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Abstract. The Clean Europe Network (CEN) estimates that cleaning litter in the EU 

accounts for €10-13 billion of public expenditure every year. The annual budget for 

managing roadside litter alone, is approximately €1 billion. While local authorities in 

Northern Ireland and elsewhere have legal requirements to monitor and control litter 

levels, requirements for compliance are unclear and frequently ignored. Against this 

background, the overall objective of this research is to develop an integrated management 

system allowing remote discrimination and quantification of roadside litter. As such, the 

intention is that local authorities can more effectively meet their statutory requirements 

with regards to litter management. The research aligns with objectives outlined by the 

UK Government and CEN in terms of improving litter-related data levels. As plastic 

containers of type RIC1, Polyethylene terephthalate (PETE), represent one of the most 

common components of roadside litter, its identification in the natural environment via 

remote sensing is a key objective. By combining published US Hyperspectral library data 

and experimental field study results, the initial findings of this research indicate that it is 

possible to discriminate PETE plastic samples in a grass background using a low-cost 

multispectral sensor primarily designed for agricultural use. While at an initial phase, the 

research presented has the potential to have a significant impact on the economic, 

environmental and statutory implications of roadside litter management. Future work will 

employ image processing and machine learning techniques to deliver a methodology for 

automatic identification and quantification of multiple roadside litter types. 

Keywords: Image analysis, Multispectral, Litter, Remote sensing, 

Hyperspectral signatures. 

1 Introduction 

Local environmental charity Keep Northern Ireland Beautiful calculated in 2014 that 

the average cost to ratepayers for cleaning streets was £38M per year [1]. The 

organisation stated that 97% of streets in Northern Ireland are littered and recognised 

plastic litter as a particular issue. The UK Government’s primary recommendation [2] 

relating to litter is that more and better data is required to underpin more accurate 

management of its collection. Collation of roadside litter data by quantity, type and 

location is seen as a key component of this recommendation. The widespread physical, 

environmental and financial impact of littering is well accepted [3] and its monitoring 

and management is a statutory duty of all UK local authorities. However, requirements 

for compliance under statutory documents such as the Litter (Northern Ireland) Order 

1994 are unclear and, as a result, frequently ignored. 
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Of particular concern, plastic littering has reached such an extent worldwide 

that it has been recognised an indicator of a distinct geologic era [4]. In the US, for 

example, plastic litter has increased by 165% since 1969 and according to several 

studies [4-11], polyethylene terephthalate (PETE) - widely utilised in the food and drink 

industry - is by far the most common type of discarded plastic product. This plastic is 

internationally categorised using the Resin Coding Method [12] as Resin Identification 

Code (RIC) Type 1. Concern surrounding the impact and persistence of plastic litter 

[5,6] has generated much research in measuring litter levels in the marine environment. 

However, despite the terrestrial origin of much plastic litter [7,8], there appears to be 

little similar roadside- or built environment-based research.  

Measurement of environmental plastic is currently carried out by physical 

observation, although there have been some attempts to utilise remote sensing. Remote 

sensing is defined as the detection of reflected electromagnetic radiation emanating 

from a surface using a wide range of imaging sensor types and imaging techniques such 

as sonar platforms and aerial cameras [13]. In the past decade, examples of remote 

sensing application in the built environment include identification of impervious 

surfaces to interpret urbanisation levels [14] and road centerline extraction in support 

of autonomous driving [15]. Vehicle mounted remote sensing has been successfully 

deployed to monitor road surface conditions [16]; work that has successfully 

demonstrated that deterioration of street furniture and road surfaces can be captured in 

urban environments to high levels of geo-spatial accuracy using vehicle-based sensors. 

Several other publications consider remote sensing in relation to road surface features 

and road surface conditions [17] and general sensing of urban surfce features [18]. 

However, the techniques reported have yet to be applied to the challenge of remote 

sensing of litter on urban and rural road networks. 

Two types of remote sensor are principally used to detect reflectance spectra; 

namely multispectral (MS) and hyperspectral (HS). MS sensors measure reflected 

energy in typically four or five discreet electromagnetic spectral bands in the green to 

infra-red range. HS sensors also detect reflectance in discreet contiguous bands, albeit 

over 200 or more. MS sensors have primarily been used for vegetation management 

[19] and weed monitoring [20]. While a few examples of MS sensors having been used 

for litter, and more specifically plastic debris [21], measurement exist in the literature, 

their focus has been on marine and beach litter [21-23]. In these instances, as the debris 

being detected is typically large and the background homogenous, debris quantities 

have been quantifiable by applying brightness thresholds to two-tone images. HS 

remote sensing has also been considered as a method of discriminating plastics in this 

environment, with related research [24,25] considering remote sensing of macro 

plastics in both visible (VIS) and short-wave infrared (SWIR) spectra. Current HS 

equipment is most effective in a controlled environment and is commercially deployed 

in litter recycling facilities to assist with sorting. Serranti et al. [26] first demonstrated 

effective use of HS reflectance sensing techniques to discriminate specific plastic resin 

types for litter sorting.  

Against this background, the aim of this research is to evaluate the 

effectiveness of HS and MS sensors to identify RIC Type 1 litter in a roadside 

environment. The paper presents two distinct phases of research. Phase I initially 

analysed HS reflectance profiles held in existing data to compare spectral profiles of 



common built-environment materials, including RIC Type 1 plastic. HS signatures in 

four distinct spectral bands, corresponding to MS sensitivity, were examined and the 

corresponding reflectance compared. The intention was to examine whether sufficient 

spectral information was contained in these bands to uniquely distinguish materials. 

Phase II subsequently acquired field data using a commonly available, Parrot 

Sequoia MS sensor, with data obtained analysed against the Phase I data. The work 

reported is the first stage of a longitudinal study focused on developing an automated 

litter monitoring system capable of distinguishing and quantifying roadside litter by 

type, to assist local authorities meet statutory litter reporting and management. 

2 Phase I – Spectral Data Analysis  

The research in this section was undertaken to support a hypothesis that litter in the 

built environment can be remotely identified using a low-cost MS sensor. Data used in 

Phase I of the study was acquired from the ECOSTRESS Spectral library; a resource 

created and made freely available by the U.S. Jet Propulsion Laboratory [27]. The 

library (formally the ASTER spectral library) [28], version 1.0 of which was released 

in February 2018, comprises more than 2,800 reflective spectra of natural and man-

made materials. Spectra in the range 0.4-2.5µm was used for this study, corresponding 

to the spectral range of the multispectral sensor employed in Phase II (0.53-0.81µm). 

Sampling intervals of 0.001 and 0.004 µm were considered in the 0.4-0.8 and 0.8-2.5 

µm ranges respectively. Two spectral samples each, for two common European grasses, 

Avena fatua and Bromus Diandrus [29], were initially considered (see Figure 1a)). 

Clearly, a simple visual comparison of these profiles indicates a high degree of 

consistency across the spectrum considered, with strong distinguishing characteristics 

at several wavelengths. 

 

 

  
a) b) 

Fig. 1. Comparative HS profiles for: a) common European grasses, and b) average value for grass 

plotted in comparison with PETE (MS spectral range superimposed) 

As shown in Figure 1b), an averaged grass reflectance profile was then compared to 

that for PETE. Examination in the MS range (525-800 nm), indicates clear 
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differentiation between profiles in most regions. While the profiles cross at 725 nm and 

show on 5% reflectance differences in the wavelength range 725-800 nm, in the 500-

700 nm range, reflectance diverges significantly, with an average difference of more 

than 30%. To analyse the unique nature of these spectral profiles more closely in the 

MS range, specific spectral band ranges corresponding to the capabilities of the MS 

sensor used in Phase II were then compared. As shown in Figure 2a) the discreet bands 

considered were: 1. Green spectrum (530-570 nm); 2. Red spectrum (640-680 nm); 3. 

Red Edge spectrum (725-745 nm); and 4. Near Infrared spectrum (770-810 nm). 

 
 a)  b) 

 

Fig. 2. HS profiles in the 525-800 nm range with: a) all data points plotted for grass 

and PETE, and b) averaged data points across bands 1-4 plotted for grass and PETE in 

comparison to other common built-environment materials 

 

When comparing PETE to grass across the 525-800 nm spectral range, unique 

profiles are apparent, with average differences in reflectance of +27.5 and +38.7% in 

bands 1 and 2 respectively. In bands 3 and 4, the profiles converged, with PETE having 

slightly lower average reflectance values compared to grass (-1.6 and -5.8% 

respectively). While the strongest distinction between the two materials is in bands 1 

and 2, it is recognised that the distinctive crossover in reflectance in bands 3-4 might 

play an important role in distinguishing the materials. As shown in Figure 2b), this work 

was extended to compare the reflectance signature of PETE against other materials 

commonly found in the roadside environment. In this instance, average reflectance 

values from the ECOSTRESS library were calculated for each material across band 

widths 1-4.  

 Clearly from both figures 2a) and b), distinct characteristics of reflectance 

profiles across each band range were apparent for the materials considered. This finding 

provided support for the research hypothesis and confirmed potential for creating 

numeric material ‘fingerprints’ based on data considered across MS bands. Against this 

background, it was decided that the work should progress utilising MS field-captured 

sensor data to explore these characteristics further. 
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3 Phase II - Multispectral Sensor Reflectance Analysis 

The equipment used for the MS research was a Parrot Sequoia manufactured by Parrot 

SAS, France, comprising both sunshine and multispectral sensors. The equipment 

contained a 16 MP RGB camera with 63.9º x 50.1º field of view (FOV) and four global 

shutters, 1.2 MP single-band cameras with 61.9º x 48.5º FOV. The assembly was 

installed in a modified GoPro Hero5 mount with power was supplied by a 5V, 3A USB 

battery and supported by firmware version v.1.4.1. 

  

  
Fig. 3. Sequoia MS captures showing PETE plastic bottles on lawn grass indicating a 

typical sample point on each frame for: a) Green, b) Red, c) IR Edge & d) Near-infrared 

spectrums 

 

Calibration required the conversion of unprocessed image data to at-sensor radiance 

values via a linear correlation. No atmospheric corrections were required as the sensor 

was mounted close to the ground with atmospheric effects deemed negligible [30]. The 

sensor was mounted on a tripod with the lens assembly normal to the ground surface to 

reduce distortion and set at a height of 1,200 mm; the minimum focus distance. A 

sample of calibration images is presented in Figure 3. Each field survey undertaken 

commenced with radiometric calibration using a standard Sequoia reference target, 

labeled ‘T’ (Figure 3a)). This procedure generated reference data for subsequent 

numerical adjustments or image manipulations to compensate for variations in band 

sensitivity.  

T 

c) d) 

a) b) 



 

3.1 Image analysis 

The Parrott Sequoia MS sensor generated four, 1280 x 960 pixel greyscale images; one 

for each spectral band. These images were in 8-bit integer jpeg format giving a range 

of possible values from 0 to 255 for each pixel, where zero is black and 255 white. For 

image analysis the GNU Image Manipulation Program (GIMP) was used to capture, 

report and analyse image pixel values. The software reported pixel values in HSV 

format where V is a brightness value in the range 0-100. The software contained the 

appropriate tools to extract individual or sample averaged pixel values. The process 

allowed reliable and repeatable selection of discrete areas of images and contained tools 

to allow averaged pixel values to be determined from user-definable kernels. Each 

image band was separately calibrated to compensate for differing responses in each 

band.  To do this, the reflectance value for the standard grey target was corrected to a 

reference value of 50%. Three sample points for each grey target were captured using 

an averaged 10x10 pixel kernel. Table 1 presents a representative example of the 

sampling process. 

Table 1. Example of spectral band reflectance value extraction for lawn grass 

Sample 
Image 

Reference 
X 

Value 
Y 

Value 
R-Value 

Average 
R-value 

Target 
R-Value 

R-Value 
Corr 

Lawn 
Grass 
001 

180312_165
336_ 0000_ 

GRE 

600 450 34.4 

37.0 74.9 24.7 700 450 39.3 

800 450 37.2 

180312_165
336_ 0000_ 

RED 

600 450 18.1 

18.8 70.7 13.3 700 450 20.6 

800 450 17.7 

180312_165
336_ 0000_ 

REG 

600 450 30.1 

30.6 25.9 59.1 700 450 30.2 

800 450 31.6 

180312_165
336_ 0000_ 

NIR 

600 450 39.1 

39.1 31.6 61.9 700 450 38.8 

800 450 39.4 

 

Table 1 contains sample data from one set of four multispectral images from a single 

image capture event as illustrated in Figure 3. The four image references listed represent 

the Green, Red, Red-Edge and Near IR spectral bands (top to bottom). In this example, 

three reflectance measurements are presented for each. By using X and Y values to co-

ordinate the sampling, consistency in sample areas across the spectral band images was 

effectively achieved. The sampling yielded corresponding reflectance R-values, which 

were averaged for each multispectral band. In this study, six grass samples and six 

PETE samples were acquired from five reference images, yielding 30 samples for both 

grass and PETE. A calibration reflectance measurement of the 50% grey calibration 

target was taken in each frame for the corresponding spectral band (recorded as Target 

R-Value in Table 1). Radiometric calibration uses Target R-Value to harmonise the 



reflectance outputs to compensate for the differing sensitivities of the sensor bands as 

follows: 

𝑅 − 𝑉𝑎𝑙𝑢𝑒 𝐶𝑜𝑟𝑟 =
50

𝑇𝑎𝑟𝑔𝑒𝑡 𝑅 − 𝑣𝑎𝑙𝑢𝑒
 𝑥 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅 − 𝑉𝑎𝑙𝑢𝑒 

 

The radiometrically correct reflectance values for the samples was calculated for the 

Average R Values and is shown in Table 1 as R-Value Corr. Data acquired from the 

sampling described above was then plotted to provide multispectral profiles as shown 

in Figure 4, which illustrates the distinct profiles for each material. 

 

 
 a) b) 

Fig. 4. Comparisons of HS and MS spectral reflectance data for: a) PETE and b) grass 

 

3.2 Observations 

Figure 4 combines data recovered from the MS sample acquisition described above, 

compared against raw data from the ECOSTRESS HS library. Values for both PETE 

plastic and lawn grass were derived from the HS data as described in Section 2.  The 

average reflectance values for MS and HS data are presented for both PETE and grass, 

with the reflectance range in each band being indicated by error bars. The profiles 

demonstrate that results obtained from the Parrott Sequoia MS sensor were generally 

as predicted, with a strong correlation between HS and MS reflectance data for both 

grass and PETE. It was expected that RIC1 plastic, which is optically clear, would 

transmit background reflectance information and the impact on reflectance profiles can 

be seen in Fig. 4a). The study clearly shows that Green and Red spectral bands provide 

clearest distinction between materials, IR Edge and Near IR the least. This is clearly 

observable in the grey-scale images in Figure 3, where PETE plastic bottles are visibly 

most transparent in the IR bands and least transparent in the visible bands. The narrow 

variance exhibited in the HS data compared to MS is indicative of the controlled 

conditions in which the HS data was captured; the HS reflectance being laboratory 

sampled against plain backgrounds.  The wide variation seen in the MS PETE values 

is symptomatic of the reflective nature and curved surface of plastic bottles. With 

examples of these reflective highlights being most visible in Figures 3a) and b). 
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Strong correlation between HS and MS profiles can be observed in all four bands for 

both materials. The average reflectance values acquired from the MS sensor field trials 

were in the ranges predicted by the analysis of the HS library data. Very little variation 

was witnessed in the reflectance values for the HS data, with less than 1% variation in 

any band for PETE and no more than 8% in any band for grass. This reflects the 

laboratory-based nature of the acquisition. MS reflectance values for grass showed 

good consistency in visible bands of no more than 8% and below 20% in the Infra-Red 

bands. MS reflectance data for PETE had acceptable variance, extending from just 

under 20% to 30%. The MS reflectance profiles show that there is significant overlap 

in the IR bands, but despite some variance, no overlap exists in the visible bands. This 

is as predicted by the HS library data. It can be seen that again each material has a 

distinguishing, clearly recognisable profile capable of being ‘fingerprinted’ 

numerically. 

Table 2. Numeric analysis of HS and MS fingerprints 

 Logical relationship between 
spectral bands 1-4 

Then spectral 
profile 

equates to: 
 IF 1:2     

= 
AND 2:3 

= 
AND 3:4 

= 

PHASE I - Based on data 
sourced from published 
hyperspectral libraries 

0.440 -
0.654 

3.624 -
5.663 

1.024 -
1.212 

Grass 

1.010 -
1.023 

1.006 -
1.018 

1.002 -
1.005 

PETE 

PHASE II – Based on 
experimental data 
collected using 
multispectral camera 

0.365 -
0.763 

3.239 -
6.743 

0.685 -
1.340 

Grass 

0.531 -
1.871 

0.845 -
2.079 

0.762 -
1.666 

PETE 

 

Numeric analysis of reflectance data was undertaken as shown in Table 2, defined 

separately for both the HS and MS profiles. Profiling was based on a simple factoring 

of values between spectral bands to provide a series of numerical ratios. These ratios 

describe the mathematical relationship between the values in each band to each other 

for each material. The relationships are further described in terms of average multipliers 

and a range reflecting the measured reflectance from the experimental data. 

This analysis provides a mathematical description of the reflectance curve for 

each material which has the potential to be used to identify and filter materials from 

their reflectance data using data-processing techniques. The IF:AND:AND relationship 

has been trialed in a spreadsheet matrix using ‘fingerprints’ for several ratios developed 

from the HS library data. Upper and lower reflectance values for selected common 

natural and manufactured materials have been used initially to develop a look-up table. 

A sample of this is presented in Table 3, in which sample values are entered and 

subjected to an IF:AND analysis in the form: 

 

=IF((AND(H13<$E$3, H13>$E$4, H14<$E$5, H14>$E$6, H15<$E$7, 

H15>$E$8, H16<$E$9, H16>$E$10)), "Y", " ") 

 



Where the sample values are within the reflectance range in all four bands for a given 

material in the library table a ‘Y’ is shown in the results matrix. Where one or any of 

the values are beyond the upper and lower values, a null response is returned.  The trial 

IF AND analysis demonstrates the potential of further work focused on automation of 

a numeric material ‘fingerprinting’ method. 

 

Table 3. Sample of IF AND analysis using HS library data 

 

4 Conclusion 

A simple and reliable method to distinguish PETE RIC Type 1 plastic in grassed areas, 

utilising inexpensive radiometric survey equipment has been demonstrated in this 

study. Under field conditions, the research indicates that different materials can be 

clearly discriminated in the Green and Red spectral bands. Nevertheless, there are some 

limitations that require deeper investigation and will form the basis of further research. 

For instance, the limited number of samples presented in this paper is recognised as a 

limiting factor and further study will address this. In addition, work will extend to 

collect data from other common materials. Future research will focus on methods such 

as using automated computer image processing. This will automatically measure and 

Wavelength (nm) Oak 

(fresh)

Oak 

(dry)

Mixed 

Spruce

Meadow 

Grass

Lawn 

Grass

Grass 

Dry

HDPE 

TransL

PETE

Band 1 - 550 181.65 204.75 25.2 164.85 101.85 309.75 560.7 510.3

Range 164.35 185.25 22.8 149.15 92.15 280.25 507.3 461.7

Band 2 - 660 106.05 128.1 19.95 274.05 45.15 242.55 534.45 518.7

Range 95.95 115.9 18.05 247.95 40.85 219.45 483.55 469.3

Band 3 - 735 641.55 584.85 95.55 332.85 471.45 286.65 522.9 525

Range 580.45 529.15 86.45 301.15 426.55 259.35 473.1 475

Band 4 - 790 874.65 689.85 130.2 365.4 724.5 309.75 516.6 527.1

Range 791.35 624.15 117.8 330.6 655.5 280.25 467.4 476.9

Band 1 - 550 23 200 530 160 100 165 291 480

Band 2 - 660 19 120 520 250 42 100 230 480

Band 3 - 735 87 530 480 300 430 600 263 480

Band 4 - 790 120 625 470 335 660 800 285 480

Oak (fresh)    null  Y   

Oak (dry)  Y       

Mixed Spruce Y        

Meadow Grass        

Lawn Grass     Y    

Grass Dry       Y  

HDPE TransL   Y      

PETE        Y

Sample values

Spectral Reflectance Library

Results Matrix



compare the reflectance values generated by the MS sensor allowing profiles for 

additional materials to be acquired more quickly. It was observed that the capture 

process benefited from a combination of bright and overcast conditions. Generally, for 

the trials undertaken, well-lit sunny or hazy but bright conditions were chosen. 

However, it was also observed that the quality of image capture in early morning or 

evening could be adversely affected due to low sun generating increased shadow; 

particularly where surfaces are undulating or uneven. Further trials will be carried out 

in a range of lighting conditions to establish the impact of these variations. 

In terms of practical surveys, the effect of sensor movement on image 

acquisition quality will be evaluated. The Sequoia multispectral camera is principally 

designed for aerial drone surveys, where due to its elevation, large overlap between 

consecutive images exists and high frame rates are not required. The low sensitivity of 

the sensor means that capture rates up to two frames per second are attainable. Trials 

are planned to determine performance in vehicle mounted surveys. 

Recognising that this is an early phase in the study, this paper presents an 

innovative method of litter detection in the built environment using remote sensing. 

This presents a potentially more economic and flexible solution to litter quantification 

and qualification than more expensive specialist solutions. The research indicates that 

in the area of remote sensing, it is possible to use a relatively simple multispectral 

sensor to distinguish materials. The research will continue with the final aim to develop 

an economic and reliable method of litter detection and measurement as part of an 

environmental monitoring scheme. It is anticipated that such a system will have a 

beneficial impact for those responsible for managing and maintaining the environment. 

A future phase of the research will involve field trials in collaboration with Mid and 

East Antrim District Council; a Northern Ireland local authority responsible for a 

district area of 1046km2 comprising a network of major and minor roads. Field trials 

will initially take place on a representative section of trunk road with the intention of 

being extended as the project develops. 
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