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HD 165054: an astrometric calibration field for high-contrast imagers in Baade’s Window
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We present a study of the HD 165054 astrometric calibration field that has been periodically observed

with the Gemini Planet Imager. HD 165054 is a bright star within Baade’s Window, a region of the

galactic plane with relatively low extinction from interstellar dust. HD 165054 was selected as a

calibrator target due to the high number density of stars within this region (∼ 3 stars per square

arcsecond with H < 22), necessary because of the small field-of-view of the Gemini Planet Imager.

Using nine epochs spanning over five years, we have fit a standard five-parameter astrometric model to

the astrometry of seven background stars within close proximity to HD 165054 (ρ < 2′′). We achieved

a proper motion precision of ∼ 0.3 mas yr−1, and constrained the parallax of each star to be . 1 mas.

Our measured proper motions and parallax limits are consistent with the background stars being a

part of the galactic bulge. Using these measurements we find no evidence of any systematic trend of

either the plate scale or the north angle offset of GPI between 2014 and 2019. We compared our model

describing the motions of the seven background stars to observations of the same field in 2014 and

2018 obtained with Keck/NIRC2, an instrument with an excellent astrometric calibration. We find

that predicted position of the background sources is consistent with that measured by NIRC2, within

the uncertainties of the calibration of the two instruments. In the future, we will use this field as a

standard astrometric calibrator for the upgrade of GPI and potentially for other high-contrast imagers.

1. INTRODUCTION

Having an accurate and stable astrometric calibration

is necessary for performing precision astrometry with

high-contrast imaging. Many instruments take advan-

tage of the high stellar density of globular clusters to

perform their astrometric calibration (e.g., Service et al.

2016), but this is not possible with the Gemini Planet

Imager (GPI; Macintosh et al. 2014) for two main rea-

sons: (1) even the brightest stars within these clusters

are too faint to act as natural guide stars for the in-

strument’s adaptive optics (AO) system which can only

lock onto stars with I < 10 mag; (2) GPI has a limited

field of view (2.′′8× 2.′′8), limiting the usefulness of clus-

ters such as the Trapezium (McCaughrean & Stauffer

1994). To address this deficiency, we have observed HD

165054, a star in Baade’s Window, using GPI and the

Near Infrared Camera 2 (NIRC2) on Keck II. HD 165054

is a good target for use as an astrometric calibrator be-

cause it has a high density of visible background sources

which can be used to study the astrometric stability of

GPI with repeated observations. We also observed this

field with NIRC2 to provide an external check of GPI’s

astrometric solution.

GPI was initially calibrated during commissioning be-

tween late-2013 and early-2014 using binary stars such

as θ1 Orionis B in the Trapezium cluster (Konopacky

et al. 2014). This study seeks to expand that work

by adding HD 165054 to the list of fields that can

be used for astrometric calibration. By characterizing

this field, we aim to achieve three main science objec-

tives: (1) looking for signs of time-dependent trends in

the astrometric calibration of GPI, (2) looking for dis-

∗ 51 Pegasi b Fellow
† NASA Hubble Fellow

crepancies in astrometric calibration between GPI and

other high-contrast direct imagers (e.g. VLT/SPHERE,

Keck/NIRC2), (3) characterizing the field for continued

monitoring of the astrometric calibration of GPI. GPI is

slated to be taken off Gemini South in 2020 and moved

to Gemini North following an upgrade of the instrument

(colloquially referred to as GPI 2.0). When the instru-

ment is remounted, it will need to be re-calibrated and

HD 165054 will be an optimal target for comparing the

astrometric calibration before and after the instrument

upgrade.

Named after Walter Baade who was the first as-

tronomer to publish images of the field of view in the

1940s, Baade’s Window has served as a “window” into

the galactic center due to the field’s relatively low con-

centrations of dust (Baade 1946). The high density

of distant galactic bulge stars visible in Baade’s Win-

dow makes the field a very good candidate for doing

astrometric calibration for GPI. HD 165054, the par-

ticular star in Baade’s Window that we targeted for

this study is a nearby V = 8.48 mag G3/5V (Houk

1982) star that’s bright enough for GPI’s AO system

to lock onto and has a relatively high density of vis-

ible ”background” stars within the field of view. HD

165054 already has measured absolute astrometry from

Gaia (Gaia Collaboration et al. 2018), but the star is too

bright for Gaia to discern any other sources in the small

2.′′8×2.′′8 field around it in which GPI can observe. Using

a combination of angular and spectral differential imag-

ing (ADI/SDI Racine et al. 1999; Marois et al. 2006),

GPI can subtract the point spread function (PSF) of

the bright foreground star, allowing us to measure the

locations of the faint, distant background stars.

The paper has been organized into the following sec-

tions. In Section 2, we give a quick overview of the

observations from both GPI and NIRC2. In Section
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3, we describe the data reduction process for both in-

struments. In Section 4, we fit the astrometry of the

background stars. This section is divided into two main

parts: measuring the positions and fitting for the cor-

responding proper motions and parallaxes. In Section

5, we analyze the results of the astrometry and discuss

them in a broader context. Finally, we conclude in Sec-

tion 6 with some discussion of future analyses for HD

165054 astrometry and potential new scientific objec-

tives for this field of view.

2. OBSERVATIONS AND DATA REDUCTION

2.1. Gemini South/GPI

The Gemini Planet Imager (GPI, Macintosh et al.

2014) is a high-contrast instrument designed to detect

faint substellar companions at small angular separations

from their bright host stars. The instrument combines

a high-order adaptive optics system to achieve near-

diffraction limited imaging (Poyneer et al. 2014), an

apodized Lyot coronagraph to suppress the light from

the central star (Sivaramakrishnan et al. 2010; Soummer

et al. 2011), and an integral field spectrograph (Chilcote

et al. 2012; Larkin et al. 2014) to obtain a low-resolution

(R ≈ 45) spectrum at each point within the field of view.

HD 165054 has been observed nine times during the

course of the Gemini Planet Imager Exoplanet Survey

(GPIES; Nielsen et al. 2019), providing us with a tem-

poral baseline of approximately five years (see Fig. 1 for

a sample derotated and collapsed image of HD 165054

using GPI). Each dataset was obtained in the standard

H-band coronagraphic mode, although the number of

frames varied between epochs. An observing log is given

in Table 1 listing the number of images obtained, the

achieved field rotation, and the average environmental

conditions.

Table 1. Observation Log

Date of UTC at Instrument Filter Number Frame Field True Average Average

observation start of of exposure rotation north DIMM MASS

observation frames time offset seeing seeing

(s) (deg) (deg) (arcsec) (arcsec)

2014 May 12 07:50:29.7 GPI H 10 60 5.6 0.23 ± 0.11 1.4 0.76

2014 May 15 06:39:46.7 GPI H 37 60 149.7 0.23 ± 0.11 0.71 0.64

2014 Jul 12 08:28:15.7 NIRC2 K′ 87 30 18.7 −0.252 ± 0.009 · · ·
a

· · ·
a

2015 Jul 3 04:17:27.8 GPI H 18 60 46.7 0.17 ± 0.14 1.22 0.54

2015 Sep 1 00:42:25.4 GPI H 33 60 5.3 0.17 ± 0.14 1.31 1.31

2016 Apr 30 08:28:53.7 GPI H 38 60 15.9 0.21 ± 0.23 2.24 1.38

2017 Aug 7 01:31:25.3 GPI H 25 60 136.6 0.32 ± 0.15 · · · · · ·
2018 Jul 21 09:11:41.1 NIRC2 K′ 63 30 12.6 −0.262 ± 0.020 · · · · · ·
2018 Aug 10 01:03:49.0 GPI H 34 60 148.5 0.28 ± 0.19 · · · · · ·
2019 Mar 29 10:07:54.2 GPI H 11 60 124.2 0.45 ± 0.11 · · · · · ·
2019 Aug 10 01:02:20.9 GPI H 38 60 117.3 0.45 ± 0.11 · · · · · ·

aEnvironmental data not available

All raw 2-D data files were reduced with the GPI Data

Reduction Pipeline (DRP v1.5.0; Perrin et al. 2014; Per-

rin et al. 2016) using the same recipe described as fol-

lows. First, a dark background was subtracted. Then

bad pixels were interpolated over. Instrument flexure

was corrected for using an argon arc lamp calibration

(Wolff et al. 2014). A 3-D datacube was assembled along

the wavelength axis using 2-D image spectra. This newly

created wavelength axis was then interpolated over to

produce 37 evenly spaced wavelength channels. After

this, a second bad pixel interpolation was applied to the

3-D datacube. Then, a geometric distortion correction

was applied (Konopacky et al. 2014). Finally, the lo-

cations and flux of satellite spots were measured. The

satellite spots are four copies of the stellar PSF of the

star behind the coronagraph. These satellite spots are

attenuated in flux and distributed in a radially symmet-

ric pattern around the target star. The positions of the
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Figure 1. HD 165054, observed with GPI on 2014 May 15 (Left) and Keck/NIRC2 on 2014 Jul 12 (Right). The seven brightest
background stars around HD 165054 that we characterized are given simple ordered numeric labels. The best-fit model of the
position of background star 1 over time is plotted as a white track to help visualize the apparent relative motion of the field
over the approximately five year baseline of observations (2014 May 12 - 2019 Aug 10).

satellite spots are measured in order to triangulate the

position of the target star since the coronagraph blocks

our ability to measure the star’s position directly. We

used a plate scale of 14.161 ± 0.021 mas px−1 for each

epoch, and a variable north offset angle given for each

epoch in Table 1, defined as θtrue − θobserved (De Rosa

et al. 2019).

2.1.1. Parallactic Angle Correction

Imperfections in the construction of the Gemini South

telescope cause an offset between the true vertical axis

and the y-axis of the telescope, an effect that is most

pronounced when observing a target at a very small

zenith distance. This causes an offset in the measured

and actual parallactic angle, biasing position angle mea-

surements made from a GPI image. While this offset is

usually corrected for with the Cassegrain derotator upon

which GPI is mounted, there have been several GPI ob-

serving runs where this rotator drive is disabled, and it

remains fixed in one position.

This effect is significant for HD 165054. At a decli-

nation of −28◦41′10.8′′, the star has a minimum zenith

distance of 1.◦6 as it transits the observatory. Fig. 2

shows the change in the sensed angle of the Cassegrain

rotator as a function of hour angle for the observations

of this star where the rotator drive was enabled. The

correction required to keep vertical aligned with the y-

axis in the image plane ranges between 0◦ and −0.◦35,

depending on the current hour angle.

For three of the epochs we obtained on HD 165054

(2015 July 03, 2015 Sep 01 and 2018 Aug 10) the

Cassegrain rotator drive was disabled causing the ver-

tical angle to drift during the course of the observing

sequence. As our observations of HD 165054 are timed

to observe the star near transit, this offset can lead to

a significant bias in the measured position angle of the

background stars relative to the foreground star. To

correct these three datasets we constructed a model of

the required rotator position angle to correct the verti-

cal angle from the five epochs where the rotator drive

was enabled (Fig. 2). This model was constructed by

taking the median sensed angle over a small hour angle

range.

We corrected the parallactic angle for each image ob-

tained during these three epochs by subtracting the pre-

dicted Cassegrain rotator position angle calculated using

this model from the average parallactic angle calculated

by the DRP. For the subset of the frames in the 2015

Sep 01 epoch where the hour angle was outside of the

range of the model, we performed a linear extrapola-

tion to predict the correction to apply to the parallactic

angle. In De Rosa et al. 2019 (submitted) we used a

different approach to estimate the correction to be ap-

plied to the parallactic angle based on a simple model
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Figure 2. Sensed position of Gemini South’s Cassegrain ro-
tator as a function of hour angle recorded in the header for
observations of HD 165054 obtained with the rotator drive
enabled. The symbols denote the measurements for the dif-
ferent epochs (see inset legend). A model of the rotator
position angle as a function of hour angle (black line) was
constructed from these measurements. The model is incom-
plete near zenith due to the lack of measurements. The hour
angles of the frames in the three epochs where the rotator
drive was disabled are indicated at the top of the plot.

of the telescope non-perpendicularity. The difference be-

tween these two approaches was very small for the ob-

servations of HD 165054; the median absolute difference

was 0.005 deg, and 79 of the 85 frames had a difference

smaller than 0.02 deg.

2.2. Keck II/NIRC2

Two epochs of HD 165054 imaging data were obtained

(see Table 1) using Keck/NIRC2 and the facility’s AO

system. We observed HD 165054 using NIRC2 to serve

as an external check of GPI’s astrometry because NIRC2

has a well-calibrated astrometric solution tied to obser-

vations of globular clusters that have been observed with

HST (Yelda et al. 2010; Service et al. 2016). The raw

data were reduced using a standard near-infrared data

reduction pipeline. First, a dark background was sub-

tracted from the science frames, and then a flat field cor-

rection was applied. After this, bad pixels in the science

frame were interpolated over with cubic spline interpo-

lation. These bad pixels were identified by looking for

pixels in the flat field frame that were 5σ discrepant from

adjacent pixels within a 20-pixel search box. Finally,

a geometric distortion correction was applied using the

appropriate NIRC2 narrow camera distortion solution

(Yelda et al. 2010; Service et al. 2016).

After reducing the flat-fielded frames, we measured

the position of the foreground star behind the coro-

nagraphic mask. While the occulting mask is semi-

transparent, the position of the attenuated spot may

not accurately reflect the true location of the star within

the image plane (typical systematic offsets of 0.2 px have

been measured). Instead, we used a two-step iterative

method that determines the relative alignment of the

images within each dataset and the absolute location of

the star after stacking the aligned images.

In the first step, the relative alignment of the fore-

ground star between each frame was determined by fit-

ting the path of the background stars through the se-

quence of images. The background stars should each

follow the path of a circle centered at the location of

the foreground star, as the rotation axis of NIRC2 is

centered on the guide star. We constructed a model

with 2nbkg + 2 parameters; a radius and position an-

gle in the first image of a circle describing the path of

each background object, and the (x, y) coordinate of the

foreground star, defining the center of each circle. There

were 13 and 18 background objects used in this analysis

for the 2014 and 2018 datasets, respectively. We used

the location of the spot within the coronagraphic mask

as an initial guess of the star position within each image.

After finding the best fit combination of radii, position

angles, and star center position, we modified the initial

guess of the star position within each image by the aver-

age residual of the path of the background stars relative

to the best fit model. This process was then repeated us-

ing the revised guess for the star center location within

each image.

The images within each dataset were now aligned rel-

atively to one another, but the absolute star center was
not well constrained due to the limited amount of field

rotation achieved for each dataset. The second step of

the alignment procedure was measuring the location of

the star position within a median-combined image of

the full dataset. Taking the median of the stack with-

out derotating the images to put North up results in a

high signal-to-noise-ratio (SNR) image of the diffraction

pattern of the telescope; background stars are removed

as they only occupy a given pixel for a small fraction

of the full observing sequence. We applied the radon

transform method described in Pueyo et al. (2015) on

this median-combined image to measure the absolute

star center (the radon transform assumes the diffrac-

tion spikes point towards the true center of the star and

measures flux radially along these spikes to find this po-

sition). We then repeated the two-step process, but this
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time fixing the two free parameters describing the star

center to the values measured using the radon transform.

This iterative procedure was repeated three times, after

which the location of the star center, and the relative

alignment between the images, no longer changed.

3. PSF SUBTRACTION AND POINT SOURCE

ASTROMETRY

After reducing the raw science frames and trans-

forming them into datacubes using the GPI DRP, we

then subtracted the foreground star PSF using the

pyKLIP (Wang et al. 2015) Python implementation of

Karheunen-Loeve Image Processing (KLIP) (Soummer

et al. 2012; Pueyo et al. 2015) (see Fig. 1), using seven

Karheunen-Loeve (KL) modes for the PSF subtraction.

The reference library used to do the PSF subtraction

was chosen such that ADI/SDI will have caused any as-

trophysical sources to move by 4 pixels. We used the

same parameters to do PSF subtraction for both the

GPI and NIRC2 data. Then, the PSF-subtracted im-

ages at each wavelength were derotated and combined

into a single image using a weighted-mean.

Since none of the background stars being studied have

been characterized or catalogued yet, we have given

them placeholder numerical labels from 0 to 6 in order

of increasing position angle. The background stars have

contrasts relative to HD 165054 of 10.0 ≤ ∆H ≤ 12.5.

The positions were fitted for using an algorithm called

Bayesian-KLIP Astrometry (BKA, Wang et al. 2015).

This method takes the PSF-subtracted images generated

using KLIP and then employs a Bayesian framework

using a Markov Chain Monte Carlo (MCMC) sampler

along with forward modeling of the background star’s

PSF in order to fit for that star’s position.

The first step in BKA involves generating a template

for forward modeling called an instrumental PSF. For

the GPI data, this instrumental PSF is generated by

averaging together the satellite spots produced in the

data reduction step (see Section 2). For the NIRC2 data,

this instrumental PSF was extracted from a bright back-

ground source for the first epoch (not one of the seven

background stars being analyzed for astrometry), and

from the unocculted foreground star in the second epoch

(unfortunately the foreground star PSF could not be ex-

tracted in the first epoch). Generating the instrumental

PSF for a given epoch of NIRC2 data involves extract-

ing a 17-by-17 pixel “postage stamp” from each image

and then averaging these stamps together to maximize

SNR.

Once an instrumental PSF is created, the next step is

to measure the positions of the seven background stars

being characterized. For each background star, we ex-

tracted an 11-by-11 pixel data stamp of the star based

on an initial guess position and fit a forward modeled

PSF (generated using the instrumental PSF) to it. We

fit the forward model to the data using a Gaussian likeli-

hood function to generate a posterior distribution of the

background star’s position. See Fig. 3 for an example fit

(see Appendix A for a table of all measured background

star positions for each epoch).

The background and foreground star positions are

measured using different techniques (the background

star positions using this BKA algorithm, the foreground

star position using the satellite spots), but the relative

astrometry we obtain properly accounts for and con-

strains any systematics that could be due to using these

different techniques. Our astrometric error budget prop-

erly adds the uncertainties on these two techniques in

quadrature, and the residuals we obtain at the end of

our analysis (See Fig. 8) would constrain any system-

atics down to approximately the weighted-mean of the

error bars on the residuals (∼ 3 mas). For example, if

the satellite spots for our foreground star centering were

all systematically offset in one direction, we would see a

similar systematic offset in our residuals.

4. FITTING FOR PROPER MOTION AND

PARALLAX

Once the detector positions of the background stars

were obtained in each image, the positions were then

measured relative to the foreground star position in or-

der to place the background stars in the foreground

star’s reference frame. The motion of the foreground

star was modeled using Gaia DR2 measurements of HD

165054.

4.1. Equations of motion

The position of a star due to its proper motion and

parallax as a function of time is described by the follow-

ing equations:

α?(t) = µα?t+ π (X sinα0 − Y cosα0)

δ(t) = µδt+ π (X cosα0 sin δ0 + Y sinα0 sin δ0 − Z cos δ0)

(1)

where t is the time relative to a reference epoch (cho-

sen to be 2016 Oct 10 as this is the date exactly halfway

between the first and last epoch of observations); α?

and δ are the relative change in right ascension (RA)

and declination (Dec) respectively; α0 and δ0 are the

RA and Dec at the reference epoch; µα? and µδ are the

proper motion in RA and Dec respectively; π is the par-

allax; and X, Y , and Z are the barycentric coordinates

of the Earth. Here we use the notation α? = α cos δ
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Figure 3. Sample output of data, best-fit model, and residuals of Bayesian KLIP Astrometry (BKA) for the background star 0
during the first epoch (2014 May 5). Given an initial guess of star position, a 13-by-13 pixel stamp is extracted from the science
f rame (Left). Then, a best-fit model (Middle) based on forward modeling of the stellar PSF is used in a Gaussian likelihood
function to generate a posterior distribution of the star’s position. Residuals (Right) shown for comparison.

to describe coordinates in the tangent plane, and we

use milliarcseconds for all angular quantities, years for

time, and au for the barycentric position of the Earth.

We use the function get body barycentric from the

astropy.coordinates Python package (The Astropy

Collaboration et al. 2013) to conveniently calculate X,

Y , and Z for us as a function of time.

These background stars are measured relative to HD

165054, so we need to simultaneously model the proper

and parallactic motions of HD 165054 as well as the mo-

tion of the background star in order to obtain absolute

astrometry of the background star. Given that these

measurements are also relative to a reference epoch, we

must account for the position of the star at this reference

epoch. The relative position of a background star can

be expressed as a function of the absolute astrometry of

both foreground and background star as

α?rel.(t) = α?bkg(t)− α?HD165(t)

δrel.(t) = δbkg(t)− δHD165(t)
(2)

where α?bkg(t) and α?HD165(t) are the absolute astromet-

ric motions of the background and foreground star, re-

spectively. This results in ten astrometric parameters

that describe the motion of a given background star rel-

ative to HD 165054. For the foreground star, the val-

ues and associated uncertainties for the five parameters

(α, δ, π, µα? , µδ)HD165 were taken from the Gaia DR2

catalog (Gaia Collaboration et al. 2018), reported at the

reference epoch of 2015.5 (2015 Jul 2). These parame-

ters precisely describe the position and apparent motion

of the foreground star across the sky.

The corresponding suite of five parameters describing

the background star (α, δ, π, µα? , µδ)bkg have three un-

known parameters that must be fitted for using MCMC.

Seeing as we are measuring the background star posi-

tions on a flat plane tangent to the RA and Dec of the

foreground star, deviations from this flat tangent plane

approximation (which are on the order of ∼ 50 nano-

arcseconds) are negligible given the apparent separation

of the background stars from the foreground star. We in-

clude two additional parameters, an offset in RA (∆α?)

and Dec (∆δ), to properly account for the uncertainty

on the true position of the star at the reference epoch.

4.2. Parameter estimation

We used MCMC to fit these ten astrometric param-

eters; five describing the astrometry of the background

star and five describing the astrometry of the foreground

star. We performed this fit using only the GPI data

because there were too few epochs of NIRC2 data to

constrain these astrometric parameters with that in-

strument. Although the five parameters describing the

astrometry of the foreground star are well-constrained

and will be marginalized over as nuisance parameters,

we include them here for completeness. We used the

affine-invariant sampler from the Python package emcee

(Foreman-Mackey et al. 2013) to efficiently sample the

posterior distributions of each of these parameters. We

adopted Gaussian priors for the five parameters de-

scribing the astrometry of HD 165054, using the mea-

surements and uncertainties from the Gaia catalogue.

Uniform priors were used for the proper motion and

reference epoch offset parameters for the background

star. For the parallax of the background star we used a

prior from Bailer-Jones (2015), which we discuss more in

Sec. 5.1. We initialized 256 walkers randomly through-

out parameter space and advanced the chains for 5000

steps, discarding the first 2000 steps as a “burn-in”.
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Convergence of the chains was visually assessed by eye

to be satisfactory.

5. DISCUSSION/RESULTS

The ten-parameter MCMC fit produced Gaussian pos-

terior distributions for almost all of the parameters (ex-

cept for parallax) for each background star. This was

expected since the motion we are fitting is simple par-

allactic and proper motion. See Table 2 for the median

and 1-σ values for the posterior distributions of each

MCMC parameter. A gallery that shows best-fit model

curves based on parameters sampled from the posterior

distributions is provided in Fig. 7.

Table 2. Median and 1-σ confidence intervals of the astrometric parameters for each background star

Background star number

Parameter Units 0 1 2 3 4 5 6

µα? (mas/yr) −5.44+0.29
−0.28 −2.03+0.24

−0.23 0.2+0.23
−0.23 2.97+0.26

−0.26 −3.48+0.27
−0.28 −2.24+0.21

−0.20 −2.13+0.26
−0.25

µδ (mas/yr) −5.56+0.24
−0.24 −8.94+0.21

−0.21 −5.73+0.21
−0.21 −3.36+0.21

−0.21 −5.18+0.24
−0.24 −2.60+0.21

−0.21 −5.98+0.21
−0.21

π (mas) 0.31+0.21
−0.11 0.280+0.160

−0.096 0.24+0.12
−0.08 0.32+0.21

−0.12 0.36+0.28
−0.15 0.29+0.17

−0.10 0.53+0.48
−0.25

∆α? (mas) 1014.57+0.52
−0.52 501.66+0.37

−0.38 568.03+0.33
−0.33 −453.77+0.42

−0.41 −1628.15+0.46
−0.47 −956.3+0.30

−0.30 −293.59+0.44
−0.45

∆δ (mas) 1053.79+0.41
−0.41 547.39+0.34

−0.34 −554.76+0.35
−0.34 −727.71+0.35

−0.35 −555.41+0.40
−0.40 579.24+0.35

−0.35 1254.39+0.35
−0.35

∆αfgd (mas) 0.001+0.068
−0.067 0.000+0.067

−0.067 0.000+0.067
−0.066 −0.001+0.068

−0.066 0.002+0.068
−0.068 0.000+0.067

−0.067 −0.001+0.068
−0.067

∆δfgd (mas) 0.001+0.059
−0.059 0.000+0.060

−0.059 −0.001+0.059
−0.059 0.002+0.059

−0.059 0.001+0.058
−0.059 −0.001+0.059

−0.059 0.000+0.059
−0.059

∆πfgd (mas) 0.005+0.062
−0.062 0.010+0.061

−0.061 0.021+0.061
−0.062 0.003+0.061

−0.061 0.001+0.061
−0.061 0.008+0.061

−0.061 −0.007+0.062
−0.061

∆µα?,fgd (mas/yr) 0.00+0.14
−0.14 0.00+0.15

−0.15 0.00+0.14
−0.15 0.00+0.15

−0.14 0.00+0.15
−0.14 0.00+0.14

−0.15 0.00+0.14
−0.14

∆µδ,fgd (mas/yr) 0.00+0.12
−0.12 0.00+0.12

−0.12 0.00+0.12
−0.12 0.00+0.12

−0.12 0.00+0.12
−0.12 0.00+0.12

−0.12 0.00+0.12
−0.12

Note—All foreground star astrometric parameters are given as differential measurements (by subtracting off the measured Gaia
DR2 astrometry for the foreground star, HD 165054)

5.1. Parallax

To fit the parallax, we used a physically motivated

prior based on galactic population models (Bailer-Jones

2015) that combines a constant volume density assump-

tion with a decaying exponential function. If you assume

a uniform volume density, the number of stars we would

expect to find within an infinitesimally thin spherical
shell of radius r scales as r2. Because parallax scales

with inverse distance, this means that the number of

stars in the corresponding region of parallax parameter

space scales as p(π) ∝ 1/π4. This prior does not ac-

count for the increase in volume density of stars due to

the increasing concentration of stars towards the galac-

tic center (see Fig. 5).

The exponentially decreasing constant volume density

prior has the following analytic form (see Bailer-Jones

2015 for the full derivation):

p(r) =

{
C 1

2L3 r
2e−r/L if r > 0

0 otherwise
(3)

Where r is distance, L is a tunable free parameter

corresponding to a length scale, and C is a normaliza-

tion constant. We are most interested in parallax, so

Equation 3 is more useful to us if we convert r to π. An

algebraic transformation gives us the following equation:

p(π) =

{
Cπ−4e−1/πL if π > 0

0 otherwise
(4)

where π is expressed in arcseconds, and L in parsecs. To

check the validity of this prior, we used the Besançon

galactic model (BGM, Czekaj et al. 2014) to simulate

the population of stars in the direction of HD 165054.

We simulated a region with a solid angle of 0.01 deg2

out to a distance of 10 kpc. We did not apply any con-

straints on the apparent or absolute magnitudes or col-

ors of the simulated stars. The output of this simulation

was a population of ∼106 stars distributed according to

the model of the Galaxy within the Besançon model. We

compared the predicted distribution of observed stars as

a function of parallax between the BGM simulation and

the Bailer-Jones prior in Fig. 5. We found L = 2500 pc

to be a good fit to the simulated distribution. The

Bailer-Jones prior using this value matches the distribu-

tion produced by the BGM well over the range of par-
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Figure 4. Parallax posterior distributions for the back-
ground stars using the prior from Bailer-Jones (2015).

allax values to which we are sensitive (&1 mas). Since

the Bailer-Jones prior does not take into account the

concentration of stars in the central bulge, there is a

discrepancy between the BGM and Bailer-Jones model

at small parallax values (.1 mas). Fortunately, this dis-

crepancy occurs outside of the range of sensitivity of

our relative astrometry (π > 1 mas), so the prior remain

valid for our purpose in this study.

By comparing the parallax posterior distributions pro-

duced by a uniform vs. the Bailer-Jones prior, it was

apparent that the Bailer-Jones prior dominated the be-

haviour of the MCMC fit, indicating that the limiting

factor on constraining the parallaxes is the fact that GPI

is not sensitive to parallaxes below a ∼ 1 mas. The par-

allax posterior distribution implies that the background

stars are most likely all central bulge stars and that our

models do not have much more ability to constrain the

parallax/distance beyond that. Fortunately, we do not

need to constrain the parallax beyond this point to get

good astrometry of the background stars. Our MCMC

fit constrained the proper motions of the background

stars equally well with either prior (uniform or Bailer-

Jones), and as will be discussed in Sec. 5.2, the im-

plication that these background sources are all central

bulge stars is consistent with the proper motions that

we measure. The Bailer-Jones prior was assumed to be

independent of flux because, as we can see in Fig. 12,

the parallaxes of the stars simulated using the Besançon
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Figure 5. Comparison of the predicted distribution of
stars from the BGM (black histogram) to the Bailer-Jones
prior (blue), assuming an exponential cut-off distance of
L = 2500 pc.

model are well below GPI’s ∼ 1 mas parallax detection

limit.

5.2. Proper Motion

Before performing the astrometry, the naive assump-

tion was that the background stars being studied were

probably all central bulge stars with proper motions

consistent with galactic rotation around the center of

the Milky Way. This assumption would help explain

the similar direction and magnitude of proper motion

that we measured for the background stars (see Fig. 6).

The BGM model that we used to simulate the distribu-

tion of galactic star parallaxes was also used to simulate

the distribution of proper motions of stars in the direc-

tion of HD 165054. We find that the proper motions

of the background stars are consistent with stars ap-

proximately 5-10 kpc away (Fig. 6)— the approximate

distance from our solar system to the galactic center.

Though this is not a rigorous constraint on the actual

distance of the background stars, it is a good check to

show that the proper motions we measure are consistent

with our estimates for their parallax.

5.3. Residuals

As a first test of the validity of our results, we took a

look at the residuals of the astrometric fits. To produce

the residuals, we first generated best-fit model curves

that traced out the predicted positions of the back-

ground stars over time (see Fig. 7). To produce these
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Figure 6. Proper motions of characterized background stars
(red points) plotted over a simulated distribution of proper
motions for a sample of ∼105 stars in a 0.01 deg2 field of
view around HD 165054.

curves, we took our model of the parallactic and proper

motion of the background stars relative to the reference

epoch and then added on the fitted position of the back-

ground star at the reference epoch (the RA (∆α?) and

Dec (∆δ) offset terms used in the MCMC fit, see Sec.

4.1).

We produced a sample of 100 model curves by sam-

pling 100 times from the posterior distributions for the

MCMC parameters. We then took the mean of these

curves to produce a best-fit model curve. Finally, we

subtracted the measured position of the given back-

ground star at a given epoch from the best-fit model

curve’s predicted position at that given epoch (the er-

ror bars on the residuals are carried over from BKA),

producing the residuals that we used to look for cali-

bration systematics and offsets in GPI (see Fig. 8). We

produced similar best-fit model curves and residuals in

separation and position angle by doing the appropriate

coordinate transformations on the measured positions

in RA/Dec. We also calculated the weighted mean of

the residuals at each epoch (Fig. 9), using 1/σ2 as the

weight of each data point. We adopted the average un-

certainty of the residuals at each epoch as the error bar;

this better captures the systematic errors than the stan-

dard error that assumes independent measurements but

leads to an overestimate of the magnitude of the uncer-

tainty.

We can put a numerical constraint on possible drifts

in the astrometric calibration of GPI over the approx-

imately five year temporal baseline of observations by

measuring the rate of change of the residuals as a func-

tion of time. We fit the residuals with a simple lin-

ear fit model using an MCMC-based approach, with

the gradient and y-intercept of the fit (parameters m

and b respectively in the traditional notation of a line

y = mx+ b) being drawn from uniform priors.

Table 3. Best-fit linear model parameter values for GPI residuals

RA Dec Separation Position Angle

Gradient −0.02+0.18
−0.18 mas/yr −0.03+0.17

−0.18 mas/yr 0.04+0.16
−0.16 mas/yr 0.002+0.010

−0.010 deg/yr

Intercept * −0.04+0.54
−0.52 mas 0.15+0.51

−0.52 mas −0.13+0.46
−0.45 mas 0.008+0.031

−0.032 deg

∗The intercept is set at the first epoch of observations: 2014 May 12

As can be seen in Fig. 8, the residuals for the GPI

measurements in all coordinates (RA, Dec, separation,

position angle) imply that the astrometric calibration of

GPI has been stable over the five year baseline of obser-

vations. The best-fit linear model of the residuals has

a slope consistent with zero for all coordinates. It is

particularly informative to look specifically at the resid-

uals in separation and position angle (PA) because these

coordinates would reveal any systematics in plate scale

and true north angle. GPI’s plate scale and true north

angle both seem to be stable over time. Fig. 8 was

useful for identifying the issue with the cassegrain rota-

tor described in Sec. 2.1.1. The PA residuals shown in

Fig. 8 are with the correction for the Cassegrain rotator

offset applied.

The NIRC2 data was not included in our best-fit

model curves generated using MCMC (see Sec. 4.2).

This separate dataset was obtained to serve as a sec-

ondary check of the validity of the astrometric solution

obtained by GPI. By comparing the residuals of the pre-

dicted GPI model curves with the measured background

star positions in the NIRC2 data, we could look for dis-
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Figure 7. Gallery of best-fit model tracks of background stars. The bold red track is the mean of the 100 fainter tracks plotted.
Each of the tracks is generated with a random sample from the posterior distributions of the MCMC parameters. A line is
drawn for each data point connecting the measured position of the star to the mean predicted position of the star at that epoch.

crepancies that might point to astrometric calibration

errors in GPI. The residuals in separation angle and

position angle appear to be consistent between instru-

ments, indicating that GPI’s plate scale and true north

angle is well calibrated relative to NIRC2.

5.4. Background star relative positions

The orientation and magnification of GPI’s astro-

metric frame relative to NIRC2 was also measured by

comparing the relative separation and position angles

between all unique pairs of background stars within

the near-contemporaneous epochs obtained in 2014 and

2018. We did this comparison as a secondary check of

the validity of the residuals generated in Sec. 5.3. The

detector positions of each of the seven background stars

within the final PSF-subtracted image measured using

BKA (Sec. 3) were used to calculate separations and

position angles between the 21 unique pairs of stars in

detector coordinates. These relative measurements in-

corporated the nominal true north offsets for both GPI
(given in Table 1) and NIRC2 (0.252 or 0.262 depending

on epoch, Yelda et al. 2010; Service et al. 2016). As the

relative offsets between pairs of background stars did not

require the foreground star center location, which was a

significant source of uncertainty in the final astrometry

of the background stars presented in Table 4, the rela-

tive separations and position angles could be measured

more precisely.

Using the relative positions of the unique pairs of

background objects for both instruments at both epochs,

we performed a χ2 minimization to find the magnifica-

tion factor (ρGPI/ρNIRC2) and rotation (θNIRC2 − θGPI)

that would best align the measured offsets from both

instruments at a given epoch. We found a magnifica-

tion factor of 1.4245 ± 0.0015 (cf 1.4229 ± 0.0021 us-

ing the nominal plate scales) and a rotation angle of

0.◦077 ± 0.◦062 for the 2014 epoch, and a magnification

factor of 1.4200± 0.0015 (cf 1.4202± 0.0022, similarly)

and rotation angle of 0.◦021± 0.◦062 for the 2018 epoch.

We found a minimum χ2
ν of 0.81 for the 2014 epoch and

0.83 for the 2018 epoch. The magnification factor was

consistent for both epochs, however the rotation angle

was marginally consistent for the 2014 epoch (1.1 σ),

but consistent for the 2018 epoch. The small offset in

the rotation angle seen for the 2014 epoch is consistent

with the position angle residuals seen in Figure 8.

The non-zero motion of the background objects rela-

tive to one another was a potential source of bias when

comparing measurements from the two instruments that

were not obtained on the same date. The offset be-

tween the GPI and NIRC2 measurements was 58 days

in 2014 and 19 days in 2018. To account for the non-

zero relative motion of the background stars, we re-

peated the same fit but instead of using the GPI mea-

surements nearest in time to the NIRC2 observations,

we used the model described in Sec. 4 to predict the

locations of the objects within a hypothetical GPI ob-

servation taken on the same date. We found a magni-

fication factor of 1.4239 ± 0.0021 and a rotation angle

of 0.◦1316 ± 0.◦086 for the 2014 epoch, and a magnifi-

cation factor of 1.4197 ± 0.0021 and rotation angle of

0.◦004 ± 0.◦085 for the 2018 epoch. We found a mini-

mum χ2
ν of 0.12 for the 2014 epoch and 0.31 for the 2018

epoch, lower than previously due to the larger uncertain-

ties on the positions of the background stars in the sim-

ulated GPI measurement at the NIRC2 epoch. As with

the previous comparison, the two plate scales are consis-

tent with the nominal values, but a small (1.5-σ) offset

is measured for the rotation between the 2014 NIRC2

epoch and the simulated GPI measurement. This offset

is not significant when the uncertainty in the north off-

set angle for both instruments is included, decreasing to

a 0.9-σ discrepancy. This analysis, and that previously
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Figure 8. Residuals of each of the background stars in RA (Top Left), Dec (Top Right), separation (Bottom Left), and
position angle (Bottom Right), with a corresponding distribution of linear fits to the residuals overplotted as gray lines. The
“best-fit” linear model was generated using the median values of the MCMC posterior distributions and is plotted as the red
line. Numbers 0-6 in the legend label the GPI residuals for the 7 background stars (plotted as colored triangles). The two
epochs of NIRC2 residuals are plotted as black squares to differentiate from the GPI measurements. The NIRC2 residuals were
explicitly excluded from the linear fit. See Fig. 9 for similar plots but using the weighted mean of the residuals instead for
better readability.

discussed in Section 5.3, demonstrates the consistency

between the astrometric solution of NIRC2 and GPI.

6. CONCLUSION/FUTURE WORK

Using high-contrast direct imaging and PSF subtrac-

tion, a five parameter astrometric model, and MCMC

fitting techniques, we have characterized the positions,

and parallactic and proper motions of seven sources in

the field of view around HD 165054. The measured

astrometry confirms our initial assumption that these

sources are distant galactic bulge stars, making them

good candidates for follow-up observations for the pur-

pose of re-calibration or comparison of astrometric cal-

ibration with other high-contrast direct imagers. An

analysis of the residuals of our five parameter astromet-

ric model confirms the stability of GPI’s calibration as

well as the consistency of the plate scale and true north

offset of the instrument relative to the well-calibrated

NIRC2 instrument on Keck.

There is potential for follow-up GPI or NIRC2 ob-

servations of HD 165054 to further constrain the as-

trometry of the sources in the field. In addition to the

two epochs of NIRC2 data, there is potentially available

SPHERE IRDIS data of HD 165054 that would be in-

teresting to include in our analysis to see whether the

astrometry obtained between GPI and SPHERE is con-

sistent. Analysis of IRDIS data of HD 165054 could

help diagnose inconsistencies in measured astrometry

(most notably differences in measured PA) that have

been observed between GPI and SPHERE in other sys-

tems (Maire et al. 2019).
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Figure 9. Weighted-mean of the residuals in RA (Top Left), Dec (Top Right), separation (Bottom Left), and position
angle (Bottom Right), with a corresponding distribution of linear fits to the residuals overplotted as gray lines. This is
essentially the same plot as Fig. 8 but using the weighted-mean of the residuals instead for better readability. The weighted-
mean was calculated using the inverse square of the error bar for each data point as weights. The error bars associated with
each weighted-mean were simply taken to be the average of the error bars of the data points in a given epoch.

This study was done using seven of the brightest back-

ground sources in the field of view. There are certainly

more than seven background sources we could have used

(See Fig. 1), but we only chose to do seven for now be-

cause the high SNR of the brightest sources gives us

the smallest error bars on our astrometry. More sophis-

ticated source identification algorithms could be used

to include additional background stars in our fit (e.g.,

Ruffio et al. 2017), but the lower SNR of these stars

probably would not lead to a significant improvement in

our characterization of GPI’s astrometric solution.

Baade’s Window has been a known region of low ex-

tinction from interstellar dust for many decades, and it

has served astronomers well in studying the properties

of the central bulge stars of our galaxy. With the need

for precision astrometry in order to probe key properties

of directly imaged exoplanets and with the specific cali-

bration requirements of the Gemini Planet Imager, HD

165054 is a powerful tool in understanding the instru-

ment’s astrometric solution. We hope that further ob-

servation of HD 165054 by GPI and other high-contrast

imagers will improve the precision of exoplanet astrom-

etry and our understanding of calibration systematics of

the instruments we use.
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Figure 10. Ratio of plate scales and difference in position
angles for GPI and NIRC2 computed from the positions of
the seven background stars relative to one another in 2014
(left) and 2018 (right). The fitted offset and ratio (black
circle) and corresponding nominal values (red open square)
are also shown. A GPI observation of the position of the
background stars was simulated at the epoch of the NIRC2
observations using the model described in Section 4.
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Facilities: Gemini:South, Keck:II (NIRC2)

REFERENCES

Baade, W. 1946, PASP, 58, 249

Bailer-Jones, C. A. L. 2015, Publications of the

Astronomical Society of the Pacific, 127, 994

Chilcote, J. K., Larkin, J. E., Maire, J., et al. 2012, in SPIE

Astronomical Telescopes + Instrumentation, ed. I. S.

McLean, S. K. Ramsay, & H. Takami (SPIE), 84468W

Czekaj, M. A., Robin, A. C., Figueras, F., Luri, X., &

Haywood, M. 2014, A&A, 564, A102

De Rosa, R. J., Nguyen, M. M., Chilcote, J., et al. 2019,

arXiv e-prints, arXiv:1910.08659

Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman,

J. 2013, PASP, 125, 306

Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al.

2018, A&A, 616, A1

Houk, N. 1982, Michigan Catalogue of Two-dimensional

Spectral Types for the HD stars. Volume 3. Declinations

-40 to -26. (Dept. of Astronomy, University of Michigan)

Konopacky, Q. M., Thomas, S. J., Macintosh, B. A., et al.

2014, in Society of Photo-Optical Instrumentation

Engineers (SPIE) Conference Series, Vol. 9147,

Ground-based and Airborne Instrumentation for

Astronomy V, 914784

Larkin, J. E., Chilcote, J. K., Aliado, T., et al. 2014, in

Proc. SPIE, Vol. 9147, Ground-based and Airborne

Instrumentation for Astronomy V, 91471K

Macintosh, B., Graham, J. R., Ingraham, P., et al. 2014,

PNAS, 111, 12661

Maire, A. L., Rodet, L., Cantalloube, F., et al. 2019, A&A,

624, A118

Marois, C., Lafrenière, D., Doyon, R., Macintosh, B., &

Nadeau, D. 2006, ApJ, 641, 556

McCaughrean, M. J., & Stauffer, J. R. 1994, AJ, 108, 1382

Nielsen, E. L., De Rosa, R. J., Macintosh, B., et al. 2019,

AJ, 158, 13

Perrin, M. D., Maire, J., Ingraham, P., et al. 2014, Proc.

SPIE, 9147, 91473J

Perrin, M. D., Ingraham, P., Follette, K. B., et al. 2016, in

Society of Photo-Optical Instrumentation Engineers

(SPIE) Conference Series, Vol. 9908, Ground-based and

Airborne Instrumentation for Astronomy VI, 990837

Poyneer, L. A., De Rosa, R. J., Macintosh, B., et al. 2014,

in Proc. SPIE, Vol. 9148, Adaptive Optics Systems IV,

91480K

Pueyo, L., Soummer, R., Hoffmann, J., et al. 2015, ApJ,

803, 31

Racine, R., Walker, G. A. H., Nadeau, D., Doyon, R., &

Marois, C. 1999, PASP, 111, 587

Ruffio, J.-B., Macintosh, B., Wang, J. J., et al. 2017, ApJ,

842, 14

Service, M., Lu, J. R., Campbell, R., et al. 2016,

Publications of the Astronomical Society of the Pacific,

128, 095004

Sivaramakrishnan, A., Soummer, R., Oppenheimer, B. R.,

et al. 2010, in Proc. SPIE, Vol. 7735, Ground-based and

Airborne Instrumentation for Astronomy III, 773586

Soummer, R., Pueyo, L., & Larkin, J. 2012, ApJ, 755, L28

Soummer, R., Sivaramakrishnan, A., Pueyo, L., Macintosh,

B., & Oppenheimer, B. R. 2011, ApJ, 729, 144

The Astropy Collaboration, Robitaille, T. P., Tollerud,

E. J., et al. 2013, A&A, 558, A33

Wang, J. J., Ruffio, J.-B., De Rosa, R. J., et al. 2015,

Astrophysics Source Code Library, -1, 06001

Wolff, S. G., Perrin, M. D., Maire, J., et al. 2014, Proc.

SPIE, 9147, 91477H

Yelda, S., Lu, J. R., Ghez, A. M., et al. 2010, ApJ, 725, 331

http://ascl.net/1411.018
http://ascl.net/1411.018
http://ascl.net/1506.001
http://ascl.net/1506.001
http://ascl.net/1303.002
http://ascl.net/1303.002


16 Nguyen et al.

APPENDIX

A. MEASURED POSITIONS

We include a table of the measured positions in RA and Dec of each the seven background stars characterized in

this study relative to HD 165054. Each background star should have eleven total epochs of observations (9 using GPI

and 2 using NIRC2). The NIRC2 epochs have been differentiated from the GPI epochs using a superscript marker.

Table 4. Measured offset between HD 165054 and the seven

background stars for each epoch

Star Date ∆α? (mas) ∆δ (mas)

0 2014-05-12 1078.53 ± 2.58 843.63 ± 2.67

2014-05-15 1082.44 ± 2.44 843.76 ± 2.57

2014-07-12a 1094.75 ± 3.02 856.49 ± 3.03

2015-07-03 1060.8 ± 3.06 942.77 ± 3.12

2015-09-01 1071.49 ± 2.96 952.31 ± 3.1

2016-04-30 1015.96 ± 4.43 1007.26 ± 4.43

2017-08-07 · · · · · ·
2018-07-21a 962.03 ± 3.07 1191.69 ± 3.07

2018-08-10 967.22 ± 4.39 1192.28 ± 3.83

2019-03-29 · · · · · ·
2019-08-10 938.64 ± 3.07 1274.72 ± 2.81

1 2014-05-12 554.96 ± 3.68 346.8 ± 3.67

2014-05-15 558.97 ± 1.96 347.41 ± 1.96

2014-07-12a 572.64 ± 4.07 359.38 ± 4.86

2015-07-03 546.07 ± 2.54 439.1 ± 2.25

2015-09-01 552.07 ± 2.79 451.68 ± 2.64

2016-04-30 500.7 ± 2.84 499.82 ± 2.59

2017-08-07 493.47 ± 4.64 598.9 ± 5.03

2018-07-21a 458.98 ± 3.88 679.66 ± 3.97

2018-08-10 462.63 ± 3.03 682.44 ± 2.46

2019-03-29 410.01 ± 3.04 729.68 ± 2.78

2019-08-10 434.07 ± 2.54 760.23 ± 2.3

2 2014-05-12 616.19 ± 4.14 −767.13 ± 3.28

2014-05-15 617.89 ± 3.2 −761.54 ± 2.77

2014-07-12a 629.84 ± 3.55 −754.77 ± 4.13

2015-07-03 607.5 ± 2.36 −666.65 ± 2.17

2015-09-01 617.66 ± 2.37 −655.62 ± 2.25

2016-04-30 564.04 ± 2.87 −602.9 ± 2.66

2017-08-07 560.29 ± 2.75 −495.87 ± 2.71

2018-07-21a 524.99 ± 3.36 −414.96 ± 3.51

2018-08-10 532.69 ± 2.13 −416.06 ± 2.3

2019-03-29 482.53 ± 1.75 −367.01 ± 1.77

Table 4 continued
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Table 4 (continued)

Star Date ∆α? (mas) ∆δ (mas)

2019-08-10 507.1 ± 2.94 −332.71 ± 2.57

3 2014-05-12 −413.17 ± 4.52 −943.92 ± 4.19

2014-05-15 −408.5 ± 2.76 −940.42 ± 2.55

2014-07-12a −400.2 ± 3.27 −929.16 ± 3.58

2015-07-03 −416.94 ± 3.28 −844.41 ± 2.87

2015-09-01 −410.65 ± 3.47 −834.43 ± 2.89

2016-04-30 −458.05 ± 3.63 −775.67 ± 2.61

2017-08-07 −459.64 ± 3.37 −669.05 ± 2.96

2018-07-21a −494.92 ± 3.64 −586.99 ± 3.98

2018-08-10 −485.54 ± 2.91 −582.73 ± 2.6

2019-03-29 −532.8 ± 2.52 −534.85 ± 2.32

2019-08-10 −506.51 ± 3.29 −499.43 ± 2.91

4 2014-05-12 −1569.34 ± 2.94 −763.93 ± 3.36

2014-05-15 −1566.59 ± 2.87 −763.14 ± 3.31

2014-07-12a −1557.74 ± 3.01 −750.59 ± 3.01

2015-07-03 −1580.8 ± 3.01 −673.83 ± 4.08

2015-09-01 · · · · · ·
2016-04-30 −1628.56 ± 3.55 −604.05 ± 6.65

2017-08-07 −1640.34 ± 3.04 −497.17 ± 4.5

2018-07-21a −1676.18 ± 3.08 −417.24 ± 3.06

2018-08-10 −1670.3 ± 3.05 −417.24 ± 5.69

2019-03-29 −1720.9 ± 2.9 −362.34 ± 3.55

2019-08-10 · · · · · ·
5 2014-05-12 −898.46 ± 1.76 364.02 ± 1.99

2014-05-15 −898.4 ± 1.71 363.4 ± 1.99

2014-07-12a −885.57 ± 3.01 377.38 ± 3.02

2015-07-03 −914.76 ± 1.92 459.55 ± 2.46

2015-09-01 −904.75 ± 1.93 473.05 ± 2.44

2016-04-30 −957.22 ± 2.66 529.7 ± 3.99

2017-08-07 −965.27 ± 2.4 638.71 ± 2.85

2018-07-21a −1000.89 ± 3.04 721.81 ± 3.03

2018-08-10 −996.07 ± 2.93 722.66 ± 3.56

2019-03-29 −1047.27 ± 2.32 776.25 ± 2.47

2019-08-10 −1024.69 ± 2.32 809.53 ± 2.43

6 2014-05-12 −236.41 ± 2.35 1046.76 ± 1.93

2014-05-15 −234.47 ± 2.24 1046.2 ± 1.84

2014-07-12a −220.74 ± 3.01 1058.57 ± 3.03

2015-07-03 −253.17 ± 2.97 1141.4 ± 2.01

2015-09-01 −242.11 ± 2.98 1153.03 ± 2.01

2016-04-30 −294.98 ± 4.96 1207.27 ± 2.31

2017-08-07 −302.73 ± 3.89 1311.59 ± 2.59

Table 4 continued
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Table 4 (continued)

Star Date ∆α? (mas) ∆δ (mas)

2018-07-21a −340.12 ± 3.05 1391.44 ± 3.06

2018-08-10 −332.62 ± 4.76 1393.38 ± 2.53

2019-03-29 −380.85 ± 3.27 1443.93 ± 2.72

2019-08-10 −364.5 ± 3.24 1473.51 ± 2.62

aKeck/NIRC2 measurements

B. BEST-FIT MODEL AND RESIDUALS FOR

BAYESIAN KLIP-FM ASTROMETRY

We include the data stamps, best-fit models, and cor-

responding residuals obtained when characterizing the

astrometry of the stars in this study.

C. PARALLAX PRIOR CONSIDERATIONS

We include a figure of the distribution of Parallax vs.

V-mag for stars within 12.5 V-mag of HD 165054 (8.48)

for the purpose of assessing the flux independence of the

background star parallaxes. See Fig. 12.
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Figure 12. Distribution of Parallax vs. V-mag for stars within 12.5 V-mag of HD 165054 (8.48) which corresponds to GPI’s
theoretical maximum contrast difference of ∼ 10−5. As we can see, any functional dependence of parallax on V-mag is well
below GPI’s detection limit (∼ 1mas).
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