRODUCTION 

 

Myopia is a common refractive condition, whereby the axial length of the globe is too great for its 1	

optical power. Whilst the optical refractive error of myopia can be corrected using spectacles or 2	

contact lenses, the axial elongation of the myopic eye can markedly increase the risk of sight-3	

threatening conditions such as retinal detachment,1 glaucoma,2 and myopic macular degeneration.3 4	

In the absence of such pathological processes it has also been demonstrated that the globe 5	

elongation that occurs in myopia can lead to secondary peripheral retinal thinning,4-6 in addition to 6	

a reduction in the density of both photoreceptors7-9 and retinal ganglion cells (RGCs).10,11  7	

 8	

Deficits in visual function have also been reported in the myopic, but otherwise healthy, visual 9	

system. Numerous studies have objectively investigated retinal function in myopia through 10	

measurement of standard electroretinograms (ERG)12,13 pattern ERG14 and multifocal ERG.4,13,15 11	

These studies have revealed altered responses in myopes, including reductions in amplitude12-14 12	

and longer implicit times.4,13,15 Other studies have reported reductions in function when examined 13	

using clinical tests of visual acuity,16,17peripheral resolution acuity,4,18,19 and contrast sensitivity.20 14	

 15	

It may be hypothesized that changes in visual function observed in non-pathological myopia may 16	

be accounted for by reductions in the local density of retinal neurons (e.g., RGCs) and 17	

corresponding alterations in the basic visual process of spatial summation. This refers to the ability 18	

of visual system to integrate light energy over area and serves to maximize the detection of a signal 19	

in the presence of visual noise. Spatial summation is governed by Ricco’s law, this stating that for 20	

stimuli of sufficiently small area summation is complete, with the product of stimulus area and 21	

contrast at threshold being constant.21 Ricco’s Area (RA) is the largest area for which complete 22	

spatial summation occurs, with incomplete summation being exhibited for stimuli larger than RA. 23	

The size of RA has been shown to increase in the healthy visual system with retinal eccentricity,22-24	
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26 and reduced background illuminance,27-29 as well as in some forms of ocular disease such as 25	

glaucoma.30-32 It has been hypothesized that such dynamic changes may serve as a mechanism to 26	

maintain the input of a constant number of functional RGCs to cortical receptive fields, thus 27	

ensuring a constant sensitivity in the presence of visual noise.24,31,33,34 We hypothesise that similar 28	

changes in spatial summation are likely to occur in non-pathological myopia to compensate for 29	

reduced RGC density secondary to ocular growth and retinal stretch. 30	

 31	

Two previous studies have investigated spatial summation in myopia. Jaworski et al.35 restricted 32	

their measurements to the foveal region only, comparing emmetropes to high myopes (mean 33	

refractive error -10D). The authors observed a 55% and 43% increase in the size of what was 34	

defined as the ‘critical area at maximum summation’ in myopia for S-cone and achromatic stimuli 35	

respectively. However, the increase noted for the achromatic stimulus failed to reach statistical 36	

significance, likely due to the small sample size. Spatial summation was subsequently measured by 37	

Atchison et al.19 for a larger cohort of myopes, with refractive errors ranging from -0.50D to -38	

12.5D, at a range of visual field eccentricities from 0 to 30 degrees along the horizontal meridian. 39	

An increase in RA was observed at the fovea and in the temporal visual field in myopia, but no 40	

significant changes were observed nasally. Both studies however used a constrained fitting 41	

technique, whereby the slope of the first and second lines in a bi-linear summation function were 42	

fixed, assuming either complete or a fixed degree of partial or no summation, this method being 43	

known to bias estimates of RA.36 In addition, neither study investigated the effect of prospectively 44	

controlling axial-length induced alterations in retinal image size (RIS) on measures of spatial 45	

summation despite the fact that RIS is larger in axial myopes compared to emmetropic or 46	

hyperopic observers. Indeed, it has been proposed that a ‘neural minification’, occurring secondary 47	

to an increased spacing of retinal elements and possibly reflective of altered spatial summation, 48	

likely accounts for an enlarged RIS in axial-myopia and may serve to optimize visual function in 49	

myopic observers.37,38 Considering this, we propose that the presence of altered neural processing 50	
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in the myopic visual system may only be manifest when a constant inter-observer RIS, which is 51	

independent of axial length, is employed. To-date no study has investigated this. 52	

 53	

The purpose of this study was to determine if RA is enlarged in non-pathological axial myopia and 54	

to quantify the relative contribution of local neural elements (e.g., RGC layer thickness, RGC 55	

number) to measures of spatial summation. The effect of higher-order aberrations and axial length 56	

induced differences in RIS on spatial summation was also investigated with a view to isolating 57	

optical and neural induced changes on this neurophysiological process. 58	

 59	

METHODS 60	

Participants 61	

Twenty-four participants with axial myopia (mean 26.9, range 18-58 years) and twenty age-similar 62	

non-myopic controls (mean 26.4, range 19–53 years) were recruited for this study. All participants 63	

had a best corrected Snellen visual acuity of 20/20 (6/6) or better in both eyes, astigmatism 64	

<1.50DC in the test eye, no visual field defect measured with the 24-2 SITA standard threshold 65	

test (Humphrey Visual Field Analyser, Carl Zeiss Meditec, Dublin, CA) and intraocular pressure 66	

≤21 mmHg as measured using Goldmann applanation tonometry. Peripapillary retinal-nerve-67	

fibre-layer (RNFL) scans also revealed RNFL thickness to be within normal limits and macular 68	

OCT scans revealed no abnormalities (Spectralis OCT, Heidelberg Engineering Gmbh., 69	

Heidelberg, Germany). A clinical examination identified no media opacities or concurrent 70	

ophthalmic disease, and participants did not have any systemic conditions or take any medications 71	

that could affect vision.  72	

 73	

Refractive error was measured objectively in each participant using a binocular open-field 74	

autorefractor (Shin Nippon NVision-K 5001, Japan) following the instillation of Tropicamide 75	
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Hydrochloride 1.0%. Participants fixated on a Maltese cross target positioned on a flat wall at a 76	

distance of six meters, with an average of three measures being taken. Myopia was defined as a 77	

spherical equivalent refractive error ≤-0.50DS.39 The myopic group had central refractive errors 78	

ranging from -0.50DS to -9.75DS (mean -4.14 DS), with refractive errors ranging from -0.25DS 79	

to +1.75DS (mean +0.71 DS) in the control group. Based on the World Health Organisation 80	

(2015) definitions, nine participants were defined as having high-myopia (≤ –5.00DS), with the 81	

remainder (n=15) having myopia in the range -0.50DS to -4.75DS (low-moderate myopia). The 82	

characteristics of each group, along with biometric measurements, are displayed in Table 1. 83	

 84	

This study received ethical approval from the University of Ulster Biomedical Sciences Research 85	

Ethics Filter Committee and the research adhered to the tenets of the Declaration of Helsinki. 86	

Informed, written consent was given by all subjects prior to data collection.  87	

 88	

Refractive Correction 89	

For all participants, refractive correction was achieved by (i) full aperture trial lenses placed at the 90	

anterior focal point of the eye (15.2 mm) such that Knapp’s Law, minimizing relative spectacle 91	

magnification, was satisfied (i.e., RIS equal to that in an emmetropic eye was maintained for all 92	

participants with varying axial ametropia) and, (ii) soft contact lenses where Knapp’s law was not 93	

satisfied (i.e., RIS was not equal with varying axial ametropia).40 The power of trial lens for 94	

correction was determined by non-cycloplegic objective refraction (Shin Nippon NVision-K 5001  95	

binocular open field autorefractor, Shin-Nippon, Tokyo, Japan) and subjective refraction at a 6m 96	

viewing distance. For all experimental tests an appropriate, subjectively refined near addition was 97	

incorporated to account for reduced accommodative facility post pupil-dilation and the monitor 98	

viewing distance. The correct back vertex adjustment was made for refractive errors ≤-4.00DS 99	

when calculating the power of contact lens correction to use. The order in which participants 100	

undertook the spectacle corrected and contact lens corrected measurements of spatial summation 101	
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was randomized to minimize any bias due to learning effects or fatigue. Refractive correction was 102	

provided to the test eye only, with the fellow eye occluded using an opaque eye-patch. 103	

 104	

Apparatus and Stimuli 105	

All stimuli were presented on a gamma-corrected CRT display (SONY 420GS; Sony Corp., Tokyo, 106	

Japan; pixel resolution, 1280x965, refresh rate 75 Hz, viewing distance 620mm) after a 1.5 hour 107	

warm up period. The achromatic background had a mean luminance of 10 cd/m2 and the 108	

maximum luminance of the test stimuli was 126.6 cd/m2. The chromaticity co-ordinates of both 109	

the background and stimuli were x=0.258 and y=0.257 as measured using a colorimeter 110	

(ColorCAL-II, Cambridge Research Systems, Rochester, UK). Stimuli were generated using 111	

MATLAB (2016b, The MathWorks Inc., USA) with Psychtoolbox (v3.0) and a Bits-# (Cambridge 112	

Research Systems, Rochester, UK). Participant responses were collected using a Cedrus RB-540 113	

response pad (Cedrus Corporation, San Pedro, CA).  114	

 115	

Experimental measurements were either completed on the same day as the screening tests, or on 116	

a separate day depending upon individual preference. All experimental measurements were carried 117	

out on one eye only with the pupil of the test eye being dilated with Tropicamide Hydrochloride 118	

1.0% to maintain a constant photopic inter-observer retinal illuminance. Contrast thresholds for 119	

six, achromatic, circular stimuli of area ranging from 0.01–2.07 deg2 and Bridgeman41 duration 120	

187.8 ms (15 frames) were measured at four peripheral locations at 10º eccentricity (along 90º, 121	

180º, 270º and 360º meridians). Participants were asked to fixate on a central cross target 122	

throughout all measurements. To account for spatial luminance inhomogeneity of the CRT 123	

display, localized contrast thresholds were determined for each test location using luminance 124	

values for the background and stimulus measured at each test location using a colorimeter 125	

(ColorCAL-II, Cambridge Research Systems, Rochester, UK). 126	

 127	
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To determine if higher order aberrations (HOAs) influence measures of spatial summation these 128	

were measured using an aberrometer (Imagine Eyes irx3 Wavefront Aberrometer, France) in the 129	

test eye, post dilation, both with and without a contact lens in situ. All measures were captured 130	

immediately post-blink such that habitual tear film and optical quality were reflected in the 131	

measures. Accurate alignment between the pupillary plane of the eye and the instrument lenslet 132	

array was obtained through the adjustment of an internal graticule over the pupil and focusing of 133	

the Purkinje images. The participant was asked to fixate on the internal target, a black 6/12 (20/40) 134	

letter ‘E’ on a white background. Three measurements were taken under each condition and an 135	

average obtained. HOAs were analysed over a 6-mm pupil using Zernike polynomials (ZPs) from 136	

third to sixth order. The root mean square (RMS) of the total HOAs (3rd-6th order ZPs) was used 137	

in further analysis.  138	

 139	

Psychophysical Procedure 140	

Contrast thresholds for the six achromatic stimuli were determined using a randomly interleaved 141	

1-1 ‘YES-NO’ staircase procedure, with a 0.05 log unit (0.5 dB) step size.  Each stimulus area was 142	

considered in a separate run in a randomized order, with thresholds for the four locations being 143	

measured within each stimulus run in a randomly interleaved fashion. Each staircase terminated 144	

after six reversals with the threshold being calculated as the mean of the final four reversals. False 145	

positive rate was monitored using the presentation of stimuli of 0% contrast, with tests being 146	

rejected and repeated if the false positive rate was above 20%. Following each stimulus 147	

presentation, a listening window of two seconds for the collection of participant responses was 148	

permitted. If, following the closure of this listening window, no response was collected the 149	

stimulus was assumed to be unseen. 150	

 151	

 152	

 153	
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Structural Measurements 154	

Co-localized structural measures of peripheral ocular length and retinal-ganglion-cell-layer (RGCL) 155	

thickness were obtained following the instillation of Tropicamide Hydrochloride 1%. Peripheral 156	

ocular length measurements were captured using an IOL Master (Carl-Zeiss Meditec, USA). A 157	

custom-built four-LED ring target was affixed to the front of the instrument to allow peripheral 158	

measurements at 10º along the four primary meridians. Three measurements were taken at each 159	

position, with an average peripheral ocular length being calculated for each participant. Possible 160	

confounding effects of ocular rotation on measurements of peripheral ocular length were 161	

presumed insignificant due to the small eccentricity measured and short duration of eccentric 162	

fixation required to obtain the measurement.42,43 Previous work has also reported that the IOL-163	

Master is capable of repeatable and reliable off-axis measurements up to 40º eccentricity.44 164	

 165	

RGCL thickness values were obtained by taking a 24º×24º posterior pole scan centred on the 166	

fovea with the Spectralis OCT (Heidelberg Engineering Gmbh., Heidelberg, Germany). 167	

Participant mean keratometry values were input to minimize the effects of inter-individual 168	

variations in ocular magnification on transverse measures captured.45 An 8x8 grid was then centred 169	

over the fovea with any errors in the automated segmentation being manually corrected. Mean 170	

RGCL thickness across the measurement grid squares (3ºx3º) within which the corresponding 171	

locations examined in the visual field fell (after correction for retinal ganglion offset from 172	

underlying photoreceptors46) was used to examine the relationship between functional measures 173	

and underlying retinal structure.  174	

 175	

The number of RGCs underlying RA in each observer was also estimated using two methods in 176	

this study. In method one histological RGC counts from an age-similar cohort47 were used to 177	

produce normative values of RGC/mm2 over the central retina (4 mm eccentricity). These values 178	

were subsequently scaled to simulate a global expansion (‘balloon’) model of myopia, whereby 179	
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RGC density proportionally changed for axial length values that departed from that expected in 180	

an emmetropic eye (23.3 mm),48 assuming a constant number of RGCs. The number of RGCs 181	

underlying a given stimulus area was subsequently calculated as the product of the mean 182	

histologically derived RGC/mm2 values over the area of stimulus presentation and stimulus area 183	

in mm2 (histology method, RGCHist). The second method utilized the technique described by Raza 184	

and Hood49 to infer the RGC number underlying a stimulus in a given observer from OCT data 185	

(RGCOCT, eq. 1). In short, this used OCT derived RGCL thickness (mm) in a given observer 186	

(RGCL), co-localized stimulus area (Sarea, mm2), and normative RGC volumetric density 187	

(RGC/mm3) of RGCL tissue (GCD, calculated by dividing the mean RGC/mm2 across the area 188	

of the stimulus extrapolated from unscaled, age-similar histological data47 with co-localized OCT 189	

derived RGCL thickness [mm] values in healthy, non-myopic observers). 190	

 191	
RGC$%& 	= 	𝑅𝐺𝐶𝐿 ∙ 𝐺𝐶𝐷 ∙ 	S0120	                                      [eq. 1] 192	

 193	
For all calculations, an observer specific conversion factor (qp) was calculated using the abbreviated 194	

axial length method50 to translate degrees of visual space to mm on the retina at the test 195	

eccentricity. This value was a constant when considering spectacle corrected data, and proportional 196	

to axial length with contact lens correction in this study. Further details on both models to estimate 197	

RGC number are available in the supplementary materials. 198	

 199	

Statistical Analysis           200	

For each participant, an average contrast threshold for each stimulus size was calculated across the 201	

four peripheral locations, a spatial summation function then being plotted using these average 202	

values. In the case of the contrast threshold at a given location being greater than the maximum 203	

output of the display monitor used (ceiling effect) these data were excluded from analysis. 204	

Summation functions were fit using iterative two-phase regression analysis where the slope of the 205	
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first line in the function was constrained to -1 (reflecting complete summation), but the slope and 206	

intercept of the second line (representing partial summation) was free to vary. The intersection of 207	

the two lines was taken as the upper limit of complete summation or RA. Data were excluded 208	

from further analysis if the bilinear model had a poor fit (R2 <0.9), or if RA was smaller than the 209	

smallest stimulus used. If the estimated RA value was greater than the largest stimulus used, RA 210	

was taken to be the largest stimulus area. 211	

 212	

To investigate the relationship between the size of RA and co-localized ocular length and RGCL 213	

thickness measures, Passing-Bablok regression (transformation method) was used. This technique 214	

was chosen as it is suitable for a non-parametric data set, permits error in both the x and y variables, 215	

is less influenced by the presence of outliers and has been demonstrated to yield more precise 216	

estimates of slope and intercept compared to ordinary least squares or Deming regression.51,52 A 217	

central assumption of this analysis is that the relationship between the x and y variables is linear. 218	

This was tested using a cumulative sum (cusum test), with a null hypothesis that the variables are 219	

linear. The other prior assumption is that there is a significant positive correlation between the 220	

two variables, as determined by Kendall’s tau correlation.53 If a significant, positive, linear 221	

correlation exists, then a regression line was plotted using the Passing-Bablok procedure. For all 222	

analyses, the strength of any correlation was obtained with Kendall’s tau correlation coefficient 223	

where a linear relationship between variables was demonstrated with a cusum test. 224	

 225	

Statistical analysis was carried out using MATLAB (2019a, The MathWorks Inc., USA) and R 226	

(Version 3.6.2). For all statistical tests an alpha of 0.05 was considered statistically significant, with 227	

Holm-Bonferroni correction applied where indicated. In all cases a Shapiro-Wilk test was used to 228	

determine if data sets followed a normal distribution and the appropriate parametric or non-229	

parametric statistical tests were applied accordingly. 230	
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RESULTS 231	

 232	

Contribution of axial elongation to refractive error 233	

To determine if Knapp’s Law may be invoked in the study cohort, and thus ensure that only neural 234	

contributions to RA were investigated, it was necessary to demonstrate that the refractive error of 235	

participants was axial in origin. This was achieved by calculating the spherical equivalent refractive 236	

error from measures of axial length assuming the ametropia was solely axial in origin (DP, based 237	

upon the method of Chui et al.18 using the Bennett and Rabbetts three-surface schematic eye54, 238	

equation 2 where AL = axial length in mm) and comparing these estimates with ground truth 239	

values (DObs, objectively measured refractive error) for the whole study cohort (i.e., myopes and 240	

non-myopes).  241	

 242	
                                                   DP = 1.53*(1/[AL/1000])-63.8                                       [Eq. 2] 243	

 244	
Spearman’s rank correlation analysis revealed there to be a strong and statistically significant 245	

relationship between the estimated and predicted refractive error values (rho=0.81, P<0.001, fig. 246	

1). No statistically significant difference between the measured and predicted refractive error 247	

values were also observed when examined using a Wilcoxon-Signed Rank test (P=0.12).  248	

 249	

 250	

Higher-order aberrations  251	

Unaided, no significant differences in the Root Mean Square (RMS) for total HOA were observed 252	

between the myopia and control groups (control: mean 0.33µm ± 0.12; myopia: mean 0.34µm ± 253	

0.10, unpaired t-test P=0.95). In addition, no significant relationship existed between RMS values 254	

and either refractive error (Kendall’s tau= 0.08, P=0.46) or axial length (Kendall’s tau = -0.13, 255	

P=0.20). For both study groups, the mean RMS for total HOA increased with the contact lens in 256	

situ (control: mean 0.36 ± 0.13; myopia: mean 0.39 ± 0.10), but this increase was only found to be 257	
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statistically significant for the myopic group (myopia: P=0.02; control: P=0.23, paired t-test).  258	

There were no statistically significant differences in HOAs between the myopia and control groups 259	

with contact lenses in situ (P=0.36, unpaired t-test), and no significant relationship between HOA 260	

with contact lenses and either axial length (Kendall’s tau= -0.04, P=0.70) or refractive error 261	

(Kendall’s tau = -0.02, P=0.89). 262	

 263	

Spatial Summation in Myopes vs Non-Myopes 264	

For spectacle corrected measurements, an average peripheral RA value was obtained for all 265	

participants in the myopia group and 19 out of 20 participants in the control group (one control 266	

participant was excluded as RA was smaller than the smallest stimulus examined). For contact lens 267	

corrected measurements, an average peripheral RA was obtained for 23 out of the 24 participants 268	

in the myopia group (one participant excluded as R2<0.9 for fitted summation function) and all 269	

control observers. 270	

 271	

For spectacle corrected measurements, median RA was significantly larger (P=0.03, Mann Whitney 272	

U-test) in the myopia group (-0.81 log deg2, IQR -0.97 to -0.72) compared to the control group (-273	

1.13 log deg2, IQR -1.34 to -0.88). For contact lens corrected measurements, no significant 274	

difference (P=0.42, Mann Whitney U-test) was observed between the myopia (-1.10 log deg2, IQR 275	

-1.27 to -0.91) and control groups (-0.97 log deg2, IQR -1.22 to -0.83). Data are displayed 276	

graphically as boxplots in figure 2 and summary summation functions (using median thresholds) 277	

in figure 3. When comparing spectacle and contact lens measures for the same individual, RA was 278	

found to be significantly smaller in the myopia group when corrected with CL compared to 279	

spectacles (P=0.02, Wilcoxon signed-rank) (fig. 2). In contrast, no significant difference in RA was 280	

observed for the controls when measured with contact lenses and when measured with spectacles 281	

(P=0.62, Wilcoxon signed-rank).  282	

 283	
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Interestingly, the contrast at threshold for a stimulus equal to RA was found to be lower in the 284	

myopia group (median 0.27 log ∆I, IQR 0.12-0.53) compared to controls (median 0.42 log ∆I, 285	

IQR 0.12-0.48) for the spectacle corrected data; this difference however failed to reach statistical 286	

significance (P=0.15, Mann Whitney U-Test, fig. 4). No difference in the threshold at RA was 287	

observed between the groups when the contact lens corrected data were examined (Myope median 288	

0.41 log ∆I, IQR 0.22-0.56; Control median 0.48 log ∆I, IQR 0.21-0.53; P=0.99, Mann Whitney 289	

U-Test, fig. 4). 290	

 291	

Relationship between Ricco’s Area and Structural Measures 292	

For spectacle corrected measurements, a weak yet statistically significant positive linear 293	

relationship was observed between peripheral RA and corresponding peripheral ocular length 294	

values (Kendall’s tau = 0.23, P=0.03, fig. 5A). Passing-Bablok regression revealed that RA (log 295	

deg2) increases by a factor of 13.5 per log unit increase in co-localized peripheral ocular length. 296	

For the contact lens corrected measurements, no significant relationship between peripheral RA 297	

and co-localised peripheral ocular length was observed (Kendall’s tau = -0.05, P=0.62, fig. 5B).  298	

 299	

Mean peripheral RGCL thickness was significantly thinner in the myopia group compared to the 300	

controls in the locations examined (P<0.01, unpaired t-test). There was also a significant (p=0.02) 301	

negative relationship (Kendall’s tau = -0.24) between mean peripheral ocular length (log mm) and 302	

mean peripheral RGCL-thickness (log µm). When considering the relationship between peripheral 303	

RGCL thickness and spectacle-corrected RA, a weak, negative correlation was observed (Kendall’s 304	

tau = -0.16). This relationship however failed to reach statistical significance (P=0.13). No 305	

relationship between RGCL thickness and contact-lens-corrected RA data was observed 306	

(Kendall’s tau = -0.03, P=0.81). The results for spectacles and contact lens corrected data are 307	

displayed in figures 6A and 6B respectively. 308	

 309	
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Retinal Ganglion Cell number underlying Ricco’s Area 310	

Using both methods of calculation, no statistically significant difference in RGC number 311	

underlying RA was observed between the myopia and control groups with spectacle or contact 312	

lens correction (histology method: Kruskal-Wallis 𝜒4(3) = 6.3, P = 0.10; OCT method: Kruskal-313	

Wallis 𝜒4(3) = 6.6, P = 0.09). Despite this, estimates of RGC number underlying RA (median, 314	

IQR) were found to be higher in the myopia cohort (histology: 81.7 cells, IQR 57.6 to 103.9; OCT: 315	

78.4 cells, IQR 58.4 to 102.1) compared to control observers (histology: 43.4 cells, IQR 26.3 to 316	

71.7; OCT: 42.9 cells, IQR 25.1 to 73.7) when examined with spectacle correction (fig. 7). 317	

Conversely, RGC number was lower in the myopia cohort (histology: 46.9 cells, IQR 33.3 to 82.8; 318	

OCT: 44.8 cells, IQR 33.9 to 83.8) compared to controls (histology: 60.8 cells, IQR 36.1 to 89.5; 319	

OCT: 58.9 cells, IQR 36.3 to 93.9) with contact lens correction. 320	

 321	

 322	

DISCUSSION 323	

When inter-observer differences in the projected retinal image size are controlled for (Knapp’s law 324	

invoked), peripheral RA was found to be larger in the myopia group compared to non-myopic 325	

controls. Such differences were not present when identical psychophysical measures were 326	

performed with contact lens correction where RIS varied proportionally with axial length (i.e., 327	

Knapp’s Law was not satisfied). To our knowledge, this is also the first study to observe a 328	

statistically significant, positive correlation between peripheral RA (spectacle corrected) and co-329	

localized measurements of peripheral ocular length.  330	

 331	

The finding of altered spatial summation in myopia is in agreement with the two previous studies 332	

that have investigated this topic. Jaworski et al.35 reported the foveal ‘critical area’ to be 0.16 log 333	

units larger in a high-myopia cohort (refractive error above -8.50DS) compared to non-myopic 334	



	 15 

controls for an achromatic stimulus in the fovea. Atchison et al.19 also considered spatial 335	

summation in a large cohort both centrally and out to 30º along the horizontal meridian, the 336	

authors reporting a 0.03 log unit increase in RA per diopter increase in myopia. While such trends 337	

point towards altered spatial summation in axial myopia, differences in functional testing 338	

methodology and statistical analyses severely limit inter-study comparisons. For example, only the 339	

fovea was examined by Jaworski et al.35 compared with a region at 10º eccentricity in the current 340	

study, it being known that spatial summation varies with visual field eccentricity.22,26 Another key 341	

difference is the use of contrasting summary values to reflect the extent of spatial summation being 342	

exhibited. Jaworski et al.35 compared ‘critical area at maximum summation’ in myopes and non-343	

myopic controls, defining this metric as the transition from partial summation to no summation. 344	

In the present study and that of Atchison et al.19, the upper limit of complete spatial summation 345	

(RA) was used to describe the extent of spatial summation. Furthermore, a constrained fitting 346	

technique was used by both Jaworski et al.35 and Atchison et al.19 to generate summation functions; 347	

a methodology which can lead to inaccuracies when extracting summary values from summation 348	

data.36 Other inter-study differences include stimulus chromaticity, background luminance and 349	

psychophysical test setup (e.g., staircase step-size, auditory stimuli, etc.) 350	

 351	

Other studies have previously presented evidence in support of changes in spatial vision, and by 352	

inference spatial summation, in myopia. For example, it has been reported that visual acuity16,17 353	

and peripheral resolution acuity4,18,19 are reduced in myopia. Other work quantifying aniseikonia in 354	

participants with anisomyopia also provides evidence for altered spatial summation. Bradley and 355	

colleagues37 used a dichoptic size matching test with identical inter-eye RIS (i.e., Knapp’s law 356	

invoked) to reveal large degrees of residual aniseikonia (22%) with spectacle lens correction, such 357	

differences being proportional to the degree of axial elongation. Interestingly, in two observers 358	

with measures repeated with contact lens correction (where Knapp’s law did not hold) aniseikonia 359	

was markedly reduced (3.9%) in their study. Such results closely reflect the observations made in 360	
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the present study whereby RA was related to axial length when RIS was optically controlled, this 361	

relationship not being apparent with CL correction. Bradley et al.37 propose that such findings may 362	

be related to perceptual minification of the retinal image in the myopic eye, potentially arising 363	

secondary to inter-eye differences in retinal stretching. Similar work undertaken by Rabin et al.38 364	

proposed that axial anisometropia-induced aniseikonia reflects differences in the spatial density of 365	

‘retinal elements’.  366	

 367	

Physiological basis of altered spatial summation in myopia 368	

Much debate surrounds the physiological basis of spatial summation in the human visual system. 369	

It has been proposed that the density of retinal neurons (e.g., photoreceptors, RGCs),31,55 RGC 370	

receptive field organization34,56,57 and higher visual centers55,58 each contribute to the measured RA 371	

or ‘perceptive field’, with changes to the functional or structural integrity of these features 372	

potentially inducing alterations in spatial summation. Previous work examining photopic spatial 373	

summation in observers with no eye disease, found RA to enlarge as a function of visual field 374	

eccentricity,22 this change being attributed to variations in the density of retinal neurons 375	

moderating stimulus detection. Work examining spatial summation in glaucoma reported similar 376	

changes to occur secondary to reductions in functional RGC density,31 it being hypothesized that 377	

such alterations in spatial summation occur to maintain input to cortical receptive fields from a 378	

constant number of functionally intact RGCs, thus maintaining a constant signal-to-noise ratio. It 379	

has also been proposed31,34,55 that a fixed number of RGCs underlie RA across the visual field, 380	

accounting for changes in spatial summation area as a function of visual field eccentricity. In the 381	

case of the current study, it is possible that a similar hypothesis is applicable in myopia, where 382	

ocular growth and subsequent retinal stretch leads to reductions in localized RGC density4,18,19 and 383	

an enlarged RA serves to maintain a constant number of RGCs underlying RA and a constant 384	

signal-noise ratio for contrast detection. This hypothesis may be further supported by the fact we 385	
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observed no statistically significant difference in RGC number estimated to underlie RA when 386	

modelled using both normative histological and OCT data (fig. 7). 387	

 388	

While considering changes in the density of RGCs in myopia as the sole source of alterations in 389	

RA is convenient, it is likely that multiple loci in the visual pathway play a role. For example, a 390	

strong relationship between co-localized RGCL thickness and RA would be expected if the density 391	

of RGCs was the sole factor determining the size of RA. However, in the present study only a 392	

weak negative relationship was observed between these variables, similar to previous findings 393	

relating RA to co-localized RGC number derived from psychophysical measures in glaucoma.31 394	

Furthermore, despite there being no statistically significant differences in estimated RGC number 395	

underlying RA in myopia and control participants, marked variability in these values was observed 396	

(fig. 7). In the context of the myopic visual system, alterations in the density of RGCs4,18,19 and 397	

function of higher-visual centers59,60 have been reported previously, with changes in the 398	

organisation of RGC receptive fields also being hypothesized to occur in response to altered 399	

chemical balance in the body. For example, dopamine and dopamine antagonists are known to 400	

alter the balance between the center and surround components of center-surround antagonistic 401	

receptive fields of retinal neurons by altering the degree of electrical coupling between cells.61-65 402	

This role has been demonstrated in rabbit on-bipolar cells whereby dopamine concentration was 403	

increased in photopic conditions, leading to an increase in the weighting of the off-surround, 404	

whereas maintained darkness and/or blocking dopamine receptors led to diminished receptive 405	

field surrounds.66 Looking specifically at RGCs, Jensen and Daw67 found dopamine antagonists to 406	

cause a reduction in the antagonistic surround input to the off-center RGC receptive field, leading 407	

to a shift in the center-surround arrangement in favour of the center (i.e. larger central receptive 408	

field size). Previous authors have proposed RA to be a psychophysical correlate of the relationship 409	

between RGC receptive field centre and surrounds in the retina,22,27,57 with the potential that 410	

dopamine alters this balance and thus RA. Much evidence points towards reduced retinal 411	
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dopamine levels in myopia,61,68,69 with light exposure (which stimulates dopamine release in the 412	

retina70) associated with a reduction in myopia onset and progression.71-73 It is therefore 413	

conceivable that the larger RA found in myopia may be a consequence of lower dopamine levels 414	

in this group.  415	

 416	

Other work points to the role of the visual cortex in moderating spatial summation. Redmond et 417	

al.58 found changes in RA with background luminance for the S-cone pathway, where retinal 418	

center-surround organisation is known not to exist, the authors proposing this to point to the 419	

influence of higher visual centers. Indeed, a cortical contribution22 or basis31,74,75 to RA has been 420	

suggested by several authors. Such changes may take the form of alterations in the spatial tuning 421	

of cortical filters or an active remodelling of the visual cortex in response to changes in the density 422	

of retinal neurons as demonstrated in in vivo animal studies.76,77 More recent functional MRI work 423	

has also identified altered structure59 and functional-connectivity deficits78 within the visual 424	

pathway of patients with high myopia. It is therefore possible that the changes in RA observed in 425	

this study may reflect changes to multiple loci of the visual pathway, including higher visual centres, 426	

in myopia.  427	

 428	

Whilst the neurological underpinnings of RA are still debated, it is clear from this study and 429	

others79,80 that optical factors can also profoundly influence measurements of spatial summation. 430	

Specifically, it is evident that when optically induced changes in RIS, occurring secondary to axial 431	

elongation in myopia, are accounted for a perceptual ‘minification’ remains, manifesting as an 432	

enlarged RA in axial-myopes relative to controls. By contrast, such differences in RA were not 433	

observed when contact lens correction was used and Knapp’s Law not satisfied. In this instance, 434	

a lack of minifcation of the retinal image by the refractive correction leads to RIS proportionally 435	

increasing with axial elongation and RA being ‘filled’ more rapidly; this relationship breaking down 436	

when Knapp’s law is satisfied and RIS remains constant with axial length. Similar results were 437	
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reported by Atchison et al.19  who observed a stronger relationship between RA and refractive 438	

error after post-hoc correction for inter-observer differences in RIS. This interplay between neural 439	

and optical factors is thought to account for residual perceptual aniseikonia in anisometropia when 440	

measured with a constant inter-eye RIS.37,38 Indeed such findings may be a consequence of 441	

increased spatial summation in the axially myopic eye, these neural changes serving to compensate 442	

for an enlarged RIS and thus optimize visual function. 443	

 444	

Implications for the clinical assessment of spatial vision 445	

The outcomes of the present work may have implications for both the assessment of spatial vision 446	

in observers with myopia, but also for the development and interpretation of tests of spatial vision 447	

designed to detect ophthalmic diseases (e.g., perimetry for glaucoma). Considering the association 448	

between ocular length and measures of RA observed in this study, it is possible that changes in 449	

RA may act as a non-invasive, functional marker of global or localized (i.e., equatorial or posterior 450	

pole elongation) globe expansion in progressive myopia.81 For example, in the absence of 451	

biometric measures and concurrent disease, RA values may be measured at multiple locations and 452	

reflect the extent of local retinal stretch/axial elongation present when RIS is carefully controlled. 453	

Measurements of RA could also potentially be combined with structural measures in myopia (e.g., 454	

axial length, retinal thickness) to enable progressive myopia to be detected and monitored more 455	

robustly. Combining different sources of information, from both structural and functional 456	

measures, has been demonstrated to be more effective than considering just one clinical measure 457	

in isolation for other ocular conditions where monitoring and predicting progression is important 458	

(e.g., glaucoma, ocular hypertension).82-84 459	

 460	

The results of the present study also have potential implications for the design of perimetric test 461	

strategies used to detect functional deficits in glaucoma. Specifically, those tests (e.g., area-462	

modulation perimetry85) intended to probe alterations in spatial summation in glaucoma may need 463	
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to incorporate a normative database stratified according to AL if the balance between AL induced 464	

changes in RIS and neural minification is not maintained (i.e., spectacle lens used to correct 465	

refractive error) in axial myopes. Incorporating such information will serve to increase the 466	

specificity of such a test to detect true glaucoma related changes in RA and not those secondary to 467	

axial expansion of the globe.  468	

 469	

CONCLUSIONS 470	

In summary, our novel observation of an increased RA in axial-myopia when RIS is invariant of 471	

AL suggests spatial summation to be altered in the myopic, but otherwise healthy, visual system. 472	

We propose that this finding represents a functional adaptation of the myopic visual system to an 473	

enlarged RIS in the axially-elongated globe. The implications of this research are three-fold in that 474	

it, (i) builds our knowledge of the structure/function relationship in myopia, (ii) provides ‘normal 475	

myopic control’ information for similar research in glaucoma, and (iii) creates the potential for the 476	

development of a non-invasive functional test for myopic progression. Further work is however 477	

necessary to determine if the ratio of measurement variability to changes in RA in myopia (i.e., 478	

myopia signal-to-noise ratio) is favourable across all stages of myopia. 479	

 480	

 481	
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 FIGURES 739	

 740	

 741	

 742	

 743	

 744	

 745	
 746	

Figure 1: Plot of predicted refractive error (based on all refractive error being axial in origin) and 747	

objectively measured refractive error. The line of equality (yellow) is included for reference. 748	
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 760	

 761	
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 763	

 764	
 765	

Figure 2: Average Peripheral RA measured for myopes and controls with spectacle and contact 766	

lens correction. Individual data points represented by blue spots. 767	
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 778	

 779	

 780	

 781	

 782	
 783	

Figure 3: Summary spatial summation functions constructed using median thresholds for (A) 784	

Controls - Spectacle corrected, (B) Myopes - Spectacle corrected, (C) Controls - Contact lens 785	

corrected, and (D) Myopes - Contact lens corrected. 786	
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 794	

 795	

 796	

 797	

 798	

 799	
 800	

Figure 4: Contrast thresholds for a stimulus equal to Ricco’s area in the control and myopia 801	

groups as measured with spectacle and contact lens correction. 802	
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 819	

 820	
 821	

Figure 5: Peripheral RA plotted as a function of peripheral ocular length for (A) Spectacle 822	

corrected measurements and (B) CL corrected measurements. 823	
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 843	
 844	

Figure 6: Peripheral RA plotted against peripheral RGCL thickness for (A) Spectacle corrected 845	

measurements and (B) CL corrected measurements. 846	
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Figure 7: Boxplots reporting the number of RGCs underlying Ricco’s Area in the control and 871	

myopia cohorts with spectacle and contact lens correction as estimated using (A) scaled 872	

histological data, and (B) OCT derived RGCL thickness values. 873	
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TABLE 885	
 886	
 887	

 

CONTROLS 
(n=20) 

MYOPES 
(n=24) 

LOW -
MODERATE 

MYOPES 
(n=15) 

HIGH 
MYOPES (n=9) 

AGE (years) 22.50 
[20.00 to 31.00] 

23.00 
[20.00 to 28.50] 

22.00 
[19.50 to 28.00] 

23.00 
[22.00 to 27.00] 

Refractive Error 
BVS (DS) 

+0.50 
[0.00 to +1.25] 

-3.63 
[-2.00 to -6.00] 

-2.50 
[-1.75 to -3.75] 

-7.00 
[-5.63 to -7.88] 

Astigmatism 
(DC) 

-0.25 
[0.00 to -0.75] 

-0.50 
[0.00 to -1.00] 

-0.50 
[0.00 to -1.00] 

-0.50 
[0.00 to -1.00] 

Axial Length 
(mm) 

23.64 
[23.01 to 24.01] 

25.20 
[24.56 to 26.00] 

24.61 
[24.24 to 25.41] 

26.33 
[25.64 to 27.95] 

Anterior 
Chamber Depth 

(mm) 

3.60 
[3.45 to 3.86] 

3.73 
[3.53 to 3.90] 

3.72 
[3.52 to 3.80] 

3.93 
[3.62 to 4.05] 

Average Corneal 
Curvature (mm) 

7.91 
[7.81 to 8.07] 

7.79 
[7.62 to 7.91] 

7.84 
[7.67 to 8.00] 

7.64 
[7.41 to 8.14] 

 888	
 889	

Table 1: Characteristics of the myopic and control groups. Summary values are presented as 890	
median (IQR). 891	


