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ABSTRACT
We consider the tail behavior of the response time distribution in

an𝑀/𝐺/1 queue with heavy-tailed job sizes, specifically those with

intermediately regularly varying tails. In this setting, the response

time tail of many individual policies has been characterized, and

it is known that policies such as Shortest Remaining Processing

Time (SRPT) and Foreground-Background (FB) have response time

tails of the same order as the job size tail, and thus such policies are

tail-optimal. Our goal in this work is to move beyond individual

policies and characterize the set of policies that are tail-optimal.

Toward that end, we use the recently introduced SOAP framework

to derive sufficient conditions on the form of prioritization used

by a scheduling policy that ensure the policy is tail-optimal. These

conditions are general and lead to new results for important policies

that have previously resisted analysis, including the Gittins policy,

which minimizes mean response time among policies that do not

have access to job size information. As a by-product of our analysis,

we derive a general upper bound for fractional moments of𝑀/𝐺/1

busy periods, which is of independent interest.

1 INTRODUCTION
The scheduling of jobs in single server queues has been an im-

portant topic of study over the past decades. On one hand, much

attention has been devoted to identifying scheduling policies that

minimize the mean response time in a variety of settings. For ex-

ample, in preemptive settings it is widely known that Shortest

Remaining Processing Time (SRPT) minimizes the mean response

time [21] regardless of the job size distribution when job sizes are

known to the scheduler. When sizes are unknown to the scheduler

but the job size distribution is known, the optimal scheduling policy

is the Gittins policy, which serves the job with maximum Gittins

index [2]. If the job size distribution is also unknown, then the

Randomized Multi-Level Feedback (RMLF) policy minimizes the

competitive ratio for mean response time [14].

On the other hand, in many applications it is important to avoid

large response times, not just minimize the mean response time.

Thus, significant research has been devoted to analyzing the dis-

tribution of response times under a large variety of scheduling

policies, ranging from classical policies such as First Come First

Served (FCFS) and SRPT, to newer ones such as Processor Sharing

(PS) and its many generalizations [1, 3, 17]. In some simple settings

it is possible to precisely characterize the response time distribution,

but in general research focuses on characterizing the tail of the
response time distribution.

The task of characterizing the response time tail is more complex

than that of optimizing the mean response time. Initially, response

time tail asymptotics were studied in the case of light-tailed job

size distributions, e.g., [9, 17, 25] and the references therein. In this

context, it has been shown that FCFS maintains the optimal (light-

est) tail of the response time distribution, whereas under SRPT the

response time tail is the heaviest possible under any work conserv-

ing scheduling policy.
1
This is a stark contrast to the optimality of

SRPT for the mean response time.

While the focus of response time tail asymptotics was initially

on light-tailed settings, a shift occurred in the late nineties when it

was observed that heavy-tailed distributions occur frequently in

computer and communications systems, e.g., in file sizes in the web

[11], in I/O patterns [20], the length of network sessions [19], and

more. These observations triggered significant research into the

impact of heavy-tailed phenomena on the design and performance

of computer and communications systems. The resulting literature

has demonstrated that heavy-tailed traffic characteristics have a

dramatic effect on thewaiting times and response times experienced

by users and that scheduling and priority mechanisms need to be

designed with heavy-tailed phenomena in mind.

A key observation from the research that followed is that sched-

uling policies that perform well under light-tailed settings may not

perform well under heavy-tailed settings, and vice versa. A prime

example is FCFS, which has the optimal response time tail under

light-tailed job sizes [25], but has a response time tail as bad as

possible among work conserving policies under heavy-tailed job

sizes. More precisely, assume that a job size 𝑋 is regularly varying

with index −𝛼 and denote this with RV(−𝛼).2 Then, the response
time in a 𝐺𝐼/𝐺𝐼/1 FCFS queue is known to be RV(1 − 𝛼) [10]. A
worse index is not possible under work-conserving policies since

the residual busy period of such a queue is RV(1−𝛼). The response
time in a 𝐺𝐼/𝐺𝐼/1 SRPT queue, on the other hand, has the same

index as the job size (−𝛼) in this setting. Since the response time of

a job can never be smaller than its size, the response time index −𝛼
is optimal. So, SRPT is optimal in this heavy-tailed setting, whereas

FCFS performs the worst in terms of response time tail index – the

exact opposite of the light-tailed scenario.

1
A scheduling policy is work conserving if it always uses the server at full speed

whenever a job is present in the system.

2
A random variable 𝑋 is regularly varying with index −𝛼 if 𝑃 (𝑋 > 𝑥) = 𝐿 (𝑥)𝑥−𝛼
where the function 𝐿 ( ·) is slowly varying, i.e., 𝐿 (𝑎𝑥)/𝐿 (𝑥) → 1 for any 𝑎 > 0.

1



Ziv Scully, Lucas van Kreveld, Onno Boxma, Jan-Pieter Dorsman, and Adam Wierman

Observations like this have led to significant research on the

impact of the service discipline on delay asymptotics; cf. the sur-

veys [7, 9]. Given the prominence of heavy-tailed phenomena in

computer and communications systems, a driving question for the

community has been to characterize which policies have the op-

timal response time tail asymptotics, i.e., which policies have a

response time tail that is of the same order as the tail of the job

size distribution under regularly varying job sizes. This notion of

“tail equivalence” (also referred to as tail optimality) has driven

research for decades and at this point there is a variety of common

policies that have been shown to be tail equivalent, including Pro-

cessor Sharing (PS) [27], Foreground-Background (FB) [16], and

Preemptive Shortest Job First (PSJF) [16].

However, despite significant progress, there are still many impor-

tant policies for which we do not know if they are tail equivalent or

not. Examples are the Gittins policy and RMLF. Further, no precise

characterization of which properties a scheduling policy must have

in order to be tail equivalent is known.

The first attempt at a general set of conditions that ensure tail

equivalence was [16], which provided analytic conditions that can

be used to simplify the analysis of scheduling policies when study-

ing the response time tail. It was these analytic conditions that

enabled the first analysis of policies such as SRPT, PSJF, and FB.

However, the conditions are defined in terms of the analysis of the

policy rather than the prioritization rules used by the policy, and so

they do not provide insight into which policies are tail equivalent.

For that, the most general result to this point is from [18], which

introduces a set of properties based on job sizes that are sufficient

conditions for tail equivalence. These properties ensure that the

scheduler always prioritizes jobs with small sizes and are satisfied

by both SRPT and PSJF, but not by policies that do not make use of

job sizes, such as Gittins, RMLF, FB, etc. Thus, there is a consider-

able gap between the sufficient conditions outlined by [18] and a

general characterization of tail-equivalent scheduling policies.

Contributions
In this paper, we provide sufficient conditions that ensure optimality

of the tail of the response time distribution (a.k.a. tail equivalence)

for scheduling policies in M/GI/1 queues with job size distribu-

tions that are intermediately regularly varying. Our results provide

guidelines on how scheduling policies can perform prioritization in

order to ensure tail equivalence without having access to job sizes,

and are thus complementary to the conditions in [18], which focus

on prioritization based on job size. The conditions are general and

are satisfied by important policies such as the Gittins and RMLF

policies, for which no previous analysis of the response time tail

is known. Additionally, the sufficient conditions are satisfied by

policies that use limited preemption, for the first time highlighting

the preemption frequency needed to achieve tail-optimality.

The key building block underlying the sufficient conditions we

develop is the SOAP (Schedule Ordered by Age-based Priority)

framework, recently introduced in [23]. In the SOAP framework,

scheduling policies are expressed as rank functions which assign

a rank to each job and serve the job with lowest rank. A job’s

rank is determined by a function of its age (the amount of time

the job has already received service), and a job-specific descriptor,

e.g., the size or priority level of the job. Using this framework, our

sufficient conditions for tail equivalence are defined in terms of the

rank function of a policy. The formal conditions can be found in

Section 3, but intuitively the conditions ensure that old jobs do not

receive priority over other jobs for too long. Specifically, for a job

𝐽 , part one of the condition bounds the consecutive time that other

jobs outrank 𝐽 , and part two bounds the first age at which jobs will

never in the future outrank 𝐽 .

In general, there are three typical approaches for proving tail

equivalence, see [7] for a survey. The first relies on a relationship

between the tail behavior of a random variable 𝑌 and the behav-

ior of its Laplace-Stieltjes transform (LST) 𝐸 [e−𝑠𝑌 ] for 𝑠 ↓ 0 ([6],

p. 333). An expression for the response time LST of the single

server queue under SOAP is indeed available (see [23]); however,

it depends in such an intricate way on the rank function that this

approach proved unsuitable for determining the tail behavior of

the response time. Another common approach is to perform a sam-

ple path analysis of the policies, as was pursued by [18]. However,

again, the form of dependence in the rank function makes this

difficult. Hence, in proving our main result, Theorem 3.3, we have

adapted the probabilistic method developed by Núñez-Queija [16],

which exploits a Markov-type inequality. While the method of [16]

does not apply directly off-the-shelf, we are able to extend it to

apply to the analysis of our sufficient conditions. This extension

requires technical effort and, in particular, relies on a new analysis

of the fractional moments of busy periods that is of independent

interest (see Theorem 5.4).

To conclude, we summarize the contributions of the paper below:

• We provide a set of sufficient conditions for tail equivalence,

i.e., optimality of the response time tail, when job sizes are

intermediately regularly varying for policies that do not

have access to job size information. These conditions high-

light that tail equivalence depends on imposing a bound on

the amount of consecutive time that a job has priority over

others.

• Our sufficient conditions provide the first proof of tail equiv-

alence for a number of well-known scheduling policies, in-

cluding the Gittins policy, RMLF, and the Shortest Expected

Remaining Processing Time first (SERPT) policy. Tail equiva-

lence of these policies is a long-standing open question given

their optimality among policies that do not use precise job

size information.

• Our sufficient conditions provide the first insight into how

much preemption is needed in order to maintain tail equiva-

lence. We specifically state which preemption frequencies

guarantee tail optimality.

• Our proof of sufficiency includes an interesting foundational

result for M/G/1 queues: a bound on the fractional moments

of the𝑀/𝐺/1 busy period. Previously, only expressions for

its integer moments were known.

2 SYSTEM MODEL AND PRELIMINARIES
We consider an𝑀/𝐺/1 queue with arrival rate _ and job size𝑋 . We

write 𝐹 (𝑥) = P{𝑋 ≤ 𝑥} and 𝐹 (𝑥) = 1 − 𝐹 (𝑥) for the distribution
function and tail of 𝑋 , respectively. The system load is denoted

2
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by 𝜌 = _E[𝑋 ] < 1. We write 𝑇 for response time and 𝑇𝑥 for size-

conditional response time, that is, the response time for jobs of

size 𝑥 . Our focus is on the case where𝑋 is heavy-tailed. Specifically,

we study the following class of heavy-tailed distributions.

Assumption 2.1.
(i) The tail 𝐹 (·) is intermediately regularly varying, meaning

lim inf

Y→0
+

lim inf

𝑥→∞
𝐹 ((1 + Y)𝑥)

𝐹 (𝑥)
= 1.

(ii) There exist 𝛽 > 𝛼 > 1 such that the upper and lower Ma-

tuszewska indices of 𝐹 (·) are in (−𝛽,−𝛼).3

The class of intermediately regularly varying functions contains

the class of regularly varying functions [12], which in turn contains

Pareto distributions and power law distributions, among others.

Roughly speaking, one can think of Assumption 2.1 as saying that

𝐹 (·) is bounded between two power law distributions, as the fol-

lowing Potter bound formalizes.

Lemma 2.2 ([6, Proposition 2.2.1]). If Assumption 2.1 holds, then
there exist constants 𝐶, 𝑥0 > 0 such that for all 𝑥2 ≥ 𝑥1 ≥ 𝑥0,

1

𝐶

(
𝑥2

𝑥1

)−𝛽
≤ 𝐹 (𝑥2)
𝐹 (𝑥1)

≤ 𝐶
(
𝑥2

𝑥1

)−𝛼
.

The scheduling policies we study in this work are SOAP policies,

a broad class of policies introduced by Scully et al. [23]. A SOAP

policy is specified by a rank function 𝑟 : R+ → R mapping a job’s

age, which is the amount of time it has been served, to its rank,
which is its priority level.

4
All SOAP policies have the same core

scheduling rule: at every moment in time, always serve the job of
minimum rank, breaking ties first-come, first-served. We assume

a preemptive-resume model with no preemption overhead. We

discuss SOAP policies in more detail, including how to analyze

their response time, in Section 6.

3 OVERVIEW OF RESULTS
Our main result, Theorem 3.3, gives sufficient conditions for tail

optimality in terms of properties of the rank function in SOAP.

Thus, it characterizes properties of the prioritization of policies

that guarantee optimal tail behavior. We first state a version of our

main theorem in which the condition for tail optimality is slightly

simplified. It states that a policy is tail-optimal if its rank function

is bounded between two power functions in a specific way.

Theorem 3.1 (Simplified Result). Consider an 𝑀/𝐺/1 queue
whose job size distribution obeys Assumption 2.1 using a SOAP sched-
uling policy whose rank function obeys

𝑟 (𝑎) ∈ Ω(𝑎𝛾 ) ∩𝑂 (𝑎𝛿 )
for some 𝛿 > 𝛾 > 0. If

𝛿

𝛾
− 𝛾

𝛿
<
𝛼 − 1

𝛽
,

then the policy is tail-optimal, i.e., lim𝑥→∞ 1

𝐹 (𝑥)
P
{
𝑇 > 𝑥

1−𝜌
}
= 1.

3
See Bingham et al. [6, Section 2.1].

4
The full SOAP framework allows the rank function to be parametrized by additional

information about a job, such as its size [23], but our results do not require using this

feature.

𝑦𝑥 𝑥 𝑧𝑥 𝑢𝑥

𝑤𝑥

0 age 𝑎

0

rank 𝑟 (𝑎)

Figure 3.1: Illustration of𝑤𝑥 , 𝑦𝑥 , 𝑧𝑥 , and 𝑢𝑥

The condition of Theorem 3.1 is easy to interpret and is suitable

for tail-optimality proofs for many of the policies presented in

Section 3. However, the result holds under more general conditions.

To state these conditions formally, we need some notation. Let

• 𝑤𝑥 be the worst rank attained by a job of size 𝑥 ,

• 𝑦𝑥 ≤ 𝑥 be the earliest age with rank𝑤𝑥 ,

• 𝑧𝑥 ≥ 𝑥 be the earliest age after 𝑥 with rank ≥ 𝑤𝑥 , and
• 𝑢𝑥 ≥ 𝑧𝑥 be the latest age with rank ≤ 𝑤𝑥 .

Figure 3.1 illustrates these quantities and they are defined formally

in Definitions 6.2, 6.11 and 6.13.

Our sufficient conditions on the rank function are defined in

terms of two quantities: 𝑧𝑥 − 𝑦𝑥 and 𝑢𝑥 .

Assumption 3.2.

(i) There exists Z ∈ [0,∞] such that 𝑧𝑥 − 𝑦𝑥 = 𝑂 (𝑥Z ).
(ii) There exists [ ∈ [max{1, Z },∞] such that 𝑢𝑥 = 𝑂 (𝑥[ ).

Intuitively, Z and [ have the following interpretation. First, the

smaller Z is, the more quickly the system can preempt jobs. Second,

the smaller [ is, the more each job is shielded from getting stuck

behind larger jobs. Note that any rank function trivially satisfies

Assumption 3.2 with Z = [ = ∞, but, as suggested by the interpre-

tations above, we would like Z and [ to be small. Our main result

states just how small Z and [ need to be to ensure tail optimality.

Theorem 3.3 (Main Theorem). Consider an𝑀/𝐺/1 queue whose
job size distribution obeys Assumption 2.1 and a SOAP scheduling
policy whose rank function obeys Assumption 3.2. If

Z − 1

[
<
𝛼 − 1

𝛽
, (3.1)

then the policy is tail-optimal, i.e., lim𝑥→∞ 1

𝐹 (𝑥)
P
{
𝑇 > 𝑥

1−𝜌
}
= 1.

As we prove now, Theorem 3.3 immediately implies its simplified

version, Theorem 3.1.

Proof of Theorem 3.1. Precomposing any strictly increasing

function with the rank function 𝑟 yields an equivalent rank function

that encodes the same SOAP policy, so we may assume without

loss of generality that

𝑟 (𝑎) ∈ Ω(𝑎𝛾/𝛿 ) ∩𝑂 (𝑎).

This implies 𝑤𝑥 = 𝑂 (𝑥) and thus 𝑢𝑥 = Ω(𝑥𝛿/𝛾 ). Therefore, As-
sumption 3.2 holds with Z = [ = 𝛿/𝛾 , so tail optimality follows

from Theorem 3.3. □

3
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𝑎1 𝑎2 = 𝑦𝑥 𝑥 𝑎3 = 𝑧𝑥

0 age 𝑎

𝑎0 = 0

rank 𝑟 (𝑎)

Figure 3.2: Rank Function of FB with Limited Preemption

The proof of Theorem 3.3 makes up the bulk of the remainder of

the paper. However, a key component of our proof that we would

like to highlight here is an analysis of the fractional moments of

a busy period. The bounds we obtain are potentially of interest

beyond the study of the tail of response time. In particular, let 𝐵𝑈
be the length of a busy period with initial work𝑈 . Thus, a standard

busy period would be 𝐵𝑋 . We develop the following representation

of the 𝑛th moment of a busy period for 𝑛 ∈ Z+:

E[𝐵𝑛𝑈 ] =
𝐼∑
𝑖=1

𝑑𝑖
E[𝑈𝑏𝑖 ]
(1 − 𝜌)𝑎𝑖

𝐽𝑖∏
𝑗=1

_E[𝑋𝑐𝑖 𝑗 ],

where 𝐼 , 𝐽𝑖 , 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 𝑗 , 𝑑𝑖 ∈ Z+ are constants that depend on 𝑛 (see

Lemma 5.2 and Corollary 5.3). Moreover, we show that this repre-

sentation extends in a natural way to fractional moments of order

𝑝 = 𝑛 − 𝑞 > 0, where 𝑞 ∈ (0, 1). Instead of equality, we obtain an

upper bound in the case of fractional moments. We defer the full

statement, which requires heavy notation, to Theorem 5.4.

Applications of Theorems 3.1 and 3.3
To illustrate the generality of the sufficient conditions in Theo-

rems 3.1 and 3.3 it is interesting to consider how they can be applied

to understand the response time tail of common policies. In this

section, we illustrate the application of the theorems to understand

tail optimality of policies for which no analysis is known. We focus

on four examples: FB with limited preemption, Gittins, SERPT, and

RMLF.

3.1 FB with Limited Preemption
Our first example focuses on a policy that is known to be tail

optimal—FB—but limits the amount of preemption it may use. We

consider FB here, but the same analysis can be performed for other

policies that satisfy the conditions of Theorem 3.3. FB is particularly

interesting because it is the optimal policy for job size distribu-

tions with a decreasing failure rate when no job size information is

known. FB works by always serving the job of least age, sharing

the processor equally in the case of ties. That is, FB is the SOAP

policy with rank function 𝑟 (𝑎) = 𝑎 [23, Example 3.1].
5
As a result, it

preempts jobs frequently and rarely works on a single job without

interruption. In situations where there is a cost to preemption this

is a signficant drawback. Thus, it is important to understand the

performance of FB when preemption is limited.

5
FB is consistent with SOAP’s FCFS tie-breaking convention [23, Algorithm B.1]: when

two jobs have the same age, FB serves whichever came first for an instant, but this

increases that job’s age, causing FB to switch to the other.

To this end, we study a variation of FB with limited preemption

(FB-LP) where preempting a job is only allowed when its age is one

of a limited set of checkpoints 𝐴 ⊆ R+. Specifically, FB-LP is the

SOAP policy with rank function
6

𝑟 (𝑎) =
{
𝑎 + 2 if 𝑎 ∈ 𝐴
1 otherwise.

Figure 3.2 illustrates an example of FB-LP where 𝐴 is a sequence

𝑎0 = 0, 𝑎1, 𝑎2, . . ..

The design of the FB-LP policy amounts to choosing the set

of checkpoints 𝐴. In the extreme where 𝐴 = R+, FB-LP is the

same as using ordinary FB, which is tail-optimal but has frequent

preemption and processor sharing. In the other extreme, setting

𝐴 = ∅ is the same as using FCFS, which never preempts jobs but

has pessimal response time tail behavior [10]. We therefore ask:

How frequently must checkpoints occur in order to en-
sure tail optimality?

We can answer this question using Theorem 3.3.

Consider a sequence of checkpoints 𝐴 = {0, 𝑎1, 𝑎2, . . .}. When

𝑥 ∈ (𝑎𝑖 , 𝑎𝑖+1], we have𝑦𝑥 = 𝑎𝑖 and 𝑧𝑥 = 𝑎𝑖+1, as shown in Figure 3.2.

This means if 𝑎𝑖+1 − 𝑎𝑖 = 𝑂
(
𝑎
Z

𝑖

)
, then Assumption 3.2 holds with

the same value of Z and [ = ∞. By Theorem 3.3, tail optimality

holds if Z < (𝛼 − 1)/𝛽 , implying the following result.

Corollary 3.4. Consider an 𝑀/𝐺/1 queue whose job size dis-
tribution obeys Assumption 2.1. The FB-LP policy with checkpoints
𝑎0 = 0, 𝑎1, 𝑎2, . . . is tail-optimal if

𝑎𝑖+1 − 𝑎𝑖 = 𝑂
(
𝑎
Z

𝑖

)
for some Z < (𝛼 − 1)/𝛽.

3.2 The Gittins Policy
Our next example application of Theorem 3.3 is the Gittins pol-

icy, which is the policy that minimizes mean response time of the

𝑀/𝐺/1 queue when the job size distribution is known but indi-

vidual job sizes are unknown. Gittins can be viewed as a SOAP

policy whose rank function depends on the job size distribution

[23, Example 3.6]:

𝑟 (𝑎) = inf

𝑏>𝑎

∫ 𝑏
𝑎
𝐹 (𝑡) d𝑡

𝐹 (𝑎) − 𝐹 (𝑏)
. (3.2)

While Gittins is known to be optimal for the mean response time,

the response time tail behavior of Gittins has resisted analysis. In

this section we show that, under Assumption 2.1 and an additional

technical condition, the Gittins policy is tail-optimal.

Given Theorem 3.1, it suffices to bound the Gittins rank func-

tion. Because 𝑏 = ∞ is a possibility for the infimum in (3.2), by

Lemma 2.2,

𝑟 (𝑎) ≤
∫ ∞

𝑎

𝐹 (𝑡)
𝐹 (𝑎)

d𝑡 ≤ 𝑂 (1)
∫ ∞

𝑎

( 𝑡
𝑎

)−𝛼
d𝑡 = 𝑂 (𝑎).

By Theorem 3.1, Gittins is tail-optimal if its rank function satisfies

𝑟 (𝑎) = Ω
(
𝑎𝛾

)
, where

1

𝛾 −𝛾 < 𝛼−1

𝛽
. However, this is not the case for

all job size distributions satisfying Assumption 2.1. For example,

6
FB-LP generalizes the discretized FB policy introduced by Scully et al. [23, Example 3.7].

4
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if the job size distribution has positive mass at some value 𝑥 , then

Gittins has 𝑟 (𝑥−) = 0.

Fortunately, under a mild additional condition, we can prove a

lower bound on the Gittins rank function. Suppose that for suffi-

ciently large 𝑥 , the job size distribution has a well defined density

𝑓 (𝑥) = − d

d𝑥
𝐹 (𝑥) and hazard rate ℎ(𝑥) = 𝑓 (𝑥)/𝐹 (𝑥). Then for

sufficiently large ages 𝑎,

𝑟 (𝑎) = inf

𝑏>𝑎

∫ 𝑏
𝑎
𝐹 (𝑡) d𝑡

𝐹 (𝑎) − 𝐹 (𝑏)

= inf

𝑏>𝑎

∫ 𝑏
𝑎
𝐹 (𝑡) d𝑡∫ 𝑏

𝑎
ℎ(𝑡)𝐹 (𝑡) d𝑡

≥ inf

𝑏>𝑎

∫ 𝑏
𝑎
𝐹 (𝑡) d𝑡(

sup𝑐∈(𝑎,𝑏) ℎ(𝑐)
) ∫ 𝑏
𝑎
𝐹 (𝑡) d𝑡

= inf

𝑏>𝑎

1

ℎ(𝑏) .

This means that if ℎ(𝑎) = 𝑂 (𝑎−𝛾 ) for 𝛾 > 0, then 𝑟 (𝑎) = Ω(𝑎𝛾 ), so
Theorem 3.1 yields the following result.

Corollary 3.5. Consider an 𝑀/𝐺/1 queue whose job size distri-
bution obeys Assumption 2.1. The Gittins policy is tail-optimal if the
job size distribution has hazard rate ℎ(𝑥) = 𝑂 (𝑥−𝛾 ) for some 𝛾 > 0

satisfying
1

𝛾
− 𝛾 <

𝛼 − 1

𝛽
.

In particular, ℎ(𝑥) = 𝑂 (𝑥−min{1,𝛽/(𝛼−1) }) is sufficient for the Gittins
policy to be tail-optimal.

3.3 Shortest Expected Remaining Processing
Time

Shortest Expected Remaining Processing Time (SERPT) is a varia-

tion of SRPT for settings when the precise remaining sizes of jobs

are not known, but the expected remaining size can be computed

given knowledge of the job size distribution. As the name implies,

SERPT always serves whichever job has the least expected remain-

ing size. Like Gittins, SERPT is a SOAP policy whose rank function

depends on the job size distribution [23, Example 3.5]:

𝑟 (𝑎) = E[𝑋 − 𝑎 | | 𝑋 > 𝑎] =
∫ ∞
𝑎
𝐹 (𝑡) d𝑡

𝐹 (𝑎)
.

We show that SERPT is always tail-optimal. By Lemma 2.2, the rank

function is bounded by

Ω(𝑎) = 𝑂 (1)
∫ ∞

𝑎

( 𝑡
𝑎

)−𝛽
d𝑡 ≤ 𝑟 (𝑎) ≤ 𝑂 (1)

∫ ∞

𝑎

( 𝑡
𝑎

)−𝛼
d𝑡 = 𝑂 (𝑎),

so Theorem 3.1 implies tail optimality.

The Monotonic SERPT (M-SERPT) policy is a variant of SERPT

introduced by Scully et al. [24]. Its rank function is the increasing

envelope of SERPT’s:

𝑟 (𝑎) = max

0≤𝑏≤𝑎
E[𝑋 − 𝑏 | | 𝑋 > 𝑏] .

Aswith SERPT, Lemma 2.2 implies 𝑟 (𝑎) ∈ Ω(𝑎)∩𝑂 (𝑎) forM-SERPT,

so M-SERPT is also tail-optimal.

Corollary 3.6. In an 𝑀/𝐺/1 queue whose job size distribution
obeys Assumption 2.1, SERPT and M-SERPT are both tail-optimal.

The tail optimality of M-SERPT is particularly significant be-

cause M-SERPT has mean response time within a factor of 5 of

Gittins’s [24], and is simpler to understand and implement. More-

over, unlike our result for Gittins in Corollary 3.5, we require no

additional assumptions on the job size distribution to ensure M-

SERPT’s tail optimality. Thus, M-SERPT is a policy that, for all

distributions satisfying Assumption 2.1, is within a constant fac-

tor of optimal for both the mean response time and the tail of the

response time.

Corollary 3.7. Consider an 𝑀/𝐺/1 queue whose job size distri-
bution obeys Assumption 2.1. There exists a policy that is blind to job
size information, namely M-SERPT, that is both tail-optimal and a
constant-factor approximation for mean response time.

3.4 Randomized Multi-Level Feedback
The Randomized Multi-Level Feedback (RMLF) policy is designed

to have low mean response time when neither individual job sizes

nor the job size distribution is known. Originally introduced in

the worst-case scheduling literature [5, 14], RMLF was studied in

the stochastic 𝐺𝐼/𝐺𝐼/1 setting by Bansal et al. [4], who showed

that RMLF is𝑂
(
log

1

1−𝜌
)
-competitive with SRPT for mean response

time. However, no previous results exist for the tail of the response

time under RMLF.

Here, we seek to apply our sufficient condition for tail optimality

to RMLF. Unfortunately, RMLF does not fit into the SOAP frame-

work as stated so far because not every job follows the same rank

function: each job chooses a random parameter 𝑣 ∈ [0, 1] and then

follows rank function
7

𝑟𝑣 (𝑎) = min{2𝑛 | | 𝑛 ∈ N, 2𝑛+𝑣 > 𝑎}.

Nevertheless, we still have 𝑎/2 ≤ 𝑟𝑣 (𝑎) ≤ 2𝑎 for all ages 𝑎 ≥ 1

and parameters 𝑣 ∈ [0, 1], so it seems that some adaptation of

Theorem 3.1 ought to imply tail optimality of RMLF. This is indeed

the case, but stating the adaptation requires some new terminology.

While RMLF is not a SOAP policy, it is what [22] calls a SOAP
Bubble policy. The SOAP Bubble class of policies is a superset of the

SOAP class. Much like SOAP, under a SOAP Bubble policy, every

job’s rank is a function of its age, and the system always serves the

job of minimal rank, but different jobs can have different rank func-
tions. Specifically, a SOAP Bubble policy is characterized by lower
and upper rank functions 𝑟−, 𝑟+ : R+ → R, and the rank function

𝑟 𝑗 of each job 𝑗 can be any function obeying 𝑟− (𝑎) ≤ 𝑟 𝑗 (𝑎) ≤ 𝑟+ (𝑎).
Therefore, RMLF is a SOAP Bubble policy with lower and upper

rank functions

𝑟− (𝑎) = min{2𝑛 | | 𝑛 ∈ N, 2𝑛+1 > 𝑎}
𝑟+ (𝑎) = min{2𝑛 | | 𝑛 ∈ N, 2𝑛 > 𝑎}.

In Appendix D, we formulate adaptations of Theorems 3.1 and 3.3

that apply to SOAP Bubble policies. For example, Theorem D.3 is

the same as Theorem 3.1, except its precondition is 𝑟− (𝑎) = Ω(𝑎𝛾 )

7
The full SOAP framework is general enough to handle some policies with parametrized

rank functions, but it requires the parameter to be chosen i.i.d. for each job [23], whereas

RMLF draws 𝑣 ∈ [0, 1] using a different distribution for each job in the busy period.
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and 𝑟+ (𝑎) = 𝑂 (𝑎𝛿 ). Applying Theorem D.3 to RMLF with 𝛾 = 𝛿 = 1

implies that RMLF is tail-optimal.

Corollary 3.8. In an 𝑀/𝐺/1 queue whose job size distribution
obeys Assumption 2.1, RMLF is tail-optimal.

4 TAIL OPTIMALITY OF SOAP POLICIES
In the remainder of the paper we present a proof of Theorem 3.3,

namely that a SOAP policy is tail-optimal under certain conditions

on the rank function. The main steps are presented in this section.

Some of these steps rely on technical lemmas, which are introduced

in Sections 5–7 and proven in Appendices A and C.

To prove Theorem 3.3, we adapt and extend a result by Núñez-

Queija [16], which gives sufficient conditions for tail optimality in

terms of the conditional response time of a policy. These conditions

are as follows.

Condition 4.1. 𝑇𝑥 is stochastically increasing in 𝑥 .8

Condition 4.2. We have lim𝑥→∞ E[𝑇𝑥 ]/𝑥 = 1/(1 − 𝜌).

Condition 4.3.

(i) For all Y > 0,

lim

𝑥→∞
P
{
𝑇𝑋 <

(1 − Y)𝑥
1 − 𝜌 | | 𝑋 > 𝑥

}
= 0.

(ii) For all Y > 0,

lim

𝑥→∞
1

𝐹 (𝑥)
P
{
𝑇𝑋 >

(1 + Y)𝑥
1 − 𝜌 | | 𝑋 ≤ 𝑥

}
= 0.

Proposition 4.4. If 𝑋 obeys Assumption 2.1 and Conditions 4.1–
4.3 hold, then

lim

𝑥→∞
1

𝐹 (𝑥)
P
{
𝑇 >

𝑥

1 − 𝜌

}
= 1.

Remark. Proposition 4.4 differs fromNúñez-Queija [16, Theorem 2.3]
in that, instead of assuming Condition 4.3 directly, Núñez-Queija [16,
Lemmas 2.1 and 2.2] proves it starting from a stronger condition. This
adapted version is more appropriate for our analysis.

The key approach of our proof of Theorem 3.3 is to verify that

Conditions 4.1–4.3 of Proposition 4.4 hold if the rank function

parameters Z , [ satisfy Z − 1

[ < 𝛼−1

𝛽
. This is done in six steps below.

In Step 1, we relate the tails of Condition 4.3 to moments of 𝑇𝑥 . In

Step 2, bounds for those moments are derived. Conditions 4.1, 4.2,

4.3(i) and 4.3(ii) are subsequently verified in Steps 3–6.

Step 1: From tails to moments.
To relate the tails of Condition 4.3 to moments of 𝑇𝑥 , we need

the following lemma, which does not rely on any specifics of the

𝑀/𝐺/1 model or SOAP.

Let

𝑔
𝑝
𝑥 (𝑡) = 𝑡𝑝 − E[𝑇𝑥 ]𝑝 − 𝑝E[𝑇𝑥 ]𝑝−1 (𝑡 − E[𝑇𝑥 ]). (4.1)

We can think of 𝑔
𝑝
𝑥 (𝑡) as 𝑡𝑝 minus the first two terms of the Taylor

series of 𝑡𝑝 about 𝑡 = E[𝑇𝑥 ].

8
That is, P{𝑇𝑥 > 𝑡 } ≤ P{𝑇𝑦 > 𝑡 } for all 𝑡 ≥ 0 and all 0 ≤ 𝑥 ≤ 𝑦.

Lemma 4.5. For all 𝑝, 𝑡 > 0,

P{𝑇𝑥 > 𝑡} ≤ E[𝑇𝑝𝑥 ] − E[𝑇𝑥 ]𝑝

𝑔
𝑝
𝑥 (𝑡)

if 𝑡 > E[𝑇𝑥 ],

P{𝑇𝑥 < 𝑡} ≤ E[𝑇𝑝𝑥 ] − E[𝑇𝑥 ]𝑝

𝑔
𝑝
𝑥 (𝑡)

if 𝑡 < E[𝑇𝑥 ] .

Proof. Note that 𝑔
𝑝
𝑥 (𝑡) is decreasing in 𝑡 for 𝑡 < E[𝑇𝑥 ] and

increasing for 𝑡 > E[𝑇𝑥 ]. Therefore, if 𝑡 < E[𝑇𝑥 ], then

P{𝑇𝑥 < 𝑡} = P{𝑇𝑥 < 𝑡 and 𝑔
𝑝
𝑥 (𝑇𝑥 ) > 𝑔

𝑝
𝑥 (𝑡)} ≤ P{𝑔𝑝𝑥 (𝑇𝑥 ) > 𝑔

𝑝
𝑥 (𝑡)},

and if 𝑡 > E[𝑇𝑥 ], then

P{𝑇𝑥 > 𝑡} = P{𝑇𝑥 > 𝑡 and 𝑔
𝑝
𝑥 (𝑇𝑥 ) > 𝑔

𝑝
𝑥 (𝑡)} ≤ P{𝑔𝑝𝑥 (𝑇𝑥 ) > 𝑔

𝑝
𝑥 (𝑡)}.

In both cases, Markov’s inequality implies the desired bound. □

Step 2: Moment bounds.
The bounds presented in this step will be used to verify Con-

ditions 4.2 and 4.3 (Steps 4-6). First, we split a job’s response time𝑇𝑥
into two independent non-negative components,waiting time𝑄 [𝑤𝑥 ]
and residence time 𝑅𝑥 (see Scully et al. [23]):

𝑇𝑥 =st 𝑄 [𝑤𝑥 ] + 𝑅𝑥 .

We bound E[𝑄 [𝑤𝑥 ]] and E[𝑅𝑥 ] in Lemmas 4.6 and 4.7 below, sub-

ject to the precondition of Theorem 3.3. For more details we refer

to Section 7.

In the sequel we use the following notation.Wewrite 𝑓 (𝑥) = 𝑜 (𝑔(𝑥))
if there exists 𝛿 > 0 such that 𝑓 (𝑥) = 𝑜 (𝑥−𝛿𝑔(𝑥)).

Lemma 4.6. If (3.1) holds, then there exists 𝛽 ′ > 𝛽 such that for
all 𝑝 ∈ (0, 𝛽 ′),

E[𝑄 [𝑤𝑥 ]𝑝 ] ≤ 𝑜 (𝑥𝑝 ),

E[𝑅𝑝𝑥 ] ≤
(

𝑥

1 − 𝜌

)𝑝
+ 𝑜 (𝑥𝑝 ).

Lemma 4.7. If (3.1) holds, then

E[𝑅𝑥 ] ≥
𝑥

1 − 𝜌 − 𝑜 (𝑥) .

Lemmas 4.6 and 4.7 are essentially restatements of Lemmas 7.3–

7.5 (see Section 7). The proofs of these lemmas require additional

analysis on SOAP and 𝑀/𝐺/1 busy periods, which is the purpose

of Sections 5 and 6. Section 5 derives a general bound for fractional

busy period moments, and Section 6 describes how to express wait-

ing and residence times in terms of busy periods.

We now use the moment bounds of Lemmas 4.6 and 4.7 for

𝑄 [𝑤𝑥 ] and 𝑅𝑥 to obtain moment bounds for 𝑇𝑥 .

Lemma 4.8. If (3.1) holds, then

E[𝑇𝑝𝑥 ] ≤
(

𝑥

1 − 𝜌

)𝑝
+ 𝑜 (𝑥𝑝 ) for all 𝑝 ∈ [1, 𝛽 ′), (4.2)

E[𝑇𝑥 ]𝑝 ≥ E[𝑅𝑥 ]𝑝 ≥
(

𝑥

1 − 𝜌

)𝑝
− 𝑜 (𝑥𝑝 ) for all 𝑝 > 0. (4.3)
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Proof. Lemma 4.6, Minkowski’s inequality, and the fact that

(𝑥 + 𝑜 (𝑥))𝑝 = 𝑥𝑝 + 𝑜 (𝑥𝑝 ) together imply that for all 𝑝 ∈ [1, 𝛽 ′),

E[𝑇𝑝𝑥 ] ≤
(
E[𝑄 [𝑤𝑥 ]𝑝 ]1/𝑝 + E[𝑅𝑝 ]1/𝑝

)𝑝
≤

(
𝑜 (𝑥) +

((
𝑥

1 − 𝜌

)𝑝
+ 𝑜 (𝑥𝑝 )

)1/𝑝 )𝑝
=

(
𝑥

1 − 𝜌

)𝑝
+ 𝑜 (𝑥𝑝 ) .

Lemma 4.7 implies that (4.3) holds for all 𝑝 > 0. □

A direct consequence of Lemma 4.8 is the following.

Lemma 4.9. If (3.1) holds, then there exists 𝑝 > 𝛽 such that in
the 𝑥 → ∞ limit, E[𝑇𝑝𝑥 ] − E[𝑇𝑥 ]𝑝 = 𝑜 (𝑥𝑝 ).

Proof. Choose 𝑝 ∈ (𝛽, 𝛽 ′) in Lemma 4.8. □

Remark. Núñez-Queija [16] uses a slightly different version of
Lemma 4.9, showing that Condition 4.3 holds if there exists 𝑝 > 𝛽

such that E[|𝑇𝑥 −E[𝑇𝑥 ] |𝑝 ] = 𝑜 (𝑥𝑝 ). Unfortunately, working with the
absolute central moment is difficult unless 𝑝 is an even integer, which
suffices for the simple policies considered by Núñez-Queija [16] but
not for the broad class of SOAP policies we consider. Our Lemma 4.9
is easier to work with for odd and fractional 𝑝 and, as shown below,
still allows us to verify Condition 4.3.

Step 3: Verification of Condition 4.1.
Condition 4.1 is immediate for all SOAP policies (see Lemma 6.15).

Step 4: Verification of Condition 4.2.
Condition 4.2 follows from choosing 𝑝 = 1 in Lemma 4.8.

Step 5: Verification of Condition 4.3(i).
Let 𝑝 > 𝛽 be as in Lemma 4.9. By Condition 4.2,

lim

𝑥→∞
1

𝑥𝑝
𝑔
𝑝
𝑥

(
(1 ± Y)𝑥

1 − 𝜌

)
= lim

𝑥→∞
1

𝑥𝑝

((
(1 ± Y)𝑥

1 − 𝜌

)𝑝
− E[𝑇𝑥 ]𝑝

− 𝑝E[𝑇𝑥 ]𝑝−1

(
(1 ± Y)𝑥

1 − 𝜌 − E[𝑇𝑥 ]
))

=
(1 ± Y)𝑝 − 1 − 𝑝 (1 ± Y − 1)

(1 − 𝜌)𝑝

=
(1 ± Y)𝑝 − (1 ± Y𝑝)

(1 − 𝜌)𝑝
> 0,

and therefore

𝑔
𝑝
𝑥

(
(1 ± Y)𝑥

1 − 𝜌

)
= Ω(𝑥𝑝 ) . (4.4)

Combining this with Condition 4.1 and Lemma 4.5 implies Condi-

tion 4.3(i):

lim

𝑥→∞
P
{
𝑇𝑋 <

(1 − Y)𝑥
1 − 𝜌 | | 𝑋 > 𝑥

}
≤ lim

𝑥→∞
P
{
𝑇𝑥 <

(1 − Y)𝑥
1 − 𝜌

}
≤ lim

𝑥→∞
E[𝑇 𝛽𝑥 ] − E[𝑇𝑥 ]𝛽

𝑔
𝛽

𝑇𝑥

(
(1−Y)𝑥

1−𝜌

)
= lim

𝑥→∞

(
𝑥

1−𝜌

)𝛽
−

(
𝑥

1−𝜌

)𝛽
+ 𝑜 (𝑥𝛽 )

Ω(𝑥𝛽 )
= 0.

Step 6: Verification of Condition 4.3(ii).
We begin by applying Lemma 4.5:

P
{
𝑇𝑋 >

(1 + Y)𝑥
1 − 𝜌 and 𝑋 ≤ 𝑥

}
=

∫ 𝑥

0

P
{
𝑇𝑡 >

(1 + Y)𝑥
1 − 𝜌

}
d𝐹 (𝑡)

≤
∫ 𝑥

0

E[𝑇𝑝𝑡 ] − E[𝑇𝑡 ]𝑝

𝑔
𝑝
𝑡

(
(1+Y)𝑥

1−𝜌

) d𝐹 (𝑡) .

(4.5)

We would like to apply (4.4) to the denominator, but the variables in

the subscript and function argument do not match. To make them

match, observe in (4.1) that 𝑔
𝑝
𝑥 (𝑡) is decreasing in E[𝑇𝑥 ] as long as

E[𝑇𝑥 ] < 𝑡 . By Conditions 4.1 and 4.2, for all sufficiently large 𝑥 and

all 𝑡 ∈ (0, 𝑥),

E[𝑇𝑡 ] ≤ E[𝑇𝑥 ] <
(1 + Y)𝑥

1 − 𝜌 ,

so for sufficiently large 𝑥 , wemay replace 𝑡 with 𝑥 in the subscript in

the denominator in (4.5). Using this along with Lemma 4.9 and (4.4)

gives us

P
{
𝑇𝑋 >

(1 + Y)𝑥
1 − 𝜌 and 𝑋 ≤ 𝑥

}
≤

∫ 𝑥

0

E[𝑇𝑝𝑡 ] − E[𝑇𝑡 ]𝑝

𝑔
𝑝
𝑥

(
(1+Y)𝑥

1−𝜌

) d𝐹 (𝑡)

≤ 1

Ω(𝑥𝑝 )

∫ 𝑥

0

((
𝑡

1 − 𝜌

)𝑝
+ 𝑜 (𝑡𝑝 ) −

(
𝑡

1 − 𝜌 − 𝑜 (𝑡)
)𝑝 )

d𝐹 (𝑡)

≤ 𝑂 (𝑥−𝑝 )
∫ 𝑥

0

𝑜 (𝑡𝑝 ) d𝐹 (𝑡).

We continue the computation by integrating by parts and applying

Lemma 2.2:

P
{
𝑇𝑋 >

(1 + Y)𝑥
1 − 𝜌 and 𝑋 ≤ 𝑥

}
≤ 𝑂 (𝑥−𝑝 ) −𝑂 (𝑥−𝑝 )

∫ 𝑥

𝑥0

𝑜 (𝑡𝑝 ) d𝐹 (𝑡)

= 𝑂 (𝑥−𝑝 ) −𝑂 (𝑥−𝑝 )
(
𝑜 (𝑥𝑝 )𝐹 (𝑥) −𝑂 (1) −

∫ 𝑥

𝑥0

𝑜 (𝑡𝑝−1)𝐹 (𝑡) d𝑡

)
≤ 𝑂 (𝑥−𝑝 ) +𝑂 (𝑥−𝑝 )

∫ 𝑥

𝑥0

𝑜 (𝑡𝑝−1) ·𝐶𝐹 (𝑥)
( 𝑡
𝑥

)−𝛽
d𝑡

= 𝑂 (𝑥−𝑝 ) +𝑂 (𝑥−(𝑝−𝛽) )𝐹 (𝑥)
∫ 𝑥

𝑥0

𝑜 (𝑡 (𝑝−𝛽)−1) d𝑡

= 𝑂 (𝑥−𝑝 ) + 𝑜 (1)𝐹 (𝑥).

Lemma 2.2 and the fact that 𝑝 > 𝛽 > 𝛼 imply that this is 𝑜 (𝐹 (𝑥)),
so Condition 4.3(ii) holds.

Finally, the proof of our main result combines all of the pieces

outlined in this section.

Proof of Theorem 3.3. Conditions 4.1–4.3 have been proven

above and the theorem now follows from Proposition 4.4. □

The bulk of the remainder of the paper is devoted to proving Lem-

mas 4.6 and 4.7, which give bounds on moments of size-conditional

waiting and residence times. Our proofs of these lemmas rely on
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detailed analysis of fractional moments of busy periods (Section 5)

and on new general results about SOAP-policies (Section 6).

5 FRACTIONALMOMENTS OF BUSY PERIODS
A key component of our proof of Theorem 3.3 is an analysis of

the fractional moments of an 𝑀/𝐺/1 queue. We write 𝐵 for the

length of a busy period and 𝐵𝑈 for the length of a busy period

with initial work𝑈 . Here, and throughout the paper, we denote the

Laplace-Stieltjes transform (LST) of a random variable 𝑉 by

𝑉 (𝑠) = E[exp(−𝑠𝑉 )] .
We shall also encounter the excess E𝑉 of a random variable. It has

distribution

𝑥∫
0

P{𝑉>𝑦 }
E[𝑉 ] d𝑦; furthermore, its LST is

Ẽ𝑉 (𝑠) = 1 −𝑉 (𝑠)
𝑠E[𝑉 ] . (5.1)

Letting

𝜎 (𝑠) = 𝑠 + _(1 − 𝐵(𝑠)), (5.2)

we can write the LSTs of 𝐵 and 𝐵𝑈 as

𝐵(𝑠) = 𝑋 (𝜎 (𝑠)),

𝐵𝑈 (𝑠) = 𝑈 (𝜎 (𝑠))) .
(5.3)

Although the expression for 𝐵(𝑠) is recursive, it suffices for extract-

ing moments.

Let D be the derivative operator.

Lemma 5.1. The derivative of 𝜎 (𝑠) satisfies

D𝜎 (𝑠) = 1

1 − _(−D)𝑋 (𝜎 (𝑠))
. (5.4)

Proof. Differentiating (5.2) yields

D𝜎 (𝑠) = 1 − _D𝜎 (𝑠) · D𝑋 (𝜎 (𝑠)),
which rearranges to the desired equation. □

Lemma 5.2. For all 𝑛 ∈ Z+,

(−D)𝑛𝐵𝑈 (𝑠) =
𝐼∑
𝑖=1

𝑑𝑖 (D𝜎 (𝑠))𝑎𝑖 ·(−D)𝑏𝑖𝑈 (𝜎 (𝑠))
𝐽𝑖∏
𝑗=1

_(−D)𝑐𝑖 𝑗𝑋 (𝜎 (𝑠)),

where 𝐼 , 𝐽𝑖 , 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 𝑗 , 𝑑𝑖 ∈ Z+ are constants, independent of the system
parameters _ and 𝑋, satisfying

𝑎𝑖 , 𝑏𝑖 ≥ 1 for all 𝑖,

𝑐𝑖 𝑗 ≥ 2 for all 𝑖, 𝑗,

𝑏𝑖 +
𝐽𝑖∑
𝑗=1

(𝑐𝑖 𝑗 − 1) = 𝑛 for all 𝑖,

𝑏1 > . . . > 𝑏𝑛,

𝑎1 = 𝑏1 = 𝑛,

𝑑1 = 1,

𝐽1 = 0.

Proof. See Appendix A.

As an immediate consequence, we have the following.

Corollary 5.3. For all 𝑛 ∈ Z+,

E[𝐵𝑛𝑈 ] =
𝐼∑
𝑖=1

𝑑𝑖
E[𝑈𝑏𝑖 ]
(1 − 𝜌)𝑎𝑖

𝐽𝑖∏
𝑗=1

_E[𝑋𝑐𝑖 𝑗 ],

where 𝐼 , 𝐽𝑖 , 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 𝑗 , 𝑑𝑖 ∈ Z+ are as in Lemma 5.2.

Themain result of this subsection is that nearly the same formula

works for fractional moments, though it gives an upper bound

instead of an exact result. To bound E[𝐵𝑝
𝑈
] for 𝑝 = 𝑛 − 𝑞, 𝑛 ∈ Z+,

we start with the formula for E[𝐵𝑛
𝑈
], then decrease some of the

exponents by 𝑞. Specifically, for each 𝑖 , we decrease 𝑎𝑖 and one

more exponent of our choice, either 𝑏𝑖 or one of the 𝑐𝑖 𝑗 .

Theorem 5.4. Let 𝑝 = 𝑛 − 𝑞 > 0 for 𝑛 ∈ Z+ and 𝑞 ∈ (0, 1). Then
for all choices of 𝜒𝑖 𝑗 ∈ {0, 1} such that

∑𝐽𝑖
𝑗=0

𝜒𝑖 𝑗 = 1 for all 𝑖, we
have

E[𝐵𝑝
𝑈
] ≤

𝐼∑
𝑖=1

𝑑𝑖
E[𝑈𝑏𝑖−𝑞𝜒𝑖0 ]
(1 − 𝜌)𝑎𝑖−𝑞

𝐽𝑖∏
𝑗=1

_E[𝑋𝑐𝑖 𝑗−𝑞𝜒𝑖 𝑗 ],

where 𝐼 , 𝐽𝑖 , 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 𝑗 , 𝑑𝑖 ∈ Z+ are as in Lemma 5.2.

Proof. See Appendix A.

Remark. Bansal et al. [4] also formulate a bound on fractional
moments of 𝐺𝐼/𝐺𝐼/1 busy periods, but their bound only characterizes
the growth rate in the 𝜌 → 1 limit. Focusing on the𝑀/𝐺/1 setting, in
which a recursive LST is known for busy periods, enables us to obtain
a much sharper bound in Theorem 5.4, characterizing the coefficients
of each 1/(1 − 𝜌)𝑏 term.

6 SOAP BACKGROUND
Recall from Section 2 that a SOAP policy is one defined by a rank

function 𝑟 : R+ → R mapping each job’s age, or attained service,

to its rank. The scheduler always serves the job of minimum rank,

so lower rank means higher priority.

In this section we give background on how to analyze the mean

response time of SOAP policies. Sections 6.1 and 6.2 review the

response time analysis in [23], adapting the notation slightly to

suit our needs. These expressions are hard to work with directly,

and the complexity grows when considering higher moments. As

such, we introduce new concepts and results in Sections 6.3 and 6.4

which help simplify the analysis.

6.1 Core SOAP Concepts
All of the definitions in the remainder of this section are given in

terms of a generic SOAP policy with rank function 𝑟 . We make the

following standard assumption on rank functions [23, Appendix B].

Assumption 6.1. The rank function 𝑟 is piecewise monotonic and

piecewise differentiable.

The way [23] analyzes response time of SOAP policies is with

the “tagged job” approach, following the journey of a specific job

from arrival to departure. Suppose the tagged job has size 𝑥 . One

of their key insights is that to determine the tagged job’s response

time, its current rank is less important than the worst rank it will

attain in its remaining time in the system.

8
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Definition 6.2. The worst future rank of a job of size 𝑥 at age 𝑎,

written𝑤𝑥 (𝑎), is
𝑤𝑥 (𝑎) = sup

𝑎≤𝑏<𝑥
𝑟 (𝑏) .

The worst ever rank of a job of size 𝑥 is𝑤𝑥 = 𝑤𝑥 (0).

When the tagged job initially enters the system, there may be a

number of other jobs already present. Any other job with rank𝑤𝑥
or less is “relevant” to the tagged job, meaning it will receive some

amount of service during the tagged job’s time in the system.

Definition 6.3. The amount of 𝑤-relevant work a job has is the

amount of service it needs to either finish or attain rank greater

than𝑤 . Similarly, the amount of𝑤-relevant work in a system is the

total amount of𝑤-relevant work of all jobs in the system.

To find the response time of the tagged job, we need to know the

amount of𝑤𝑥 -relevant work it encounters upon arrival. Because

the arrival process is Poisson, this means finding the steady-state

distribution of the amount of𝑤𝑥 -relevant work in the system, for

which we need the following definition.

Definition 6.4.
(i) The 𝑘th 𝑤-relevant age interval is (𝑏𝑘 [𝑤], 𝑐𝑘 [𝑤]), where
𝑏0 [𝑤] = 0

𝑐0 [𝑤] = inf{𝑎 ≥ 0 | | 𝑟 (𝑎) > 𝑤}
𝑏𝑘 [𝑤] = inf{𝑎 > 𝑐𝑘−1

[𝑤] | | 𝑟 (𝑎) ≤ 𝑤} for all 𝑘 ≥ 1

𝑐𝑘 [𝑤] = inf{𝑎 > 𝑏𝑘 [𝑤] | | 𝑟 (𝑎) > 𝑤} for all 𝑘 ≥ 1.

Additionally, let 𝐾 [𝑤] be the number of𝑤-relevant age in-

tervals, namely the maximum 𝑘 such that 𝑏𝑘 [𝑤] < ∞. It

may be that 𝐾 [𝑤] = ∞.

(ii) The 𝑘th 𝑤-relevant job segment is

𝑋𝑘 [𝑤] =st max{0,min{𝑋, 𝑐𝑘 [𝑤]} − 𝑏𝑘 [𝑤]}.

(iii) The 𝑘th 𝑤-relevant load is

𝜌𝑘 [𝑤] = _E[𝑋𝑘 [𝑤]] .

For convenience, we also define

𝜌Σ [𝑤] =
𝐾 [𝑤 ]∑
𝑘=0

𝜌𝑘 [𝑤] .

The tagged job can also be delayed by jobs arriving after it. The

following definition helps us quantify this delay.

Definition 6.5. The𝑤-relevant busy period, written 𝐵 [𝑤], is the
length of an𝑀/𝐺/1 busy periodwith arrival rate _ and job size𝑋0 [𝑤].
Similarly, the 𝑤-relevant busy period with initial work 𝑈, written
𝐵𝑈 [𝑤], is the length of such a busy period with initial work𝑈 .

6.2 SOAP Response Time Analysis
To study the response time of SOAP policies, we introduce the

following random variables.

Definition 6.6. The residence time of a job of size 𝑥 , written 𝑅𝑥 ,
is a random variable with transform

𝑅𝑥 (𝑠) = exp

(
−

∫ 𝑥

0

(𝑠 + _(1 − 𝐵 [𝑤𝑥 (𝑎)−])) d𝑎

)
.

Abusing notation slightly, we can write the residence time as an

integral of busy periods:

𝑅𝑥 =st

∫ 𝑥

0

𝐵
d𝑎 [𝑤𝑥 (𝑎)−] .

Definition 6.7. The rank-𝑤 waiting time, written 𝑄 [𝑤], is a ran-
dom variable that has the same distribution as a particular busy

period:

𝑄 [𝑤] =st 𝐵𝑈 [𝑤 ] [𝑤−],
where𝑈 [𝑤] is the steady-state amount of𝑤-relevant work, which

is a random variable with transform [23, Lemma 5.2]

�𝑈 [𝑤] (𝑠) =
1 − 𝜌Σ [𝑤] + ∑𝐾 [𝑤 ]

𝑖=1
𝜌𝑖 [𝑤]�E𝑋𝑖 [𝑤] (𝑠)

1 − 𝜌0 [𝑤] �E𝑋0 [𝑤] (𝑠)
.

Scully et al. [23, Theorem 5.4] show that for any SOAP policy,

𝑇𝑥 is the independent sum of waiting and residence times, namely

𝑇𝑥 =st 𝑄 [𝑤𝑥 ] + 𝑅𝑥 , which implies the following formula for mean

response time.

Corollary 6.8 ([23, Theorem 5.5]). Under any SOAP policy,

E[𝑄 [𝑤]] =
_
2

∑𝐾 [𝑤 ]
𝑖=0

E[𝑋𝑖 [𝑤]2]
(1 − 𝜌0 [𝑤]) (1 − 𝜌0 [𝑤−]) ,

E[𝑅𝑥 ] =
∫ 𝑥

0

1

1 − 𝜌0 [𝑤𝑥 (𝑎)−]
d𝑎,

E[𝑇𝑥 ] = E[𝑄 [𝑤𝑥 ]] + E[𝑅𝑥 ] .

6.3 Stochastic Response Time Bounds
The next two lemmas, proven in Appendix B, bound the residence

and waiting time in terms of busy periods. The main concept in

their proofs is the observation that jobs with rank larger than 𝑤

will not be served before the𝑤-relevant busy period ends.

Lemma 6.9. For any SOAP policy, the residence time of a job of
size 𝑥 is stochastically bounded by

𝑅𝑥 ≤st 𝐵𝑥 [𝑤𝑥 ] .

Lemma 6.10. For any SOAP policy, the rank-𝑤 waiting time is
stochastically bounded by

𝑄 [𝑤] ≤st


E𝐵𝑋0 [𝑤 ] [𝑤] w.p. 𝜋0 [𝑤],
E𝐵𝑋1 [𝑤 ] [𝑤] w.p. 𝜋1 [𝑤],
.
.
.

0 w.p. 1 − 𝜌Σ [𝑤],

where

𝜋0 [𝑤] = 𝜌0 [𝑤] (1 − 𝜌Σ [𝑤])
1 − 𝜌0 [𝑤] ,

𝜋𝑘 [𝑤] = 𝜌𝑘 [𝑤]
1 − 𝜌0 [𝑤] for all 𝑘 ≥ 1.

These lemmas allow us to express response time moments in

terms of busy period moments, which can be further analyzed using

Theorem 5.4.
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rank 𝑟 (𝑎)

Figure 6.1: Hills and Valleys

6.4 Additional SOAP Bounds
The purpose of the next few definitions is to formalize Assump-

tion 3.2. All of them relate to the worst rank for a job of size 𝑥 .

Definition 6.11. The maximum relevant age of a job of size 𝑥 is,

roughly speaking, the latest age at which another job can possibly

outrank it:

𝑢𝑥 = 𝑐𝐾 [𝑤𝑥 ] [𝑤𝑥 ] = sup{𝑎 > 0 | | 𝑟 (𝑎) ≤ 𝑤𝑥 }.

The next two definitions are due to Scully et al. [24].

Definition 6.12. A hill age is an age 𝑏 such that 𝑟 (𝑎) < 𝑟 (𝑏) for
all ages 𝑎 < 𝑏. An age that is not a hill age is called a valley age.9

Definition 6.13. The previous and next hill ages of 𝑥 are, respec-

tively,

𝑦𝑥 = 𝑐0 [𝑤𝑥−],
𝑧𝑥 = 𝑐0 [𝑤𝑥 ] .

For any 𝑥 such that𝑦𝑥 < 𝑧𝑥 , we call the interval (𝑦𝑥 , 𝑧𝑥 ) a valley,
and any interval that does not overlap with a valley is called a hill.
Figure 6.1 illustrates hills and valleys, including previous and next

hill ages.

The next definition is not specific to SOAP but, as we will soon

see, can be helpful when analyzing the moments of a SOAP policy’s

response time.

Definition 6.14.
(i) The 𝑎-cutoff job segment is

𝑋 ⟨𝑎⟩ =st min{𝑋, 𝑎}.
(ii) The 𝑎-cutoff load is

𝜌 ⟨𝑎⟩ = _E[𝑋 ⟨𝑎⟩] .

The 𝑦𝑥 - and 𝑧𝑥 -cutoff job segments give us another way to write

𝑋0 [𝑤𝑥−] and 𝑋0 [𝑤𝑥 ]:
𝑋0 [𝑤𝑥−] =st 𝑋 ⟨𝑦𝑥 ⟩,
𝑋0 [𝑤𝑥 ] =st 𝑋 ⟨𝑧𝑥 ⟩.

(6.1)

The following lemma follows immediately from Definitions 6.6

and 6.7, observing that𝑤-relevant busy periods are stochastically

increasing in𝑤 .

Lemma 6.15.

(i) 𝑄 [𝑤] is stochastically increasing in𝑤.
(ii) 𝑅𝑥 is stochastically increasing in 𝑥.

9
The full definition is more subtle [24, Definition 4.1], such as including ages 𝑧𝑥 (see

Definition 6.13) as hill ages, but we do not need the subtleties in this paper.

(iii) 𝑇𝑥 is stochastically increasing in 𝑥.

Note that Lemma 6.15 completes Step 3 of the proof described

in Section 4. In fact, the only part of the proof outlined in Section 4

that remains to prove is Step 2, specifically Lemmas 4.6 and 4.7. We

prove these lemmas in Section 7 with the help of the useful results

given in the remainder of this section.

The next lemmas follow from integration by parts.

Lemma 6.16. For any 𝑝 > 0,

E[𝑋𝑘 [𝑤]𝑝 ] =
∫ 𝑐𝑘 [𝑤 ]

𝑏𝑘 [𝑤 ]
𝑝 (𝑡 − 𝑏𝑘 [𝑤])𝑝−1𝐹 (𝑡) d𝑡 .

Lemma 6.17. For any 𝑝 > 0,

E[𝑋 ⟨𝑎⟩𝑝 ] =
∫ 𝑎

0

𝑝𝑡𝑝−1𝐹 (𝑡) d𝑡 .

Previous and next hill ages are also useful for bounding moments

of 𝑋𝑘 [𝑤𝑥 ] for 𝑘 ≥ 1, specifically by combining Lemma 6.16 with

the following lemma.

Lemma 6.18. For all ranks 𝑤 and 𝑘 ≥ 1, if 𝑥 ∈ (𝑏𝑘 [𝑤], 𝑐𝑘 [𝑤]),
then

𝑦𝑥 ≤ 𝑏𝑘 [𝑤] < 𝑥 < 𝑐𝑘 [𝑤] ≤ 𝑧𝑥 .

Proof. By Definition 6.13, we have 𝑥 ∈ (𝑦𝑥 , 𝑧𝑥 ), where 𝑦𝑥 is the

first age at which the rank function reaches rank𝑤𝑥 , and 𝑧𝑥 is the

first age at which the rank function strictly exceeds 𝑤𝑥 . Because

𝑘 ≥ 1, there must be some age 𝑎 ≤ 𝑏𝑘 [𝑤] at which 𝑟 (𝑎) > 𝑏𝑘 [𝑤],
so 𝑤𝑥 > 𝑤 . But by Definition 6.4, a job’s rank is at most 𝑤 dur-

ing (𝑏𝑘 [𝑤], 𝑐𝑘 [𝑤]), so 𝑦𝑥 , 𝑧𝑥 ∉ (𝑏𝑘 [𝑤], 𝑐𝑘 [𝑤]). We therefore must

have 𝑦𝑥 ≤ 𝑏𝑘 [𝑤] and 𝑧𝑥 ≥ 𝑐𝑘 [𝑤]. □

7 PROVING TAIL OPTIMALITY
Recall from Section 4 that the proof is complete once we prove

Lemmas 4.6 and 4.7. This section restates these lemmas in a slightly

more convenient way (7.3-7.5) and provides the last of the necessary

tools for the main proof. All lemmas in this section are proven in

Appendix C.

Many of the statements in this section require similar precondi-

tions on a parameter 𝑝 . For convenience, we name these conditions

Φ(𝑝) and Ψ(𝑝):

Φ(𝑝) ⇔ Z − 1

[
<
𝛼 − 1

𝑝
or 𝑝 ≤ 0,

Ψ(𝑝) ⇔ 1 − 1

Z
<
𝛼 − 1

𝑝
or 𝑝 ≤ 0.

For all 𝑝 ≥ 𝑞, we have10

Φ(𝑝) ⇒ Ψ(𝑝),
Φ(𝑝) ⇒ Φ(𝑞),
Ψ(𝑝) ⇒ Ψ(𝑞) .

(7.1)

In the proofs of Lemmas 7.3–7.5 we apply Theorem 5.4 in the

case that the job sizes (including the initial work) are𝑤𝑥 -relevant

job segments. The right hand side of the equation then contains

moments of𝑤𝑥 -relevant job segments, which we bound in the next

two lemmas.

10
The Φ(𝑝) ⇒ Ψ(𝑝) implication follows from Z ≤ [ and the fact that Ψ(𝑝) is

vacuously true for Z ≤ 1.

10
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Lemma 7.1. For all 𝑝 > 0 satisfying Ψ(𝑝), in the 𝑥 → ∞ limit,

E[𝑋0 [𝑤𝑥 ]𝑝+1] = 𝑜 (𝑥𝑝 ).

Lemma 7.2. For all 𝑝 > 0 satisfying Φ(𝑝), in the 𝑥 → ∞ limit,

𝐾 [𝑤𝑥 ]∑
𝑘=1

E[𝑋𝑘 [𝑤𝑥 ]𝑝+1] = 𝑜 (𝑥𝑝 ).

Finally, we present the lemmas that complete the argument of

Section 4. Their proofs use the busy period and SOAP analysis from

Sections 5 and 6.

Lemma 7.3. For all 𝑝 > 0 satisfying Φ(𝑝), in the 𝑥 → ∞ limit,

E[𝑄 [𝑤𝑥 ]𝑝 ] ≤ 𝑜 (𝑥𝑝 ).

Lemma 7.4. For all 𝑝 > 0 satisfying Ψ(𝑝 − 1), in the 𝑥 → ∞ limit,

E[𝑅𝑝𝑥 ] ≤
(

𝑥

1 − 𝜌

)𝑝
+ 𝑜 (𝑥𝑝 ).

Lemma 7.5. If Z < 1 or [ < ∞, then in the 𝑥 → ∞ limit,

E[𝑅𝑥 ] ≥
𝑥

1 − 𝜌 − 𝑜 (𝑥) .

8 DISCUSSION
Over the past decades, much effort has been given to the task of

designing policies that maintain the optimal response time tail,

i.e., a response time tail that is equally heavy as the tail of the

job size distribution. While the analysis of individual policies has

been successful in many cases, e.g., SRPT and FB, there are many

important policies that have resisted analysis and, further, little is

known about which scheduling mechanisms provably lead to tail

optimality. In this paper, we provide general sufficient conditions

on the type of prioritization that ensures tail optimality in policies

that do not have access to job sizes. Our sufficient conditions enable

the first results on tail-optimality for Gittins, RMLF, SERPT, and FB

with limited preemption.

Although our sufficient conditions define a broad class of tail-

optimal policies, it must be stressed that they are not necessary.

For instance, Processor Sharing (PS), which is known to be tail-

optimal, does not use job sizes and does not satisfy our sufficient

conditions since it is not a SOAP policy. Thus, it is important to

continue to develop both necessary and sufficient conditions for

tail optimality. An interesting open question is to identify sufficient

conditions that unify the results in [18] for size-based policies with

the results in this paper on policies that do not have access to job

size information. Additionally, the only necessary condition known

for tail optimality is given by [26], which proves that all tail-optimal

policies must “remain stable when faced with the arrival of a job

with infinite size.” It is not known if this condition is also sufficient.

Another interesting research topic is to weaken the goal and,

instead of looking to characterize policies that are tail-optimal,

characterize classes of policies with near-optimal response time

tails. It is known that the orders of the job size and response time

tails can differ by any number 𝛾 ∈ (0, 1] [8, 15], and so a natural

question is: what forms of prioritization achieve these intermediate

response time tails?

Finally, it is also worth considering tail optimality among light-

tailed job size distributions. Are there sufficient conditions on pri-

oritization that ensure tail optimality in the light-tailed setting?

The results of [26] highlight that if a policy is tail-optimal under

heavy-tailed job sizes it cannot be tail-optimal under light-tailed job

sizes, and thus it is clear that the sufficient conditions must change.

However, little is known about the general class of policies that are

(nearly) tail-optimal under light-tailed job sizes. More broadly, an

important open question first posed in [15] is: what are sufficient

conditions that ensure a policy is near-optimal for the response

time tail under both heavy- and light-tailed job size distributions?

REFERENCES
[1] S. Aalto, U. Ayesta, S. Borst, V. Misra, and R. Núñez-Queija. 2007. Beyond pro-

cessor sharing. ACM SIGMETRICS Performance Evaluation Review 34 (2007),

36–43.

[2] S. Aalto, U. Ayesta, and R. Righter. 2009. On the Gittins index in the M/G/1 queue.

Queueing Systems 63 (2009), 437–458.
[3] E. Altman, K. Avrachenkov, and U. Ayesta. 2006. A survey on discriminatory

processor sharing. Queueing Systems 53 (2006), 53–63.
[4] N. Bansal, B. Kamphorst, and B. Zwart. 2018. Achievable performance of blind

policies in heavy traffic. Mathematics of Operations Research 43, 3 (2018), 949–964.
[5] L. Becchetti and S. Leonardi. 2004. Nonclairvoyant scheduling to minimize the

total flow time on single and parallel machines. Journal of the ACM (JACM) 51, 4
(2004), 517–539.

[6] N. Bingham, C. Goldie, and J. Teugels. 1987. Regular Variation. Cambridge

University Press.

[7] S. Borst, O. Boxma, R. Núñez Queija, and B. Zwart. 2003. The impact of the service

discipline on delay asymptotics. Performance Evaluation 54 (2003), 175–206.

[8] O. Boxma and D. Denisov. 2011. Sojourn time tails in the single server queue

with heavy-tailed service times. Queueing Systems 69, 2 (2011), 101–119.
[9] O. Boxma and B. Zwart. 2007. Tails in scheduling. ACM SIGMETRICS Performance

Evaluation Review 34, 4 (2007), 13–20.

[10] J. Cohen. 1973. Some results on regular variation for distributions in queueing

and fluctuation theory. Journal of Applied Probability 10, 2 (1973), 343–353.

[11] M. Crovella and A. Bestavros. 1996. Self-similarity in World Wide Web traffic:

evidence and possible causes. Proceedings of ACM Sigmetrics ’96 (1996), 160–169.
[12] S. Foss, D. Korshunov, and S. Zachary. 2011. An Introduction to Heavy-tailed and

Subexponential Distributions. Springer.
[13] W. Johnson. 2002. The curious history of Faà di Bruno’s formula. The American

Mathematical Monthly 109, 3 (2002), 217–234.

[14] B. Kalyanasundaram and K. R. Pruhs. 1997. Minimizing flow time nonclairvoy-

antly. In Proceedings 38th Annual Symposium on Foundations of Computer Science.
IEEE, 345–352.

[15] J. Nair, A. Wierman, and B. Zwart. 2010. Tail-robust scheduling via limited

processor sharing. Performance Evaluation 67, 11 (2010), 978–995.

[16] R. Núñez-Queija. 2002. Queues with equally heavy sojourn time and service

requirement distributions. Annals of Operations Research 113, 1 (01 Jul 2002),

101–117. https://doi.org/10.1023/A:1020905810996

[17] M. Nuyens and A. Wierman. 2008. The foreground-background queue: a survey.

Performance Evaluation 65 (2008), 286–307.

[18] M. Nuyens, A. Wierman, and B. Zwart. 2008. Preventing large sojourn times

using SMART scheduling. Operations Research 56 (2008), 88–101.

[19] K. Park and W. Willinger. 2000. Self-similar Network Traffic and Performance
Evaluation. Wiley.

[20] D. Peterson. 1996. Data center I/O patterns and power laws. CMG Proceedings
(1996).

[21] L. Schrage and L. Miller. 1966. The queue M/G/1 with the shortest remaining

processing time discipline. Operations Research 14 (1966), 670–684.

[22] Z. Scully and M. Harchol-Balter. 2018. SOAP Bubbles: Robust Scheduling Under

Adversarial Noise. In 2018 56th Annual Allerton Conference on Communication,
Control, and Computing (Allerton). 144–154. https://doi.org/10.1109/ALLERTON.

2018.8635963

[23] Z. Scully, M. Harchol-Balter, and A. Scheller-Wolf. 2018. SOAP: one clean analysis

of all age-based scheduling policies. Proceedings of the ACM on Measurement
and Analysis of Computing Systems 2, 1, Article 16 (April 2018), 30 pages. https:

//doi.org/10.1145/3179419

[24] Z. Scully, M. Harchol-Balter, and A. Scheller-Wolf. 2020. Simple Near-Optimal

Scheduling for the M/G/1. Proceedings of the ACM on Measurement and Analysis
of Computing Systems 4, 1, Article 11 (March 2020), 29 pages. https://doi.org/10.

1145/3379477

[25] A. Stolyar and K. Ramanan. 2001. Largest weighted delay first scheduling: large

deviations and optimality. Annals of Applied Probability 11 (2001), 1–48.

11

https://doi.org/10.1023/A:1020905810996
https://doi.org/10.1109/ALLERTON.2018.8635963
https://doi.org/10.1109/ALLERTON.2018.8635963
https://doi.org/10.1145/3179419
https://doi.org/10.1145/3179419
https://doi.org/10.1145/3379477
https://doi.org/10.1145/3379477


Ziv Scully, Lucas van Kreveld, Onno Boxma, Jan-Pieter Dorsman, and Adam Wierman

[26] A. Wierman and B. Zwart. 2012. Is tail-optimal scheduling possible? Operations
Research 60, 5 (2012), 1249–1257.

[27] B. Zwart and O. Boxma. 2000. Sojourn time asymptotics in the M/G/1 processor

sharing queue. Queueing Systems 35, 1-4 (2000), 141–166.

A PROOFS FOR SECTION 5
Recall that, for any nonnegative random variable 𝑉 and 𝑛 ∈ Z+,

(−D)𝑛𝑉 (𝑠) = E[𝑉𝑛 exp(−𝑠𝑉 )], (A.1)

so in particular E[𝑉𝑛] = (−D)𝑛𝑉 (0). Furthermore, if 𝑝 = 𝑛−𝑞 > 0

for 𝑞 ∈ (0, 1),

E[𝑉 𝑝 ] =
∫ ∞

0

𝑡𝑛−𝑞 dP{𝑉 ≤ 𝑡}

=

∫ ∞

𝑡=0

𝑥𝑛−𝑞

Γ(𝑞)

∫ ∞

𝑠=0

(𝑠𝑡)𝑞−1
exp(−𝑠𝑡) · 𝑡 d𝑠 dP{𝑉 ≤ 𝑡}

=

∫ ∞

𝑠=0

1

𝑠1−𝑞Γ(𝑞)

∫ ∞

𝑡=0

𝑡𝑛 exp(−𝑠𝑡) dP{𝑉 ≤ 𝑡} d𝑠

=

∫ ∞

0

1

𝑠1−𝑞Γ(𝑞)
(−D)𝑛𝑉 (𝑠) d𝑠 . (A.2)

Lemma 5.2. For all 𝑛 ∈ Z+,

(−D)𝑛𝐵𝑈 (𝑠) =
𝐼∑
𝑖=1

𝑑𝑖 (D𝜎 (𝑠))𝑎𝑖 ·(−D)𝑏𝑖𝑈 (𝜎 (𝑠))
𝐽𝑖∏
𝑗=1

_(−D)𝑐𝑖 𝑗𝑋 (𝜎 (𝑠)),

where 𝐼 , 𝐽𝑖 , 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 𝑗 , 𝑑𝑖 ∈ Z+ are constants, independent of the system
parameters _ and 𝑋, satisfying

𝑎𝑖 , 𝑏𝑖 ≥ 1 for all 𝑖,

𝑐𝑖 𝑗 ≥ 2 for all 𝑖, 𝑗,

𝑏𝑖 +
𝐽𝑖∑
𝑗=1

(𝑐𝑖 𝑗 − 1) = 𝑛 for all 𝑖,

𝑏1 > . . . > 𝑏𝑛,

𝑎1 = 𝑏1 = 𝑛,

𝑑1 = 1,

𝐽1 = 0.

Proof. We proceed by induction on 𝑛. The base case of 𝑛 = 0 is

immediate by (5.3), so we turn to the inductive step. By relabeling,

we can have 𝑎1 > . . . > 𝑎𝑛 without loss of generality. We address

the constraint on the 𝑖 = 1 constants at the end of the proof.

For 𝑎, 𝑏, 𝑐 𝑗 ∈ Z+, let

𝜏𝑎,𝑏, ⟨𝑐1,...,𝑐 𝐽 ⟩ (𝑠) = (D𝜎 (𝑠))𝑎 · (−D)𝑏𝑈 (𝜎 (𝑠))
𝐽∏
𝑗=1

_(−D)𝑐 𝑗𝑋 (𝜎 (𝑠)) .

We abbreviate 𝑐 = ⟨𝑐1, . . . , 𝑐 𝐽 ⟩. Call 𝑏 +
∑𝐽
𝑗=1

(𝑐 𝑗 − 1) the degree of
𝜏𝑎,𝑏,𝑐 (𝑠). For the inductive step, it suffices to show that the derivative

of a term with degree 𝑛 is a sum of terms with degree 𝑛 + 1. Using

Lemma 5.1, we compute
11

−D𝜏𝑎,𝑏,𝑐 (𝑠) = 𝜏𝑎+1,𝑏+1,𝑐 (𝑠) + 𝑎𝜏𝑎+2,𝑏, ⟨𝑐1,...,𝑐 𝐽 ,2⟩ (𝑠)

+
𝐽∑
𝑗=1

𝜏𝑎+1,𝑏, ⟨𝑐1,...,𝑐 𝑗+1,...,𝑐 𝐽 ⟩ (𝑠), (A.3)

in which each term has degree 𝑛 + 1, as desired.

We now address the constraint on the 𝑖 = 1 term, again by

induction on 𝑛. The base case of 𝑛 = 0 is immediate by (5.3), and

the inductive step follows from plugging 𝑎 = 𝑏 = 𝑛 into (A.3). □

Lemma A.1. Let 𝑝 =𝑚 − 𝑞 > 0 for 𝑚 ∈ Z+ and 𝑞 ∈ (0, 1). Then
for any nonnegative random variable 𝑉, we have∫ ∞

0

1

𝑠1−𝑞Γ(𝑞)
(−D)𝑚𝑉 (𝜎 (𝑠)) · D𝜎 (𝑠) d𝑠 ≤ E[𝑉 𝑝 ]

(1 − 𝜌)1−𝑞 .

Proof. We first show that for all 𝑠 > 0,

𝜎 (𝑠)
𝑠

≤ 1

1 − 𝜌 . (A.4)

By (5.2),

𝜎 (𝑠) = 𝑠 + _(1 − �̃� (𝜎 (𝑠)))

= 𝑠 + _
∫ ∞

0

(1 − exp(−𝑥𝜎 (𝑠))) dP{𝑋 ≤ 𝑥}

≤ 𝑠 + _E[𝑋 ]𝜎 (𝑠),

which implies (A.4). Using the above and making a change of vari-

able 𝜎 = 𝜎 (𝑠) yields∫ ∞

0

1

𝑠1−𝑞Γ(𝑞)
(−D)𝑚𝑉 (𝜎 (𝑠)) · D𝜎 (𝑠) d𝑠

≤ 1

(1 − 𝜌)1−𝑞

∫ ∞

0

1

(𝜎 (𝑠))1−𝑞Γ(𝑞)
(−D)𝑚𝑉 (𝜎 (𝑠)) · D𝜎 (𝑠) d𝑠

=
1

(1 − 𝜌)1−𝑞

∫ ∞

0

1

𝜎1−𝑞Γ(𝑞)
(−D)𝑚𝑉 (𝜎) d𝜎

=
E[𝑉 𝑝 ]

(1 − 𝜌)1−𝑞 ,

where the last equality follows from (A.2). □

Proof of Theorem 5.4. Let 𝑉 be a nonnegative random vari-

able. By (A.1), for all𝑚 ∈ Z+ and 𝑠 > 0,

(−D)𝑚𝑉 (𝜎 (𝑠)) ≤ (−D)𝑚𝑉 (0) = E[𝑉𝑚], (A.5)

which when applied to (5.4) implies

D𝜎 (𝑠) ≤ 1

1 − 𝜌 . (A.6)

11
Two clarifications about the list notation below. First, in the second term on the

right-hand side, we append 𝑐 with an extra 2. Second, for each 𝑗 , in the 𝑗 th summand

of the third term on the right-hand side, we increase the 𝑗 th element of 𝑐 by 1.

12
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Combining (A.6) and Lemma 5.2 yields

E[𝐵𝑝
𝑈
] =

∫ ∞

0

1

𝑠1−𝑞Γ(𝑞)
(−D)𝑛𝐵𝑈 (𝑠) d𝑠

=

∫ ∞

0

1

𝑠1−𝑞Γ(𝑞)

( 𝐼∑
𝑖=1

𝑑𝑖 (D𝜎 (𝑠))𝑎𝑖 · (−D)𝑏𝑖𝑈 (𝜎 (𝑠))

·
𝐽𝑖∏
𝑗=1

_(−D)𝑐𝑖 𝑗𝑋 (𝜎 (𝑠))
)

d𝑠

≤
𝐼∑
𝑖=1

𝑑𝑖

(1 − 𝜌)𝑎𝑖−1

∫ ∞

0

1

𝑠1−𝑞Γ(𝑞)

(
(−D)𝑏𝑖𝑈 (𝜎 (𝑠))

·
𝐽𝑖∏
𝑗=1

_(−D)𝑐𝑖 𝑗𝑋 (𝜎 (𝑠))
)
· D𝜎 (𝑠) d𝑠 .

(A.7)

It remains only to bound the integral in (A.7), which we do sepa-

rately for each value of 𝑖 . If 𝜒𝑖0 = 1, then applying Lemma A.1 with

𝑉 = 𝑈 and𝑚 = 𝑏𝑖 along with (A.5) yields

∫ ∞

0

1

𝑠1−𝑞Γ(𝑞)

(
(−D)𝑏𝑖𝑈 (𝜎 (𝑠))

𝐽𝑖∏
𝑗=1

_(−D)𝑐𝑖 𝑗𝑋 (𝜎 (𝑠))
)
· D𝜎 (𝑠) d𝑠

≤
∫ ∞

0

1

𝑠1−𝑞Γ(𝑞)

(
(−D)𝑏𝑖𝑈 (𝜎 (𝑠)) · D𝜎 (𝑠) d𝑠

) 𝐽𝑖∏
𝑗=1

_E[𝑋𝑐𝑖 𝑗 ]

≤ E[𝑈𝑏𝑖−𝑞]
(1 − 𝜌)1−𝑞

𝐽𝑖∏
𝑗=1

_E[𝑋𝑐𝑖 𝑗 ],

which gives the desired bound for the 𝑖th summand in (A.7). The

case where 𝜒𝑖 𝑗 = 1 for some 𝑗 ≥ 1 is very similar, except we apply

Lemma A.1 with 𝑉 = 𝑋 and𝑚 = 𝑐𝑖 𝑗 . □

Remark. Note that one might hope to get a simpler expression for
(−D)𝑛𝐵𝑈 (𝑠) = (−D)𝑛𝑈 (𝜎 (𝑠)) by applying the following compact

form of Faà di Bruno’s formula for derivatives of composite functions
[13]:

𝑑𝑛𝑈 (𝜎 (𝑠))
𝑑𝑠𝑛

=

𝑛∑
𝑘=1

𝑑𝑘𝑈 (𝑦)
𝑑𝑦𝑘

����
𝑦=𝜎 (𝑠)

𝐵𝑛,𝑘 (𝜎 ′(𝑠), 𝜎 (2) (𝑠), . . . , 𝜎 (𝑛−𝑘+1) (𝑠)),

(A.8)

where the partial or incomplete exponential Bell polynomials 𝐵𝑛,𝑘 are
given by

𝐵𝑛,𝑘 (𝑥1, . . . , 𝑥𝑛−𝑘+1
)

=
∑ 𝑛!

𝑗1! . . . 𝑗𝑛−𝑘+1
!

(
𝑥1

1!

) 𝑗1
. . .

(
𝑥𝑛−𝑘+1

(𝑛 − 𝑘 + 1)!

) 𝑗𝑛−𝑘+1

, (A.9)

where the sum is taken over all nonnegative integers ( 𝑗1, . . . , 𝑗𝑛−𝑘+1
)

with 𝑗1 + . . . + 𝑗𝑛−𝑘+1
= 𝑘 and 𝑗1 + 2 𝑗2 + . . . + (𝑛 − 𝑘 + 1) 𝑗𝑛−𝑘+1

= 𝑛.
In particular, 𝐵𝑛,𝑛 (𝑥) = 𝑥𝑛, so that the leading (𝑘 = 𝑛) term of
(−D)𝑛𝐵𝑈 (𝑠) is bounded by E[𝑈𝑛] (𝜎 ′(𝑠))𝑛. In the bound in Lemma 7.4,
where 𝑈 = 𝑥, that would very quickly lead to the leading term(

𝑥
1−𝜌0 [𝑤𝑥 ]

)𝑝. However, to show that the remaining 𝑛−1 terms in (A.8)
are 𝑜 (𝑥𝑝 ) requires a detailed study of the higher derivatives of 𝜎 (𝑠).

B PROOFS FOR SECTION 6
Lemma 6.9. For any SOAP policy, the residence time of a job of

size 𝑥 is stochastically bounded by

𝑅𝑥 ≤st 𝐵𝑥 [𝑤𝑥 ] .

Proof. By Definition 6.6,

𝑅𝑥 =st

∫ 𝑥

0

𝐵
d𝑎 [𝑤𝑥 (𝑎)−] .

It is clear fromDefinition 6.5 that 𝐵𝑈 [𝑤] is stochastically increasing
in𝑤 for any𝑈 . Definition 6.2 implies𝑤𝑥 ≥ 𝑤𝑥 (𝑎) for all 𝑎 ≥ 0, so

𝑅𝑥 ≤st

∫ 𝑥

0

𝐵
d𝑎 [𝑤𝑥 ] =st 𝐵𝑥 [𝑤𝑥 ] . □

Lemma 6.10. For any SOAP policy, the rank-𝑤 waiting time is
stochastically bounded by

𝑄 [𝑤] ≤st


E𝐵𝑋0 [𝑤 ] [𝑤] w.p. 𝜋0 [𝑤],
E𝐵𝑋1 [𝑤 ] [𝑤] w.p. 𝜋1 [𝑤],
.
.
.

0 w.p. 1 − 𝜌Σ [𝑤],
where

𝜋0 [𝑤] = 𝜌0 [𝑤] (1 − 𝜌Σ [𝑤])
1 − 𝜌0 [𝑤] ,

𝜋𝑘 [𝑤] = 𝜌𝑘 [𝑤]
1 − 𝜌0 [𝑤] for all 𝑘 ≥ 1.

Proof. Following the approach of [23, Section 5], one can think

of 𝑄 [𝑤] as defined by the following process. A job 𝐽 with initial

rank 𝑟 arrives at a random time. Because the system uses FCFS

tiebreaking between jobs of the same rank, job 𝐽 is first served

when

• all jobs that arrived before 𝐽 either complete or have rank

strictly greater than 𝑟 , and

• all jobs that arrived after 𝐽 either complete or have rank

greater than or equal to 𝑟 .

13
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Then𝑄 [𝑤] is the amount of time from 𝐽 ’s arrival to its first service.

Define 𝑄 ′[𝑤] in the same way as 𝑄 [𝑤] but in a system that

breaks rank ties by prioritizing all other jobs over 𝐽 . Clearly,𝑄 [𝑤] ≤st 𝑄
′[𝑤].

But we can succinctly describe 𝑄 ′[𝑤]: it is either 0 or the excess of

a𝑤-relevant busy period with some amount of initial work. Specif-

ically, the initial work is a 𝑘th 𝑤-relevant job segment for some

𝑘 ≥ 0. Thus, letting 𝜋𝑘 [𝑤] be the steady-state probability that the

system is in a𝑤-relevant busy period started by a 𝑘th𝑤-relevant

segment, we have

𝑄 ′[𝑤] =st


E𝐵𝑋0 [𝑤 ] [𝑤] w.p. 𝜋0 [𝑤],
E𝐵𝑋1 [𝑤 ] [𝑤] w.p. 𝜋1 [𝑤],
.
.
.

0 w.p. 1 − 𝜌Σ [𝑤] .

All that remains is to compute the probabilities 𝜋𝑘 [𝑤]. For 𝑘 ≥ 1,

each job’s 𝑘th𝑤-relevant segment starts a𝑤-relevant busy period

with expected length E[𝑋𝑘 [𝑤]]/(1 − 𝜌0 [𝑤]),12 and jobs arrive at

rate _, so for 𝑘 ≥ 1,

𝜋𝑘 =
𝜌𝑘 [𝑤]

1 − 𝜌0 [𝑤] .

The 𝑘 = 0 case is similar, except that a job’s 0th𝑤-relevant segment

only starts a𝑤-relevant busy period if the system has no𝑤-relevant

work. Thus, the arrival rate of jobs whose 0th𝑤-relevant segment

starts a𝑤-relevant busy period is _(1 − 𝜌Σ [𝑤]), so

𝜋0 =
𝜌0 [𝑤] (1 − 𝜌Σ [𝑤])

1 − 𝜌0 [𝑤] . □

C PROOFS FOR SECTION 7
Lemma 7.1. For all 𝑝 > 0 satisfying Ψ(𝑝), in the 𝑥 → ∞ limit,

E[𝑋0 [𝑤𝑥 ]𝑝+1] = 𝑜 (𝑥𝑝 ).

Proof. By (6.1) and Lemma 6.17,

E[𝑋0 [𝑤𝑥 ]𝑝+1] = E[𝑋 ⟨𝑧𝑥 ⟩𝑝+1] =
∫ 𝑧𝑥

0

(𝑝 + 1)𝑡𝑝𝐹 (𝑡) d𝑡 .

Hence for 𝑥 → ∞,

E[𝑋0 [𝑤𝑥 ]𝑝+1] =
∫ 𝑂 (𝑥max{1,Z })

0

𝑂 (𝑡𝑝−𝛼 ) d𝑡

= 𝑂 (𝑥max{0,(𝑝−(𝛼−1)) max{1,Z }}) . (C.1)

If Z ≤ 1, then (C.1) is𝑂 (𝑥max{0,𝑝−(𝛼−1) }) = 𝑜 (𝑥𝑝 ). If instead Z > 1,

then Ψ(𝑝) implies (C.1) is 𝑜 (𝑥𝑝 ). □

Lemma 7.2. For all 𝑝 > 0 satisfying Φ(𝑝), in the 𝑥 → ∞ limit,

𝐾 [𝑤𝑥 ]∑
𝑘=1

E[𝑋𝑘 [𝑤𝑥 ]𝑝+1] = 𝑜 (𝑥𝑝 ).

12
The possibility of a job completing before reaching its 𝑘th 𝑤-relevant segment is

not a problem: this corresponds to the outcome 𝑋𝑘 [𝑤 ] = 0, in which case we think

of the segment as starting a 𝑤-relevant busy period of length 0.

Proof. By Lemmas 6.16 and 6.18 and Assumption 3.2,

𝐾 [𝑤𝑥 ]∑
𝑘=1

E[𝑋𝑘 [𝑤𝑥 ]𝑝+1] =
𝐾 [𝑤𝑥 ]∑
𝑘=1

∫ 𝑐𝑘 [𝑤𝑥 ]

𝑏𝑘 [𝑤𝑥 ]
(𝑝 + 1) (𝑡 − 𝑏𝑘 [𝑤𝑡 ])𝑝𝐹 (𝑡) d𝑡

≤
𝐾 [𝑤𝑥 ]∑
𝑘=1

∫ 𝑐𝑘 [𝑤𝑥 ]

𝑏𝑘 [𝑤𝑥 ]
(𝑝 + 1) (𝑧𝑡 − 𝑦𝑡 )𝑝𝐹 (𝑡) d𝑡

≤
𝐾 [𝑤𝑥 ]∑
𝑘=1

∫ 𝑐𝑘 [𝑤𝑥 ]

0

(𝑝 + 1) (𝑧𝑡 − 𝑦𝑡 )𝑝−1𝐹 (𝑡) d𝑡 .

Hence for 𝑥 → ∞,

𝐾 [𝑤𝑥 ]∑
𝑘=1

E[𝑋𝑘 [𝑤𝑥 ]𝑝+1] ≤
∫ 𝑂 (𝑥[ )

0

𝑂 (𝑡Z𝑝−𝛼 ) d𝑡

= 𝑂 (𝑥max{0,[ (Z𝑝−(𝛼−1)) }),

which Φ(𝑝) implies is 𝑜 (𝑥𝑝 ). □

Lemma 7.3. For all 𝑝 > 0 satisfying Φ(𝑝), in the 𝑥 → ∞ limit,

E[𝑄 [𝑤𝑥 ]𝑝 ] ≤ 𝑜 (𝑥𝑝 ) .

Proof. By Lemma 6.10,

E[𝑄 [𝑤𝑥 ]𝑝 ] ≤
𝐾 [𝑤𝑥 ]∑
𝑘=0

𝜋𝑘 [𝑤𝑥 ] · E[E𝐵𝑋𝑘 [𝑤𝑥 ] [𝑤𝑥 ]
𝑝 ], (C.2)

where

𝜋0 [𝑤𝑥 ] =
𝜌0 [𝑤𝑥 ] (1 − 𝜌Σ [𝑤𝑥 ])

1 − 𝜌0 [𝑤𝑥 ]
= 𝑂 (1) · 𝜌0 [𝑤𝑥 ],

𝜋𝑘 [𝑤𝑥 ] =
𝜌𝑘 [𝑤𝑥 ]

1 − 𝜌0 [𝑤𝑥 ]
= 𝑂 (1) · 𝜌𝑘 [𝑤𝑥 ] for all 𝑘 ≥ 1.

We start by bounding each term of the sum in (C.2). Observe

first that for any random variable 𝑉 and any 𝑝 ≥ 0,

E[E𝑉 𝑝 ] = E[𝑉 𝑝+1]
(𝑝 + 1)E[𝑉 ] .

Then for all 𝑘 ≥ 0, we compute

𝜋𝑘 [𝑤𝑥 ] · E[E𝐵𝑋𝑘 [𝑤𝑥 ] [𝑤𝑥 ]
𝑝 ] = 𝑂 (1) · 𝜌𝑘 [𝑤𝑥 ] · E[E𝐵𝑋𝑘 [𝑤𝑥 ] [𝑤𝑥 ]

𝑝 ]

= 𝑂 (1) · 𝜌𝑘 [𝑤𝑥 ] ·
E[𝐵𝑋𝑘 [𝑤𝑥 ] [𝑤𝑥 ]𝑝+1]

E[𝑋𝑘 [𝑤𝑥 ]]
= 𝑂 (1) · E[𝐵𝑋𝑘 [𝑤𝑥 ] [𝑤𝑥 ]

𝑝+1] .
(C.3)

Bounding the right hand side of (C.3) requires providing a bound

for fractional busy period moments. We now apply Theorem 5.4 to

the (𝑝 + 1)th moment above, letting 𝑝 + 1 = 𝑛 − 𝑞 for 𝑛 ∈ Z+ and

𝑞 ∈ (0, 1). We choose 𝜒𝑖0 = 1 for all 𝑖 such that 𝑏𝑖 ≥ 2 and 𝜒𝑖1 = 1

for all other 𝑖 .13 This choice ensures that

𝑏𝑖 − 𝑞𝜒𝑖0 ≥ 1

𝑐𝑖 𝑗 − 𝑞𝜒𝑖 𝑗 > 1,

which will allow the use of Lemmas 7.1 and 7.2 later in the proof.

13
This choice requires checking that 𝐽𝑖 ≥ 1 for all 𝑖 such that 𝑏𝑖 = 1, which holds by

(C.5) and the fact that 𝑛 ≥ 2.
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Applying Theorem 5.4 to (C.3) yields, for 𝑥 → ∞,

𝜋𝑘 [𝑤𝑥 ] · E[E𝐵𝑋𝑘 [𝑤𝑥 ] [𝑤𝑥 ]
𝑝 ]

≤ 𝑂 (1) ·
𝐼∑
𝑖=1

𝑑𝑖
E[𝑋𝑘 [𝑤𝑥 ]𝑏𝑖−𝑞𝜒𝑖0 ]
(1 − 𝜌0 [𝑤𝑥 ])𝑎𝑖−𝑞

𝐽𝑖∏
𝑗=1

_E[𝑋0 [𝑤𝑥 ]𝑐𝑖 𝑗−𝑞𝜒𝑖 𝑗 ]

= 𝑂 (1) ·
𝐼∑
𝑖=1

E[𝑋𝑘 [𝑤𝑥 ]𝑏𝑖−𝑞𝜒𝑖0 ]
𝐽𝑖∏
𝑗=1

E[𝑋0 [𝑤𝑥 ]𝑐𝑖 𝑗−𝑞𝜒𝑖 𝑗 ] .

(C.4)

Recall from Lemma 5.2 that
14

𝑏𝑖 − 𝑞𝜒𝑖0 +
𝐽𝑖∑
𝑗=1

(𝑐𝑖 𝑗 − 𝑞𝜒𝑖 𝑗 − 1) = 𝑛 − 𝑞 = 𝑝 + 1. (C.5)

Thismeans for all 𝑖 and 𝑗 , we have 𝑐𝑖 𝑗−𝑞𝜒𝑖 𝑗−1 ≤ 𝑝 , soΨ(𝑐𝑖 𝑗−𝑞𝜒𝑖 𝑗−1)
holds by (7.1). Returning to (C.4), applying Lemma 7.1 and (C.5)

gives us

𝜋𝑘 [𝑤𝑥 ] · E[E𝐵𝑋𝑘 [𝑤𝑥 ] [𝑤𝑥 ]
𝑝 ]

≤
𝐼∑
𝑖=1

E[𝑋𝑘 [𝑤𝑥 ]𝑏𝑖−𝑞𝜒𝑖0 ]
𝐽𝑖∏
𝑗=1

𝑜 (𝑥𝑐𝑖 𝑗−𝑞𝜒𝑖 𝑗−1)

=

𝐼∑
𝑖=1

E[𝑋𝑘 [𝑤𝑥 ]𝑏𝑖−𝑞𝜒𝑖0 ] max

{
𝑂 (1), 𝑜

(
𝑥
∑𝐽𝑖

𝑗=1
(𝑐𝑖 𝑗−𝑞𝜒𝑖 𝑗−1) )}

=

𝐼∑
𝑖=1

E[𝑋𝑘 [𝑤𝑥 ]𝑏𝑖−𝑞𝜒𝑖0 ] max{𝑂 (1), 𝑜 (𝑥𝑝−(𝑏𝑖−𝑞𝜒𝑖0) )},

(C.6)

where the 𝑂 (1) covers the 𝐽𝑖 = 0 case, in which the product is

empty.

We now return to computing (C.2), substituting in (C.6) and

interchanging the order of summation:

E[𝑄 [𝑤𝑥 ]𝑝 ] ≤
𝐼∑
𝑖=1

max{𝑂 (1), 𝑜 (𝑥𝑝+1−(𝑏𝑖−𝑞𝜒𝑖0) )}
𝐾 [𝑤𝑥 ]∑
𝑘=0

E[𝑋𝑘 [𝑤𝑥 ]𝑏𝑖−𝑞𝜒𝑖0 ] .

It suffices to show that each term of the outer sum is 𝑜 (𝑥𝑝 ). We

would like to use Lemmas 7.1 and 7.2.We knowΦ(𝑏𝑖−𝑞𝜒𝑖0−1) holds
by (7.1) and (C.5). However, the lemmas also require 𝑏𝑖 − 𝑞𝜒𝑖0 > 1,

yet it may be the case that 𝑏𝑖 − 𝑞𝜒𝑖0 = 1. To handle this case, we

use the fact that

𝐾 [𝑤𝑥 ]∑
𝑘=0

E[𝑋𝑘 [𝑤𝑥 ]] = E
[𝐾 [𝑤𝑥 ]∑
𝑘=0

𝑋𝑘 [𝑤𝑥 ]
]
≤ E[𝑋 ] = 𝑂 (1) .

Combining this with Lemmas 7.1 and 7.2 gives us

max{𝑂 (1), 𝑜 (𝑥𝑝+1−(𝑏𝑖−𝑞𝜒𝑖0) )}
𝐾 [𝑤𝑥 ]∑
𝑘=0

E[𝑋𝑘 [𝑤𝑥 ]𝑏𝑖−𝑞𝜒𝑖0 ]

≤ max{𝑂 (1), 𝑜 (𝑥𝑝+1−(𝑏𝑖−𝑞𝜒𝑖0) )} · max{𝑂 (1), 𝑜 (𝑥𝑏𝑖−𝑞𝜒𝑖0−1)}
= 𝑜 (𝑥𝑝 ) .

□

Lemma 7.4. For all 𝑝 > 0 satisfying Ψ(𝑝 − 1), in the 𝑥 → ∞ limit,

E[𝑅𝑝𝑥 ] ≤
(

𝑥

1 − 𝜌

)𝑝
+ 𝑜 (𝑥𝑝 ).

14
Note that we are applying Theorem 5.4 to a (𝑝 + 1)th moment, not a 𝑝th moment.

Proof. Let 𝑝 = 𝑛 − 𝑞 for 𝑛 ∈ Z+ and 𝑞 ∈ (0, 1). We again apply

Theorem 5.4, choosing 𝜒𝑖0 = 1 for all 𝑖 . By Lemma 6.9,

E[𝑅𝑝𝑥 ] ≤ E[𝐵𝑝𝑥 [𝑤𝑥 ]]

≤
(

𝑥

1 − 𝜌0 [𝑤𝑥 ]

)𝑝
+

𝐼∑
𝑖=2

𝑑𝑖
𝑥𝑏𝑖−𝑞

(1 − 𝜌0 [𝑤𝑥 ])𝑎𝑖−𝑞
𝐽𝑖∏
𝑗=1

_E[𝑋0 [𝑤𝑥 ]𝑐𝑖 𝑗 ] .

Recall from Lemma 5.2 that

𝑏𝑖 − 𝑞 +
𝐽𝑖∑
𝑗=1

(𝑐𝑖 𝑗 − 1) = 𝑛 − 𝑞 = 𝑝.

This means for all 𝑖 and 𝑗 , we have 𝑐𝑖 𝑗 − 1 ≤ 𝑝 − 𝑏𝑖 ≤ 𝑝 − 1, so

Ψ(𝑐𝑖 𝑗 − 1) holds by (7.1). We can therefore apply Lemma 7.1, which

yields

𝐼∑
𝑖=2

𝑑𝑖
𝑥𝑏𝑖−𝑞

(1 − 𝜌0 [𝑤𝑥 ])𝑎𝑖−𝑞
𝐽𝑖∏
𝑗=1

_E[𝑋0 [𝑤𝑥 ]𝑐𝑖 𝑗 ]

=

𝐼∑
𝑖=2

𝑂 (𝑥𝑏𝑖−𝑞)
𝐽𝑖∏
𝑗=1

𝑜 (𝑥𝑐𝑖 𝑗−1)

=

𝐼∑
𝑖=2

𝑜
(
𝑥
𝑏𝑖−𝑞+

∑𝐽𝑖
𝑗=1

(𝑐𝑖 𝑗−1) )
= 𝑜 (𝑥𝑝 ). □

Lemma 7.5. If Z < 1 or [ < ∞, then in the 𝑥 → ∞ limit,

E[𝑅𝑥 ] ≥
𝑥

1 − 𝜌 − 𝑜 (𝑥) .

Proof. We consider the Z < 1 and [ < ∞ cases separately.

Case 1: Z < 1. Definitions 6.4 and 6.13 imply𝑤𝑥 (𝑎) = 𝑤𝑥 for all

𝑎 ∈ [0, 𝑦𝑥 ). From this, (6.1), Corollary 6.8, and Assumption 3.2, we

compute

E[𝑅𝑥 ] =
∫ 𝑥

0

1

1 − 𝜌0 [𝑤𝑥 (𝑎)−]
d𝑎

≥
∫ 𝑦𝑥

0

1

1 − 𝜌0 [𝑤𝑥 (𝑎)−]
d𝑎

=
𝑦𝑥

1 − 𝜌0 [𝑤𝑥−]

=
𝑦𝑥

1 − 𝜌 ⟨𝑦𝑥 ⟩

≥ 𝑥 −𝑂 (𝑥Z )
1 − 𝜌 ⟨𝑥 −𝑂 (𝑥Z )⟩

=
𝑥

1 − 𝜌 ⟨Ω(𝑥)⟩ − 𝑜 (𝑥).

For any 𝜌 ′ ∈ (0, 𝜌), we have

1

1 − 𝜌 ′ =
1

1 − 𝜌 · 1

1 + 𝜌−𝜌′
1−𝜌

≥ 1

1 − 𝜌 − 𝜌 − 𝜌 ′

(1 − 𝜌)2
. (C.7)
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By (C.7) with 𝜌 ′ = 𝜌 ⟨Ω(𝑥)⟩, it suffices to show that 𝜌−𝜌 ⟨Ω(𝑥)⟩ = 𝑜 (1).
This indeed holds by Lemma 6.17:

𝜌 − 𝜌 ⟨Ω(𝑥)⟩ = _
∫ ∞

0

𝐹 (𝑡) d𝑡 − _
∫ Ω (𝑥)

0

𝐹 (𝑡) d𝑡

=

∫ ∞

Ω (𝑥)
𝑂 (𝑡−𝛼 ) d𝑡

= 𝑂 (𝑥−(𝛼−1) )
= 𝑜 (1) .

Case 2: [ < ∞. A job’s worst future rank 𝑤𝑥 (𝑎) is decreasing
in 𝑎 by Definition 6.2, so for all 𝑎 ∈ [0, 𝑥),

𝑤𝑥 (𝑎) ≥ 𝑤𝑥 (𝑥−) = 𝑟 (𝑥−).
Applying this to Corollary 6.8 yields

E[𝑅𝑥 ] =
∫ 𝑥

0

1

1 − 𝜌0 [𝑤𝑥 (𝑎)−]
d𝑎 ≥ 𝑥

1 − 𝜌0 [𝑟 (𝑥−)]
.

By (C.7) with 𝜌 ′ = 𝜌0 [𝑟 (𝑥−)], it suffices to show 𝜌−𝜌0 [𝑟 (𝑥−)] = 𝑜 (1).
Let 𝑓 (·) be a strictly increasing function such that for sufficiently

large 𝑡 ,

𝑢𝑡+ ≤ 𝑓 (𝑡) ≤ 2𝑢𝑡+ . (C.8)

Definition 6.4 tells us that for all ages 𝑎 > 𝑓 (𝑡), we have 𝑟 (𝑎) > 𝑤𝑡+.
But byDefinitions 6.2 and 6.4, we have 𝑟 (𝑥−) ≤ 𝑟 (𝑐0 [𝑟 (𝑥−)]) = 𝑤𝑐0 [𝑟 (𝑥−) ]+,
so it must be that 𝑥 ≤ 𝑓 (𝑐0 [𝑟 (𝑥−)]). Because 𝑓 (·) is strictly increas-
ing, it is invertible, so Assumption 3.2 and (C.8) imply

𝑐0 [𝑟 (𝑥−)] ≥ 𝑓 −1 (𝑥) = Ω(𝑥1/[ ).
Combining this with (6.1) and Lemma 6.17, we compute, similarly

to the previous case,

𝜌 − 𝜌0 [𝑟 (𝑥−)] = 𝜌 − 𝜌 ⟨Ω(𝑥1/[ )⟩

=

∫ ∞

Ω (𝑥1/[ )
𝑂 (𝑡−𝛼 ) d𝑡

= 𝑂 (𝑥−(𝛼−1)/[ )
= 𝑜 (1) . □

D GENERALIZATION TO SOAP BUBBLE
POLICIES

In this appendix we generalize our main results, Theorems 3.1

and 3.3, to SOAP Bubble policies, which are a superset of SOAP

policies that is introduced in [22]. To review (see Section 3.4), a

SOAP Bubble policy has lower and upper rank functions

𝑟−, 𝑟+ : R+ → R.

A SOAP Bubble policy works like a SOAP policy, except each job 𝑗

can have a different rank function 𝑟 𝑗 . Each job’s rank function may

be set arbitrarily, provided it remains within the “bubble” between

the lower and upper rank functions, meaning for all jobs 𝑗 and

ages 𝑎,

𝑟− (𝑎) ≤ 𝑟 𝑗 (𝑎) ≤ 𝑟+ (𝑎).
One can view ordinary SOAP policies as the special case with

𝑟− (𝑎) = 𝑟 (𝑎) = 𝑟+ (𝑎).
To upper bound the response time of a SOAP bubble policy, one

can essentially replicate the analysis of SOAP policies, but replacing

each use of 𝑟 with either 𝑟− or 𝑟+ as appropriate. The intuition is

that a tagged job has maximal response time if it follows 𝑟+ while

every other job follows 𝑟−. Specifically,

• when defining worst future rank (Definition 6.2), replace 𝑟

with 𝑟+; and
• when defining 𝑤-relevant work, intervals, segments, and

load (Definitions 6.3 and 6.4), replace 𝑟 with 𝑟−.

For details, see [22].

To generalize Theorems 3.1 and 3.3, we begin by defining some

new notation. Let
15

𝑤−
𝑥 = sup

0≤𝑏<𝑥
𝑟− (𝑏),

𝑤+
𝑥 = sup

0≤𝑏<𝑥
𝑟+ (𝑏),

𝑦−𝑥 = 𝑐0 [𝑤−
𝑥 −],

𝑧−𝑥 = 𝑐0 [𝑤−
𝑥 ],

𝑦+𝑥 = 𝑐0 [𝑤+
𝑥−],

𝑧+𝑥 = 𝑐0 [𝑤+
𝑥 ],

𝑢+𝑥 = 𝑐𝐾 [𝑤+
𝑥 ] [𝑤

+
𝑥 ] .

Throughout our proofs, we can simply replace 𝑢𝑥 with 𝑢+𝑥 , but 𝑦𝑥
and 𝑧𝑥 are more subtle.

• The main use of 𝑦𝑥 and 𝑧𝑥 is through Lemma 6.18, which is

used in Lemma 7.2. The lemma statement now holds with

𝑦−𝑥 and 𝑧−𝑥 .
• There is one more use of𝑦𝑥 in Lemma 7.5, and this one needs

to be replaced with 𝑦+𝑥 .
• There is one more use of 𝑧𝑥 in Lemma 7.1, and this one needs

to be replaced with 𝑧+𝑥 .

This implies the following generalizations of Assumption 3.2 and The-

orem 3.3. The only substantial change is that we need two versions

of Z because there are two version of 𝑦𝑥 and 𝑧𝑥 . This ends up break-

ing the Φ(𝑝) =⇒ Ψ(𝑝) implication in (7.1), so we add some extra

preconditions to our result.

Assumption D.1.

(i) There exists Z− ∈ [0,∞] such that 𝑧−𝑥 − 𝑦−𝑥 = 𝑂 (𝑥Z − ).
(ii) There exists Z + ∈ [Z−,∞] such that 𝑧+𝑥 − 𝑦+𝑥 = 𝑂 (𝑥Z + ).
(iii) There exists [+ ∈ [max{1, Z +},∞] such that 𝑢𝑥 = 𝑂 (𝑥[+ ).

Theorem D.2. Consider an 𝑀/𝐺/1 queue whose job size distri-
bution obeys Assumption 2.1 and a SOAP Bubble scheduling policy
whose lower and upper rank functions obey Assumption D.1. If

Z− − 1

[+
<
𝛼 − 1

𝛽
,

1 − 1

Z +
<
𝛼 − 1

𝛽
,

and either Z + < 1 or [+ < ∞,

then the policy is tail-optimal, i.e., lim𝑥→∞ 1

𝐹 (𝑥)
P
{
𝑇 > 𝑥

1−𝜌
}
= 1.

One can obtain the following simplified condition in much the

same way as done in Theorem 3.1.

15
Recall that 𝑐𝑖 [𝑤 ] is defined using 𝑟− .
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Theorem D.3. Consider an 𝑀/𝐺/1 queue whose job size distri-
bution obeys Assumption 2.1 using a SOAP Bubble scheduling policy
whose lower and upper rank functions obey

𝑟− (𝑎) = Ω(𝑎𝛾 ),

𝑟+ (𝑎) = 𝑂 (𝑎𝛿 )

for some 𝛿 > 𝛾 > 0. If
𝛿

𝛾
− 𝛾

𝛿
<
𝛼 − 1

𝛽
,

then the policy is tail-optimal, i.e., lim𝑥→∞ 1

𝐹 (𝑥)
P
{
𝑇 > 𝑥

1−𝜌
}
= 1.

17
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