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ABSTRACT

Deep learning is rapidly becoming a ubiquitous signal-processing tool in big-data ex-
periments. Here, we present the results of a proof-of-concept experiment which demon-
strates that deep learning can successfully be used for production-scale classification
of compact star clusters detected in HST UV-optical imaging of nearby spiral galaxies
(D < 20Mpc) in the PHANGS-HST survey. Given the relatively small and unbal-
anced nature of existing, human-labelled star cluster datasets, we transfer the knowl-
edge of state-of-the-art neural network models for real-object recognition to classify
star clusters candidates into four morphological classes. We show that human classi-
fication is at the 66% : 37% : 40% : 61% agreement level for the four classes consid-
ered. On the other hand, our findings indicate that deep learning algorithms achieve
76% : 63% : 59% : T0% for a star cluster sample within 4Mpc < D < 10Mpc. We
further tested the robustness of our deep learning algorithms to generalize to different
cluster images. For this experiment we used the first data obtained by PHANGS-HST
of NGC1559, which is more distant at D = 19Mpc, and found that deep learning
produces classification accuracies 73% : 42% : 52% : 67%. We furnish evidence for
the robustness of these analyses by using two different state-of-the-art neural network
models for image classification, which were trained multiple times from the ground
up to assess the variance and stability of our results. Through ablation studies, we
quantified the importance of the NUV, U, B, V and I images for morphological clas-
sification with our deep learning models, and find that, as expected, the V-band is
the key contributor as human classifications are based on images taken in that filter.
The methods introduced in this article lay the foundations to automate classification
for these objects at scale, and motivate the creation of a standardized star cluster
classification dataset, developed and agreed upon by a range of experts in the field.
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1 INTRODUCTION

Human visual classification of electromagnetic signals from
astronomical sources is a core task in observational research
with a long established history (Cannon & Pickering 1912,
1918; Hubble 1926, 1936; de Vaucouleurs 1963). It has been
an essential means by which progress has been made in
understanding the formation and evolution of structures
from stars to galaxies. However, in the modern era of “Big
Data” in Astronomy, with unprecedented growth in electro-
magnetic survey area, field of view, sensitivity, resolution,
wavelength coverage, cadence, and transient alert produc-
tion, it has become apparent that human classification is no
longer scalable (Abbott et al. 2016; LSST Science Collabo-
ration et al. 2009). This realization has motivated the use
of machine learning techniques to automate image classifica-
tion (Ball et al. 2008; Banerji et al. 2010; Carrasco Kind &
Brunner 2013; Ishak 2017; Kamdar et al. 2016; Kim & Brun-
ner 2017). Some of these machine learning algorithms have
been integrated into widely-used methods for image pro-
cessing, such as the neural networks trained for star/galaxy
separation in the automated source detection and photom-
etry software SEXTRACTOR (Bertin & Arnouts 1996). Other
applications of machine learning for image classification in-
clude the use of so-called decision trees (Weir et al. 1995;
Suchkov et al. 2005; Ball et al. 2006; Vasconcellos et al. 2011,
Sevilla-Noarbe & Etayo-Sotos 2015) and support vector ma-
chines (Fadely et al. 2012; Solarz et al. 2017; Malek & et al
2013).

Visual object recognition has also been a core research
activity in the computer science community. For instance,
the PASCAL VOC challenge was initiated to develop soft-
ware to accurately classify about 20,000 images divided into
twenty object classes (Everingham et al. 2015). Over the
last decade deep learning algorithms have rapidly evolved to
become the state-of-the-art signal-processing tools for com-
puter vision, to the point of surpassing human performance.
The success of deep learning algorithms for image classi-
fication can be broadly attributed to the use of Graphics
Processing Units (GPUs) to train, validate and test neural
network models, and to the curation of high-quality, human-
labeled datasets, such as the ImageNet dataset (Deng et al.
2009), which has over 14 million images divided into more
than 1000 object categories.

The ImageNet Large Scale Visual Recognition Chal-
lenge (Russakovsky et al. 2015) has driven the develop-
ment of deep learning models that have achieved remarkable
breakthroughs for image classification. In 2012, the network
architecture AlexNet (Krizhevsky et al. 2012) achieved a
~ 50% reduction in error rate in the ImageNet challenge—a
remarkable feat at that time that relied on the use of GPUs
for the training of the model, data augmentation (image
translations, horizontal reflections and mean subtraction), as
well as other novel algorithm improvements that are at the
core of state-of-the-art neural network models today, e.g.,
using successive convolution and pooling layers followed by
fully-connected layers at the end of the neural network ar-
chitecture.

Within the next two years, the architectures VGGNet (Si-
monyan & Zisserman 2014b) and GoogLeNet (Szegedy et al.
2014) continued to improve the discriminative power of deep
learning algorithms for image classification using deeper

and wider neural network models, and innovating data aug-
mentation techniques such as scale jittering. Furthermore,
GoogLeNet provided the means to use wider and deeper neu-
ral network models to further improve image classification
analysis by introducing multi-scale processing, i.e., allowing
the neural network model to recover local features through
smaller convolutions, and abstract features with larger con-
volutions. In 2015, the ResNet (He et al. 2015) model was the
first architecture to surpass human performance on the Im-
ageNet challenge. In addition to this milestone in computer
vision, ResNet was also used to demonstrate that a naive
stacking of layers does not guarantee enhanced performance
in ultra deep neural network models, and may actually lead
to sub-optimal performance for image classification.

In view of the aforementioned accomplishments, re-
search in deep learning for image classification has become
a booming enterprise in science and technology. This vigor-
ous program has led to innovative ways to leverage state-of-
the-art neural network models to classify disparate datasets.
This approach is required because most applications of deep
learning for image classification rely on supervised learning,
i.e., neural network models are trained using large datasets
of labelled data, such as the ImageNet dataset. Given that
datasets of that nature are tedious and hard to obtain, deep
transfer learning has provided the means to classify entirely
new datasets by simply fine-tuning a pre-trained neural net-
work model with the ImageNet dataset.

While deep transfer learning was initially explored to
classify datasets that were of similar nature to those used
to train state-of-the-art neural network models, the first
application of deep transfer learning of a pre-trained Im-
ageNet neural network model to classify small and unbal-
anced datasets of entirely different nature was presented
in George et al. (2018, 2017), where a variety of neural net-
work models were used to report state-of-the-art image clas-
sification accuracy of noise anomalies in gravitational wave
data. That study triggered a variety of applications of pre-
trained ImageNet deep learning algorithms to classify im-
ages of galactic mergers (Ackermann et al. 2018), and galax-
ies (Khan et al. 2019; Barchi et al. 2019; Dominguez Sanchez
et al. 2018), to mention a few examples.

Building upon these recent successful applications of
deep learning for image classification in physics and astron-
omy, in this paper we demonstrate that deep learning pro-
vides the means to classify images of compact star clusters in
nearby galaxies obtained with the Hubble Space Telescope
(HST), and that this approach can outperform human and
traditional machine learning performance. A major moti-
vation of this work is to determine whether deep learning
techniques can be used to automate production-scale classi-
fication of candidate star clusters in data from the Cycle 26
HST-PHANGS (Physics at High Angular Resolution in Nearby
GalaxieSt) Survey (PI: J.C. Lee, program 15654) for which
observations commenced in April 2019. HST-PHANGS is an-
ticipated to yield several tens of thousands of star cluster
candidates for classification, only about a half of which will
be true clusters.

This paper is organized as follows. In Section 2, we sum-
marize the objectives of star cluster classification, and de-
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scribe the current classification system, which we employ in
this paper. A review of the consistency between human clas-
sifications across prior studies is provided to establish the
accuracy level to be achieved or surpassed by deep learning
this initial proof-of-concept experiment. In Section 3, we de-
scribe the imaging data and classifications used to train our
neural network (NN) models, and then provide an overview
of the NN models employed in this work. We report our re-
sults in Section 4. We conclude in Section 5 with a summary
of the results and next steps for future work.

2 CLASSIFICATION OF COMPACT STAR
CLUSTERS IN NEARBY GALAXIES

The objects of interest in this study are compact star clus-
ters and stellar associations in galaxies at distances be-
tween 4 Mpc to 20 Mpc. The physical sizes of these objects
are characterized by effective radii between 0.5pc to about
5pc (Portegies Zwart et al. 2010; Ryon et al. 2017). Hence,
only with the resolution of HST (1.2 pc at D=4 Mpc) can
clusters be distinguished from individual stars and separated
from other star clusters in galaxies beyond the Local Group.

Early attempts at classifying clusters in external galax-
ies with HST imaging focused mainly on old globular clus-
ters, for example, the swarm of thousands of globular clus-
ters around the central elliptical galaxy in the Virgo Cluster,
M87 (Whitmore et al. 1995). This was a fairly straightfor-
ward process since the background was smooth and the clus-
ters were well separated. With the discovery of super star
clusters in merging galaxies (e.g, Holtzman et al. 1992), the
enterprise of the identification and study of clusters in star-
forming galaxies began, despite the fact that crowding and
variable backgrounds in such galaxies make the process far
more challenging. Studies of normal spiral galaxies pushed
the limits to fainter and more common clusters (e.g, Larsen
2002; Chandar et al. 2010). In all these early studies, the
primary objective was to distinguish true clusters from indi-
vidual stars and image artifacts, and there were essentially
no attempts to further segregate the clusters into different
classes.

An exception, and one of the first attempts at a more
detailed classification, was performed by Schweizer et al.
(1996), who defined 9 object types and then grouped them
into two classes: candidate globular clusters and extended
stellar associations. More recently, Bastian et al. (2012),
who studied clusters using HST imaging of the M83 galaxy,
classified star clusters as either symmetric or asymmetric.
Their analysis retained only symmetric clusters, which they
posited were more likely to be gravitationally bound. Follow-
ing this work, many studies in the field, most notably the
Legacy ExtraGalactic UV Survey (LEGUS) (Calzetti et al.
2015) began differentiating clusters into two or three differ-
ent categories, so that they could be studied separately or
together depending on the goals of the project (see also the
review by Krumholz et al. 2018, and their discussion of “ex-
clusive” versus “inclusive” cluster catalogs). In LEGUS, clus-
ter candidates are sorted into four classes as follows (Adamo
et al. 2017; Cook et al. 2019):

e Class 1: compact, symmetric, single peak, radial profile
more extended relative to point source
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e Class 2: asymmetric, single peak, radial profile more
extended relative to class 1 cluster

e Class 3: asymmetric, multiple peaks, sometimes super-
imposed on diffuse extended source

e Class 4: not a star cluster (image artifacts, background
galaxies, pairs and multiple stars in crowded regions, stars)

We adopt the same classification system for this paper.
In general, we refer to class 1, 2, and 3 as “compact symmet-
ric cluster,” “compact asymmetric cluster,” and “compact as-
sociation” respectively. Examples of objects in each of these
classes are shown in Figure 1.

2.1 Consistency among Human Classifications

The stated goal of the current work is to provide automated
cluster classifications that achieve accuracy levels at least
comparable to human visual cluster classifications. In this
section we establish this “accuracy” level, which we define as
the consistency between different classifications for the same
cluster populations as reported in the literature, as well as
relative to classifications homogeneously performed by one
of us (Bradley C. Whitmore, hereafter BCW).

A first look at the overall consistency between the clus-
ters cataloged by different studies, but based on the same
data and same limiting magnitude, is provided by the work
on M83 by Bastian et al. (2012); Whitmore et al. (2014);
Chandar et al. (2014). Comparisons reported in those pa-
pers show that about ~70% of the clusters are in common
between the studies. Later, Adamo et al. (2017) performed
a similar comparison for the spiral galaxy NGC 628 for the
catalogs from LEGUS and Whitmore et al. (2014), and finds
a total-match fraction of ~75%. Finally, the LEGUS study
of M51 by Messa et al. (2018) find a total-match fraction of
73% in common with a study by Chandar et al. (2016).

However, these results are not based upon detailed anal-
ysis of human-vs-human cluster classifications for individ-
ual objects; they are statistical measures of overlap between
samples where a mix of human classification/identification,
and automated star/cluster separation based on the concen-
tration index (i.e., the difference in magnitude in a 1 pixel
vs. 3 pixel radius) were used across the studies.

To directly evaluate human-vs-human cluster classifica-
tions, we compare classifications assigned by BCW for NGC
4656 to those provided in the LEGUS public cluster catalog,
which provides the average classification made by three other
LEGUS team members (trained by BCW and Angela Adamo).
Results are shown in Figure 2. For the combination of class
1+2+ 3, the total match fraction is 76%, which is similar or
higher than the agreement in the prior studies M83, NGC
628 and M51 discussed above. If we combine only the class
1+ 2 clusters (to exclude compact associations which has a
higher rate of confusion with class 4 non-clusters), the total
match fraction is 67%. For the individual classes, the con-
sistency of the assignments vary from 66%, 37%, 40%, 61%
for class 1, 2, 3, and 4, respectively. We adopt these as the
“accuracy” levels to be achieved or surpassed by the deep
learning studies here.
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Figure 1. Examples of each of the four cluster classifications. The top four rows show clusters from NGC 4656, which are part of the
training set, while the bottom four rows show clusters from PHANGS-HST observations of the spiral galaxy NGC 1559, which form
our proof-of-concept test sample, and are not used for training. The first two columns show false-color RGB images for context: the
first column displays a 299p x 299p RGB image (R = F814W, G = F438W + F555W, B = F275W + F336W) and the second column
shows only the center 50p x 50p of the RGB image (184pc x 184pc for NGC1559, for example). Only the center 50p x 50p of individual
NUV-U-B-V-I HST imaging is used for training and evaluation, and these are shown in grayscale in the last 5 columns (from left to
right, 50p x 50p images taken with filters F275W, F336W, F438W, F555W, and F814W).

3 METHODS

In this section we describe the data sets used to train, val-
idate and test our deep learning algorithms, and give an
overview of the neural network models used. We approach
this initial work as a proof of concept demonstration, with
the intention of performing further optimization and more
detailed tests in future work.

3.1 Data curation

For training, we use classifications which were performed by
BCW for HST pointings in 10 galaxies, which are in both
LEGUS and the Ha-LEGUS follow-up survey. In total, this pro-
vides samples of 1300, 1000, 700, and 2100 class 1, 2, 3, 4
objects for training, as described in Table 1. We use 80%
of this sample for training, and reserve the remainder for
validation.

MNRAS 000, 1-13 (2019)
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Field D (Mpc) Class1 Class2 Class3 Class 4
NGC3351 10.0 118 80 95 325
NGC3627 10.1 403 175 164 837
NGC4242 5.8 117 60 14 42
NGC4395N 4.3 8 19 21 20
NGC4449 4.31 120 261 213 0
NGC45 6.61 45 52 20 43
NGC4656 5.5 83 125 47 173
NGC5457C 6.7 287 108 81 436
NGC5474 6.8 48 95 34 144
NGC6744N 7.1 164 143 58 210
Total 1393 1118 747 2230
N>4 1271 1013 738 2125

Table 1. Number of sources in each of the ten HST LEGUS fields which have been classified by BCW and are used for training in this
study. The number in each of morphological classes described in Section 2 is given. The total number of clusters with detection in at
least four filters (a requirement for inclusion in the training and testing) are also given in the last row of the table. 80% of the latter are
used for training, and the remaining 20% are reserved for testing. Distances compiled by (Calzetti et al. 2015) are listed.

Field D (Mpc) Class1 Class2 Class3 Class 4

NGC1559 19.0 302 252 162 710

Table 2. Number of sources in the PHANGS-HST observation of NGC 1559 which have been classified by BCW. This cluster sample
is used to test the neural networks trained with the data described in Table 1 as a proof-of-concept for production scale classification of

PHANGS-HST compact clusters and associations.

To investigate whether networks trained in this man-
ner can be used to automate classification of star clusters in
the PHANGS-HST dataset in the future, we test the net-
works on the first observations obtained by PHANGS-HST
of the spiral galaxy NGC 1559. NGC 1559 is about twice
as distant as the most distant galaxy in the training sam-
ple. The PHANGS-HST NGC1559 observations provide 302,
252, 162, and 710 class 1, 2, 3, 4 objects, as determined by
BCW (Table 1).

The available star cluster data sets are small and un-
balanced (different number of images for each class), com-
pared to the datasets used to successfully train state-of-the-
art neural network models for image classification. Thus, we
use two neural network models, VGG19 (Simonyan & Zis-
serman 2014a) with batch normalization (VGG19-BN) and
ResNet18 (He et al. 2016), pre-trained with the ImageNet
dataset (see Section 1), and then use deep transfer learning
to leverage the knowledge of these models to classify real-
object images to our task at hand, namely, the morphological
classification of star clusters.

As input for the neural network training, we use cutouts
from HST imaging obtained by LEGUS together with the clas-
sifications provided by BCW. LEGUS obtained WFC3 ob-
servations in 2013-2014 (GO-13364; PI Calzetti), and com-
bined those data with ACS data taken in previous cy-
cles by other programs to provide NUV-U-B-V-I coverage
for a sample of 50 galaxies. The Ha-LEGUS follow-up pro-
gram (GO-13773; PI Chandar) obtained additional imag-
ing in a narrow-band filter covering the Ha emission-line
(F657N) and a medium-band filter sampling line-free con-
tinuum (F547M) for the 25 galaxies with the highest star
formation rates, but we note that the Ha data are not used in

MNRAS 000, 1-13 (2019)

this work. Training and testing are based on HST broadband
imaging in the NUV, U, B, V, and I filters. Sample images
are presented in the last five columns of Figure 1. Including
the nebular gas emission captured by the Ha imaging in the
training can be explored in future work.

As of July 2019, BCW classifications for 5 of the 10
HST fields used here (Table 1) are available from the LEGUS
public archive hosted by MAST?. Additional classifications
performed by other LEGUS team members are publicly avail-
able for an additional 29 fields. In this work, we opt to only
use the BCW dataset for two reasons. First, it represents a
more homogeneous set of classifications, and internal consis-
tency of the classifications is crucial for successful training
of the networks. Moreover, the galaxies examined by BCW
are more similar in star formation properties to those in
the HST-PHANGS sample, to which we will apply deep learn-
ing techniques at production-scale. The HST-PHANGS sample
primarily contains star-forming spiral galaxies with stellar
masses greater than ~ 1010M@, whereas most of the ad-
ditional galaxies which have LEGUS classifications are dwarf
galaxies (Cook et al. 2019). 17/50 of the LEGUS galaxies can
be considered to be dwarf galaxies. Consequently, another
difference between the LEGUS and PHANGS-HST samples
is that the PHANGS-HST galaxies are roughly twice as dis-
tant.

PHANGS-HST began observations on April 6, 2019 and
is also obtaining observations in the NUV-U-B-V-I filters.
The first galaxy to be observed is NGC 1559, at a distance

2 https://archive.stsci.edu/prepds/legus/
dataproducts-public.html
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Figure 2. Comparisons between star cluster candidate classifica-
tions made by BCW and the mode of classifications made by three
other LEGUS team members (trained by BCW and Angela Adamo)
provided in the LEGUS public star cluster catalog for NGC 4656.
Each panel shows the distribution of classifications given in the
LEGUS catalog for BCW labelled class 1 (top, symmetric compact
clusters), class 2 (upper middle, asymmetric compact clusters),
class 3 (lower middle, compact associations) and class 4 (bottom,
non-clusters) objects.

of 19 Mpc (A. Reiss, private communication), and we use
BCW classifications for clusters in that galaxy for testing.

Bearing in mind that the VGG19-BN and ResNet18 mod-
els used in this study were pre-trained with the ImageNet
dataset, in which images are resized to 299 x 299 x 3, we
follow best coding practices of neural network training, and
curate our datasets so that star cluster images have size
299 x 299 pixels.

Given that the clusters subtend only a several to a dozen
HST WFC3 pixels, we focus the training on a small area (see
Figure 1). The central 50 x 50 pixels of the multi-extension
fits (MEFs) are resized to fit in an 299 x 299 pixel area
for the training. With WFC3’s pixel size of .04 arcseconds,
each postage stamp corresponds to a physical width between
~40-100pc for our sample of galaxies. Testing whether the
size of the cropped HST image influences the accuracy can
be explored in future work.

Procedurally, from the HST mosaics, a 50 x 50 pixel
fits image (i.e., a “postage stamp”) centered on each target
cluster is cropped from each of the NUV-U-B-V-I bands.
The five resultant stamps for each cluster are then stored in

individual header data units (HDUs) within a single MEF
file. We note that if there was no observation of the cluster
in one of the filters, all pixel values for that particular filter’s
postage stamp were set to zero. If there was no observation
in more than one filter, the cluster was removed from our
sample.

We also introduce other modifications to our neural net-
work models, described in more detail below, such that we
can input these 299 x 299 x 5 MEFs, and output probability
distributions for four classes of images.

3.2 Neural network models

As mentioned before, we use two neural network architec-
tures, VGG19-BN and ResNet18. These models have 3 input
channels. However, since our images have 5 input channels
available, we concatenate two copies of the same neural net-
work architecture. The merged neural networks would have 6
input channels in total, so we set the input to the last chan-
nel to be constant zeros. We also apply one more matrix
multiplication and an element-wise softmax function (see
Appendix A) (Goodfellow et al. 2016) to make sure that
for each image the output is a vector of size 4, representing
the probability distribution over the 4 classes under con-
sideration. We choose this particular combination given its
simplicity and its expected performance for image classifica-
tion.

Furthermore, following deep learning best practices, we
quantify the variance in classification performance of our
models by training them ten times independently and then
presenting the mean accuracies and the corresponding stan-
dard deviations. We also compute the Shannon entropy
Shannon (1948) of the output distribution over the four star
cluster classes to quantify the uncertainty in each individual
neural network model’s prediction.

3.3 Training Experiments

To attain state-of-the-art classification accuracies with a
star cluster data set that has just a few thousand images,
we transfer the knowledge of VGG19-BN and ResNet18 for
real-object recognition—which were trained with millions
of high-quality, human-labelled, real-object images in the
ImageNet dataset—for star cluster classification®. We use
the pre-trained weights, except those for the last layers, of
VGG19-BN and ResNet18 provided by PyTorch (Paszke et al.
2017) as the initial values for the weights in our models. The
weights for the last layers in VGG19-BN and ResNet18 and the
last fully connected layers are randomly initialized. We use
cross-entropy as the loss function? and Adam (Kingma & Ba
2014) for optimization. The learning rate is set to 10~%. The
batch size for ResNet18 is 32, and for VGG19-BN is 16.

To fine-tune our neural network models through trans-
fer learning, we use 80% of the BCW dataset in Table 1,

3 A brief overview of transfer learning is presented in Ap-
pendix B.

4 A loss function is used to evaluate and diagnose model op-
timization during training. The penalty for errors in the cross-
entropy loss function is logarithmic, i.e., large errors are more
strongly penalized.

MNRAS 000, 1-13 (2019)



and reserve the rest for testing. Absolute values of pixels are
rescaled to be in the range [0, 1], to avoid the brightness of
the sources from becoming a parameter in the classification.
During training we use several standard data augmentation
strategies, such as random flips, and random rotations in
the range [0, 27r] to make sure that the trained neural net-
works are robust against those transformations. Taking into
account the batch sized mentioned above for ResNet18 and
VGG19-BN, and bearing in mind that we trained the models
using about 10,000 batches, this means that the nets were
exposed to 320,000 and 160,000 images, respectively. Note,
however, that the data augmentation techniques used dur-
ing the training stage may produce very similar images to
the actual star cluster images curated for this analysis.

4 RESULTS

We present four sets of results in this section. In Section 4.1,
we present the classification accuracy for the four categories
of star clusters candidates relative to the BCW determi-
nations, and quantify the robustness of our neural network
models to generalize to star cluster images in different galax-
ies, choosing the galaxy NGC 1559 as the driver of this ex-
ercise as discussed above. In Section 4.2, we determine the
relative importance of different filters for image classification
in our deep learning model, and in Section 4.3, we present
the uncertainty quantification analysis of those models.

4.1 Classification Accuracy

First, we quantify the performance of our models for classi-
fication accuracy when we fine-tune the models from scratch
ten times to determine whether the transfer learning was ef-
fective at learning the morphological features that tell apart
the four classes of star clusters, and to assess the robustness
of the optimization procedure for image classification. These
results are summarized in Figure 3, which presents the mean
classification accuracy averaged over the ten models.

The variance in the ten independent classification mea-
surements provide another measure of the robustness of the
models. We present results for the classification accuracy ob-
tained by our neural network models, and the correspond-
ing variance, in Tables 3 and 4. It is worth emphasizing
that these results outperform human-classification results
presented in Figure 2.

To further assess the robustness and resilience of our
neural network models to classify images from galaxies not
included in the original training dataset, we have used an-
other batch of images from PHANGS-HST for testing pur-
poses that correspond to the galaxy NGC 1559. This galaxy
is two to four times further away than any of the images we
used for training or for testing purposes in Tables 3 and 4.
Notwithstanding this significant difference, we notice in Ta-
bles 5 and 6 that our neural network models still outperform
human classification results, furnishing evidence for the suit-
ability of neural network models for automated classification
of PHANGS-HST sources at production-scale.

In sum, all of our classification algorithms outperform
agreement in human comparisons as determined in Sec-
tion 2.1 and illustrated in Figure 2. Tables 3 (5) and 4 (6)
are very similar, showing that ResNet18 and VGG19-BN are

MNRAS 000, 1-13 (2019)

Deep Learning for Star Cluster Classification 7

roughly equal in their performance. The numbers are slightly
lower for categories 2 and 3 for the PHANGS galaxy NGC
1559.

4.2 Classification accuracy as a function of input
data

We have also quantified what filter has the leading con-
tribution for classification accuracy. To do so, we perform
the following experiment: using NGC 1559 images as testing
dataset, we produced five different testing datasets in which
one filter was set to zero. We then fed these 5 different test-
ing datasets, one at a time, in our neural network models
and quantified which missing filter leads to the most signif-
icant drop in classification accuracy. As shown in Figure 4,
the key filter is F555W.

This finding is expected, since the BCW human classifi-
cations primarily rely on the F555W image (e.g., using DS9
and imexamine), with color images (F814, F555, F336W)
generated by the Hubble Legacy Archive providing support-
ing morphological information. Therefore, our neural net-
work models seem to use insights similar to human vision to
classify star cluster images.

4.3 TUncertainty quantification

Having demonstrated that using different initial conditions
for the training of our models produces consistent classifica-
tion results, which is accomplished by training our models
multiple times, in this section we address a complementary
issue, that of uncertainty in the models’ predictions.

A common method to address this is through the com-

putation of entropy, which is done by using the output of our
models, that consists of probability distributions for each
of the cluster classes we are trying to classify. Intuitively,
the more pronounced the peak is in the distribution, the
more confident the neural network is about its prediction,
and in this case, the entropy calculated from the prediction
probability distribution will be lower. For example, if the
probability distribution is only concentrated on one class,
the network network in this case is 100% certain about its
prediction and the entropy would be zero, i.e., there is no
uncertainty in the prediction. On the other hand, if the pre-
diction assigned the same probability for all the 4 classes
under consideration equally, we would have maximum un-
certainty in this case, since for the given input image, all the
4 classes are equally possible to be the predicted class, and
in this case, the maximum entropy is In4 ~ 1.39. Figure 5
shows the distribution of the entropies for the predictions of
VGG19-BN when tested on NGC 1559 images.
Figure 5 is a reflection of the classification accuracies re-
ported before, i.e., while our neural network models ex-
ceed the baseline for human classification established in
Section 2.1, there is still a lot of work ahead to construct
standardized datasets that may be used to further increase
the classification accuracy of the models we have introduced
herein. In that scenario, we would expect the entropy dis-
tributions presented in Figure 5 to be skewed even more
towards entropy values around zero.



8 Wei Wei et al.

ResNet1l8 — LEGUS Galaxies VGG19-BN — LEGUS Galaxies

14950 179 1.7 44 os0  14WAUCN 230 1.1 5.0 250
_ 200 — 200
T21194 582 7.9 146 T2{133 638 94 136
© 150 = 150
g g
23{ 03 163 59.9 234 | loo ©31 05 140 598 256 100
41 70 69 152 HK 150 4] 65 81 16.3 LK 50
NN N S
Predicted label Predicted label
ResNet1l8 — NGC 1559 VGG19-BN — NGC 1559
1{728 112 1.4 146 200 BVEEE 104 31 127 250
400 500
24238 381 9.0 292 24209 423 133 235
8 300 ®© L 150
g g
23{ 1.0 98 401 491 200 23107 83 522 389 100
4] 46 65 141 100 4161 83 183 KNE 50
N oo N oo N

Predicted label Predicted label

Figure 3. Top panels: prediction of ResNet18 (left panel) and VGG19-BN (right panel) on data in Table 1, averaged over 10 models. Each
row shows the averaged predictions for a particular class, and the number of ground truth images for that same class. Bottom lefts: as
above panels but now using observations of spiral galaxy NGC 1559 obtained by the PHANGS-HST program. As before, results were
obtained after averaging over 10 models. Note that in these confusion matrices each row corresponds to a predicted class, whereas each

column corresponds to an actual class. Correct classification results are organized in a diagonal line from top left to bottom-right of the
matrices.

Class 1 [%] Class 2 (%] Class 3 [%] Class 4 [%] Total
Class 1 76.0+ 4.2 17.94+ 4.4 1.7£0.7 4.4+1.4 254
Class 2 19.4 +3.5 58.2+5.3 7.943.5 14.6+3.0 202
Class 3 0.3 £0.5 16.3+5.4 59.94+6.8 23.4+5.6 147
Class 4 7.0+2.1 6.94+2.9 15.2+3.1 70.9+4.8 425

Table 3. Prediction of ResNet18 on data in Table 1, averaged over 10 models. Each row shows the averaged predictions and standard
deviations for a particular class and the number of ground truth images for that same class. For reference, compare bold numbers across

the diagonal with human classification results: 66%
human performance as determined in Section 2.1.

5 DISCUSSION & CONCLUSIONS

2 37% :

40% :

Using a homogeneous dataset of human-labeled star cluster
images, we have leveraged a new generation of deep learn-
ing models for morphological classification of compact star
clusters in nearby galaxies to distances of ~ 20 Mpc. These

61%. The agreement reported here is higher than the agreement in

results are very promising. Despite training with small and
unbalanced datasets, we have demonstrated that deep learn-
ing can be successfully be used to automate classification of
star cluster candidates identified in HST UV-optical imaging
being obtained by PHANGS-HST. This is a milestone in the
use of deep learning for this area of research, and progress

MNRAS 000, 1-13 (2019)
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Figure 4. Left column: ResNet model classification results when the indicated filter is removed from the composite image. Right column:
as before, but now for VGG19-BN.
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Class 1 [%] Class 2 [%] Class 3 [%] Class 4 [%] Total
Class 1 70.9+6.2 23.0+4.8 1.1£0.7 5.0+1.9 254
Class 2 13.3+4.3 63.84+4.8 9.4+2.9 13.6£3.6 202
Class 3 0.5£0.7 14.04+6.3 59.8+7.5 25.6+£7.4 147
Class 4 6.5+2.4 8.1+2.6 16.3£3.8 69.11+6.8 425

Table 4. As Table 3, but now using VGG19-BN with batch normalization.

Class 1 [%] Class 2 (%] Class 3 [%] Class 4 [%] Total
Class 1 72.8£ 7.6 11.24 3.8 1.4+0.6 14.6£5.1 302
Class 2 23.84+4.3 38.1+5.9 9.0+4.0 29.244.7 252
Class 3 1.0+0.5 9.8+4.2 40.1+7.1 49.14£6.1 162
Class 4 4.6+14 6.5+1.8 14.1£3.1 74.8+3.5 710

Table 5. Prediction of ResNet18 on observations of spiral galaxy NGC 1559 obtained by the PHANGS-HST program, averaged over 10
models. Each row shows the averaged predictions and standard deviations for a particular class and the number of ground truth images

for that same class. This experiment was performed to quantify the ability of this neural network model to generalize to new types of
images, using a new, more distant PHANGS galaxy which is roughly twice as far away as any of the LEGUS galaxies in Table 1. We notice
that even for this test case, deep learning outperforms human classification results as determined in Section 2.1: 66% : 37% : 40% : 61%.

Class 1 [%] Class 2 (%] Class 3 [%] Class 4 [%] Total

Class 1  73.8%£4.8 10.4£3.5 3.1£1.3 12.7+4.4 302

Class 2 20.9+6.4 42.3+7.9 13.3£2.6 23.5+8.0 252

Class 3 0.71+0.6 8.3+3.3 52.2+5.9 38.9+7.5 162

Class 4 6.1+£2.4 8.3£3.3 18.3+3.0 67.31+6.8 710
Table 6. As Table 5, but now using VGG19-BN with batch normalization. As before, this neural network model outperforms human

classification.

Entropy distribution for NGC1559 clusters appears to be good (i.e., between 60 - 70% by infer-
161 ence from their Table 3), recovery of class 3 clusters is poor,
c — g::zz ; with an apparently significant anti-correlation. Their ML al-
2 1.41 1 Class 3 gorithm only identifies 47 objects in the sample as class 3
[ Class 4 when 1240 would be predicted based on the 14.7% fraction

0 |“|—’_|‘|_‘|_

0.6
0.4+

0.2
0.0 T T . .

00 02 04 06 08 10 12 14
Entropy

Normalized distribut
o
[e0]

Figure 5. The uncertainty in our neural network’s prediction is
quantified by the entropy of the predicted probability mass distri-
bution over the 4 classes. For a random guess over the 4 classes,
the entropy is In4 ~ 1.39. The lower the entropy, the higher the
confidence the neural network has about its prediction. The figure
shows the distribution of the entropies for the predictions made
by one trained VGG19-BN model on NGC1559.

from early machine learning experiments reported in Messa
et al. (2018). Messa et al. (2018) experimented with the use
of an ML algorithm for classifying the approximately ten
thousand clusters in the spiral galaxy M51, based on a hu-
man classified training set with approximately 2500 clusters
from the LEGUS sample. While the recovery of class 1 and 2

of class 3 objects in the human-labeled training set. Because
of this, the Messa et al. (2018) Messa paper focused on class
1 & 2 objects for their analysis of cluster properties. In com-
parison, the recovery rates of the DL models presented here
are at about 70%, 60%, 60%, and 70% for the class 1, 2, 3,
4 objects respectively.

We have conducted a detailed analysis of our results, us-
ing different neural network architecture, and multiple train-
ing sweeps for each model, to furnish evidence for the robust-
ness of our results. We have also demonstrated that our deep
learning algorithms can successfully classify star cluster can-
didate images from more distant galaxies not included in the
training set.

In particular, our work motivates the development of
a standardized dataset of human-labelled star cluster clas-
sifications, with classifications agreed upon by a range of
experts in the field, which would be used as the basis for
future network training. For this proof of concept experi-
ment, we have opted to use classifications determined by
a single expert (BCW). Our primary concern here is the
internal consistency of the classifications, which is crucial
for proper training, validation, and testing of the network,
rather than whether the classifications are broadly agreed
upon by experts in the community. The latter is of course a
critical issue, but to make progress we have decoupled the
issues for this study. A review of differences in star clus-
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ter definitions between research groups, and their impact on
conclusions about star cluster formation and evolution, can
be found in Krumholz et al. (2018). To leverage upon deep
learning techniques to not only rapidly produce reliable clas-
sifications and speed the time to science, but to significantly
advance the field of star cluster evolution requires that deep
learning networks be trained on such standardized datasets
and broadly adopted by workers in the field. In the near
future, this effort would benefit from a classification chal-
lenge, where experts can come to detailed agreement on the
morphological features that constitute the criteria for clas-
sification, and explicitly describe where they disagree and
why.

With this study we open a new chapter to explore in
earnest the use of deep learning for the classification of very
large datasets of star cluster galaxies in ongoing and fu-
ture electromagnetic surveys, and application to the new
PHANGS-HST data being obtained now.
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APPENDIX A: STATISTICAL FOUNDATIONS
OF DEEP LEARNING CLASSIFIERS

Within the framework of statistical learning, an image X
can be modeled as a random matrix that takes value in set
X, and the corresponding class can be treated as a random
variable Y that takes value in set Y. Since we use 299 x 299
images with 5 channels, we treat a cluster image as random
matrix of size 299 x 299 x 5. Similarly, as we are trying to
classify the images into 4 classes, Y is a discrete random
variable that takes values in Y with cardinality |Y]| = 4.

We assume that the star images and the correspond-
ing class labels follow some unknown but fixed joint prob-
ability distribution, with the probability density function
(pdf) fxyz,y. We also use Ay to denote set of all possi-
ble distribution over Y. Since in our case, |Y| = 4, we have
Ay =A{m=m1, 72,73, T4 : ?:17%‘ =1,7; >0,Vi € 4}

Under these conventions, the goal of classification is to
find a classifier or function h : X — Ay that minimizes the
expectation of the cross entropy between the predicted and
the ground truth probability mass distribution (pmf) over
the classes given the input image X, namely,

Lh = BHLX, fy|x-|X (A1)
= HhX, fy|x |z fxzdz, (A2)

where fxx is the marginal distribution of X over X', and H
is the cross entropy between the predicted and the ground

truth pmf over classes,

th,fy‘y-|x =— :1 fy|XY = i|z loghx;, (A3)
and the fy|xylz is the conditional distribution of Y given
X.

In most cases, we only know the empirical distribution
fxyz,yof X,Y and fy|xy|z of Y, which are determined by
the empirical data. So the quantity we can directly minimize
is

Lh=EHhx-, fyx-|X (A4)
= Hha, fy|x-|zfxzdz, (A5)

In practice, if the choice of h- is arbitrary, then finding an op-
timal solution is computationally unfeasible. Therefore, we
often restrict the searching space to a class of parameterized
functions, hw-, where w is a vector of parameters. In this
case, the optimization problem can be posed as

w* = argmin Lhw . (A6)
w

The choice of the parameterized function class is critical

to the success of any statistical learning algorithm. In re-

cent years, a deep-layered structure of functions has received

much attention (LeCun et al. 2015; Goodfellow et al. 2016),

th = hwn hwn,l e hw1 X, (A7)

where n is the number of layers or the depth. Usually, we
choose, hw,;x = gw;x, where w; is a matrix, x is an input
vector, and g¢- is a fixed non-linear function, e.g., max{-,0}
(also known as ReLU), tanh-, etc, that is applied element-
wise. For the classification problems, we usually apply the so-
called softmax function after the last linear transformation.
The softmax function on a vector x is a normalization after
an element-wise exponentiation,

expT;

n

softmaxx; = ————,
i=1 XPT;

Vi=1,..,n, (A8)
where n is the length of x.

This function class and its extensions, also dubbed neu-
ral networks, combined with simple first-order optimization
algorithms such as stochastic gradient descent (SGD), and
improved computing hardware, has lead to disruptive ap-
plications of deep learning (LeCun et al. 2015; Goodfellow
et al. 2016).

APPENDIX B: DEEP TRANSFER LEARNING

In practice, Eq. A6 is usually iteratively solved by using
variants of SGD. Thus, the choice of initial value for weights
w is critical to the success of the training algorithm. If we
have some prior knowledge about what initial wights wyq
works better, then it is highly possible that the numerical
iteration can converge faster and return better weights w.
This is the idea behind deep transfer learning (Bengio 2011,
Goodfellow et al. 2016).

For a deep learning neural network, such as the one
defined by Eq. A7, the layered structure can be intuitively
interpreted as different levels of abstraction for the learned
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features. In other words, layers that are close to the input
learn lower-level features, such as different shapes and curves
in the image, and layers that are close to the final output
layer learn higher-level features, such as the type of the in-
put image. Suppose we have a trained model that works well
in one setting, with probability distribution f)lﬂf, and now
we would like to train another model in a different setting,
with with probability distribution f)%y. If the images drawn
from the distributions f)l(y and f)2(Y share some features,
then it is possible to transfer weights from the model trained
on images sampled from f)lfy, to the model that we would
like to train, using images sampled from f)z(y, with the as-
sumption that the weights from the model trained on images
sampled from f)l(y, can also be useful in extracting features
from images drawn from the distribution f)Q(y. So, instead of
training the second model from scratch, we can initialize the
weights of the second model to those of the first model that
we trained in a different setting (e.g., distribution f }(Y), and
utilize the common features we have already learned in the
previous setting.

This paper has been typeset from a TEX/IATEX file prepared by
the author.
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