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ABSTRACT

Motivation: Recent advances in cell-free protein expression systems

allow specific labeling of proteins with amino acids containing stable

isotopes (15N, 13C and 2H), an important feature for protein structure

determination by nuclear magnetic resonance (NMR) spectroscopy.

Given this labeling ability, we present a mathematical optimization

framework for designing a set of protein isotopomers, or labeling

schedules, to reduce the congestion in the NMR spectra. The labeling

schedules, which are derived by the optimization of a cost function,

are tailored to a specific protein and NMR experiment.

Results: For 2D 15N-1HHSQCexperiments, we can produce an exact

solution using a dynamic programming algorithm in under 2 h on a

standard desktop machine. Applying the method to a standard

benchmark protein, calmodulin, we are able to reduce the number of

overlaps in the 500MHZ HSQC spectrum from 10 to 1 using four

samples with a true cost function, and 10 to 4 if the cost function is

derived from statistical estimates. On a set of 448 curated proteins

from the BMRB database, we are able to reduce the relative percent

congestion by 84.9% in their HSQC spectra using only four samples.

Our method can be applied in a high-throughput manner on a

proteomic scale using the server we developed. On a 100-node

cluster, optimal schedules can be computed for every protein coded

for in the human genome in less than a month.

Availability: A server for creating labeling schedules for 15N-1HHSQC

experiments as well as results for each of the individual 448 proteins

used in the test set is available at http://nmr.proteomics.ics.uci.edu.

Contact: pfbaldi@ics.uci.edu
Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Protein NMR spectra are often limited by what could be
termed spectral congestion, the inability to discern individual

resonance peaks with either certainty or clarity. For a 2D

[15N,1H] heteronuclear single-quantum correlation (HSQC)
experiment (Bodenhausen and Ruben, 1980) a large, structured

protein will display a spectrum rich with peaks. This crowding

arises because there is one peak expected from each NH spin

pair in the molecule, and there are many such pairs. Spectral

congestion, exacerbated by line broadening from the slower

tumbling rates of larger proteins, can produce a spectrum that

is impossible to assign.
One solution is to use 3D and 4D spectra to improve the

resolution, but these high-dimensional experiments typically

incur a penalty in both instrument time and absolute sensitivity.

Another avenue is to employ higher magnetic field strengths B0,

at 800 or 900 MHZ
1H resonance frequency. However, access to

these state-of-the-art instruments is limited and their cost is a

barrier to widespread adoption.
An obvious third way to tackle spectral congestion is simply to

reduce the number of resonance peaks. There are at least two

ways to achieve this. The first is to exploit some property of the

spin systems, using a pulse sequence that selects certain ‘spin

topologies’ (Levitt and Ernst, 1985) while rejecting most others.

Broadly known as editing methods, it is difficult to design a set

of edited spectra that (i) are each sufficiently simple; and

(ii) preserve the entire information content when considered

in aggregate.

A second way to reduce the number of peaks is to reduce the

number of NMR-active nuclei. This method has been employed

in selective 1H-methyl group labeling (Rosen et al., 1996) of

otherwise perdeuterated proteins. Selective 1H-methyl group

labeling of the branched chain amino acids alanine, valine,

leucine and isoleucine (�2 only) is possible by overexpression in
2H2O using protonated pyruvate as the sole carbon source.
A more advanced, precise and controlled biochemical

manipulation is now possible by dispensing with cell-based

recombinant protein expression altogether, assembling just

the relevant protein synthesis machinery itself, as a carefully

formulated extract, and then conducting the protein synthesis in

a test tube, supplying individual amino acids, the gene that codes

for the protein of interest, and an energy source (Kudlicki et al.,

2007). These in vitro coupled transcription-translation protein

expression systems have become the focus of increased research

attention over the last 5 years, as it has become clear that the

methodology has a number of telling advantages compared

to expression in Escherichia coli or other living systems*To whom correspondence should be addressed.
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(Kigawa et al., 2004; Klammt et al., 2004; Koglin et al., 2006;
Morita et al., 2004; Shi et al., 2004; Staunton et al., 2006).
Recently, a particular cell-free expression system has been

shown to provide fast, efficient protein expression for use in
NMR experiments (Keppetipola et al., 2006). The central
feature is the ability to supply to the protein synthesis reaction

mixture only certain designated subsets of labeled amino acids,
for instance, containing 15N, while all other amino acids are 14N
isotopomers, and so are not observed in a 2D or 3D NMR

experiment. The absence of facile amino acid scrambling, which
can defeat attempts to label only a subset of the amino acids in
cell-based systems, is one important advantage of cell-free

protein expression. Such lessened cross-talk is made possible by
the absence of aminotransferase activity found in whole living
organisms, allowing specific labeling by amino acid type

(Kigawa et al., 1995, 1999), although not yet by position.
Much progress has already been achieved with the new power

of cell-free protein expression, and spectra have been simplified

by focusing on only certain peaks of interest. For example,
selectively labeled samples have been used to assign some
resonances in a congested spectral region of a protein containing

a large number of �-helical regions (Trbovic et al., 2005).
Other efforts have used selectively labeled samples for the

assignment of peaks from a single residue type (Kainosho and

Tsuji, 1982; Yabuki et al., 1998).
Other efforts in selective labeling have aimed at complete

backbone assignment by way of a number of selectively labeled
samples, employing selective labeling schemes in conjunction

with a specific assignment strategy, including a standard one
used by an auto-assignment program (Zimmerman et al., 1997).
Otting and coworkers devised a combinatorial labeling strategy

that uses five separate samples: each residue is labeled in one,
two, or three of the samples, and the residue types are assigned
based on the presence and absence of peaks (Ozawa et al., 2006;

Wu et al., 2006). Another novel labeling strategy used samples
that are partially labeled, the different intensities between
residue types then enabling peak assignment based on relative

peak intensity (Parker et al., 2004). This approach can be used
to identify up to 16 residue types from five different samples.
Here, we present an alternative and more comprehensive

approach to selective labeling. We use the term precision
labeling to denote any sample labeled by amino acid type with
known amino acids that are nearly 100% enriched at specified

positions, jointly or separately; there must be no amino acid
scrambling and the sample must not be a mixture of
isotopomers. The scheme is completely general, applying to

carbon-13, nitrogen-15 and/or doubly labeled samples.
Our approach is unique because it is not wedded to a specific

assignment strategy nor does it rely on peak intensity for

assignment; rather it can be quite generally applied to try to
produce optimum spectra for any protein. We will refer to a
labeling schedule as the set of instructions that describe how

many samples to prepare and how to isotopically label amino
acids in each sample. Samples prepared according to the
optimum labeling schedule should be maximally free and clear

of peak overlap and therefore of the most utility for trouble-
free assignment. In addition, constraints gleaned from the
labeling schedule reduce the set of residues a peak could be

mapped to during the assignment process. By creating

decongested spectra, our approach overcomes one of the

major hurdles in resolving the structure of larger molecules at

lower magnetic field strengths.

2 METHODS

2.1 Formalization of the scheduling problem as

an optimization problem

We will refer to the problem of finding an optimal labeling as Optimal

Scheduling for Protein NMR Spectra (OSPNS). We use an integer

programming formulation to describe the problem of OSPNS.

We assume a fixed number of samples k2N; k� 2. Keep in mind

that we will later iterate over various values of k, where k� 20 to find an

appropriate balance between the number of overlaps and the number of

samples produced. Additionally, we let A be the set of all the naturally

occurring amino acids. The cost function C

C ¼
X
b2A

X
c2A

X
d2A

X
e2A

Xk
l¼1

Oðb; c; d; eÞ � Cb;l �Nc;l � Cd;l �Ne;l ð1Þ

is optimized over the 40 � k binary variables Nb,l and Cb,l

Nb;l ¼

1 if the nitrogens in amino acid b are isotopically labeled
in sample l or all nitrogens are uniformly labeled

0 otherwise

8<
: ð2Þ

Cb;l ¼

1 if the carbons in amino acid b are isotopically labeled

in sample l or all carbons uniformly labeled

0 otherwise

8><
>: ð3Þ

The definition of the overlap function O varies with the NMR

experiment so we leave the details for the following section. Finally, we

must include a set of constraints that ensure all peaks are observable in

at least one spectrum.Xk
l¼ 1

Nb;lCc;l � 1 8b; c 2 A ð4Þ

It should be noted that there is some degeneracy in the labeling

schedules. The sample numbers could be permuted without changing

the value of the cost function C.

While the recent advances in cell-free protein expression now allow

chemists to select in principle how the amino acids are isotopically labeled,

in practice the full palette of isotopic possibilities is not yet routinely

available. In addition, by independently labeling the carbon and nitrogen,

we are doubling the number of variables in the optimization equation,

making the problem of finding a true optimal solution computationally

challenging. We will define additional constraints to create two subpro-

blems that work around these limitations. Additional constraints can be

created to deal with any additional availability issues.

Subproblem A assumes that one does not need to label any carbons

in the samples. We can therefore set Cb,l¼ 1 8b2A,1� l� k . We can

then rewrite the constraint from Equation (4) asXk
l¼ 1

Nb;l � 1 8b 2 A; 1 � l � k ð5Þ

and minimize the new cost function C

C ¼
X
b2A

X
c2A

Xk
l¼ 1

Oðb; cÞ �Nb;l �Nc;l ð6Þ

With the additional constraints in subproblem A, we create a quadratic

programming problem, thus reducing the complexity from the general

problem.

Subproblem B allows for the carbons in a particular amino acid class

to be labeled, but only if the corresponding nitrogen is labeled as well.

Subproblem B lets us perform multiple HNCA and HNCO experiments

with doubly labeled amino acid samples that are currently available as
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off-the-shelf items. The addition of the constraint in Equation (7) to the

general problem defines subproblem B.

Nb;l � Cb;l 8b 2 A; 1 � l � k ð7Þ

2.2 Definition of the overlap function O

Now that we have specified each problem, we return to the definition of

O, which is specific to each experiment. Our basic motivation is to

calculate the number of possible overlapping peaks for any combina-

tion of amino acid labeling. To find the value of O, we must first define

the following set of variables.

seqi : amino acid class of the ith residue; seqi 2 A

E 2 fH;N;C �;C g

�Ei : chemical shift of the E nucleus of the

ith residue; �Ei 2 R ð8Þ

TE : overlap threshold between E peaks;TE 2 R

ovEði; jÞ ¼
1 if j�Ei � �Ejj � TE

0 otherwise

�

Note thatTE is dependent on several factors including themagnetic field

strength and protein size. We empirically measured TE by looking at

various NMR spectra. Throughout this paper, N refers to the backbone

nitrogens, H refers to the hydrogens bonded to the backbone nitrogens,

and C (without subscripts) refers to the carbonyl carbons in the backbone.

For an HSQC experiment, we define O(b,c) as the number of

times H0-N0 cross-peaks from residues in amino acid class b overlap

with H0 -N0 cross-peaks from residues in amino acid class c. Here, Rb is

the set of indices of all the residues in amino acid class b.

Rb ¼ fi : seqi ¼ bg ð9Þ

Oðb; cÞ ¼

P
i2Rb
j2Rc

ovHði; jÞ � ovNði; jÞ if b 6¼ c

0 otherwise

8<
:

In both definitions ofO(b,c,d,e) forHNCO andHNCA experiments, we

assume that O(b,c,d,e)¼ 0 if b¼ d and c¼ e. In addition, Rb,c consists of

the set of indices of residues in amino acid class c that are immediately

preceded by a residue in amino acid class b.Sb,c consists of the set of indices

of residues in amino acid class c if c¼ b, otherwise Sb,c is the empty set.

For an HNCO experiment, we define O(b,c,d,e) as follows.

Rb;c ¼ fi : seqi�1 ¼ b and seqi ¼ cg ð10Þ

Oðb; c; d; eÞ ¼
X
i2Rb;c
j2Rd;e

ovHði; j Þ � ovNði; jÞ � ovCði� 1; j� 1Þ

For an HNCA experiment, we define O (b,c,d,e) as follows.

Rb;c ¼ fi : seqi�1 ¼ b and seqi ¼ cg ð11Þ

Sb;c ¼
fi : seqi ¼ bg if b ¼ c

; otherwise

�

Oðb; c; d; eÞ ¼
X
i2Rb;c
j2Rd;e

ovHði; jÞ � ovNði; jÞ � ovC� ði� 1; j� 1Þ

þ
X
i2Rb;c
j2Sd;e

ovHði; jÞ � ovNði; jÞ � ovC� ði� 1; jÞ

þ
X
i2Sb;c
j2Rd;e

ovHði; jÞ � ovNði; jÞ � ovC� ði; j� 1Þ

þ
X
i2Sb;c
j2Sd;e

ovHði; jÞ � ovNði; jÞ � ovC� ði; jÞ

2.2.1 Example sequence Suppose we have the following amino

acid sequence: GSTYHLDVVS. For an HSQC experiment, we must

first calculate the various values of Rb (e.g. RG¼ {1}, RV¼ {8,9} and

RS¼ {2,10}). The HSQC overlap function for some of various amino

acid combinations are as follows.

OðG;VÞ ¼ ovHð1; 8Þ � ovNð1; 8Þ þ ovHð1; 9Þ � ovNð1; 9Þ

OðS;SÞ ¼ 0

For an HNCO experiment, we first calculate the various values of

Rb,c (e.g. RG,S¼ {2}, RV,S¼ {10} and RT,T¼;) and then calculate the

overlap functions. The following examples illustrate some of the

possible combinations.

OðG;S;V;SÞ ¼ ovHð2; 10Þ � ovNð2; 10Þ � ovCð1; 9Þ

OðT;T;V;SÞ ¼ 0

For an HNCA experiment, we first calculate the various values of

Rb,c and Sb,c (e.g. RG,S¼ {2}, RV,S¼ {10}, RD,V¼ {8}, RV,V¼ {9},

SD,V¼; and SV,V¼ {9}) and then calculate the overlap functions. The

following examples illustrate some of the possible combinations.

OðG;S;V;SÞ ¼ ovHð2; 10Þ � ovNð2; 10Þ � ovC� ð1; 9Þ

OðD;V;V;VÞ ¼ ovHð8; 9Þ � ovNð8; 9Þ � ovC� ð7; 8Þ

þ ovHð8; 9Þ � ovNð8; 9Þ � ovC� ð7; 9Þ

Definitions of O (b,c,d,e) can be made for other NMR experi-

ments following the same logic used for HSQC, HNCO and HNCA

experiments. If HNCA experiments are used for constructing a

backbone assignment, it would be more beneficial to concentrate our

efforts on producing a set of decongested H-N spectra. To achieve this

within our framework, one would simply drop the ovC� terms from

Equation (11). Notice that in the Equations (9–11) the true number of

overlaps are used, but an approximation can also be employed. In the

following section, we develop an estimate for the overlap function.

Estimation of the overlap function O

We must estimate the number of overlaps between each amino acid

class when presented with a new protein for which no NMR data has

previously been acquired. One simple approximation would be to

assume that each residue has roughly the same probability of overlap

with another residue, independent of the amino acid class. However, we

know that certain factors such as amino acid chemical structure and

secondary protein structure affect the location of chemical shifts in the

spectrum. From the corresponding statistics listed at RefDB (Zhang

et al., 2003) database, we model the chemical shifts distributions with

Gaussian distributions. The Gaussian models accurately describe the

locations of the chemical shifts and are the standard distributions used

in the RefDB and Biological Magnetic Resonance Data Bank (BMRB)

(Seavey et al., 1991) databases.

Given the distributions of the chemical shifts for the designated

nuclei and the assumption that the distributions are independent, we

can calculate the probability that the chemical shifts will overlap. For

any backbone atom E, we can model the E-chemical shift of the ith

residue by a Gaussian distribution Xi � Nð�i; �
2
i Þ where �i; �

2
i 2 R can

be conditioned on features including amino acid class and secondary

structure of residue i. The more information we have about the location

of each residues chemical shifts, the greater the accuracy of the overlap

function and therefore the fewer the number of overlaps we will observe

in the spectra. In our tests, �i and �i are the mean and SD of the

E-chemical shifts of all residues in the RefDB that are in the same

amino acid class and secondary structure of residue i.

We can then model the difference between the distribution of

E-chemical shifts of residues i and j as Xi�j � Nð�j � �i; �
2
j þ �2

i Þ. The

probability of overlap is therefore stated as follows.

ovEði; j Þ ¼ Prð�TE � Xj�i � TEÞ ð12Þ

Optimization of the cost function C

Optimization techniques such as simulated annealing (Kirkpatrick et al.,

1983) and genetic algorithms (Holland, 1962, 1975) can find good
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solutions to the general problem, but there is no guarantee of optimality.

The quality of the solutions for both methods depends on several

parameters, including how long they are allowed to run.We attempted to

optimize the cost function with off-the-shelf solutions, but we could not

get satisfactory results. Finding solutions to subproblem A, which is

quadratic in nature, took much longer than what would acceptable.

However, we are able to compute exact optimal solutions to

subproblem A using a dynamic programming algorithm in under 2 h

on a standard desktop machine. Since subproblem A involves the

precision labeling of either the carbons or the nitrogens and the uniform

labeling of the other, there are half as many variables over which to

optimize. By taking advantage of this reduction in the size of the search

space, we develop a dynamic programming algorithm that is optimal

and whose run time is independent of the size of the protein. Note that

even in the most general case, the run-time for evaluating the cost

function is independent of the protein size and number of dimensions

assuming the overlap function is precomputed. The details of the

dynamic programming algorithm are given in the Appendix.

3 RESULTS

We first demonstrate our approach using the known HSQC

spectrum of calmodulin (Qian et al., 1998) to illustrate the
expected gains in clarity that can be expected by taking a

systematic approach to minimizing peak overlap. Calmodulin is

a well-known benchmark protein in the field of protein NMR

and it is large enough that the NMR spectrum on lower-field
instruments would be challenging to analyze by standard

methods. Using our dynamic programming algorithm for

subproblem A, we are able to calculate optimal schedules for

all possible number of samples in under 2 h.
We generate the labeling schedule using both the true and

estimated overlap function for a HSQC experiment. The
regenerated 2D spectra of the four precision-labeled samples

generated with both the true and estimated overlap functions

are presented in Figures 1 and 2. It should be noted that

overlaps in the H-N spectrum are listed in the original
assignment because the original experiment collected data in

the N, H, C�, C� and C dimensions.
In the Supplementary Material online, we present a graph

that compares the number of overlaps as a function of the

number of samples for calmodulin. The Rayleigh criteria

(cross-peaks overlap if chemical shifts in each dimension are
within half a peak width), with nitrogen peak widths of 0.3

p.p.m., hydrogen peak widths of 0.04 p.p.m. and carbon alpha

peak widths of 0.25p.p.m., is used to identify overlaps. With

calmodulin, we noticed that the schedules calculated using the
estimated number of peak overlaps does not match

the performance of the optimal schedules calculated using the

known true peak locations. This is due to the imprecision in

the estimation of the number of overlaps. The degree of
imprecision in our estimates is indicated by the error bars in the

comparisons of the overlap functions in Figures 3–6.

To determine the number of samples to use, we must take into
account both the cost of creating additional samples and the

calculated percent congested (number of overlaps/max number

of overlaps). In general, we noticed that 4–5 samples were

typically enough for our purposes. Given explicit costs for
creating samples and costs for peak overlaps in the spectra, the

exact number of samples that would minimize the total cost

could be derived easily.

We compare the resulting spectra from our schedules to the

spectra resulting from the labeling schedule of Ozawa et al.

(2006) and Wu et al. (2006). According to our overlap criteria at

500MHZ, we observe four overlaps in the four spectra simulated

with our schedule using an estimated overlap function and six

overlaps in the five spectra that would be produced with the

schedule of Ozawa et al. (2006) and Wu et al. (2006).

Fig. 1.
15N-1HHSQC spectra of calmodulin (Qian et al., 1998) generated

using our dynamic programming algorithmwith the true cost function C.

The red sample includes A, R, N and D. The green sample includes C, Q,

E,G andH. The blue sample includes I, L,K, F and S. The purple sample

includes M, T, W, Y and V. The overlaps according to our criteria are

between: E6 (8.99, 121.7) and D118 (8.97, 121.7), R30 (7.94, 120.5) and

K77 (7.94, 120.4), L32 (8.62, 121.0) and L105 (8.62, 120.9), T34 (8.10,

118.2) and E87 (8.11, 118.2), S38 (8.14, 119.4) and M124 (8.14, 119.5),

A46 (8.27, 120.5) and L48 (8.27, 120.5), A73 (8.52, 121.3) and E82 (8.52,

121.3), M76 (7.95, 119.6) and A127 (7.94, 119.5), H107 (8.16, 119.6) and

M124 (8.14, 119.5), R126 (8.42, 119.2) and V142 (8.43, 119.2).

Fig. 2.
15N-1H HSQC spectra of calmodulin (Qian et al., 1998)

generated using our dynamic programming algorithm with an estimated

cost function C. The red sample includes R, N, Q, I and F. The green

sample includes D, H, L, S and Y. The blue sample includes A, C, K, M

and T. The purple sample includes E, G, W and V.
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In all fairness, the goal of the schedule inWu et al. is just to allow

identification of the amino acids, and not necessarily to

decongest the spectrum. Additionally, there are no performance

criteria cited in Ozawa et al. (2006) orWu et al. (2006) relevant to

our problem. Note that the schedule inWu et al. is developed for

the average amino acid composition of proteins and not tailored

to specific proteins. It should be noted that since our method is

the first to directly tackle the problem of spectral congestion,

there are no fair comparisons to other methods.
With only 10 overlaps in the HSQC spectrum of calmodulin,

one could argue that a computer is not needed to calculate a

schedule if we already know which peaks overlap. However, for

cases where there are many overlaps, or we are using an

estimated overlap function with real numbers, rather than

integers, the problem would be nearly impossible solve by hand.
To further address these issues we have also computed

schedules for a set of 448 proteins found in the BMRB (Seavey

et al., 1991). The proteins in the test set have 50 or more residues,

have N, H and C � chemical shifts for 90% of its residues and

have been rereferenced in the RefDB (Zhang et al., 2003). For

each of these 448 proteins, we computed schedules using (a) the

true overlap function; (b) an estimated function using secondary

structure predicted by the SSpro software (Pollastri et al., 2002)

in the SCRATCH server suite (Cheng et al., 2005) and (c) an

overlap function that assumes the probability of overlap

between any two residues is constant. Additionally, 10 random
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Fig. 3. Relative percent congestion in the H spectrum for the set of 448

proteins. Schedules are optimized with a true overlap function, an

estimated overlap function, an equal number of residues per sample and

an equal number of amino acids per sample.
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Fig. 4. Relative percent congestion in the N spectrum for the set of 448

proteins. Schedules are optimized with a true overlap function, an

estimated overlap function, an equal number of residues per sample and

an equal number of amino acids per sample.
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Fig. 5. Relative percent congestion in the C � spectrum for the set of 448

proteins. Schedules are optimized with a true overlap function, an

estimated overlap function, an equal number of residues per sample and

an equal number of amino acids per sample.
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Fig. 6. Relative percent congestion in the HSQC spectra for the set of

448 proteins. Schedules are optimized with a true overlap function, an

estimated overlap function, an equal number of residues per sample and

an equal number of amino acids per sample.
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schedules are generated for each protein with approximately the
same number of amino acid classes labeled in each sample.
Because there is not an exact mapping between the proteins in

the BMRB and the PDB at the residue level, we could not
prepare schedules using the true secondary structure for all the
proteins in our set. On a subset where a reasonable mapping

could be created, the results using schedules developed with true
secondary structure knowledge were nearly identical to the
schedules developed with the predicted secondary structure.

After computing the optimal schedules according to the cost
functions we evaluate the schedule derived from true cost function
using the relative percent congested [i.e. (number of overlaps �

min number of overlaps)/(max number of overlaps�min number
of overlaps)]. In Figures 3–5 we look at the performance of the
various schedules to resolve overlaps in the H spectrum, the N

spectrum and the C� spectrum averaged over the set of 448
proteins. The error bars represent the SD in the performance.
In the H spectrum, we see that there is little gain using an

estimated overlap over a schedule that assumes constant
probability of overlap between residues. This is to be expected
because the H chemical shifts are mostly independent of amino

acid class and secondary structure. In the N spectrum and C �

spectrum, we see more benefit from using an estimated overlap
function. We are able to achieve 17.5% relative congestion in

the N spectrum and 13.2% relative congestion in the C �

spectrum using only four samples. This is a significant
improvement over the performance of both the random

schedules (20.9 and 21.0%, respectively) and constant prob-
ability of overlap schedules (18.9 and 18.9%, respectively).
In addition to looking at the spectra of individual backbone

atoms, we also look at the performance of the schedules on
resolving multidimensional spectra. However, issues arise when
trying to measure the performance of the labeling schedules on

high-dimensional spectra. Unless selective labeling is used, the
chemical shifts in the BMRB that would compose a high-
dimensional spectrum, such as a HNCA experiment, must

already be resolved or they would not have been listed in the
database. With this in mind, we must limit our evaluations to
the HSQC spectra of the set of 448 proteins. The results from

the HSQC spectra as well as the results from the C � spectra
provide proof that our method can work in higher dimensions.
For the HSQC spectra, we use the same evaluation methods

as with the individual backbone atom spectrum and we observe
roughly the same trends in Figure 6. One peculiarity of this
figure is that with one sample, the proteins are �80% relatively

congested. This can be explained by the proteins in the test set
that are already as decongested as they can be with respect to
the HSQC spectrum. On the set of 448 proteins, we observe an

average reduction of the relative percent congestion to 15.1%
in four samples using our estimated overlap function. This is in
comparison to the 56.1% relative congestion in the schedule

developed by Wu et al. achieved in five samples.
While the results for randomly splitting the amino acids into two

or three equal sized groups nearly matches that of our algorithm
using the estimated overlap function, we see a more dramatic

increase in performance when more than four samples are used.
Finally, our methods have been implemented in a web server

located at http://nmr.proteomics.ics.uci.edu for user to produce

schedules for minimally congested HSQC spectra. The user

supplies the primary sequence and optionally the secondary
structure. If the user does not supply the secondary structure,
a secondary structure prediction made with SSpro is used.

The optimized labeling schedules are then emailed back to the user.

4 CONCLUSION

In this article, we have provided a systematic way to design
labeling schedules to decongest NMR spectra using precision-
labeled samples. The method is a prime example of how to

leverage the amino acid labeling that is now possible via cell-
free protein expression.
By finding an optimal schedule using our computational

framework, we have shown a dramatic increase in spectral
resolution for not only the benchmark protein calmodulin
(Qian et al., 1998), but also on a curated set of 448 proteins

listed in the BMRB. Using four samples on a 500 MHZ HSQC
spectra of calmodulin, the number of peak overlaps drops from
10 to 1 if the true cost function is utilized and from 10 to 4 if the

cost function is estimated. In addition, our method is able to
reduce the relative percent congestion by 84.9% in four samples
using our estimated overlap function.

While this article has mainly focused on HSQC experiments,
the approach is quite general and can be applied to any of the
usual NMR experiments for backbone assignment. Future

work will include adding the option to compute schedules
for additional NMR experiments using our web server.
Additionally, we will study how to incorporate the collected

spectra into an integrated backbone assignment method.
The framework we have developed in this article provides a

high-throughput method for assigning the backbone chemical

shifts of proteins on a proteomic scale by allowing lower field,
less expensive NMR spectrometers to run in parallel on larger
structures. To help facilitate the high-throughput methods, we

provide a web server that implements our method to produce
decongested 15N-1H HSQC spectra. The simplified and clarified
decongested spectra can be combined with the additional

constraints gleaned from the labeling schedule in automated
assignment programs thus streamlining the backbone assign-
ment process. It is our hope and belief that our method for

developing labeling schedules in conjunction with advances in
cell-free protein expression can help usher in a new generation
of high-throughput NMR spectroscopy studies.
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APPENDIX: EXACT SOLUTION USING DYNAMIC
PROGRAMMING

The formulation of the dynamic programming algorithm
requires that we augment the cost function C in Equation (6)
with several additional variables. The new cost function CS,l,m
operates on the subset of amino acids S�A and range of

samples specified by the integer variables l, m such that

1� l�m� k. We can then define C S,l,m as

CS;l;m ¼
X
b2S

X
c2S

Xm
i¼l

Oðb; cÞ �Nb;i �Nc;i ð13Þ

Note that CA;1;k is the same as the cost function C in Equation

(6). In addition, we can add an offset variable w 2 N to

CS;lþw;mþw without changing the cost so long as

lþ w � 1 and m þ w � k:
The following equality, which shows that the minimum of

CS, l,m is equal to the minimum of two subproblems, allows us

to make use of a dynamic programming algorithm.

min C0S; l;m ¼ min
T �S

C0T ; lþ w; b
m þ l

2
c þ wþ C0

S=T ;dmþ l
2 eþw;mþw

ð14Þ

Finding an optimal solution requires the computation of a

cost matrix P 2 R
k� 2jAj

, where Ae is the eth subset of A and

P ½i; e� ¼ minC0
Ae;1;i

. The base row of our matrix, when

l¼m¼ 1, can be computed easily as

P ½1; e� ¼ CAe
;1;1 ¼

X
b2Ae

X
c2Ae

Oðb; cÞ 8 1 � e � 2jAj

ð15Þ

Recursive computation of the second row of the matrix uses

the costs from the first row.

P ½2; e� ¼ min
Af�Ae

P½1; f � þ P½1; g� where Ag ¼ Ae=Af ð16Þ

We can then recursively compute successive rows of the

matrix using the costs from the prior rows.

P ½i; e�¼ min
Af�Ae

P½b
i

2
c; f �þP½d

i

2
e; g� where Ag ¼ Ae=Af ð17Þ

The sets Af and Ag should be saved for each e and i for

reconstruction of the optimal schedule using backtracking.

Once we have computed the entire matrix P, we must

reconstruct the labeling schedule that gave us the optimal cost

computed in P[k,2|A|]. We start with the assumption that each

amino acid is only labeled once (i.e.,
Pk

i¼1 Nb;i ¼ 1 8b 2 A).

To construct our optimal schedule we will set Nb,i ¼ 1 for

some 1 � i � bk2c and all b2Af and set Nc,j¼ 1 for some

dk2e � j < k and all c2Ag where Af and Ag were the sets that

gave us the optimal cost for P[k,2|A|]. We then proceed to split

the amino acids in Af into the two sets that gave us the optimal

cost for P½bk2c; f�, knowing that we will label one set of the

amino acids in the first half of the samples allotted and the

other set in the second half of the samples allotted.
We continue our construction of the optimal schedule by

recursively partitioning the amino acids and samples until we

reach the base case where there is only one sample allotted for

labeling a set of amino acids. At this point, we have each amino

acid labeled in one sample and we have constructed a labeling

schedule with an optimal cost.
The run time of this algorithm is independent of the protein

length and is only dependent on the number of different amino

acids, which is fixed at 20 if we only include the naturally

occurring amino acids. The run time is therefore constant

assuming the overlap function is precomputed.
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