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Abstract: Human activity recognition (HAR) is a popular field of study. The outcomes of the projects
in this area have the potential to impact on the quality of life of people with conditions such as
dementia. HAR is focused primarily on applying machine learning classifiers on data from low level
sensors such as accelerometers. The performance of these classifiers can be improved through an
adequate training process. In order to improve the training process, multivariate outlier detection
was used in order to improve the quality of data in the training set and, subsequently, performance of
the classifier. The impact of the technique was evaluated with KNN and random forest (RF) classifiers.
In the case of KNN, the performance of the classifier was improved from 55.9% to 63.59%.
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1. Introduction

Criteria for the rejection of extreme observations as significant outliers in a one-dimensional
normal distribution with unknown parameters has been widely studied [1–3]. In univariate analysis,
suspicious observations which are declared as outliers are obvious by simple inspection. Additionally,
there are simple statistical univariate procedures that can be used to declare an observation as an
outlier [4]. The use of robust methods for detecting outliers in multivariate cases is also relevant
and essential, considering the vast amounts of data being generated by pervasive computing and
internet of things environments. An example of the inherent difficulty of the multivariate analysis is
the interrelated character of outlier effects on location, scale, and orientation [2]. In real life situations,
researchers are often faced with large amounts of data, and if they are not properly statistically screened,
ensuing analyses may lead to the wrong conclusions.

On the other hand, the increasing use of information and communication technologies (ICT)
devices and pervasive availability of the internet, allow users to monitor their heart rate, steps, distance
travelled, and other variables important to monitor their health condition. In this case, to perform
a faithful tracing of a user’s health condition, it is necessary to identify abnormal observations by
considering these variables simultaneously in order to give to the user a trustable alert of his condition.
One common method used to detect these abnormal observations in healthcare sector is the multivariate
analysis based on Hotelling’s T2 [5–7].
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The aging population is related with an increase of conditions such as stroke and dementia [8,9].
Because of these conditions, patients suffer a deterioration in both physical and mental conditions,
making them dependent and vulnerable in the realization of their activities of daily living (ADL),
making it necessary in most cases that patients require assistance. Considering these situations, and
in order to reduce the negative impact dementia has in the quality of life of the elderly, the use of
assisted living systems has arose as a very promising way to achieve a better quality of life of dementia
patients [10,11]. These systems aim for achieving more independence and autonomy for elders, who
live alone and at the same time enhance their quality of life. As a result, the cost for society and public
health systems could be reduced [8,12].

Assisted living systems (ALS) rely on human activity recognition (HAR) as a key component of
functioning [13]. HAR applications to ALS, range from promoting physical activity to monitoring of
long-term chronic conditions [13]. HAR is concerned with the ability to automatically recognize and
interpret human activity using computational methods, which remains a highly complex task [13,14].
The recognition of activities or actions can be determined through the interpretation of human
body motion or gestures, captured via sensors, such as body-worn accelerometers. This kind of
application can be found in previous works such as [15]. In this work, a new deep convolutional neural
network structure is proposed to improve reconstruction and reduce the online prediction time of the
performance of a 7 DoF anthropomorphic robot arm (LWR4 +, KUKA, Germany). While in [16], a new
fast and robust deep convolutional neural network structure for the recognition of human activity
(HAR) using a smartphone is proposed. Nevertheless, it is important to point out that HAR still
requires significant improvement [17]. Considering that HAR is based on machine learning classifiers,
it is necessary to reduce noise (outlier elimination) from training data, in order to obtain accurate
activity predictions.

In this work, noise elimination is undertaken on multivariate outlier detection based on the
calculation of the Mahalanobis distance. This is a novel approach to eliminate outliers in HAR datasets
in order to improve the quality of the data. Although Mahalanobis distance is a well-known outlier
detection technique, as far as we know it has not been implemented in HAR processes to improve
the performance of KNN and/or random forest classifiers. Additionally, this research addressed the
outlier detection in a two-step approach, first to clean the data within each user and then the overall
aggregate data. The remainder of the paper is structured as follows. Section 2 provides a review of
the literature in data cleansing and the effects data quality can have on classification. Following this,
Section 3 describes the dataset collected and utilized in addition to the methodology used within the
activity recognition process. The study case is presented in Section 4. Section 5 contains the analysis of
the results obtained with the implementation of the proposed methodology to the study case. Finally,
Section 6 shows some conclusions derived from the present study.

2. Literature Review

2.1. Human Activity Recognition

HAR is a key element in many areas such as ambient assistive living, connected health and
pervasive computing [16]. HAR becomes very useful in order to manage and prevent chronic diseases,
through the surveillance of daily activities of elderly residents [14]. In this sense, due to the exponential
development of ICT and internet of things (IoT), it has been possible the creation of smart homes.
These smart homes are home environments, in which there is a full interaction between sensors within
the house and user wearable sensors that make it possible to monitor their health and wellbeing by
tracking ADLs through HAR techniques [14]. HAR is generally split into two types. The first type is the
sensor-based HAR and the second type is vision-based HAR. Of these two, the first one has been more
developed due to the recent progress in sensors and IoT technologies [17,18]. Regarding sensor-based
HAR, a commonly used HAR wearable sensor is the accelerometer. In general, wearable sensors, such
as the accelerometer, are frequently used in HAR due to the easiness for real-time implementation,
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the fact of not being location dependent, and their low cost [19,20]. Additionally, this type of HAR
device is considered suitable for monitoring activities such as walking, running, standing, sitting, and
ascending stairs [16]. These activities are of the same type of the ones performed in this study case.

In HAR, the selection of the sensor type is as important as managing the huge amount of data,
collected by the sensor. In this sense, analytic phases—such as pre-processing, data segmentation,
extraction of discriminative features, and finally classification of activity details—must be properly
executed in order to obtain a good classifier performance [21]. Pre-processing deals with the detection
and management of outliers and missing data [21]. The segmentation step refers to the process of
grouping data in a window size in order to extract useful features. The size of the window depends
on the type of activities to which the HAR process will be carried out. In-sensor data segmentation
is very common to use methods such as ranging from sliding windows, events, or energy-based
activities [21]. Once data have been segmented, different techniques are used in order to identify which
of the extracted features are relevant, in order to minimize classification errors and reduce computation
time. It is also important to point out that selected features can be split into statistical and structural
ones [21,22]. Features—such as mean, median, and range among others—are known as statistical
features. These features correspond to descriptive statistical analysis within the time window of sensor
data. On the other hand, structural features—such as entropy, energy, and others—are extracted from
the relationships among the different sensor data.

Finally, machine learning and/or pattern recognition methods are used in order to be able to
identify which activities have been performed if the sensor gathers some particular measures. This
phase is known as the activity recognition and classification phase [21]. There are a great number of
useful machine learning techniques for this purpose. These include the support vector machine (SVM),
K-nearest neighbour (KNN), and others [13,21]. Recently, in order to improve the ability to perform a
better activity recognition, many studies have used information gathered with different sensors at the
same time. This approach has allowed researchers to gain robustness, and reliability, in the process of
recognizing human activities [23].

According to Domingos [24], feature extraction is the most important stage in the HAR process.
Therefore, extensive works have been conducted in order to improve HAR process through the
extraction of expert-driven features [22]. Nevertheless, expert-driven features extraction methods
depend on the knowledge of the experts and applicability of the feature vectors in the problem domains.
Furthermore, hand-engineered features cannot represent the outgoing characteristics of complex
activities and involve time-consuming feature selection techniques to select the optimal features [25].
Considering this difficulty, deep learning has gained a lot of focus due to its ability to learn features
from data [26]. In this sense, convolutional neural networks (CNN) were initially used to tackle image
recognition problems, in which they proved to be effective for such tasks. Applications can be found
in [27–31] and include photography recognition and videos recognition. The ability CNN have in
the identification of local correlations, is what makes them adequate for image processing. Therefore,
in order to take advantage of CNN’s properties, in sensor-based HAR applications, many researchers
transform motion signals into images. The transformation process of sensor-based signals into images,
can be accomplished by different ways. One possibility is reordering signal values into an image.
In other cases, researchers construct the corresponding signal spectrogram. The last alternative is to
calculate features from a signal window and then put them into a graph [32]. Nevertheless, researchers
have found that the performance obtained in the classifiers when automatically generating features via
CNN is similar to the performance obtained with hand-crafted features [33]. This makes it necessary
to evaluate in each case the convenience of automatically generate features through CNN, or work
with hand crafted features that have been developed across the years. The key factor is the evaluation
of the impact that each action taken in the preprocessing step, segmentation step, feature calculation
and selection step, and the model selection step, have on the performance metrics—such as accuracy,
F-measure, and others. In this sense, it is also important for the researcher to have a clear idea of which
of these measures is most important according the particular application being analyzed.
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Within the field of data-driven approaches to HAR, data quality is a significant consideration.
In this sense, data cleansing represents a relevant procedure to improve the quality of datasets and to
improve the outcomes of the classifiers. Data cleansing can be defined as the process of removing errors
or inconsistencies such as noise and/or outliers from a collection of data [34]. The presence of noise and
outliers in data is an important issue to address as these can have a substantial influence on the results
produced by data driven techniques, according to Gorunescu [35]. Nevertheless, Han et al. [36] state
the border between normal and abnormal (noise/outlier) data is often unclear, where a large “gray area”
may exist. Noise can be presented at a class or attribute level in supervised learning, with previous
effort made by [37] to evaluate their impacts on classification accuracy on 17 datasets, collected from
various domains. Various levels of noise were manually applied to each dataset, with conclusions
stating that as noise levels increase, classifier performance decreases further, and that class noise is
usually more harmful than attribute noise. Further to this, [38] compared numerous classifiers to
evaluate how well they performed with noisy data, with conclusions stating that performance and
robustness to noisy data varied substantially between various algorithms. The random forest classifier
proved to be most resilient to noise, followed by KNN. Other studies considering data quality included
investigations made by [37,39,40]. In [39], a fuzzy relevance vector machine (FRVM) was used to
learn from unbalanced data and noise, with experiments demonstrating reasonable and more robust
performance than a regular RVM. Then, inclusion of fuzzy mathematics helped to make the RVM
most robust. In [37] and [40] respectively, noise impact was analyzed through different experiments
with datasets available in the literature. In this sense, both studies concluded that class noise (wrong
labeled instances in the dataset) affects the learning process of the classifiers and explore different
ways to detect this problem and deal with it. On the other hand, both studies show that attribute
noise (noise within the instances data, such as outliers, and missing data) represents a more difficult
challenge, considering that each observation may contribute to the learning process of the classifier
and the elimination or replacement of a particular data in the instance may affect the performance of
the classifier. Therefore, it is relevant to look for different ways to deal with attribute noise. In this case,
the proposed approach deals with the problem of attribute noise with multivariate outlier detection.

2.2. Multivariate Outlier Detection

Unlike univariate outlier management, managing multivariate outliers is a difficult task.
Its difficulty lies on the fact that multivariate outlier detection must consider the correlation between
the different variables involved in the analysis. This situation may mean some observations that were
considered within the acceptable variation range of an individual variable to then become considered
as outliers when this correlation is considered [41]. In the process of multivariate outlier detection,
researchers may have to deal with two situations. The first situation or effect is known as the masking
effect. In the masking effect an outlier shadows a second outlier. This means that the second outlier
is considered as such, only by itself, but not in the presence of the other outlier. The second effect is
known as the swamping effect. In the swamping effect, a second outlier is considered an outlier only
in the presence of the first outlier.

These two effects may affect type II and type I errors values respectively. Type I error refers
to the false positives and type II error refers to the false negatives. Many researchers have studied
the consequences of the presence of both masking and swamping effects and have also proposed
methods to deal with them. Related studies can be found in Iglewics and Martinez [42], and Becker
and Gather [43].

2.2.1. Robust Distance Methods

In order to detect outliers, robust based methods are the most commonly used by researchers
managing multivariate datasets. These methods are usually based on local distance measures and are
capable of handling large databases [41]:

• The Mahalanobis robust distance:
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The Mahalanobis distance (MD) is a well-known method for multivariate outlier detection which
depends on estimated parameters of the multivariate normal distribution. In the calculation of the
MD, n observations are taken from a p-dimensional dataset. In this case, p represents the number
of variables considered in the outlier detection procedure. In this process the mean of each variable
within p, is organized in a vector denoted as µ and known as the mean vector. Additionally, the sample
covariance matrix is constructed and denoted as V . The Mahalanobis distance for each multivariate
data point i, i = 1, . . . , n, (denoted by Mi) is calculated with the equation

Mi =

 n∑
i=1

(Xi − µ)
T V−1 (Xi − µ)

1/2

(1)

If the MD is greater than a threshold value, the observation is labeled as an outlier. The threshold
value corresponds to the chi square distribution with α significance level and p degrees of freedom.
Depending on the situation and the difficulty to fulfill the multivariate normality assumption, some
researchers have proposed the use of a vector of medians instead of a vector of means [44]. Penny
and Jolliffe [45] presented a modification of the procedure presented in [44]. They proposed the
construction of a covariance matrix, based on weighted observations according to their distance from
the center. Other robust estimators—such as M-estimator (M stands for maximum likelihood type) and
S-estimator (scale estimator), among others—are considered as effective ways to detect multivariate
outliers [41,46,47].

2.2.2. Non-Traditional Methods Based on Robust PCA (Principal Component Analysis)

Many researchers have proposed alternative methods to deal with multivariate outlier detection.
These methods try to overcome the implicit difficulty of robust distance methods requiring a subset
of outlier-free data from which the mean vector and the covariance matrix can be constructed.
Unfortunately, there is no existing method that can find an outlier-free subset with 100% certainty. The
two most relevant of these PCA methods are the method for outlier identification in high dimensions
which is based on the determination of semi robust principal components and the method based
on functional approach. In this case, outliers are labeled using functional equivalents of boxplots
and bagplots [41]. Applications and adaptations of these methods can be found in Hyndman and
Shang [48], Croux and RuizGazen [49], and Rousseeuw et al. [50].

In Table 1, it can be observed some recent and relevant research related with outlying detection.
The approach, scope as well as relevant issues of the research are depicted. It can be concluded that
for high dimensional data Mahalanobis distance is considered as a recommended technique for data
cleansing. Different approaches have been proposed but many of them are tested in small dimensional
data, or are not tested with RF, nor KNN classifiers.
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Table 1. Relevant research regarding outlier detection in HAR.

Authors Outlier Approach Scope Relevant Topics

Meng et al. [51] Heuristic based on statistical hierarchy Activities of daily living The model looks for the detection of abnormal
behavior once the classifier is trained. Aims to
the detect changes in patients’ behavior. No
description of data cleaning process.

Gopalakrishnan and Krishnan [52] Hybrid approach, combining outliers
scores

Activities of daily living (ADL) Improvement of 6% in F-measure, in SVM and
RBFN. Database with six activities.

Jones et al. [53] Hybrid approach using different outlier
detection techniques.

Physical activity Improvement in the performance of the
k-means in 4%.

Muñoz-Organero [54] ANN ADL They look for a specific type of outlier data,
related with the cessation of movement.

Sunderland et al. [55] Hybrid approach using simulation and
minimum covariance determinant

Database of neurodegenerative disease They succeeded on the detection of error in the
database.

Li et al. [41] Hybrid approach based on KNN and
kernel-target alignment

Not specific Slight Improvement on the performance of the
classifier. Tested in two-class scenarios.

Hyndman and Ullah [50] Principal component analysis Forecasting mortality and fertility rates Reduction of the forecast error.

Penny and Jollyffe [47] Comparison between different
techniques

Laboratory safety data Concludes that the best approaches for high
dimensional data are Mahalanobis distance
and Hadi method.

Zhao et al. [56] Hybrid approach ADL Improvement in classifier performance. Tested
in data with four activities.

Marubini and Orenti [57] Minimum covariance determinant Linear regression prediction Reduction of the prediction error.
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3. Methodology

This paper aims to present an approach for the identification of multivariate outliers. The
dataset utilized in the current study was collected by students enrolled in the Pervasive Computing in
Healthcare module at Ulster University using a wearable triaxial accelerometer, placed on the dominant
wrist [11]. The students were each assigned to an AR scenario and perform three activities within the
scenario. Then, they had to collect, process, and classify data as part of the module assessment. In total,
there were 6 scenarios and 18 activities recorded amongst the cohort. On Table 2, can be seen the 6
scenarios and the 18 activities recorded during the experiment.

Data was collected with sample rate of 51.2 Hz. Then data were windowed, considering time
windowing, as is a common approach with accelerometers where sensor data is sampled at a sustained
rate. Nevertheless, there is still no clear consensus, regarding the window size that should be
implemented. If the window size is too small, there may not be enough relevant activity information.
On the other hand, if the window size is too broad, the measurements made, may have too few
variations to result in appropriate decisions for activity classification [15]. A non-overlapping window
size of 4 s was considered appropriate [58] as it has been observed that energetic activities such as
walking, jogging, and running can be optimally detected between 1 s and 3.25 s, while more complex
activities may require longer time windows [59]. Data were collected with the use of the Shimmer
wireless sensors platform. Before the start of the data acquisition process the device was calibrated
following the manufacturer guidelines. The Shimmer device was placed in the dominant wrist of each
student, and acceleration data across x, y, and z axis were gathered (see [11]). As previous studies have
shown, placing the sensor in the wrist provides trustable information to be used in HAR processes [59].
For data cleansing and windowing was used R® (3.6.2 version), and the classifiers and its performances
measures were obtained with Weka® (3.8.3 version).

Table 2. Scenarios and activities performed [57].

No. Scenario Activities Number of Files

1 Self-care Hair grooming, washing hands, brushing teeth 24 (72 files)

2 Exercise (cardio) Walking, jogging, stepping-up. 23 (69 files)

3 House cleaning Ironing clothes, washing windows, washing
dishes 25 (75 files)

4 Exercise (weights) Arm curls, dead lift, lateral arm raise 21 (63 files)

5 Sport Bounce ball, catch ball, pass ball 25 (75 files)

6 Food preparation Mixing food, chopping vegetables, sieving flour 23 (69 files)

Total 141 (423 files)

3.1. Feature Extraction

A compilation of standard time and energy domain features were extracted from the windowed
data to obtain relevant information and to represent the characteristics of various activity signals. The
features included the mean, natural logarithm, exponential, maximum, minimum, standard deviation,
variance, root mean square (RMS), signal magnitude area (SMA), range, and median for the x, y, z axis
and signal magnitude vector (SMV), and the cross correlation for each axis, as it has been suggested
that these features are suitable for activity recognition [13,60]. In total, 51 features were extracted. The
features used are presented in Table 3.
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Table 3. Extracted features.

Feature
Number Feature Name Feature Description

1–3 Mean acceleration Mean acceleration in x, y, and z, in the time window.

4 Mean SMV Mean SMV in the time window. SMV was calculated with the
relation:
SMVi =

2
√(

acc2
x + acc2

y + acc2
z

)
where accx, accy, accz, denote the acceleration in each axis of the
i-th observation.

5–7 Mean logarithm Mean logarithm in x, y and z in the time window.

8–10 Mean exponential Mean value of the exponential function powered at the value of the
acceleration in each axis. This was also calculated in the
corresponding time window.

11–13 Mean exponential
squared

Mean value of the exponential function powered at the squared
value of the acceleration in each axis. This was also calculated in the
corresponding time window.

14–16 Mean squared
acceleration

Mean of the squared values of the acceleration in x, y and z, in the
time window.

17–20 Trapezoidal rule Trapezoidal rule of acceleration in each axis and SMV, in the time
window.

21–24 Minimum Minimum value of the acceleration in each axis, and SMV in each
time window.

25–28 Maximum Maximum value of the acceleration in each axis, and SMV in each
time window.

29–32 Range Range of the values of acceleration in each axis and SMV in the time
window.

33–36 Standard deviation Standard deviation of the values of SMV and acceleration in the
three axis, in the time window.

37–40 Root mean square
(RMS)

Root mean square of the values of SMV, and acceleration in each
axis, in the time window. RMS is calculated according to the relation

RMSx = 2
√

mean
(
acc2

x

)
41 Signal magnitude area

(SMA)
Signal magnitude area in the time window. It is calculated with the
equation

SMA =
n∑

i=1

(
|accx i|+ |accy i|+ |accz i|

)
where, |accx i| corresponds to the absolute value of the i-th
observation of the acceleration across x-axis in the time window.

42–44 Mean square Mean of the square values of individual observations in the time
window.

45–48 Entropy Fast Fourier transform of SMV, and across x, y, and z-axis, in the
time window.

49–51 Median Median of the acceleration values across x, y, and z-axis in the time
window.

The statistical features mentioned are common due to their simplistic nature and significant
performance across a variety of activity recognition problems [13,60]. The maximum, minimum,
and range features can assist in differentiating between activities that contain movements comprised
of different ranges. Signal magnitude area (SMA) has proved beneficial when employing triaxial
accelerometers for activity recognition as it can suitably differentiate between static and dynamic
activities. SMV signals are independent of the orientation of the sensor and are consequently valuable
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to include as the dataset contains a large number of participants, each placing the sensor on their
dominant wrist.

3.2. Process Stages

The implemented procedure adopted in the current work is described below. The importance of
the use of this technique lies on the fact that this technique considers the correlation of the data in order
to detect outliers. This approach has some relationship on KNN principle and is suitable considering
that each participant performed each activity independently for 2 min and recorded his observations in
a separated file. Other approaches to detect outliers in HAR, use clustering or other machine learning
techniques to detect outliers. This kind of implementations are described in [55,58]. The proposed
approach is described below:

1. Stage 1: In this first stage, an evaluation of different classifiers in order to determine the two most
suitable for the HAR with the collected data. The output confirmed the fact that random forest
and KNN are the most resilient classifier when working with noisy data [38]. This stage was
useful only to determine the classifiers that were going to be used to evaluate the proposed data
cleansing approach (see Section 4.1).

2. Stage 2: Once it was clear that the best classifiers were KNN and random forest, the generated
database is managed and split in order to obtain two sets. Set 1 containing two-thirds of the
observations. This set will be used for data cleansing approach evaluation, model creation, and
evaluation. This means that from this set, the process of training and evaluating using the 10-fold
cross validation will be performed. Set 2 will remain with raw data in order to test the classifiers
against unseen data. This stage is depicted on Figure 1A.

3. Stage 3: Once the two sets are obtained in stage 2, set 1 was used to train the classifiers with noisy
data. The purpose of this, is to evaluate the performance measures of the classifiers when trained
with noisy data and compared it with the performance when trained with cleaned data. In this
case, clean data refers to the resulting set once the proposed cleansing approach is implemented
to this set 1. The detailed process in this stage is described in phases 1 to 8 and on Figure 1B
(Phases 1 to 5) and on Figure 1C (phases 6 to 8). The phases carried out in this stage are:

1. Phase 1: Feature calculation and windowing of the data.
2. Phase 2: Multivariate outlier detection in the particular windowed data of each student.

This outlier detection was made with the two proposed levels of 95% and 99% confidence
levels. This means working with alpha levels of 0.01 and 0.05. These two levels are the most
widely used for this kind of tests [61]. To perform this multivariate outlier analysis, the MD
was computed using the mean of windowed data from acceleration across x, y, and z-axes.

3. Phase 3: Compilation of the cleaned data in 18 files (one for each activity). Phase 3A: On the
other hand, the raw files were compiled in 18 raw files too. One for each activity.

4. Phase 4: Multivariate outlier detection of the compiled data. This outlier detection was
made with 95% and 99% confidence levels.

5. Phase 5: Compilation of the cleaned 18 files. Considering the previous cleaning processes
and the different cleansing levels, up to this point four files were obtained. One with 95%
confidence level in step 1 and 99% confidence level in step 2, one with 95–95%, one with
99–95%, and the fourth file with 99–99%. Phase 5A: Compilation of the 18 raw files in
one file.

6. Phase 6: Load the compiled files to Weka®.
7. Phase 7: Apply a supervised attribute selection technique D1–N5 from Weka® (3.8.3 version).
8. Phase 8: Create the model (KNN or random forest). The model was created using a 10-fold

cross validation with a two-thirds training and one-third testing purposes. All steps were
performed with set 1. F-measure values were extracted for each model. Considering that
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the data were cleaned with different levels in step 1 (Phase 2) and step 2 (Phase 4), four
models were created for KNN and four for RF. Phase 8A: A similar way to the described in
Phase 8 was followed with the raw data. In this case, a model with KNN and a model with
RF were generated.

4. Stage 4: Repeat stage 2 and stage 3 10 times. So, in the end, 100 models will be generated.
5. Stage 5: Analysis of results. This analysis will be performed once the approach is applied to the

study case data.
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Figure 1. (A) Proposed approach representation. This representation corresponds to stage 2 of the
process. (B) Proposed approach representation. This diagram corresponds to the stage 3 of the process,
in particular to phases 1 to 5. (C) Proposed approach representation. This diagram corresponds to the
stage 3 of the process, phases 6 to 8.

4. Study Case

As it was mentioned before the proposed approach will be tested at the Pervasive Computing in
Healthcare module at Ulster University. The Smart Environments Research Group at Ulster University
is working to improve the performance of different classifiers for Human Activity Recognition. One of
the branches of this research target, is the evaluation of different ways to clean data, in order to evaluate
the impact of these actions in the classifier performance. Therefore, the first stage of the process was to
determine through experimentation the best classifiers for the activities performed by the students.
The school have previously tested manual data cleansing with no effect on the performance of the
classifier when tested against raw unseen data. In order to tackle this situation, this new approach was
proposed in order to evaluate the impact on the classifier’s performance.

The implementation of the different stages and steps described in the methodology to the study
case are depicted below.

4.1. Stage 1

Different tests were initially performed in order to determine the best two classifiers for the
constructed dataset, so it was possible to evaluate the impact of the proposed cleaning process. At the
beginning KNN, SVM, random forest (RF), neural networks, and regression were taken in consideration
for the study, due to the fact that are the most commonly used for this task [13,62,63]. The classifiers
with the best outcomes were KNN and RF. Once this was determined, data cleansing was performed
to the supplied data trying to improve the quality of the data in order to obtain a better performance of
the classifiers. The original supplied data was formed by 423 files each one containing approximately
6000 observations of acceleration across x-, y-, and z-axis. The files can be grouped in 18 sets depending
on the activity performed during data acquisition. The distribution of the data in the 18 activities can
be found in Table 3.

The noisy data were used to evaluate the performance of a range of classifiers. This process
was performed using the Weka® software (3.8.3 version). Some manual cleansing was made prior
the classification process. This manual cleansing focused on eliminating data at the end and at the
beginning of the file in each one of the 423 files. This process was very helpful in order to eliminate
data at the beginning of the observation of each activity for each person. The aim of this process was to
take into account only the observations when the person was performing the activity correctly, i.e.,
eliminate the data of the learning curve (Figure 2). The remaining observations (after the manual
cleansing) were grouped in 4-s time windows. The aim of the cleaning process is to identify corrupt
(noisy) data that could be causing that the classifier does not learn properly from the training set. This
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inadequate learning process relates with the fact that the corrupt data make it difficult for the classifier
to establish a relationship between a particular label with a particular set of observations. This classifier
‘confusion’ may generate that it incorrectly classifies some instances when tested against raw unseen
data. This noisy data elimination process should provide better quality data so that the classifier has a
more trustable training process (less corrupt data), and in having so, the classifier should have a better
performance in identifying the activity that is being carried out.

The data were cleaned and compiled using the software R (3.6.1 version). This first stage yielded
the results as presented in Tables 4 and 5. These results were obtained when working with the cleaned
data and were improved in all the cases when compared with the case when the model was built with
raw data. In each case, a 10-fold cross validation procedure was used. According to these results KNN
and random forest were selected as the most suitable classifiers.

Table 4. Distribution of the data by activity.

Activity No. of Files

Arm curls 21

Bounce 25

Catch 25

Chopping 23

Deadlift 21

Dishwashing 25

Hair grooming 25

Handwashing 24

Ironing 24

Jogging 23

Lateral arm raise 21

Mixing food in bowl 23

Pass 25

Sieving flour 23

Stepping 23

Teeth brushing 24

Walking 23

Window washing 25

TOTAL 423

Table 5. F-measure results of the different classifiers at stage 1.

Classifier F-Measure

KNN 84.00%

SVM 73.60%

Random forest 89.40%

Neural networks 78.00%

Regression 72.10%
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Additional tests were carried out at this stage trying to identify the effect on the performance of
the classifiers when more instances were removed. These additional tests were carried out only with
the selected classifiers (KNN and RF). The results are presented in Table 6.

Table 6. F-measure value with different cleansing levels.

F-Measure

Scenario KNN RF Kept Instances (%)

Case 1 95.80% 96.00% 84.07%

Case 2 94.70% 95.70% 92.99%

Case 3 94.10% 93.80% 88.52%

Case 4 81.20% 93.90% 98.16%

Case 5 52.20% 92.10% 100%

Each case presented in Table 6 corresponds to a particular cleansing level. This cleansing level
is associated with the removed instances. For example, case 1 corresponds to a cleansing level, in
which 15.93% of the instances were removed, and case 5 corresponds to the raw data. In all these
cases, the manual cleaning levels were made before splitting the data into the training set and the test
set. Therefore, the impact on the F-measure is that the more removed instances the higher F-measure
values obtained. Nevertheless, these results are not useful in real life, in which the classifier must
deal with noisy data. Therefore, the challenge lies on cleaning the data to a point in which learning
improves and helps the classifier face real life conditions (datasets containing noisy data).

At this stage, another important test was carried out. This test consisted of evaluating the impact
of the number of features used for estimation. Results for KNN with 27 and 3 features are presented
in Table 7. These tests were performed considering also, different cleansing levels. In the case of
scenario 2, the data cleansing was stronger that in the case of scenario 1. These scenarios correspond to
cleansing levels similar to case 3 and case 4 presented in Table 6.

Table 7. F-measure value with different cleansing levels and different amount of features.

Scenario KNN (27 Features) KNN (3 Features) Kept Instances

Scenario 1 92.90% 63.80% 98.5%

Scenario 2 94.20% 64.00% 88.7%
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In Table 7 is the value of F-measure for KNN classifier in particular working with 27 features and
3 features can be observed. The performance with 27 features is 30% better than when working with
just 3 features.

4.2. Application of Mahalanobis Distance-Based Multivariate Data Cleansing (Stages 2, 3, and 4)

In stage 1, the purpose was to explore the data and select the most suitable classifier in addition to
identify the impact of the number of features on the performance of the classifier. Now that random
forest and KNN were selected as the most suitable classifiers, and the importance of having more
features has been highlighted, the implementation of the stages 2, 3 and 4 can be followed. All the files
were processed according to these stages. First, individual features were calculated. Then the files
were windowed considering a 4 s time window. Then windowed features were calculated, such as
mean, range, and standard deviation, among others. This processing was performed on each of the 423
files corresponding to the different persons and activities. For each case the data was split into two sets.
The set 1 for training purposes amounts to 66% of the observations and the other 34% was used for
testing purposes. This split was made 10 times, allowing 10 training sets and 10 test sets to be obtained
for each one of the 423 files. The data splitting was performed randomly using R.

Considering that the process of data acquisition focused on 3 variables (acceleration across x-,
y-, and z-axis) and knowing that each activity has a particular relation between the three values, the
proposed approach aimed to identify the noisy data (outliers). This proposed approach is based on
the application of multivariate outlier detection. This process consists of the calculation of the MD.
As previously described, MD is like the Euclidean distance, however, it considers the fact that there are
correlations between data (the three values of acceleration in this case). In the case that the correlation
between the data is not considered in the process the outcome would be a sphere. The inclusion of
correlation in the process yields a tridimensional oval. The shape of the oval depends on how strong
the correlation between variables is. This procedure is more effective in outlier detection considering
processes where the monitored data are correlated. The border of this oval is defined by the value of
the chi square test at a desired significance level.

For each of the 423 files the MD was calculated, and data cleaning performed as a first step. This
cleansing process was carried out considering a significance level of 0.05 and 0.01 with the chi square
test. Once this cleansing was performed the data were compiled considering the activity. This yielded
18 files for training purposes cleaned with a significance level of 0.01 and 18 with a significance level of
0.05. Similarly, with the test data, 18 with a significance level of 0.01 and 18 files with a significance
level of 0.05.

Considering that each one of these files contains observations from different participants, a second
cleaning process was performed. The purpose of the first cleaning was to eliminate outliers within
each participant performing each activity. This second cleaning process aims to eliminate outliers
from the aggregation of participants performing the same activity. The aggregation is made using the
previously cleaned data, forming one set with the significance level of 0.01 and a second set with the
file cleaned with a significance level of 0.05. The outlier detection in these compiled sets was made
considering also two significance levels (0.01 and 0.05). At the end there were 18 files with a cleaning
process with a confidence level of 95% (significance level of 0.05) in the first step and 95% in the second.
Another 18 with cleansing level of 95–99%, another 18 with 99–95% and 18 with 99–99%. All of these
cleaned files yielded four compiled files for training and four for test purposes. It is also important
to point out that there was a training set made of raw data, containing all the observations from the
training set extracted from set 1. There will also be a test set compiled file with raw data. This test set
corresponds to set 2, and its observations remain unseen for all the trained models in the process.

Considering that the selected classifiers were KNN and RF, and that this process was repeated 10
times, this yielded 40 cleaned training files for KNN and RF, 40 cleaned test files, 10 raw training files,
and the corresponding 10 raw test files. The results of the F-measure for KNN, RF are presented for
each repetition and cleaning levels in Tables 8–10.
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Table 8. F-measure value with different cleansing levels for KNN against the corresponding cleaned
test set.

KNN Cleaning Levels

Fold 95_95 95_99 99_95 99_99

1 0.940 0.925 0.938 0.921

2 0.935 0.922 0.929 0.914

3 0.935 0.923 0.936 0.922

4 0.939 0.867 0.930 0.860

5 0.941 0.936 0.936 0.842

6 0.949 0.842 0.936 0.855

7 0.935 0.860 0.932 0.838

8 0.936 0.866 0.934 0.833

9 0.937 0.926 0.938 0.924

10 0.933 0.849 0.933 0.846

Table 9. F-measure value with different cleansing levels for RF against the corresponding cleaned
test set.

RF 95_95 95_99 99_95 99_99

1 0.953 0.948 0.946 0.946

2 0.952 0.948 0.949 0.944

3 0.952 0.951 0.949 0.946

4 0.952 0.948 0.947 0.946

5 0.950 0.951 0.948 0.944

6 0.954 0.946 0.946 0.946

7 0.950 0.948 0.942 0.947

8 0.950 0.951 0.948 0.945

9 0.952 0.949 0.946 0.944

10 0.953 0.946 0.945 0.943

Table 10. F-measure value for KNN and RF with raw data. Trained and tested against raw data.

RF KNN

1 0.939 0.557

2 0.942 0.556

3 0.945 0.555

4 0.941 0.562

5 0.941 0.561

6 0.937 0.549

7 0.938 0.543

8 0.941 0.551

9 0.94 0.559

10 0.94 0.557
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The values of F-measures presented in Tables 8 and 9 correspond to the values obtained when the
model was trained with a training set with a particular level of cleansing and tested against the test
set with the similar cleansing level. On the other hand, there were models of KNN and RF created
with raw data and tested against raw unseen data. The values obtained for F-measure under these
circumstances are presented in Table 10.

Nevertheless, the models created with cleaned data were saved and tested against raw unseen
data (set 2) in order to evaluate the impact of the cleaning process. The F-measure values are presented
on Table 11. The purpose of this test was to evaluate the performance of the classifier in conditions
similar to real life, in which there will be no cleansing process in the process of generating the data to
predict the activity that is being carried out.

Table 11. F-measure value for each KNN and RF model when tested against raw data.

Repetition Models

KNN
raw

RF
raw

95_95
KNN

95_99
KNN

99_95
KNN

99_99
KNN

95_95
RF

95_99
RF

99_95
RF

99_99
RF

1 55.91% 94.35% 55.61% 56.34% 55.63% 56.17% 88.15% 90.80% 88.34% 90.92%

2 55.04% 94.47% 73.13% 75.26% 73.01% 75.38% 88.2% 90.30% 87.80% 90.73%

3 55.72% 94.09% 59.51% 60.17% 59.06% 60.31% 87.54% 90.14% 87.35% 90.47%

4 55.56% 94.44% 63.39% 62.56% 63.43% 62.65% 87.51% 90.71% 87.91% 91.30%

5 56.67% 94.73% 57.43% 57.99% 57.40% 58.07% 87.73% 90.87% 88.03% 89.97%

6 56.27% 94.61% 69.16% 66.34% 69.51% 66.86% 87.89% 90.82% 88.17% 91.75%

7 57.05% 95.15% 63.86% 61.28% 64.71% 61.24% 88.91% 91.56% 88.58% 92.05%

8 55.56% 94.44% 68.00% 69.09% 68.28% 69.11% 88.10% 90.42% 88.48% 91.23%

9 56.17% 94.47% 64.69% 65.45% 65.28% 65.71% 87.63% 90.78% 87.80% 91.11%

10 55.87% 95.1% 59.67% 59.67% 59.56% 59.44% 88.08% 91.11% 88.55% 90.78%

5. Analysis of Results

From Table 11, it can be inferred that the performance of the classifiers differs from the value
obtained in Tables 8 and 9. The difference in the performance lies on the fact that the models become
overfitted, despite of the use of a 10-fold cross validation procedure. The values of F-measure of the 10
repetition were annotated and its mean and standard deviation were calculated. In order to perform
statistical comparisons (t-tests) and verify if there are statistical significant differences between the
classifiers and levels of cleansing, normality tests were executed with the 10 values obtained for each
combination of cleansing level and classifier. This is important in order to guarantee the validity of
the t-test. On Tables 12–14 it can be observed the mean and standard deviation of each classifier, and
p-value for Anderson Darling normality test. The test was made considering a significance level of 0.01.

Table 12. Mean, standard deviation, and p-value for Anderson Darling test, for the KNN models tested
against cleaned sets.

95_95 KNN 95_99 KNN 99_95 KNN 99_99 KNN

Mean 93.8% 89.2% 93.4% 87.6%

Standard Deviation 0.46% 3.76% 0.32% 3.93%

P-Value 0.0763 0.0189 0.4524 0.0128
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Table 13. Mean, standard deviation, and p-value for Anderson Darling test, for the RF models tested
against cleaned sets.

95_95 KNN 95_99 KNN 99_95 KNN 99_99 KNN

Mean 95.2% 94.9% 94.7% 94.5%

Standard Deviation 0.14% 0.19% 0.21% 0.13%

P-Value 0.083 0.0789 0.0.3061 0.1096

Table 14. Mean, standard deviation, and p-value for Anderson Darling test, for the RF and KNN
models tested against raw sets.

KNN
raw

RF
raw

95_95
KNN

95_99
KNN

99_95
KNN

99_99
KNN

95_95
RF

95_99
RF

99_95
RF

99_99
RF

Mean 55.98% 94.58% 63.40% 63.42% 63.59% 63.49% 87.97% 90.75% 88.10% 91.03%

Standard
Deviation 0.58% 0.33% 5.59% 5.72% 5.66% 5.82% 0.42% 0.41% 0.40% 0.60%

P-Value 0.8347 0.1165 0.8579 0.5615 0.8644 0.6167 0.2539 0.5110 0.6290 0.9490

Considering that in all models p-value > 0.01, then normality assumption is valid, and t-tests can
be carried out. The results of the t-tests between the different KNN models shown on Table 10 can be
found on Table 15 below.

Table 15. p-value for t-test comparison for KNN models (tested against cleaned data).

Model 1 Model 2 p-Value

95_95_KNN 95_99_ KNN 0.003

95_95_ KNN 99_95 _ KNN 0.047

95_95_ KNN 99_99_ KNN 0.0007

95_99_ KNN 99_95 _ KNN 0.006

95_99_ KNN 99_99_ KNN 0.361

99_95 _ KNN 99_99_ KNN 0.001

The results of the t-tests between the different RF models shown on Table 12 can be found on
Table 16 below.

Table 16. p-value for t-test comparison for the RF models (tested against cleaned data).

Model 1 Model 2 p-Value

95_95_RF 95_99_ RF 0.0

95_95_ RF 99_95 _ RF 0.0

95_95_ RF 99_99_ RF 0.0

95_99_ RF 99_95 _ RF 0.039

95_99_ RF 99_99_ RF 0.0

99_95 _ RF 99_99_ RF 0.07

Similarly, considering that the data from Table 14 are normally distributed similar comparisons
can be performed. Initially, it was important to determine if there is a significant difference in the
performance within the different KNN models when tested against raw data. In order to determine this
a one-way ANOVA (significance level of 0.01) was carried out. This ANOVA yielded a p-value = 0.99.
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This result implies that the cleaning level carried out with KNN has a similar effect, and it makes no
difference to perform a strong cleansing (95–95) or a weak cleansing (99–99).

Similarly, a one-way ANOVA was performed for the RF obtaining a p-value = 0.00. In this case,
the ANOVA indicates that there is strong evidence that the performance differs between the different RF
models (when tested against raw unseen data), depending on the cleansing level of the training data.

Once the difference in the performance between the RF models, when tested against raw data is
detected t-tests were performed in order to identify which models have a different performance. The
results of these comparisons are presented in Table 17.

Table 17. p-value for t-test comparison the for RF models (tested against raw data).

Model 1 Model 2 p-Value

95_95_RF 95_99_ RF 0.000

95_95_RF 99_95 _RF 0.494

95_95_RF 99_99_RF 0.000

95_99_ RF 99_95 _RF 0.000

95_99_ RF 99_99_RF 0.243

99_95 _RF 99_99_RF 0.000

In this case, Table 16 demonstrates that the when comparing models with a similar cleansing
level in the second step, the performance is similar. This behavior can be observed in rows 2 and 5 in
Table 17. On the other hand, when the cleansing level is different in step 2 the p-value is 0.00, meaning
that there is a statistically significant difference in the performance of the models. This behavior can be
observed in rows 1, 3, 4 and 6 in Table 17.

The last comparison was made to identify if there was a difference in the performance between
KNN models when trained with cleaned and raw data; however, tested in both cases against raw data.
This means that the F-measure of KNN trained with raw data was compared with KNN trained with
cleaned data. In these cases, the performance was calculated testing each model against raw unseen
data. These performances can be observed in Table 11. The results of the t-test with a significance level
of 0.01 can be found in Table 18.

Table 18. p-value for t-test comparison for the KNN (raw data model) against KNN (cleaned data
models) when tested against raw data.

Raw Data Model Clean Data Model p-Value

KNN 95_95_KNN 0.002

KNN 95_99_ KNN 0.003

KNN 99_95 _KNN 0.002

KNN 99_99_KNN 0.003

A similar comparison was performed for the RF. The results of the t-test with a significance level
of 0.01 are presented in Table 19.
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Table 19. p-value for t-test comparison for the RF (raw data model) against RF (cleaned data models)
when tested against raw data.

Raw Data Model Clean Data Model p-Value

RF 95_95_RF 0.000

RF 95_99_ RF 0.000

RF 99_95 _RF 0.000

RF 99_99_RF 0.000

6. Conclusions

Considering that the aim of the study was to evaluate the impact of the multivariate outlier
detection and data cleansing in the performance of different classifiers for HAR. It is important to
point out that the cleansing process demonstrated an increase of 12.5% in the F-measure of the KNN
classifier. Table 13 presented that the F-measure for the KNN when trained with raw data attained 56%,
however, when trained with cleaned data it rises to 63% approximately, in both cases tested against
raw unseen data. When performing a t-test comparing these two performances, the test yielded a
significant difference between the models trained with cleaned data and models trained with raw
data. This finding is important considering that the models were tested against raw unseen data.
Additionally, it is important to highlight that for KNN, the cleansing levels used in the study have a
similar effect in the performance of KNN. This can be concluded as the p-value was 0.99 when achieved
from the ANOVA analysis within the four KNN cleaned models.

Other important findings are:
In the case of RF, the performance dropped when testing the RF cleaned models against raw data.

From Table 14, it can be observed that the F-measure for RF when trained with raw data attained 95%;
however—when trained with cleaned data—it decreased approximately to 89.5%.

For RF, the cleansing levels used in this study have different effects on the performance of RF.
This can be concluded as the p-value was 0.00 when performing ANOVA within the four RF cleaned
models. In this case, the models with better F-measure against raw data, were the models with the
weak cleansing (99%–99%).

The impact of any cleaning process on the classifier should be made against unseen data, and
preferably against raw data. In the case of KNN the difference of F-measure attained 30% when tested
against cleaned data when compared against raw data. In the case of RF, there is a significant difference
too. This difference in the F-measure is close to 5%.

The reason of the difference in the performance lies on the fact that KNN is a proximity/density
classifier and RF is a tree-type classifier. Therefore, it behaves better when trained with raw data
because it creates rules for the particular cases (outliers). In the case of KNN, outliers create a distortion
in the predictive ability of the classifier. This distortion can be improved with the cleansing process.
This situation makes RF the most suitable classifier for HAR, considering that it can better cope with
variations in the way activities are being carried out. In this sense, it is also important to highlight
that the cleansing process impact is strongly related with the similarity between the classifier and
the cleansing process method. In this case, MD has a relation with KNN classifying method in the
sense that both are proximity/density methods. However, has no relation at all with random forest.
Regarding the performance of both classifiers it is important to point out that according to [63] it
is necessary to evaluate the fact that young people is carrying out these tests but the real-world
application will be for elderly. This may induce a prediction error.

The features considered for the model can be a mixture of HAR classic features (energy, SMV,
among others), and statistical criteria such as exponential, and logarithm. Both were considered
significant to improve the predictive ability of both KNN and RF.

For future research, it will be important to check the combinations of models so that a hierarchy
could help in the determination of the different classes. In this sense, it would be interesting to consider
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the combination of random forest with a CNN, similar to what was done by [62] where a hybrid
hierarchical classification algorithm (HHC) is presented combining deep learning and threshold-based
methods to improve accuracy and rapid computation classifying 15 complex activities. It is also
important to verify if the suitable classifiers would change in case that the data are taken from different
profile participants (elderly people, mature people, or people with some specifically physical or
neurological condition, for example) and how would this would affect the classifier’s performance and
the need to include additional features to the process.

Another important line of investigation would be the inclusion of Lasso regression, LARON
(least angle regression outlier nomination) and LARS (least angle regression) to deal with outliers in
the process of selecting the best features in order to reduce confusion that outliers can induce to the
process of feature selection. This could improve the performance of the models when tested against
raw unseen data.

Finally, it would be important to run these models involving also feature selection during the
training phase in order to reduce the probability of overfitting.
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