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Abstract 

Bimetallic electrocatalysts provide a promising strategy for improving performance, especially in the 

enhancement of selectivity of CO2 reduction reactions. However, the first step of CO2 activation on 

bimetallic materials remains obscure. Considering bimetallic silver-copper (AgCu) as an example, we 

coupled ambient pressure X-ray photoelectron spectroscopy (APXPS) and quantum mechanics (QMs) to 

examine CO2 adsorption and activation on AgCu exposed to CO2 with and without H2O at 298 K. The 

interplay between adsorbed species and the surface alloy composition of Cu and Ag is studied in atomic 

details. The APXPS experiment as well as DFT calculations indicate that the clean sample has an Ag rich 

surface layer. Upon adsorption of CO2 and surface O, we found that it is thermodynamically more favorable 

to induce subsurface Cu to substitute for some surface Ag atoms, modifying the stability and activation of 

CO2 related chemisorbed species. We further characterized this substitution effect by correlating the new 

adsorption species with the observed binding energy shift and intensity change in APXPS.   

Keywords 

CO2 adsorption; CO2 activation; Surface reconstruction; Density Functional Theory (DFT); Ambient 

Pressure XPS (APXPS) 

 

 

  

Page 2 of 20

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



3 

 

1. Introduction 

Converting carbon dioxide (CO2) into liquid fuels and feedstock chemicals is an attractive approach to close 

the anthropogenic carbon cycle while creating new energy cycles for storing renewable energy in the form 

of hydrocarbon-based energy-dense fuels.1-5 Advanced electrocatalysts are required to convert inert CO2 to 

various hydrocarbon-based chemicals.6-7 An emerging design principle is to utilize multicomponent 

materials to promote the CO2 reduction reaction (CO2RR). Typically in a bimetal system, one metal has 

high selectivity for producing CO (such as Ag and Au)8-13, while the other metal is Cu, 13-16 the only metal 

that has been shown to reduce CO to multi-carbon products.17 Recently, the silver-copper (AgCu) catalyst 

has demonstrated a dramatic improvement in product selectivity and activity compared to pure Cu 

catalyst.18-21 However, the bimetal systems underlying CO2RR activation mechanism responsible for the 

enhanced catalytic performance remains unclear. Various reaction mechanisms have been suggested based 

on preconceived notions of the material properties and reaction mechanisms. To optimize such alloy 

systems, it is essential to develop a comprehensive atomistic level understanding of how CO2 is activated 

by alloy catalyst surfaces.  

CO2RR is complex, involving applied potential, ions in the electrolyte, pH value of the electrolyte and many 

other factors. Given this complexity, we wanted to decouple this catalytic process into CO2 

adsorption/activation (presumably gas-phase dominated), and sequential reaction steps (presumably 

dominated by electrochemical conditions). In this work, we aim to understand the first steps of CO2 

adsorption/activation on AgCu bimetallic surface, focusing on fundamental questions regarding 

identification of the active species/sites, the functionality of each metal sites, and the catalyst structural 

evolution that remain unexamined. 

We previously explored the dramatically different CO2 adsorption and activation behaviors observed on 

pure Cu and Ag surfaces at 298 K.22-24 On a Cu surface, gaseous CO2 (g-CO2) is stabilized on the surface 

as physisorbed linear CO2 (l-CO2), and then converted to chemisorbed bent CO2 (b-CO2) by forming 

hydrogen bonds (HBs) with surface adsorbed H2O.22-23 In contrast, on an Ag surface, g-CO2 reacts with 

surface O to form a chemisorbed surface species (O=CO2
δ−), which stabilizes up to four water molecules 

through HBs with O=CO2
δ−. In addition, chemisorbed b-CO2 is also stabilized on the Ag by HBs from two 

waters.24 These dramatic differences of CO2 interacting with Ag or Cu surfaces motivates this study, to 

understand how CO2 interacts with the AgCu surface alloy.  

In this work, we combined in-situ ambient pressure X-ray photoelectron spectroscopy (APXPS) with 

quantum mechanics (QM) to obtain a comprehensive understanding of how CO2 and H2O interact with the 
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AgCu surface to initiate CO2 adsorption and activation. Our findings are summarized in Figure 1. We found 

both O=CO2
δ− and l-CO2 are stable on the AgCu surface exposed solely to 0.3 Torr CO2. On the other hand, 

(O=CO2
δ−)-(H2O)1-4 and (b-CO2)-(H2O)2 form on AgCu when 0.15 Torr H2O is combined with 0.3 Torr 

CO2. Due to the interplay between Ag and Cu at the surface, adsorbates on AgCu have different geometrical 

and electronic structures as exhibited in the C 1s binding energy (BE) shifts compared to those on pure Ag 

and Cu. We also observed that chemistry driven surface reconstruction for the AgCu bimetallic system, 

induced by surface adsorption, changes the Ag and Cu distribution on the surface as well as the CO2 surface 

adsorption configuration. We observed the formation of surface O when these systems are exposed to CO2 

or H2O, which may arise from dissociative reactions on the Ag sites. We observed that this surface O then 

attracts subsurface Cu to the surface, promoting Cu substitution of Ag in the surface layer. This chemistry 

driven surface reconstruction process is shown in Figure 2 and 3. A small amount of surface O is involved 

in the surface reconstruction. However, the current AgCu system differs from the extensively reported 

metal-metal oxide systems.25-31 The bimetallic surface exhibits a synergetic effect between the Ag and Cu 

surface composition that tunes the CO2 (H2O)-AgCu interactions, initiating surface reconstruction, and 

altering the CO2 activation process. Thus, CO2 adsorption and activation on AgCu surfaces operates entirely 

differently compared to pure Ag or Cu surface, providing possibilities for further tuning CO2 adsorption 

behavior to facilitate selective product formation. 

2. Methods: 

2.1 Sample preparation: 

The AgCu bimetal samples were made by a physical melting method. First, Ag (99.999%) and Cu (99.999%) 

were melted in the atomic ratio of 1:4 under argon (Ar) in a vacuum arc furnace; following, the molten 

mixtures were quenching in the deionized (DI) water and cold-rolled into foils; lastly, the foils were 

polished with sandpapers (600, 1200, and 2500 grit 3M) and cleaned with DI water and Ethanol. The 

samples showed (111) surface orientation after treatment.21 The samples were cut to size of 8 × 8 mm2 to 

fit the sample holder and transferred to a vacuum chamber with base pressure of 8×10−10 Torr at beamline 

9.3.2 at Advanced Light Source (ALS), Lawrence Berkeley National Laboratory (LBNL). The sample 

surface was cleaned by repeated Ar sputtering and rapid low temperature thermal annealing. Ar sputtering 

was performed using 8×10−6 Torr Ar gas (2 kV, 20 mA) for 1hour in the first 2 cycles. The thermal treatment 

was performed by increasing the temperature rapid to ~400 K, holding the temperature for 5 mins, and then 

cooling down the sample to room temperature in the first 2 cycles. For the last treatment cycle, a mild Ar 

sputtering was performed (1.5 kV, 10 mA) for 30 mins, while a rapid thermal treatment was done by 

increasing the temperature to ~350 K, holding the temperature for 1 min, and then cooling down the sample 
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to room temperature.  With these surface treatments, the surface condition can be restored regardless of the 

initial surface conditions. Staring from this initial surface, the AgCu sample was heated at 450 K for 5 mins 

to get an Ag-rich surface. We denoted the initial- and heat-treated sample as Ag-lean and Ag-rich AgCu 

samples, respectively. 

2.2 APXPS measurements: 

Ambient pressure XPS measurements were performed at beamline 9.3.2 of the ALS, LBNL.32 The samples 

were cleaned in the preparation chamber of the beamline and transferred to the main chamber for further 

characterization and in-situ gas adsorption experiments. The APXPS spectra were collected in the following 

order: a low-resolution survey scan with a binding energy of 600 eV to –5 eV at photon energy of 670 eV, 

then high-resolution scans of O 1s, C 1s, Ag 3d and Cu 3p at different photon energies. For each condition, 

samples were equilibrated for at least 30 mins before the measurement. The C 1s and O 1s signals 

representing the surface adsorbates properties were taken with photon energies of 415 eV and 670 eV, 

respectively, to get a surface sensitive probe with the photoelectron kinetic energy of ~130 eV. Due to the 

beamline limitation, we cannot take Cu 3p (and/or Cu 2p) spectra with 130 eV photoelectron kinetic energy. 

Thus, we used 670 eV and 800 eV, and 380 eV and 510 eV photon energies to monitor the Ag 3d and Cu 

3p signals at surface and bulk, respectively. The catalyst components distribution at the surface was 

quantified using the same kinetic energies probe by first normalizing the raw signals to the beam flux and 

then applying the cross-section factors. By taking spectra at different sample spots and comparing spectra 

before and after beam illumination for 2 hours, we found beam damage on the sample is negligible during 

the measurements.  

The gas adsorption experiments were performed at 298 K with APXPS recorded. The CO2 partial pressure 

was kept at 0.3 Torr for CO2 adsorption, whereas the total pressure was kept at 0.45 Torr with 0.3 Torr CO2 

and 0.15 Torr H2O. The H2O was degassed using the freeze-pump-thaw method for three cycles to ensure 

no dissolved gases. All the gas-lines were well cleaned and baked before dosing gases. The dosing gas (CO2, 

H2O) purities were in-situ monitored by a conventional quadrupole mass spectrometer to ensure no 

additional gas cross-contamination (especially, the CO and H2 gases).   

2.3 QM predictions: 

Since the AgCu samples were made through high temperature treatments, we expect that the surface prefers 

the (111) surface for both fcc metals, as established experimentally.21 Thus, the QM studies assume the 

(111) surface, which we describe using a 4 × 4 supercell. We include 4 (111) layers in which the bottom 2 

are fixed. We left 15 Å in the z direction to avoid interaction between periodic cells. The convergence test 
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with 4-7 layers and vacuum region of 10 Å were conducted and the results are shown in Table S1. The top 

two layers were relaxed, and the bottom layers were fixed during the optimization. We found that all 

structures of adsorbed O=CO2
δ− species are maintained, and the adsorption energy is on average −0.74 eV 

(E) and −0.27 eV (G), which is very close to the values that we obtained assuming the 4-layer structures. 

The 4-layer model is sufficiently reliable to represent the properties of these periodic systems. 

All calculations were carried out with the Vienna Ab-initio Simulation Package (VASP).33 We used the 

Perdew–Burke–Ernzerhof (PBE) formulation of the generalized gradient approximation (GGA) exchange-

correlation functional using the projector-augmented (PAW) method and including the D3 (Grimme, Becke, 

and Johnson) empirical corrections for long-range London dispersion.34-36 A plane-wave basis set cutoff of 

600	eV and an energy smearing of 0.2 eV using the first order Methfessel–Paxton scheme were employed.37 

The electron self-consistent calculations are considered to be converged when the energy differences are 

less than 10−6 eV. The structure optimizations are considered converged when force differences are less 

than 10-4 eV Å−1. Reciprocal space was sampled by a Γ-centered Monkhorst-Pack 3 × 3 × 1 scheme for all 

calculations. More details can be found in the previous study24 and in the supporting information.  

3. Results 

3.1 Clean AgCu surface with no adsorbates 

Using APXPS we examined two different AgCu surface ratios under vacuum at 298 K prior to CO2 

adsorption. From the spectra we know that there is no inner charge transfer between Ag and Cu in AgCu 

(Figure S1).21, 38 Quantified by APXPS under vacuum at 298 K, the Ag-lean samples have Ag:Cu ratio of 

0.2:1 while the Ag-rich samples have 0.7:1, over the top ~2.4 nm layer, becoming 0.1:1 and 0.3:1, 

respectively, over the top ~3.6 nm layer (Figure S1). This enrichment of Ag at the surface indicates that 

Ag atoms prefer the surface compared to bulk in the AgCu matrix under vacuum, which is expected from 

the low surface energy of Ag (1250 mJ/m2) compared to Cu (1830 mJ/m2).39 Our QM predictions also found 

it 0.18 eV more favorable for Cu to be doped in the bulk compared to the surface (Figure S2) under vacuum 

at 298 K, justifying our simulation model which started with pure Ag in the outer most surface layer. This 

is further verified by heating the AgCu sample, which results in Ag migration to the surface (Figure S1 and 

Figure S3). 

3.2 CO2 adsorption on AgCu surfaces 

We first determined which species are stable on Ag and Cu exposed to CO2, namely O=CO2
δ− on Ag and 

l-CO2 on Cu,22, 24 and we evaluated their stabilities on the new bimetallic AgCu surface, while gradually 
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doping more and more surface Cu atoms into the Ag surface. We reported earlier that CO2 adsorbs on Ag 

surface to form O=CO2
δ− with two O atoms on the surface interacting with five Ag atoms and the C=O 

double bond pointing away from the surface. Our QM predictions found that replacing Ag atoms with Cu 

atoms modifies the surface O=CO2
δ− properties. Since one surface O can attract up to three Cu atoms to the 

surface (Figure S4), we considered the systematic substitution of three Ag atoms with Cu underneath a 

surface O. The only stable O=CO2
δ− configuration on the AgCu matrix has one Cu replacing the Ag atom 

under the C atom, leading to Eads = −0.55 eV and ΔG = −0.08 eV (Figure 1a), while having one Cu under 

the O atom or having two or three Cu atoms substituted for Ag in the surface destabilize O=CO2
δ−. With 

O=CO2
δ− on the AgCu surface, it interacts closely with five catalyst atoms (Figure S5). Thus, we denote 

this stable configuration as (O=CO2
δ−)-(4Ag1Cu).  

We found that (O=CO2
δ−)-(4Ag1Cu) has a C=Oup double bond (with a length of 1.22 Å) pointing up normal 

to the surface while the other two O bind to two-Ag and one-Cu with C-O lengths of 1.36 Å, similar to that 

on Ag. We observed that (O=CO2
δ−)-(4Ag1Cu) has two O-Ag distances of 2.43 Å and 2.39 Å while the O-

Cu distance is 2.12 Å. Those distances are smaller than on pure Ag which exhibited three O-Ag distances 

of 2.65 Å, 2.38 Å, and 2.28 Å. The slightly modified geometry leads to a change in the charge distribution 

on the O=CO2
δ− compared to that on Ag. Bader charge analyses40-41 showed that the total charge of O=CO2

δ− 

on AgCu is −1.16e with a C charge of +1.53e, compared to a total charge of −1.26e and carbon charge of 

+1.47e on the pure Ag(111) surface. The increased positive charge on the C atom leads to a predicted C 1s 

binding energy (BE) +0.34 eV higher than that for the Ag surface, leading to a predicted experimental C 1s 

BE of 288.2 eV compared to 287.9 eV on pure Ag surface (Figure 1b,c). We also tested the stability of 

O=CO2
δ− on AgCu with Cu at the 2nd and 3rd layer (Table S2). We found that Cu atoms prefer to stay on 

the surface when adsorbents such as O and O=CO2
δ− are present. Having Cu atoms buried inside the Ag 

matrix does not affect the adsorption geometry nor XPS binding energy. 

For l-CO2, our QM predictions found that at least two surface Cu atoms combined with a subsurface O is 

required to stabilize l-CO2 on the AgCu surface. Since the surface prefers to have Ag, a surface O is required 

to bring these two Cu atoms to the surface (Figure S2). Thus, we denoted this stable configuration as (l-

CO2)-(2Ag2Cu1Osurf1Osub) (Figure S5). With surface O and two adjacent Cu atoms in the Ag matrix, we 

found that l-CO2 prefers to be perpendicular to the Cu pair (Figure 1a), rather than parallel (Figure S6). 

This stable configuration is 3.32 Å above the surface with Eads = −0.54 eV, ΔG = −0.06 eV. The predicted 

C 1s BE is +0.2 eV higher than l-CO2 on Cu, which is found experimentally to be at 288.6 eV (Figure 

1b,c).  
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Figure 1. The QM predictions and experimental observations of AgCu surface with CO2 adsorption alone and 

in the presence of H2O at 298 K. (a) Predicted structures for adsorbates, O=CO2δ− and l-CO2, on AgCu surface 

exposed to 0.3 Torr CO2. (b) The C 1s APXPS spectra for adsorbates on AgCu surfaces in the presence of 0.3 Torr 

CO2 at 298 K. To deconvolute the experimental peak we assume that the two C 1s peaks arising from O=CO2δ− and l-

CO2 are separated by 0.4 eV as found with QM predictions. (c) The experimental C 1s BEs of various adsorbates on 

Ag, Cu, and AgCu surfaces. The adsorbate BEs change for different surfaces shows the tunability of adsorbates 

properties from altered gas-catalyst interaction. (d) Predicted structures for adsorbates, (O=CO2δ−)-(H2O)1-4 and (b-

CO2)-(H2O)2, on AgCu surface exposed to 0.3 Torr CO2 and 0.15 Torr H2O. The adsorbed O=CO2δ− species stabilizes 

one or two H2Oad via HBs to the O on surface and two more water with HBs to the C=O. The b-CO2 becomes stabilized 

by a pair of H2Oad each forming a HB with an O of b-CO2. (e) The C 1s APXPS spectra for adsorbates on AgCu 

surfaces in the presence of 0.3 Torr CO2 and 0.15 Torr H2O at 298 K. The peak separations used for this deconvolution 

were determined from the theory. (f) The experimental C 1s BE changes for O=CO2δ− without and with 1 to 4 H2O on 

Ag and AgCu surfaces.  

The C 1s spectra of AgCu surfaces exposed to CO2 showed a spectral shape similar to those on Ag but not 

on Cu (Figure 1b, and Figure S7).22, 24 The adsorbate peak in the region from 286 eV to 290 eV shifted 
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and broadened significantly compared to pure Cu or Ag. 24,27 The full width at half maximum (FWHM) on 

AgCu is ~1.2 eV, significantly larger than ~0.8 eV obtained on Ag surfaces, indicating more than one 

adsorbate resides on the AgCu surface after exposure to CO2.  

Using the ΔBE predicted from the QM, we de-convoluted the C 1s spectra of the AgCu surface into two 

peaks: O=CO2
δ− at 288.2 eV and l-CO2 at 288.6 eV (Figure 1b). We calculated the ratio of (O=CO2

δ−)-

(4Ag1Cu) to (l-CO2)-(2Ag2Cu1Osurf) to be ~1.5:1 on Ag-rich and ~0.6:1 on Ag-lean surfaces. The larger 

population of (O=CO2
δ−)-(4Ag1Cu) than (l-CO2)-(2Ag2Cu1Osurf) on Ag-rich surfaces is consistent with 

that O=CO2
δ− and l-CO2 dominating the adsorption of CO2 on Ag and Cu, respectively. The change of 

O=CO2
δ− and l-CO2 populations on surfaces with different AgCu compositions (Figure 1b) and the shifts 

in C 1s BEs with respect to pure Ag and Cu (Figure 1c) demonstrate the tunability of the surface alloy 

composition to the surface adsorbates. 

3.3 CO2 adsorption on AgCu surfaces modified by surface H2O 

We next evaluated the CO2 adsorption in the presence of H2O on AgCu surfaces. QM found that surface 

H2O makes HBs both to chemisorbed O=CO2
δ− and to physisorbed l-CO2 on AgCu. On AgCu, O=CO2

δ− 

stabilizes up to four H2O, with the first two H2O forming HBs to each O bonded to the surface, and the 3rd 

and 4th H2O making HBs to the two sp2 lone pairs on the C=O unit (Figure 1d). On AgCu, the attachment 

of successive nH2O (n = 1 – 4) to O=CO2
δ− leads to ΔG= −0.38 eV, −0.38 eV, −0.25 eV, and −0.07 eV, 

respectively. The first two H2O bonding to the O linkage to Ag lead to little change in the geometry, while 

the 3rd and 4th H2O force the C=O bond to rotate from being perpendicular to the surface to tilting nearly 

parallel to the surface. The QM predicted C 1s BEs are 269.31 eV, 269.17 eV, 269.58 eV, and 269.56 eV, 

respectively. It is worth noting that QM predicts the ΔBE rather than the absolute BE, therefore to convert 

QM predicted BE to values that are experimentally observed (Figure 1f), a rigid shift of ~18.5 eV should 

be added. Moreover, starting with the different C 1s BEs of O=CO2
δ− on Ag and AgCu, we found that 

attaching two H2O or four H2O onto the O=CO2
δ− lead to almost the same BEs on both surfaces (Figure 

1f), indicating that surface H2O may help balance and redistribute the surface adsorbate charge to reach a 

stable state. The energetics clearly show the tunability of the surface adsorbate properties, and how they 

can be easily modified by surface H2O. 

On both pure Ag and Cu surfaces, we observed that surface water stabilizes the b-CO2. The same behavior 

occurred on the AgCu surface, with b-CO2 stabilized by forming HBs with two waters, where two H2O are 

on Ag sites and the carbon of b-CO2 is on the Cu site. The (b-CO2)-(H2O)2 on the Ag matrix with 1Cu 

substituted has ΔG = −0.52 eV (Figure 1d) and a QM C 1s BE = −268.42 eV.  
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Using the QM predicted ΔBE, we were able to resolve the experimental peaks for the (O=CO2
δ−)-(H2O)1-4 

and (b-CO2)-(H2O)2 on AgCu, leading to 287.76 eV, 287.62 eV, 288.03 eV and 288.03 eV, and 286.87 eV, 

respectively. Accordingly, we used three components, (O=CO2
δ−)-(H2O)1,2 (with an indistinguishable BE 

difference of 0.1 eV), (O=CO2
δ−)-(H2O)3,4, and (b-CO2)-(H2O)2, to de-convolute the adsorbate peak. The 

spectral fitting results show that the surface is dominated by (O=CO2
δ−)-(H2O)1,2 and (b-CO2)-(H2O)2. We 

obtained a higher population of (b-CO2)-(H2O)2 on AgCu surface compared to that on Ag surface, indicating 

the change of the surface chemistry, which is consistent with Cu promoting the formation of b-CO2.22-23, 42 

This strong agreement between the QM predictions and experimental observations validates the accuracy 

of the surface adsorbate assignments.  

3.4 Surface reconstruction induced by CO2 adsorption and further altered gas adsorption 

Experimentally, we have observed (O=CO2
δ-)–(5Ag) at 287.9 eV on pure Ag, but we do not find such a 

peak on the AgCu alloy surface (Figure 1b). This discrepancy is explained by the surface substitution of 

subsurface Cu to surface Ag upon the adsorption of gases species. We find that CO2 adsorption induces a 

transformation of the AgCu surface configuration (Figure 2). For pristine AgCu samples with no gas 

adsorption (essentially under ultra-high vacuum), Ag is 0.18 eV more favorable to stay at the outermost 

surface layer than Cu (Figure S2). Since surface O is required to form O=CO2
δ− on the surface, we 

calculated the thermodynamics driving forces controlling how a surface O forms on the outmost Ag layer 

and how the AgCu surface reconstruction is initiated. For the AgCu surface with adsorbed O=CO2
δ−, we 

consider the changes of the top two layers and the 5 atoms that interact closely with O=CO2
δ− (Figure 2a). 

With O and CO2 on the surface, the initial surface configuration is (CO2-Osurf)-(5Ag) surf (1Cu4Ag) sub, which 

then evolves along two reaction pathways:  

(1) O=CO2
δ− forms directly on (5Ag) surf (1Cu4Ag) sub with ΔG = −0.28 eV; and 

(2) Surface O attracts one Cu atom from the subsurface to substitute for one surface Ag atom with ΔG = 

−0.45 eV, and then the surface O reacts with CO2 to form O=CO2
δ− on (4Ag1Cu) surf (5Ag) sub with ΔG = 

−0.08 eV. 
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Figure 2. The overall energy landscape of adsorbate formation on the AgCu surface with CO2 adsorption alone 

and in the presence of H2O at 298 K. (a) The formation of O=CO2δ− on AgCu surface. Starting with only Ag atoms 

as the first layer, surface O brings Cu to the surface to form the AgCu matrix, ΔG=−0.45 eV. Considering both 

chemistry driven surface reconstruction and adsorbate stability, we find that O=CO2δ− on 4Ag1Cu matrix is 0.25 eV 

more stable than on 5Ag. (b) The formation of (b-CO2)-(H2O)2 on the AgCu surface. When co-dosing H2O and CO2, 

the most stable end result would be (b-CO2)-(H2O)2 on (7Ag1Cu)surf(8Ag)sub. We found that adsorption of b-CO2 with 

H2O under experimental condition has a ΔG=−0.52 eV. Considering both chemistry driven surface reconstruction and 

adsorbate stability, we found that (b-CO2)-(H2O)2 on (7Ag1Cu)surf(8Ag)sub is 0.16 eV more stable than on 

8(Ag)surf(7Ag1Cu)sub. 

Considering that surface O prefers by 0.45 eV to adsorb on a Cu site rather than an Ag site (Figure S2), 

reaction pathway (2) has a relative free energy of (−0.45) + (−0.08) − (−0.28) = −0.25 eV compared to 

reaction pathway (1) (Figure 2a). Thus, case (2) with formation of O=CO2
δ− on the AgCu surface having 

4Ag and 1Cu is energetically more favorable by 0.25 eV than case (1) with formation of O=CO2
δ− on AgCu 

surface having 5Ag sites. 

Similarly, (b-CO2)-(H2O)2 on AgCu is only stable when one subsurface Cu atom substitutes for one surface 

Ag atom (Figure 2b). We considered the changes of the top two layers and the eight atoms that interact 

closely with (b-CO2)-(H2O)2 (Figure 1d, and Figure S5). We find that (b-CO2)-(H2O)2 lands on (8Ag)surf 

(1Cu7Ag)sub with a ΔG = −0.18 eV, however, this also draws one subsurface Cu to the surface, with ΔG= 

−0.18 eV to form a more stable configuration: (b-CO2)-(H2O)2 on (7Ag1Cu)surf (8Ag)sub with ΔG= −0.52 

eV. This process has a total free energy of (−0.52) − (−0.18) − (−0.18) = −0.16 eV (Figure 2b), leading to 

the (b-CO2)-(H2O)2 on (7Ag1Cu)surf (8Ag)sub the stable configuration.  

Page 11 of 20

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



12 

 

The chemistry driven surface reconstruction is validated experimentally by the Ag 3d and Cu 3p spectroscopic 

intensity changes (Figure 3, Figure S8). The Ag 3d and Cu 3p signals were collected under photon energies 

of 670 eV and 380 eV to have the same depth profile.  We find that after CO2 adsorption on Ag-rich AgCu 

surface, the Cu 3p signal increased, while the Ag 3d signal decreased. This is due the migration of Cu to 

the surface and the signal attenunation from the adsorbate layer (Figure 3a). The increase of Cu 3p by 

135.1% after CO2 adsorption for the Ag-rich AgCu surface is a strong indicator of the surface reconstruction. 

On the contrary, the Cu signal decreases on the Ag-lean surface (Figure S8), mainly because of signal 

attenuation through the adsorbate layer. However, Cu migration is still observed as an increased Cu:Ag 

ratio after CO2 adsorption (Figure 3c). A chemistry driven surface reconstruction process similar to that 

induced by CO2 adsorption alone is also observed when the surface is exposed to CO2 in the presence of 

H2O (Figure 3b). We found that Cu migration occurs on both Ag-lean and Ag-rich surfaces, showing as 

Cu:Ag ratio increment, but it is more obvious on the Ag-rich surface (Figure 3c).  

 

Figure 3. The changes of catalysts component distribution induced by the gas adsorption. The Ag 3d and Cu 

3p intensity changes because of the CO2 adsorption (a) alone and (b) in the presence of H2O. (c) The Cu:Ag ratio 

changes for Ag-lean and Ag-rich surfaces induced by the gas adsorption. With CO2 adsorption, the Ag 3d signals 

decreased to 93.3% and 87.2%, while the Cu 3p signals changed to 97.3% and 135.1%, respectively, for Ag-lean and 

Ag-rich AgCu surfaces. With CO2 and H2O co-adsorption, the Ag 3d signals decreased to 56.4% and 49.3%, while 

the Cu 3p signals decreased to 80.9% and 93.2%, respectively, for Ag-lean and Ag-rich AgCu surfaces. The catalyst 

signals did not show the same attenuation level after gas adsorption, indicating the surface reconstruction induced by 

the gas adsorption. The Cu:Ag ration change is higher than 100% for all the cases, proving the Cu migration to the 

surface induced by gas adsorption. The adsorption induced Cu migration is more obvious on the Ag-rich surface than 

on Ag-lean surface.  
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This surface reconstruction is correlated with the formation of surface O, which is probably formed by CO2 

or H2O dissociation on Ag sites. The surface O induced surface reconstruction has been well established on 

Ag (111) and Cu (111) surfaces.43-44 Our previous works showed that the adsorption of CO2 is not stable on 

Ag (111) surface with Ag vacancy induced by surface O,24 and CO2 is also not stable on the oxygen covered 

Cu (111) surface.22 Thus, we consider that CO2 dissociates at the Ag site to form CO and surface O that 

further attracts subsurface or bulk Cu to initiate surface reconstruction. The surface O is observed as a 

~529.8 eV peak in the O 1s spectra on both surfaces exposed to CO2 (and H2O), corresponding to the Oads 

on Cu (Figure S9). Thus, the configuration of (O-Cu)-Ag formed with surface O adsorption. However, this 

configuration shows different properties with the previously extensively reported Cu-metal oxide system.25-

26, 29-30 The Cu atoms interacting with Oads would not provide sites for CO2 adsorption.22 Instead, the Cu 

atoms interacting with Ag atoms can initiate the CO2 adsorption (Figure 1 and Figure S6). This 

configuration (Figure 1a,b) behaved like Ag-Ox-Cu interface, where the surface O and Cu tuned the CO2 

adsorption on the Ag site (Figure 2a). The Ag-rich surface has more Ag sites interacting with Cu compared 

with the Ag-lean surface, allowing more surface O formation to initiate Cu migration (Figure 3c), which 

also in turn changes the adsorbate-catalyst interactions. The surface reconstruction process shows a 

synergetic effect between Ag and Cu that tunes the CO2 adsorption. We further investigated the CO2 

adsorption on the oxidized AgCu surface. The AgCu surface was heated in 30 mTorr O2 at 450 K for 5mins. 

We found that Ag 3d intensity decreased significantly, while the Cu 3p intensity increased (Figure S10). 

Moreover, we observed an O 1s peak locating at 530.3 eV after AgCu treated in O2, representing the 

formation the CuOx (Cu2O dominated).  Thus, we concluded that heating AgCu in 30 mTorr O2 at 450 K 

leads to the formation of a CuOx layer on top of AgCu, denoting as CuOxAg. CO2 adsorption on this 

CuOxAg surface leads to a peak appearing at around 289 eV, corresponding to the ionic carbonate, which 

is in line with previous study.22 

Our studies lead to new insights about CO2 adsorption on the AgCu bimetallic surface. Unlike on pure 

metal surfaces, gas adsorption on the bimetallic surface depends on the energetics of chemistry driven 

surface reconstruction in addition to the surface adsorbate stability. The CO2-AgCu interactions change as 

the surface evolves, showing tunability of CO2 adsorption on AgCu. Surface reconstruction for bimetallic 

systems induced by gas adsorption is well-known45-50, but the atomic level detail have not been available. 

We find that the surface reconstruction induced by gas adsorption changes the underlying energetics of 

surface adsorbates. The synergetic effect between the Ag and Cu modifies the interactions between 

adsorbates and catalyst by changing the active surface sites and adsorption configurations. These results 

provide fresh insights into CO2 adsorption and the initial steps of CO2 activation on AgCu surfaces, showing 

surface reconstruction that is dramatically different from the pure Ag and Cu surfaces.   
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4. Conclusions 

Our study emphasizes the power of combining advanced surface characterization techniques, APXPS, with 

QM predictions to provide a new level of atomistic understanding of how surface phenomena modify the 

fundamental underlying CO2 adsorption and activation on bimetallic surface. We discovered how the CO2 

adsorption on AgCu bimetallic surface is tuned by the synergy between Ag and Cu. We find that the 

energetics of chemistry driven surface reconstruction can significantly modify the surface adsorbates 

properties, providing a new insight for manipulating the alloy surface to achieve selectivity and activity. 

These findings should stimulate new thinking about CO2 reduction reactions on bimetallic surfaces, 

suggesting that the stabilization and activation of various adsorption configurations can be controlled 

through alloying different metals and suitable surface modifications. 
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