
MOTIVIC INFORMATION

MATILDE MARCOLLI

Abstract. We introduce notions of information/entropy and information loss as-
sociated to exponentiable motivic measures. We show that they satisfy appropriate
analogs to the Khinchin-type properties that characterize information loss in the
context of measures on finite sets.

In memory of Paolo de Bartolomeis

1. Introduction

I was invited to contribute a paper to a volume of the Bulletin of the Italian
Mathematical Society dedicated to the memory of Paolo de Bartolomeis. I met Paolo
during my postdoc years at MIT, while he was visiting Gang Tian. Since that time, he
has always been a nice and generous friend, and I regret the fact that we no longer had
occasions to see each other in recent years: after the main focus of my own research
shifted away from the area of differential geometry we no longer frequented the same
conferences and the occasions to meet professionally became much more sporadic. I
was deeply saddened by the news of his untimely death this year. In thinking about
a possible contribution to this volume, I decided to avoid the typically more formal
style of mathematical papers, which seemed to me a bit too dry for the occasion, and I
settled instead for a more freely flowing collection of thoughts, somewhat speculative
in nature, revolving around the ideas of entropy and information loss, revisited in the
context of motivic measures.

1.1. Entropy and information. The relation between Entropy and Information is
one of the fundamental ideas of contemporary science, introduced by Shannon in the
first extensive mathematical account of the theory of information and communication,
[27]. The Shannon entropy detects the information content of a probability measure
and constrains the amount of information that can be transmitted on a channel, in
terms of a bound on data compression. In the simplest case of a probability measure
P = (Pi) on a finite set of cardinality n, the Shannon entropy is given by

(1.1) S(P ) = −
n∑
i=1

Pi logPi.

There is an axiomatic characterization of the Shannon entropy given by the Khinchin
axioms [15], reformulated in a more coincise way by Faddeev [9]: continuity with a
maximum at equidistribution, additivity over subsystems S(A∪B) = S(A)+S(B|A),
and expansibility (a compatibility for changing n by restriction to the faces of the
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simplex of probability measures) suffice to characterize S(P ) completely up to a
multiplicative constant C > 0.

Recently, the axiomatic characterization of the Shannon entropy was reinterpreted
in modern categorical terms in [2], [17], [21], [20]. In particular, we are interested
here in the notion of information loss for morphisms of finite sets with probability
measures and its axiomatic characterization discussed in [2], which we will review
briefly in §4.1.

1.2. Information loss in the Grothendieck ring of varieties. Our goal in this
paper is to propose an information theoretic point of view in the context of motivic
measures, where we are interested in quantifying phenomena of “information loss”,
associated to morphisms of algebraic varieties. Motivic measures are meant here as
ring homomorphism from the Grothendieck ring of varieties to various other rings
(the integers in the case of the Euler characteristic, or a polynomial ring in the case
of the Poincaré polynomial, etc.). In particular, the motivic Euler characteristic is the
ring homomorphism of Gillet–Soulé [10] mapping the Grothendieck ring of varieties
to the Grothendieck ring of Chow motives.

The structure of the Grothendieck ring of varieties is very subtle, with phenomena
such as the existence of zero-divisors, including the Lefschetz motive, [5], [22], [24]
only recently uncovered. Motivic measures can be seen as ways to probe the structure
of the Grothendieck ring, by mapping it to various kinds of “Euler characteristic type”
invariants.

Within this general framework we think it is interesting to consider possible notions
of information associated to the evaluation of a motivic measure on a given variety
or motive and information loss associated to morphisms.

2. Motivic Measures, Integration, and Motivic Information

2.1. Hasse-Weil information function. For a variety X over a finite field Fq, the
Hasse–Weil zeta function is given by the (exponential) generating function for the
number of points of X over the field extensions Fqm ,

Z(X, t) = exp

(∑
m≥1

#X(Fqm)

m
tm

)
.

For a variety X defined over Z with reductions Xp at the primes p, the associated
L-function is defined as

L(X, s) =
∏
p

Z(Xp, p
−s).

It is convenient to write the Hasse–Weil zeta function in the equivalent form

Z(X, t) =
∏
x

(1− tdeg(x))−1,
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where the product is over the set of closed points of X and deg(x) = [k(x) : Fq] with
k(x) the residue field of the local ring OX,x at x. Indeed, by writing #X(Fqm) =∑

r|m r ar with ar = #{x : [k(x) : Fq] = r}, one obtains

Z(X, t) =
∏
r≥1

(1− tr)−ar .

Equivalently, for α =
∑

i nixi effective zero-cycles with ni ∈ Z≥0 and xi closed points
of X, one can write

Z(X, t) =
∑
α

tdeg(α),

where deg(α) =
∑

i ni deg(xi).
It is natural, if one regards the Hasse-Weil zeta function as a motivic measure, as

in [25], [26], to associate to it an information function of the form

(2.1) H(X, t) := −
∑
α

tdeg(α) log(tdeg(α)).

This expression occurs naturally if we write the Shannon entropy for a distribution
of the form

(2.2) P (α) :=
tdeg(α)

Z(X, t)

over the set of degree zero effective cycles α in X, that is, the quantity tdeg(α)/Z(X, t)
is the relative weight assigned by the zeta function to a degree zero effective cycle α
in X.

Definition 2.1. For a variety X over a finite field Fq, the local Hasse–Weil entropy
is defined as the Shannon entropy of the distribution P = (P (α)) of (2.2) on degree
zero effective cycles,

(2.3) S(X) := −
∑
α

P (α) log(P (α)) = logZ(X, t) + Z(X, t)−1H(X, t).

In the classical Shannon entropy case, for a product distribution PQ one has

S(PQ) = −
∑
i

∑
j

PiQj log(PiQj) = −
∑
i

Pi log(Pi)−
∑
j

Qj log(Qj),

that is, the usual additivity property for independent systems.
Thus, in the case of a variety X over Z one can consider the reductions Xp at the

various primes, with the corresponding Hasse–Weil zeta functions, as independent
systems and assign to X an information function of the form

(2.4) HZ(X, s) :=
∑
p

Z(Xp, p
−s)−1H(Xp, p

−s).

This corresponds to a distribution P (α) =
∏

p P (αp) with

(2.5) P (αp) =
p−sdeg(αp)

Z(Xp, p−s)
.
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Definition 2.2. For a variety X over Z, the global Hasse–Weil entropy is the Shan-
non entropy of the distribution (2.5),
(2.6)

S(X) :=
∑
p

Z(Xp, p
−s)−1H(Xp, p

−s) +
∑
p

logZ(Xp, p
−s) = HZ(X, s) + logL(x, s).

In both (2.3) and (2.6) we see that the Shannon entropy consists of a term of the
form logZ(X, t) or logL(X, s) and a term of the form H(X, t) normalized by the zeta
function. In fact, the Hasse–Weil entropy can be completely described in a simple
form in terms of the logarithm of the arithmetic L-function.

Proposition 2.3. The Hasse–Weil entropy (2.6) is given by

S(X) = logL(X, s) + s
∑
p

log(p)
∑
m≥1

#Xp(Fpm)p−sm.

The latter term can be equivalently written as s d
ds

logL(X, s), so that

(2.7) S(X) = (1− s d
ds

) logL(X, s).

Proof. The term H(Xp, p
−s) is simply

H(Xp, p
−s) = s log(p)

∑
α

p−sdeg(α) deg(α) = s log(p)(t
d

dt
Z(Xp, t))|t=p−s

Z(Xp, p
−s)−1H(Xp, p

−s) = s log(p)(tZ(Xp, t)
−1 d

dt
Z(Xp, t))|t=p−s .

For a generating function G(t) = exp(
∑

r cr
tr

r
) in exponential form, one has t 1

G
dG
dt

=

td logG
dt

=
∑

r crt
r. This operation corresponds to passing to ghost components in the

Witt ring, as we discuss below. Thus, we obtain

Z(Xp, p
−s)−1H(Xp, p

−s) = s log(p)
∑
m≥1

#Xp(Fpm)p−sm.

We have
d

ds
L(X, s) =

d

ds

∏
p

Z(Xp, p
−s) =

∑
p

d

ds
Z(Xp, p

−s) ·
∏
`6=p

Z(X`, `
−s)

=
∑
p

Z(Xp, p
−s)−1 d

ds
Z(Xp, p

−s) · L(X, s) = L(X, s) ·
∑
p

d

ds
logZ(Xp, p

−s).

This gives

d

ds
logL(X, s) =

∑
p

d

ds
logZ(Xp, p

−s) = −
∑
p

log(p)t
d

dt
logZ(Xp, t)|t=p−s .

Thus, we obtain

Z(Xp, p
−s)−1H(Xp, p

−s) = −s d
ds

logL(X, s)
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Thus, we obtain the simpler expression for the Hasse–Weil entropy of the form (2.7).
�

The explicit log(p) factors can be absorbed into a change of basis, using base p
logarithm in the expression for the entropy local factor H(Xp, p

−s).

2.1.1. Hasse-Weil entropy of a point.

Example 2.4. For Xp = Spec(Fp) the Hasse-Weil entropy (2.6) is given by

(2.8) S(Spec(Fp)) = (1− s d
ds

) log ζ(s),

where ζ(s) is the Riemann zeta function.

Proof. This is immediate from Proposition 2.3. It can also be seen by direct compu-
tation as follows. For Xp = Spec(Fp) we have Z(Spec(Fp), p−s) = (1 − p−s)−1 and
L(X, s) = ζ(s) =

∏
p(1− p−s)−1. Thus we have

Z(Spec(Fp), p−s)−1H(Spec(Fp), p−s) =
s log(p)p−s

(1− p−s)
.

Thus, in this case the first term in the Shannon entropy (2.6) is given by∑
p

Z(Xp, p
−s)−1H(Xp, p

−s) = s
∑
p

log(p)p−s

(1− p−s)
= s

∑
p

log(p)
∑
k≥1

p−ks = s
∑
n

Λ(n)n−s

where Λ(n) is the von Mangoldt function

Λ(n) =

{
log(p) n = pk, k > 0
0 otherwise.

Thus, we have ∑
p

Z(Xp, p
−s)−1H(Xp, p

−s) = −s ζ
′(s)

ζ(s)
,

where ζ(s) is the Riemann zeta function. The second term in (2.6) is simply given
by logL(X, s) = log ζ(s). Thus, the Hasse–Weil entropy in this case is given by
log ζ(s)− s(log ζ(s))′. �

In Quantum Statistical Mechanics, given a system with partition function Z(β) =
Tr(e−βH), the entropy can be computed as the function S = ∂

∂T
(T logZ), where

T = 1/β is the temperature parameter. This is the same as

S = (1− β ∂

∂β
) logZ(β),

expressed in terms of the inverse temperature β. Thus, we see that the computation
of the Hasse–Weil entropy of a point given in Lemma 2.4 is exactly the thermody-
namical entropy of a quantum statistical mechanical system that has the Riemann
zeta function as partition function. It is well known that the Riemann zeta function
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admits an interpretation as partition function in Quantum Statistical Mechanics, ei-
ther in terms of the simpler “Riemann gas” system of [13], [29], or in terms of the
more refined Bost–Connes system [6] (see also [7]).

2.1.2. Hasse–Weil entropy of affine spaces.

Example 2.5. For X = An the Hasse–Weil entropy is given by

(2.9) S(An) = log ζ(s− n) + s
∑
p

log(p)
p−(s−n)

1− p−(s−n)
= (1− s d

ds
) log ζ(s− n).

Proof. For X = An we have Z(XFq , t) = (1−qnt)−1 and L(An, s) =
∏

p(1−p−s+n)−1 =

ζ(s− n). Thus, the Hasse–Weil entropy is given by (2.9). �

Thus, the effect of passing from a point to an affine space An is simply a shift in the
inverse temperature variable β 7→ β−n of the quantum statistical mechanical system,
namely one obtains the entropy of a system with partition function Zn(β) = Z(β−n).
As n grows large, this system captures the thermodynamical properties of the original
systems at increasingly low temperatures, that is, for inverse temperatures β > n.

2.1.3. Hasse–Weil entropy of projective spaces.

Example 2.6. For X = Pn the Hasse–Weil entropy is given by

(2.10) S(Pn) = (1− s d
ds

)
n∏

m=0

ζ(s−m).

Proof. For X = Pn we have

Z(PnFq , t) =
1

(1− t)(1− qt) · · · (1− qnt)

hence the L-function is given by

L(Pn, s) =
n∏

m=0

ζ(s−m).

The expression (2.10) is then immediate from Proposition 2.3. �

The expression (2.10) also agrees with the thermodynamical entropy of a known
quantum statistical mechanical system. Indeed, the GLn generalizations of the Bost–
Connes system considered in [28] (see also the “determinant part” considered in [8])
have partition function Z(β) =

∏n
m=0 ζ(β −m) and entropy (2.10).
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2.2. Exponentiable motivic measures and zeta functions. The Grothendieck
ring K0(VK) of varieties over a field K is generated by isomorphism classes [X] of
varieties with the inclusion-exclusion relation [X] = [Y ]+[XrY ] for Y ⊂ X a closed
subvariety and with the product given by [X] · [Y ] = [X×Y ], the class of the product
over Spec(K). The Lefschetz motive L = [A1] is the class of the affine line.

We follow the terminology used for instance in [26] and we call motivic measure
any ring homomorphisms µ : K0(VK)→ R, where R is a commutative ring.

When one interprets the classes [X] in the Grothendieck ring as a universal Euler
characteristic (see [3]) a motivic measure in the sense specified above is determined
by (and in turn determines) an invariant of algebraic varieties that satisfies the two
main properties of an Euler characteristic, namely inclusion-exclusion µ(X) = µ(Y )+
µ(X r Y ) and mulitiplicativity under products µ(X × Y ) = µ(X)µ(Y ).

As shown in [14], [25], [26], to any motivic measure µ : K0(VK) → R one can
associate the Kapranov zeta function, which can be seen as a map ζµ(·, t) : K0(VK)→
W (R) with values in the big Witt ring W (R) of R, and is defined as

(2.11) ζµ(X, t) :=
∞∑
n=0

µ([Sn(X)]) tn,

where Sn(X) is the n-fold symmetric product of X, given by the quotient Sn(X) =
Xn/Sn of the n-fold product by the action of the symmetric group Sn of permutations.
This can be regarded as an exponentiated version of the original measure µ, by
interpreting the terms µ([Sn(X)]) as analogs of the terms µ(X)n/n! in an exponential
series, [25].

Here we view the left-hand-side of (2.11) as an element in (1 + R[[t]])∗ and we
identify the big Witt ring W (R), as an additive group, with ((1 + R[[t]])∗,×) with
the usual product of formal series, which is the addition +W of the Witt ring, while
the product ? of the Witt ring is uniquely determined by setting

(2.12) (1− at)−1 ? (1− bt)−1 = (1− abt)−1

for all a, b ∈ R, see [1], [4]. In general, the zeta function (2.11) defines a group
homomorphism ζµ(·, t) : K0(VK)→ W (R) but not necessarily a ring homomorphism.

A motivic measure µ : K0(VK) → R is called exponentiable (see [26]) if the asso-
ciated Kapranov zeta function ζµ(·, t) : K0(VK) → W (R) is a ring homomorphism,
that is, if the zeta function is itself a motivic measure.

The motivic measure given by the counting of points over finite fields is exponen-
tiable, [25], and the Gillet–Soulé motivic measure of [10] (the motivic Euler charac-
teristic) µGS : K0(VK)→ K0(Chow(K)Q) is also exponentiable, [26]. Several motivic
measures that factor through µGS, like the topological Euler characteristic, the Hodge
and Poincaré polynomials, are also exponentiable (see [26]), while the Larsen–Lunts
motivic measure [16] is not exponentiable, since as shown in Proposition 4.3 of [26] in
the exponentiable case if the zeta functions of two varieties are rational then the zeta
function of the product also is, while the Larsen–Lunts motivic measure provides an
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example where zeta functions of curves are rational but the zeta function of a product
of two positive genus curves is not.

The exponentiable property of motivic measures is related to λ-ring structures. A
λ-ring R is a commutative ring endowed with maps λn : R→ R satisfying λ0(a) = 1,
λ1(a) = a and λn(a+ b) =

∑
i+j=n λ

i(a)λj(b), so that λt(a) =
∑

n λ
n(a)tn is a group

homomorphism λt : R → W (R). Assume that R is a λ-ring such that the group
homomorphism σt : R→ W (R) given by σt(a) = λ−t(a)−1 (the opposite λ-structure)
is a ring homomorphism. Then as shown in [25], [26], the exponentiable condition
for a motivic measure µ : K0(VK)→ R can be phrased as the property that

(2.13) µ([Sn(X)]) = σn(µ([X])),

where σt(a) =
∑

n σ
n(a)tn.

In the following we will restrict our attention to motivic measures that are expo-
nentiable.

2.3. A motivic entropy function. Given an exponentiable motivic measure µ :
K0(VK) → R and an associated motivic zeta function ζµ(X, t), we consider an as-
sociated Shannon type entropy function, which generalizes the Hasse-Weil entropy
described in the previous sections. By analogy to Definition 2.1 we expect an expres-
sion of the form

(2.14) Sµ(X) := log ζµ(X, t) + ζµ(X, t)−1Hµ(X, t),

where we need to specify more precisely what the terms mean in the context of
motivic zeta functions with values in the Witt ring W (R). As in the Hasse–Weil
case discussed above, we expect the term ζµ(X, t)−1Hµ(X, t) to take the form of
a logarithmic derivative. Thus, a candidate definition for a motivic entropy of an
exponentiable motivic measure µ : K0(VK)→ R would be given by

(2.15) Sµ(X) := (1− s d
ds

) log ζµ(X,λ−s),

where λ is a parameter in R∗+ and the change of variables t = λ−s is meant to
interpret the s variable as an inverse temperature thermodynamic parameter. This
means interpreting the motivic zeta function ζµ(X,λ−s) as a partition function and
(2.15) as its thermodynamical entropy.

In terms of the t variable, this means defining the entropy function as

(2.16) Sµ(X) = (1− t log(t)
d

dt
) log ζµ(X, t).

2.3.1. Lambda ring structure and Adams operations. The term t d
dt

log ζµ(X, t) in (2.16)
has a natural interpretation in terms of lambda ring structures and the associated
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Adams operations. Indeed, one defines the n-th Adams operation Ψn(a) on the λ-ring
R as the n-th ghost component of the opposite λ-structure σt(a), that is,

(2.17) t
d

dt
log σt(a) = ψt(a) =

∑
n≥1

Ψn(a)tn.

(Here we follow the sign convention as in [12] for Ψn(a) rather than as in [25].) These
are ring homomorphisms Ψn : R→ R, satisfying Ψn ◦Ψm = Ψnm.

Lemma 2.7. Let R be a commutative ring with no Z-torsion and with opposite λ-
ring structure σt. The motivic entropy (2.15) of an exponentiable motivic measure
µ : K0(VK)→ R is given by
(2.18)

Sµ(X) = (1−t log(t)
d

dt
) log σt(µ([X])) =

∑
n≥1

Ψn(µ([X]))

n
tn−

∑
n≥1

Ψn(µ([X])) tn log(t).

2.3.2. Motivic entropy of the Euler characteristics. As shown in [25], the Macdonald
formula for the Euler characteristics of symmetric products

(2.19)
∞∑
n=0

χ(Sn(X))tn = (1− t)−χ(X) = exp(
∑
r>0

χ(X)
tr

r
)

implies that the motivic measure on K0(VC) given by the Euler characteristic can be
exponentiated. We can also read directly the value of the associated entropy function
from (2.19). We obtain the following.

Example 2.8. The motivic entropy of the motivic measure χ : K0(VC) → Z given
by the Euler characteristics is given by

(2.20)

Sχ(X) = (1− t log(t)
d

dt
) log(1− t)−χ(X)

= χ(X)
S(t, 1− t)

(1− t)
= χ(X) ζχ(Spec(K), t)S(t, 1− t),

where S(t, 1−t) = −t log(t)−(1−t) log(1−t) is the binary Shannon entropy function
and ζχ(Spec(K), t) = (1− t)−1 is the zeta function of a point.

We should regard the dependence of the entropy on the variable t as a thermody-
namic parameter, namely after a change of variable t = e−β we can think of the zeta
function

∞∑
n=0

χ(Sn(X))e−nβ

as a partition function, where (at least in the case of non-negative Euler characteris-
tics) the coefficient χ(Sn(X)) represents the degeneracy of the n-th energy level. In
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Figure 1. The motivic entropy of the Euler characteristic.

this view, the behavior of the function (2.19) with respect to t, shown in Figure 1
for a value χ(X) = 1, corresponds near t = 0 (large β →∞) to the low temperature
T → 0 behavior of the system, while the behavior near t = 1 (near β = 0) corresponds
to the high temperature T →∞ limit.

2.3.3. Motivic entropy of Poincaré polynomials. Similarly, the Mcdonald formula for
the Poincaré polynomials,

(2.21)
∞∑
n=0

P(Sn(X), z)tn =
2n∏
j=0

(1− zjt)(−1)j+1bj(X) = exp(
∑
r>0

P(X, zr)
tr

r
),

used in [25] to show that the associated motivic measure is exponentiable, gives the
value of the motivic entropy.

Example 2.9. The motivic entropy of the motivic measure defined by the Poincaré
polynomial is given by

(2.22) SP(X) =
2n∑
j=0

(−1)jbj(X)τ(zj) (S(zjt, 1− zjt) + zjt log(zj)),

where τ : Z[z]→ W (Z[z]) is the Teichmüller character to the Witt ring and S(u, 1−
u) = −u log(u)− (1− u) log(1− u) is the binary Shannon entropy.

Proof. We have

SP(X) = (1− t log(t)
d

dt
) log ζP(X, t) = (1− t log(t)

d

dt
)

2n∑
j=0

(−1)j+1bj(X) log(1− zjt)
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=
∑
j

(−1)j+1bj(X)(log(1− zjt) +
zjt log(t)

1− zjt
)

=
∑
j

(−1)jbj(X)

1− zjt
(−(1− zjt) log(1− zjt)− zjt log(zjt) + zjt log(zj))

=
∑
j

(−1)jbj(X)

1− zjt
(S(zjt, 1− zjt) + zjt log(zj)),

where (1 − zjt)−1 = τ(zj) is the image in the Witt ring W (Z[z]) of the element
zj ∈ Z[z] under the Teichmüller character τ : R → W (R) mapping R 3 a 7→ τ(a) =
(1− at)−1 ∈ W (R). �

Note that the shift in the binary Shannon entropy S(zjt, 1 − zjt) + zjt log(zj) is
similar to the shift of the Shannon entropy one usually encounters in coding theory,
where the q-ary Shannon entropy is defined as

Sq(δ, 1− δ) = S(δ, 1− δ)+ δ logq(q−1) = −δ logq δ− (1− δ) logq(1− δ)+ δ logq(q−1).

This is the form of the Shannon entropy that describes the asymptotic behavior of
the volume of the Hamming balls (see for instance [30]).

3. Khinchin Properties of Motivic Entropy

The classical Shannon entropy is characterized in terms of the Khinchin axioms,
[15]. It is natural to consider the question of what formal properties, analogous in
some sense to the Khinchin characterization of entropy, are satisfied by the motivic
version described above.

3.1. Extensivity of motivic entropy. The main property of the Shannon entropy
is the extensivity property, namely its additive behavior on subsystems. The exten-
sivity property is usually expressed as the relation

S(A ∪B) = S(A) + S(B|A) = S(B) + S(A|B).

We show here that the analogous property satisfied by the motivic entropy is the
inclusion–exclusion property, where we think of subvarieties of a given ambient variety
as subsystems and we identify the conditional entropy with the difference

Sµ(B|A) = Sµ(B)− Sµ(A ∩B).

The case of additivity over independent subsystems then becomes just the scissor-
congruence relation [X] = [Y ] + [X r Y ] in the Grothendieck ring inherited by the
entropy function Sµ.

Proposition 3.1. The motivic entropy Sµ(X) of an exponentiable motivic measure
µ : K0(VK)→ R satisfies

• Additivity over independent subsystems: for closed embeddings Y ↪→ X

(3.1) Sµ(X) = Sµ(Y ) + Sµ(X r Y ).
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• Extensivity over subsystems: inclusion–exclusion

(3.2) Sµ(X1 ∪X2) = Sµ(X1) + Sµ(X2)− Sµ(X1 ∩X2).

Proof. A motivic measure µ : K0(VK) → R is a ring homomorphism. In particular,
the Grothendieck group relations [X] = [Y ] + [XrY ] for closed embeddings Y ↪→ X
imply that µ(X) = µ(Y )+µ(XrY ), which in turn implies the more general inclusion–
exclusion property µ(X1 ∪X2) = µ(X1) + µ(X2)− µ(X1 ∩X2).

The motivic zeta function ζµ(X, t) in turn satisfies the relation

(3.3) ζµ(X, t) = ζµ(Y, t)ζµ(X r Y, t) = ζµ(Y, t) +W ζµ(X r Y, t),

where the addition +W in the Witt ring is the multiplication of power series. More
generally, for X = X1 ∪X2, one has

(3.4) ζµ(X, t) =
ζµ(X1, t)ζµ(X2, t)

ζµ(X1 ∩X2, t)
= ζµ(X1, t) +W ζµ(X2, t)−W ζµ(X1 ∩X2, t).

Thus, the motivic entropy satisfies (3.2). �

3.2. Mutual motivic information. In information theory the mutual information
of two systems is defined as

I(X, Y ) = S(X) + S(Y )− S(X ∩ Y ),

or equivalently

I(X, Y ) =
∑
x,y

P (x, y) log
P (x, y)

P (x)P (y)

= −
∑
x

P (x) logP (x)−
∑
y

P (y) logP (y) +
∑
x,y

P (x, y) logP (x, y),

which is the expression above. Thus, the mutual information is directly defined in
terms of an inclusion-exclusion form, where one interprets I(X, Y ) as the information
of X ∪ Y .

Thus, in our interpretation of the extensivity of the motivic entropy, given two
subvarieties X, Y of some ambient variety, we can interpret as mutual information
the quantity

Iµ(X, Y ) = Sµ(X ∪ Y ) = Sµ(X) + Sµ(Y )− Sµ(X ∩ Y ).

3.3. Zeros. Another of the formal Khinchin properties of the Shannon entropy is the
fact that it is stationary (and in fact maximal) at the uniform distribution and it is
zero at the most non-uniform distributions P = (Pi) where one of the Pi = 1 and all
others are zero. We discuss here the meaning of the vanishing of the motivic entropy.

So far we have treated the motivic entropy function purely formally, without defin-
ing precisely in what ring of functions it is taking values. Because of the presence
of the log(t) term, we cannot just view this function as an element of a power series
ring (1 + tR[[t]])∗ or a Witt ring W (R). It is better to think of Sµ(X) as an element
of a ring L(R, t) of formal power series of logarithmic type, in the sense of [18].
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We can describe the motivic entropy as follows.

Lemma 3.2. The motivic entropy Sµ is the group homomorphism that fits in the
commutative diagram

R
σt // W (R) = (1 + tR[[t]])∗

L
��

K0(VK)
Sµ //

µ

OO
ζµ

66lllllllllllll
L(R, t)

where µ is an exponentiable motivic measure, σt is the opposite λ-ring structure,
L(R, t) is the ring of formal power series of logarithmic type, and L : W (R)→ L(R, t)
L(f) = (1− t log(t) d

dt
) log(f) is a group homomorphism.

Proof. The fact that the composition σt ◦ µ = ζµ is the motivic zeta function is
the condition of exponentiability of the motivic measure µ, see [25], [26]. The map
homomorphism L(f) = (1−t log(t) d

dt
) log(f) satisfies the logarithmic functional equa-

tion L(f +W g) = L(f · g) = L(f) + L(g), hence it defines a group homomorphism
L : W (R)→ L(R, t). �

Lemma 3.3. The kernel of the motivic entropy Sµ is the same as the kernel of the
motivic measure ζµ.

Proof. It suffices to show that the kernel of L is trivial. An element f ∈ W (R) =
(1 + tR[[t]])∗ of the form f(t) = exp(

∑
n≥1

an
n
tn) is in the Kernel of L if log(f) =

t log(t) d
dt

log(f), which is verified as an identity in L(R, t) only if log(f) = 0, that
is, if f = 1 is the additive unit of W (R). Thus, a class A =

∑
i ni[Xi] ∈ K0(VK)

is in the kernel of Sµ iff it is in the kernel of the exponentiated motivic measure,
ζµ(A) = 1. �

Thus, we can see the elements X in the kernel of the motivic measure as corre-
sponding to the distributions with least information, or in other words they are the
source of information loss in the motivic measure.

3.4. Functoriality. The remaining Khinchin axioms for the Shannon entropy are
continuity over the simplex of measures P = (Pi) and a consistence condition when
viewing an n-dimensional simplex as a face of an (n+ 1)-dimensional simplex,

Sn+1(P1, . . . , Pn, 0) = Sn(P1, . . . , Pn),

together with the symmetry of S under permutations of its arguments. We can
view this requirement as a kind of functoriality requirement, when we consider the
inclusion of faces as morphisms. Thus, the analogous property we require for the
entropy function defined in the motivic setting is to satisfy a functoriality property
induced by the funtoriality of Witt rings.
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Lemma 3.4. The motivic entropy is functorial. Namely, if µ : K0(VK) → R and
µ′ : K0(VK)→ R′ are exponentiable motivic measures related by a (pre)-λ-ring homo-
morphism φ : R → R′, so that µ′ = φ ◦ µ, then there exists a group homomorphism
S : L(R, t)→ L(R′, t) such that Sµ′ = S(φ) ◦ Sµ.

Proof. The Witt rings are functorial, in the sense that a ring homomorphism φ :
R → R′ induces a ring homomorphism W (φ) : W (R) → W (R′). A morphism of
(pre)-λ-rings is a ring homomorphism φ : R → R′ for which one has a commutative
diagram

R

φ

��

σt // Λ(R)

Λ(φ)
��

R′
σ′t // Λ(R′),

with Λ(R) = (1+tR[[t]])∗. The ghost map gh : W (R)→ tR[[t]] is also functorial, and
so is the ring of formal power series of logarithmic type. Thus, we obtain a diagram

R
σt //

φ

��

Λ(R)

Λ(φ)

��

L // L(R, t)

S(φ)

��

K0(VK)

µ

;;xxxxxxxxxx

µ′

##F
FF

FF
FF

FF

R′
σ′t // Λ(R′)

L // L(R′, t).

�

4. Motivic Entropy as Information Loss

The proposal discussed above for a notion of Entropy/Information in the setting of
motivic measures is based on our initial observation that we can interpret the Hasse–
Weil zeta function, when written in terms of effective zero-cycles, as a distribution as
in (2.2) for which we formally compute the ordinary Shannon entropy. The resulting
expression was then generalized in the form (2.15) for an arbitrary exponentiable
motivic measure.

This proposal, however, has the drawback that it does not lend itself easily to a
relative form, a motivic version of a Kullback–Leibler divergence, or better a measure
of information loss associated to morphisms, which would provide a motivic analog
of the characterization of information loss of [2].

We discuss here how one can modify the original proposal so as to accommodate
a notion of information loss.
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4.1. Information loss on finite sets. In the usual setting of probability measures
on finite sets and classical information theory, given a morphism f : (Σ, P )→ (Σ′, Q),
where Σ,Σ′ are finite sets and P,Q are probability measures, one counts the infor-
mation loss of f as a Kullback–Leibler divergence

(4.1) I(f) = S(P )− S(Q) =
∑
s∈Σ

Ps log
Qf(s)

Ps
= KL(P ||Q).

The second equality follows by a simple calculation, see [2], using the assumption
that morphisms are measure preserving, namely that

(4.2) Qj =
∑

i∈f−1(j)

Pi.

In our setting we will need to consider more general morphisms, which do not necessar-
ily satisfy the condition (4.2), hence we will consider the Kullback–Leibler divergence

KL(P ||Q) =
∑

s∈Σ Ps log
Qf(s)

Ps
as our model of information loss, even when this does

not necessarily agree with the difference S(P )− S(Q).

The function I(f) of (4.1) satisfies an axiomatic characterization (up to a con-
stant multiplicative factor), which follows from the Khinchin axioms of the Shannon
entropy (reformulated as in [9]):

• Additivity under composition of morphisms: I(f ◦ g) = I(f) + I(g);
• Additivity under direct sums: I(f ⊕ g) = I(f) + I(g);
• Homogeneity under scaling: I(λf) = λI(f), for λ ∈ R∗+.

The last two properties are replaced by the single additivity over convex combinations

(4.3) I(λf ⊕ (1− λ)g) = λI(f) + (1− λ)I(g),

for λ ∈ [0, 1], if the normalization of measures is preserved, see [2]. Additivity under
composition plays the role of a functoriality property in the framework of [2].

4.2. Sources of Information Loss. We are interested here in a similar counting of
information loss associated to motivic measures. As we discussed above, the kernel
of an exponentiated motivic measure can be viewed as the amount of information
contained in the Grothendieck ring of varieties that is lost when seen through the
given motivic measure. It is also the kernel of the motivic entropy reflecting this
interpretation as information loss.

If we want to make this idea of information loss in the motivic context more precise,
we can identify two different possible sources of information loss:

• Ring homomorphisms φ : R→ R′

• Morphisms of varieties f : X → Y (or correspondences of motives).

The first case corresponds to modifying the motivic measure µ : K0(VK) → R by
composition with a ring homomorphism φ : R → R′, while keeping the variety it is
evaluated on unchanged, while the second case corresponds to maintaining the motivic
measure unchanged while modifying the varieties through morphisms f : X → Y of
algebraic varieties, for motivic measures defined on the Grothendieck ring of varieties
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K0(VK), or correspondences α : h(X)→ h(Y ) of Chow motives, for motivic measures
on K0(Chow(K)).

4.3. Power structures. In the next subsection we introduce an information loss
function associated to a triple (φ, µ, µ′) consisting of motivic measures µ : K0(VK)→
R and µ′ : K0(VK)→ R′ and a ring homomorphism φ : R→ R′.

In order to discuss an analog of the convex combination property (4.3) of informa-
tion loss, we need to first recall the notion of a power structure, see [11].

Definition 4.1. A power structure on a ring R is a map (1+R[[t]])×R→ 1+R[[t]],
(f(t), a) 7→ f(t)a, with the properties that

• f(t)0 = 1, for all f ∈ 1 +R[[t]],
• f(t)1 = f(t), for all f ∈ 1 +R[[t]],
• (f(t) · g(t))a = f(t)a · g(t)a, for all f, g ∈ 1 +R[[t]], a ∈ R,
• f(t)a+b = f(t)a · f(t)b, for all f ∈ 1 +R[[t]], a, b ∈ R,
• f(t)ab = (f(t)a)b, for all f ∈ 1 +R[[t]], a, b ∈ R.

Example 4.2. As shown in [11], there exists a power structure on the Grothendieck
ring of varieties K0(VC) such that the universal motivic zeta function

ζµu(X, t) =
∞∑
n=0

[Sn(X)] tn,

which is the exponentiation of µu = id : K0(VC)→ K0(VC), satisfies

(4.4) (1− t)−[X] = ζµu(X, t).

It is obtained by setting

f(t)[X] := 1 +
∞∑
k=1

∑
∑
iki=k

[
(
∏
i

Xki r ∆)×
∏
i

Xki
i /
∏
i

Ski

]
tk,

for f(t) = 1 +
∑

i[Xi] t
i with [Xi] ∈ K0(VC), see [11] for more details.

4.4. Information loss from ring homomorphisms. A measure of information
loss associated to a ring homomorphism φ : R→ R′ and a pair of given exponentiable
motivic measures µ : K0(VK)→ R and µ′ : K0(VK)→ R′ can be obtained simply by
the difference of the motivic entropies

(4.5) IX(φ, µ, µ′) = Sφ◦µ(X)− Sµ′(X) = (1− t log(t)
d

dt
) log

ζφ◦µ(X, t)

ζµ′(X, t)
,

where Sφ◦µ(X) = S(φ) ◦ Sµ(X) and ζφ◦µ(X, t) = Λ(φ)ζµ(X, t), by Lemma 3.4.

This measure of information loss satisfies an analog of the properties of information
loss described in [2].
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Lemma 4.3. Let φ : R → R′ be a morphism of commutative rings and let µ :
K0(VK) → R and µ′ : K0(VK) → R′ be exponentiable motivic measures. Then the
information loss function IX(φ, µ, µ′) of (4.5) satisfies

(1) Additivity under composition R
ψ→ R′

φ→ R′′:

(4.6) IX(φ ◦ ψ, µ, µ′′) = IX(φ, µ′, µ′′) + S(φ) ◦ IX(ψ, µ, µ′).

(2) Additivity under combination: for φ1, φ2 : R → R′ ring homomorphisms,
where the ring R′ has a power structure,

(4.7) IX(λφ1 + (1− λ)φ2, µ, µ
′) = λ IX(φ1, µ, µ

′) + (1− λ) IX(φ2, µ, µ
′),

where

(4.8) IX(λφ1 + (1− λ)φ2, µ, µ
′) := (1− t log(t)

d

dt
) log

ζφ1◦µ(X, t)λ · ζφ2◦µ(X, t)1−λ

ζµ′(X, t)
.

Proof. For the composition φ ◦ ψ : R→ R′′, by Lemma 3.4 we have

S(φ◦ψ)◦µ(X)− Sµ′′(X) = S(φ ◦ ψ) ◦ Sµ(X)− Sµ′′(X)

= S(φ) ◦ Sψ◦µ(X)− S(φ) ◦ Sµ′(X) + Sφ◦µ′(X)− Sµ′′(X)

= S(φ)(Sψ◦µ(X)− Sµ′(X)) + Sφ◦µ′(X)− Sµ′′(X),

hence we obtain (4.6).
For λ ∈ R′, consider the element

(4.9) ζ(λφ1+(1−λ)φ2)◦µ(X, t) := ζφ1◦µ(X, t)λ · ζφ2◦µ(X, t)1−λ,

where the product as power series is the addition in the Witt ring and the powers,
for λ and 1 − λ ∈ R′, are determined by the power structure of R′, so that (4.9) is
clearly the analog of a convex combination in W (R′). We have

IX(λφ1 + (1− λ)φ2, µ, µ
′) = (1− t log(t)

d

dt
) log

ζ(λφ1+(1−λ)φ2)◦µ(X, t)

ζµ′(X, t)

= (1− t log(t)
d

dt
) log

ζφ1◦µ(X, t)λ · ζφ2◦µ(X, t)1−λ

ζµ′(X, t)λ · ζµ′(X, t)1−λ

= λ(Sφ1◦µ(X)− Sµ′(X)) + (1− λ)(Sφ2◦µ(X)− Sµ′(X)),

so that we obtain (4.7). �
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4.5. Hasse–Weil information loss. We then consider the question of how to con-
struct an information loss function associated to morphisms of varieties. To this
purpose we analyze again the case of the Hasse-Wil zeta function and the motivic
measure given by the counting measure for varieties over finite fields.

As we have seen before, when we describe the Hasse-Weil zeta function as a
generating function for effective 0-cycles, we can associate to it the distribution
P (α) = tdeg(α)/Z(X, t), for α =

∑
i nixi a 0-cycle on X, with deg(α) =

∑
i ni deg(xi).

Using the Kullback–Leibler divergence point of view on how to measure information
loss, we aim at computing a relative entropy of the distribution P = (P (α)) on 0-
cycles on X and the corresponding distribution for 0-cycles on Y , by comparing them
via the morphism f : X → Y .

Cycles push forward under proper morphisms and pull back under flat morphisms.
Thus, we can consider two different information loss functions for these two classes
of morphisms.

4.5.1. Hasse-Weil information loss for proper morphisms. Given a proper morphism
f : X → Y of algebraic varieties, for a subvariety V ⊂ X, one defines the pushforward
f∗(V ) as zero if dim f(V ) < dimV and as f∗(V ) = deg(V/f(V )) f(V ) if dim f(V ) =
dimV , where deg(V/f(V )) is the degree [K(V ) : K(f(V ))] of the finite field extension
K(V ) of K(f(V )). The definition is then extended by linearity to combinations∑

i niVi. In particular, for a 0-cycle α =
∑

i nixi in X, the pushforward under a
proper morphism f : X → Y is given by

(4.10) f∗(α) =
∑
i

ni deg(xi/f(xi)) deg(f(xi)),

where deg(x/f(x)) = [K(x) : K(f(x))].

Over the field of complex numbers the degree deg(x/f(x)) represents geometrically
the number of points of the fiber #f−1(y) for y = f(x) (counted with the appropriate
multiplicity in the case of ramification). However, this is not necessarily the case in
positive characteristics, where for example the map induced by K[tp] → K[t] has
degree p but is one-to-one on points.

Definition 4.4. The Hasse–Weil information loss of a proper morphism f : X → Y
is given by

(4.11) IHW (f∗) :=
∑

α∈Z0
eff(X)

P (α) log
Q(f∗(α))

P (α)
,

where P (α) is defined as in (2.2), Z0
eff(X) is the set of zero-dimensional effective

cycles on X, and Q is the analogous distribution on Y ,

Q(γ) =
tdeg(γ)

Z(Y, t)
, for γ ∈ Z0

eff(Y ).
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4.5.2. Hasse-Weil information loss for flat morphisms. Let f : X → Y be a flat
morphism of relative dimension n. For an irreducible subvariety V ⊂ Y the pullback
f ∗(V ) is defined as the f−1(V ) and extended by linearity.

Definition 4.5. The Hasse–Weil information loss of a flat morphism f : X → Y is
given by

(4.12) IHW (f ∗) :=
∑

γ∈Z0
eff(Y )

Q(γ) log
P (f ∗(γ))

Q(γ)
.

4.6. Proper morphisms. The case of proper morphisms, defined in (4.11), is the
one that most closely resembles the definition of information loss for finite sets that we
recalled above from [2]. However, because of the behavior of degrees of cycles under
pushfoward, it turns out that the information loss function IHW (f∗) of Definition 4.4
is simply a logarithmic difference of zeta function.

Lemma 4.6. The Hasse–Weil information loss (4.11) is given by

(4.13) IHW (f∗) = log
Z(X, t)

Z(Y, t)
.

Proof. By proceeding as in our previous discussion of the Hasse-Weil entropy, we can
equivalently write the expression (4.11) as

(4.14) IHW (f∗) = log
Z(X, t)

Z(Y, t)
− Z(X, t)−1H(f∗, t),

where the term H(f, t) is given by

(4.15) H(f∗, t) = −
∑

α∈Z0
eff(X)

tdeg(α) log(tdeg(f∗(α))−deg(α)).

We have deg(x) = [K(x) : K] and similarly deg(f(x)) = [K(f(x)) : K], hence these
degrees are related by

deg(x) = [K(x) : K] = [K(x) : K(f(x))] · [K(f(x)) : K] = deg(x/f(x)) · deg(f(x)),

hence deg(f∗(α)) =
∑

i nidf (xi) deg(f(xi)) =
∑

i ni deg(xi) = deg(α). Thus, the
term H(f∗, t) of (4.15) vanishes and one is left with (4.13). �

We check that this notion of information loss satisfies properties of additivity under
composition and combination. In order to formulate the appropriate condition of
additivity under combination, we consider a decomposition X = X1∪X2 as a disjoint
union, and a corresponding decomposition Y = Y1 ∪ Y2 with the property that fi =
f |Xi : Xi → Yi. We write f = f1 ⊕ f2 to refer to such data. We generalize this to
weighted combinations λf1⊕(1−λ)f2, by considering the distribution, for α = (α1, α2)
with αi ∈ Z0

eff(Xi),

(4.16) Qλ(α) = Q((λf1 ⊕ (1− λ)f2)∗(α) := Q1((f1)∗(α1))λ ·Q2((f2)∗(α2))1−λ,
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where for γi ∈ Z0
eff(Yi), we have Qi(γi) := tdeg(γi)/Z(Yi, t). Similarly, we also consider

the distribution Pi(αi) := tdeg(αi)/Z(Xi, t) and the distribution

(4.17) Pλ(α) = P1(α1)λ · P2(α2)1−λ.

Proposition 4.7. The Hasse–Weil information loss (4.11) satisfies additivity under
composition

IHW ((g ◦ f)∗) = IHW (f∗) + IHW (g∗)

and additivity under combination

IHW ((λf1 ⊕ (1− λ)f2))∗) = λIHW ((f1)∗) + (1− λ)IHW ((f2)∗).

Proof. Clearly the function IHW (f∗) of (4.14) satisfies additivity under composition
since

IHW ((g ◦ f)∗) = log
Z(X, t)

Z(W, t)
= log

Z(X, t)

Z(Y, t)
+ log

Z(Y, t)

Z(W, t)
= IHW (f∗) + IHW (g∗)

for proper morphisms f : X → Y and g : Y → W .
For a decomposition fi : Xi → Yi and f = f1 ⊕ f2 as above, we have

IHW ((fi)∗) = log
Z(Xi, t)

Z(Yi, t)
.

Since Z(X, t) = Z(X1, t) ·Z(X2, t) and Z(Y, t) = Z(Y1, t) ·Z(Y2, t), we have additivity

IHW (f∗) = log
Z(X, t)

Z(Y, t)
= log

Z(X1, t)

Z(Y1, t)
+ log

Z(X2, t)

Z(Y2, t)
= IHW ((f1)∗) + IHW ((f2)∗).

In the case of weighted combinations the information loss is computed by the
Kullback-Leibler divergence

(4.18)
∑
α

Pλ(α) log
Qλ(α)

Pλ(α)
,

where

Qλ((α1, α2)) =
tλdeg((f1)∗(α1))

Z(Y1, t)λ
· t

(1−λ) deg((f2)∗(α2))

Z(Y2, t)1−λ

Arguing as in Lemma 4.6 above, we see that this gives

IHW ((λf1 ⊕ (1− λ)f2))∗) = log
Z(X1, t)

λ · Z(X2, t)
1−λ

Z(Y1, t)λ · Z(Y2, t)1−λ ,

which gives the additivity property. �
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4.7. Finite surjective flat morphisms. We consider then the case of flat mor-
phisms and we focus on the simpler case of finite flat surjective morphisms f : X → Y
of smooth quasi-projective varieties, with constant degree δ = deg(f). In this case
the pullback of effective zero-cycles is given by f ∗(γ) =

∑
i ni
∑

xi,j∈f−1(yi)
xi,j, for

γ =
∑

i niyi an effective zero-cycle in Y , with deg(f ∗(γ)) = deg(f) · deg(γ).

Lemma 4.8. Let f : X → Y be a finite flat surjective morphism, with constant
degree δ = deg(f). Then the information loss function IHW (f ∗) of (4.12) is given by

(4.19) IHW (f ∗) = log
Z(Y, t)

Z(X, t)
+ (δ − 1) t log(t)

d

dt
logZ(Y, t).

Proof. We have ∑
γ

tdeg(γ)Z(Y, t) log
Z(Y, t)

tdeg(γ)

tdeg(f∗(γ))

Z(X, t)

= log
Z(Y, t)

Z(X, t)
−
∑
γ

tdeg(γ) log t(deg(f)−1) deg(γ).

As in §2.3 we see that this equals (4.19). �

We can use this description of the information loss function to give a more general
definition for an arbitrary exponentiable motivic measure.

Definition 4.9. Let µ : K0(VK) → R be an exponentiable motivic measure and let
f : X → Y be a finite flat surjective morphism, with constant degree δ = deg(f). The
information loss is given by

(4.20) Iµ(f ∗) := log
ζµ(Y, t)

ζµ(X, t)
+ (δ − 1)t log(t)

d

dt
log ζµ(Y, t).

4.8. Information loss of the Euler characteristics. We consider again the ex-
ample of the motivic measure given by the Euler characteristics.

Proposition 4.10. For K = C and χ : K0(VC) → Z the Euler characteristics, the
information loss of a finite flat surjective morphism f : X → Y of degree δ = deg(f)
is given by

(4.21) Iχ(f ∗) = Sχ(Y )− Sχ(X) + (χ(f−1(S))− δ · χ(S)) ζχ(Spec(K), t) t log(t)

where Sχ(X) is the motivic information of the Euler characteristics as in (2.20) and
S ⊂ Y is the locus such that f is étale over Y r S. If the morphism f : X → Y is
étale, then Iχ(f ∗) = Sχ(Y )− Sχ(X).

Proof. By the Macdonald formula we have ζχ(X, t) = (1− t)−χ(X). Thus, we obtain

Iχ(f ∗) = log
(1− t)−χ(Y )

(1− t)−χ(X)
+ (δ − 1)t log(t)

d

dt
log(1− t)−χ(Y )

=
−1

1− t
((χ(Y )− χ(X))(1− t) log(1− t)− (δ · χ(Y )− χ(Y ))t log(t)) .
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For a finite flat surjective morphism f : X → Y with degree δ = deg(f), the Euler
characteristics satisfies the Riemann–Hurwitz relation

χ(X) = δ · χ(Y ) + χ(f−1(S))− δ · χ(S),

where f is étale over Y r S. Thus, we can write the above as

Iχ(f ∗) =
S(t, 1− t)

1− t
(χ(Y )− χ(X)) + (χ(f−1(S))− δ · χ(S))

t log(t)

1− t
= ζχ(Spec(K), t)

(
(χ(X)− χ(Y ))S(t, 1− t) + (χ(f−1(S))− δ · χ(S)) t log(t)

)
.

In the case where the morphism f : X → Y is étale, we have χ(X) = δ · χ(Y ) and
we obtain simply the difference of the entropies

Iχ(f ∗) = ζχ(Spec(K), t) (χ(Y )− χ(X))S(t, 1− t) = Sχ(Y )− Sχ(X).

�

In the case of the Euler characteristics, the class of étale coverings appears to be
the suitable class of morphisms for which the information loss function behaves as
in the case of finite sets and agrees with the difference of entropies. However, this
is not necessarily the case for arbitrary motivic measures. Indeed, unlike the case
of Zariski locally trivial fibrations, in general if f : X → Y is an étale covering, the
class [X] in the Grothendieck ring does not necessarily factor as a multiple of the
class [Y ]. Indeed, by [16] in characteristic zero the quotient of the Grothendieck ring
by imposing the relation [X] = δ · [Y ] for étale coverings of degree δ is isomorphic
to Z via the Euler characteristics. Thus, one does not expect in general to have
Iµ(f ∗) = Sµ(Y )− Sµ(X) for étale coverings for an arbitrary motivic measure µ.

4.9. Additivity properties. For a decomposition X = X1 ∪ X2 and Y = Y1 ∪ Y2

with fi = f |Xi : Xi → Yi, and an exponentiable motivic measure µ : K0(VK) → R
where R has a power structure, we consider the information loss function
(4.22)

Iµ((λf1 ⊕ (1− λ)f2)∗) = log
ζµ(Y1, t)

λ · ζµ(Y2, t)
1−λ

ζµ(X1, t)λ · ζµ(X2, t)1−λ

− (deg(f)− 1)t log(t)
d

dt
log(ζµ(Y1, t)

λ · ζµ(Y2, t)
1−λ).

In the Hasse-Weil case, this corresponds to considering the distributions

Pλ(γ) = P1(f ∗1 (γ1))λP2(f ∗2 (γ2))1−λ and Qλ(γ) = Q1(γ1)λQ2(γ2)1−λ,

with γ = (γ1, γ2) with γi ∈ Z0
eff(Yi) and computing the Kullback–Leibler divergence∑

γ

Qλ(γ) log
Pλ(γ)

Qλ(γ)
.

Since deg(f) = deg(fi) the information loss (4.22) satisfies the additivity property

Iµ((λf1 ⊕ (1− λ)f2)∗) = λIµ(f ∗1 ) + (1− λ)Iµ(f ∗2 ).
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The question of additivity under composition of morphisms is more delicate, be-
cause of the observation mentioned at the end of the previous subsection on the
behavior under étale coverings (and more generally under flat surjective morphisms
of constant degree). A simple example where one recovers the behavior of information
loss for finite sets is given by the following class of varieties and morphisms.

Example 4.11. Given a variety Y over K consider the set of X = Y ×S where S is a
zero-dimensional variety of the form S = Spec(⊕Ni=1K), for some N . Let πS : X → Y
be the projection map πS(s, y) = y. For this set of varieties and maps the information
loss satisfies

(4.23) Iµ(π∗S) = Sµ(Y )− Sµ(X).

In particular, Iµ(π∗S) satisfies both additivity under composition Iµ((πS ◦ πS′)∗) =
Iµ(π∗S) + Iµ(π∗S′) and additivity under combination (4.22).

Proof. For an exponentiable measure µ : K0(VK)→ R, the zeta function of a product
satisfies ζµ(X, t) = ζ(Y, t) ?W (R) Z(S, t), where ?W (R) is the product in the Witt ring.
Moreover, since S is a union of N copies of Spec(K) we have ζµ(S, t) = (1− t)−N =
(1− t)−1 +W (R) · · ·+W (R) (1− t)−1. Thus, since (1− t)−1 is the multiplicative unit of
W (R), we obtain

ζµ(X, t) = ζ(Y, t) ?W (R) ((1− t)−1 +W (R) · · ·+W (R) (1− t)−1)

= ζ(Y, t) +W (R) · · ·+W (R) ζ(Y, t) = ζµ(Y, t)N .

Thus, we have

Iµ(π∗S) = log
ζµ(Y, t)

ζµ(X, t)
+ (N − 1)t log(t)

d

dt
log ζµ(Y, t)

= (1− t log(t)
d

dt
) log ζµ(Y, t)− log ζµ(X, t) +Nt log(t)

d

dt
log ζµ(Y, t)

= (1− t log(t)
d

dt
) log ζµ(Y, t)− (1− t log(t)

d

dt
) log ζµ(X, t).

It is then clear that this difference satisfies the required additivity properties. �
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[29] D. Spector, Supersymmetry and the Möbius inversion function, Commun. Math. Phys. Vol.127

(1990) 239–252.
[30] M. Tsfasman, S.G. Vladut, Algebraic-geometric Codes, Kluwer, 1991.

California Institute of Technology, USA
Perimeter Institute for Theoretical Physics, Canada
University of Toronto, Canada
E-mail address: matilde@caltech.edu

http://arxiv.org/abs/math/0001005
http://www-personal.umich.edu/~mmustata
http://arxiv.org/abs/1609.08727

	1. Introduction
	1.1. Entropy and information
	1.2. Information loss in the Grothendieck ring of varieties

	2. Motivic Measures, Integration, and Motivic Information
	2.1. Hasse-Weil information function
	2.2. Exponentiable motivic measures and zeta functions
	2.3. A motivic entropy function

	3. Khinchin Properties of Motivic Entropy
	3.1. Extensivity of motivic entropy
	3.2. Mutual motivic information
	3.3. Zeros
	3.4. Functoriality

	4. Motivic Entropy as Information Loss
	4.1. Information loss on finite sets
	4.2. Sources of Information Loss
	4.3. Power structures
	4.4. Information loss from ring homomorphisms
	4.5. Hasse–Weil information loss
	4.6. Proper morphisms
	4.7. Finite surjective flat morphisms
	4.8. Information loss of the Euler characteristics
	4.9. Additivity properties

	References

