Catalytic Asymmetric γ-Alkylation of Carbonyl Compounds via Stereoconvergent Suzuki Cross-Couplings

Susan L. Zultanski and Gregory C. Fu*
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139

Supporting Information

Table of Contents

I. General Information S-1
II. Preparation of Electrophiles S-1
III. Preparation of Nucleophiles S-7
IV. Catalytic Asymmetric γ-Alkylation of Carbonyl Compounds S-8
V. Transformation of the Cross-Coupling Products S-16
VI. Determination of Absolute Configuration S-18
VII. Determination of Enantiomeric Excess S-35
VIII. ${ }^{1}$ H NMR Spectra S-69

I. General Information

The following reagents were purchased and used as received: $9-\mathrm{BBN}$ dimer (Aldrich), $\mathrm{NiBr}_{2} \bullet$ diglyme (Aldrich; note: hygroscopic), ligands (R, R)-1 and (S, S)- $\mathbf{1}$ (Acros, Aldrich), KOt-Bu (Aldrich), n-hexanol (anhydrous; Aldrich), $\mathrm{Et}_{2} \mathrm{O}$ (anhydrous; Aldrich), and hexanes (anhydrous; Aldrich). The 1-alkenes (precursors to the nucleophiles) were purchased (Aldrich or Alfa Aesar) and purified by flash chromatography prior to use, or they were prepared according to literature procedures.

All reactions were carried out in oven-dried glassware under an atmosphere of nitrogen.
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data were collected on a Bruker Avance 400 spectrometer at ambient temperature. HPLC analyses were carried out on an Agilent 1100 series system with Daicel CHIRALCEL® columns (internal diameter 4.6 mm , column length 250 mm , particle size 5μ). SFC analyses were carried out on an SFC ProNTo system with Daicel CHIRALCEL® columns (internal diameter 4.6 mm , column length 250 mm , particle size 5μ).

II. Preparation of Electrophiles

The procedures and yields have not been optimized.

General Procedure A: Preparation of lactones. Anhydrous THF (170 mL) and then methyl 4 -oxobutanoate ($3.0 \mathrm{~g}, 24 \mathrm{mmol}$; Aldrich) were added to an oven-dried round-bottom flask. The reaction mixture was cooled to $-78^{\circ} \mathrm{C}$, and the alkyl Grignard reagent (1.0 equiv) was added dropwise to the stirred solution. The reaction mixture was allowed to warm to room temperature and then stirred for 1 hour. Next, the reaction was quenched by the addition of water (5 mL). A saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(60 \mathrm{~mL})$ was then added to the reaction mixture, which was stirred until it was homogeneous. The mixture was transferred to a separatory funnel, and the product was extracted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL} \times 2)$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. The combined organic extracts were washed with brine ($100 \mathrm{~mL} \times 2$), dried over magnesium sulfate, filtered, and concentrated to yield the γ-lactone, which was purified by flash chromatography with $10 \rightarrow 60 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes.

5-Phenethyldihydrofuran-2(3H)-one. General Procedure A was followed using phenylethylmagnesium chloride ($24 \mathrm{~mL} ; 1.0 \mathrm{M}$ in THF; Aldrich), which furnished the lactone as a colorless oil $(3.76 \mathrm{~g}, 83 \%)$. The spectral data match those described in the literature. ${ }^{1}$

5-Isobutyldihydrofuran-2(3H)-one. General Procedure A was followed using isobutylmagnesium chloride ($12 \mathrm{~mL} ; 2.0 \mathrm{M}$ in THF; Aldrich), which furnished the lactone as a colorless oil $(2.15 \mathrm{~g}, 66 \%)$. The spectral data match those described in the literature. ${ }^{2}$
(1) Cossy, J.; Bargiggia, F.; Bouzbouz, S. Org. Lett. 2003, 5, 459-462.
(2) Pollack, J. A.; Clark, K. M.; Martynowicz, B. J;; Pridgeon, M. G.; Rycenga, M. J.; Stolle, K. E.; Taylor, S. K. Tetrahedron: Asymmetry 2007, 18, 1888-1892.

General Procedure B: Preparation of 3- and 4-chloro- \mathbf{N}, \mathbf{N}-diphenylamides. ${ }^{3 / 4}$ Anhydrous ZnCl_{2} (180 mg , 1.3 mmol note: hygroscopic) was added to an oven-dried two-neck roundbottom flask, which was then capped with a septum and purged with nitrogen. Thionyl chloride ($2.4 \mathrm{~mL}, 33 \mathrm{mmol}$) was added to the flask, followed by the lactone (30 mmol). The reaction mixture was stirred at $55^{\circ} \mathrm{C}$ for 24 h , during which time it turned dark-brown and became viscous. The excess thionyl chloride was removed under reduced pressure, and the acid chloride was used in the next step without further purification.

The two-neck flask containing the acid chloride was equipped with a reflux condenser and purged with nitrogen. Next, anhydrous benzene (100 mL) and then the diarylamine (33 mmol) were added. The reaction mixture was refluxed for 6 h , and then it was allowed to cool to room temperature. Brine (100 mL) was added, and the mixture was transferred to a separatory funnel. The layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$. The combined organic layers were washed with brine (100 mL), dried over magnesium sulfate, filtered, and concentrated to yield the γ - or δ-chloro- N, N-diarylamide. The product was purified by reverse-phase flash chromatography on C-18 silica gel with $10 \rightarrow 100 \%$ acetonitrile/ water, followed by normal-phase flash chromatography on silica gel with $10 \rightarrow 70 \%$ $\mathrm{Et}_{2} \mathrm{O}$ /hexanes, which furnished pure γ - or δ-chloro- N, N-diarylamide (alternatively, if the acid chloride is distilled prior to its use in the second step, purification by reverse-phase column chromatography is unnecessary). The products are stable for at least 6 months when stored under an inert atmosphere at $0^{\circ} \mathrm{C}$.

4-Chloro- N, N-diphenylpentanamide. The amide was prepared according to General Procedure B, using γ-valerolactone and diphenylamine. White solid ($5.14 \mathrm{~g}, 60 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.33-7.22(\mathrm{~m}, 10 \mathrm{H}), 4.13-4.05(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.14(\mathrm{~m}$, $1 \mathrm{H}), 1.93-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~d}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 172.1,142.7,130.0-125.0$ (broad), 58.3, 35.7, 32.4, 25.6.
FT-IR (film) 3062, 2973, 2926, 1672, 1593, 1492, 1380, 1351, 1291, 756, $702 \mathrm{~cm}^{-1}$.
MS (EI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{ClNO}: 288$, found: 288.
(3) Reppe, W. et al. Annalen der Chemie, Justus Liebigs 1955, 596, 158-224.
(4) Wise, L. D.; Pattison, I. C.; Butler, D. E.; DeWald, H. A.; Lewis, E. P.; Lobbestael, S. J.; Nordin, I. C.; Poschel, B. P. H.; Coughenour, L. L. J. Med. Chem. 1985, 28, 606-612.

4-Chloro- N, N-diphenylhexanamide. The amide was prepared according to General Procedure B, using γ-caprolactone and diphenylamine. White solid ($6.02 \mathrm{~g}, 67 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.33-7.23(\mathrm{~m}, 10 \mathrm{H}), 3.91-3.88(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.23(\mathrm{~m}$, $1 \mathrm{H}), 2.01-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.76(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 172.2,142.7,129.7-126.4$ (broad), 65.2, 33.6, 32.4, 31.9, 11.0.
FT-IR (film) $3063,2969,2936,2878,1673,1594,1492,1452,1381,1272,1162 \mathrm{~cm}^{-1}$.
MS (EI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{ClNO}$ 302, found: 302.

4-Chloro- N, N-diphenyloctanamide. The amide was prepared according to General Procedure B, using γ-octanoic lactone and diphenylamine. White solid ($5.50 \mathrm{~g}, 56 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.33-7.23(\mathrm{~m}, 10 \mathrm{H}), 3.95-3.93(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.18(\mathrm{~m}$, $1 \mathrm{H}), 1.86-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.24(\mathrm{~m}, 3 \mathrm{H}), 0.86(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2$ Hz).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 172.2,142.7,128.7-126.4$ (broad), 63.7, 38.5, 33.9, 32.3, 28.6, 22.3, 14.0.
FT-IR (film) 2957, 2871, 2360, 1674, 1594, 1492, 1379, 1280, 756, $701 \mathrm{~cm}^{-1}$.
MS (EI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{ClNO}: 330$, found: 330 .

4-Chloro-N,N-6-triphenylhexanamide. The amide was prepared according to General Procedure B, using 5-phenethyldihydrofuran-2(3H)-one and diphenylamine. White solid (3.89 g, 52\%).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.34-7.14(\mathrm{~m}, 15 \mathrm{H}), 3.94-3.90(\mathrm{~m}, 1 \mathrm{H}), 2.84-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.69(\mathrm{~m}$, 1H), 2.46-2.43 (m, 2H), 2.22-2.20 (m, 1H), 2.02-1.92 (m, 3H).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 172.1,142.7,141.1,130.0-125.0$ (broad), 128.53, 128.50, 126.1, 62.7, 40.5, 34.0, 32.7, 32.2.

FT-IR (film) 3027, 2921, 2360, 2340, 1670, 1593, 1492, 1381, 1293, 1158, $700 \mathrm{~cm}^{-1}$.
MS (EI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{ClNO}$: 378, found: 378.

4-Chloro-6-methyl- N, N-diphenylheptanamide. The amide was prepared according to General Procedure B, using 5-isobutyldihydrofuran-2(3H)-one and diphenylamine. White solid ($2.40 \mathrm{~g}, 48 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.34-7.23(\mathrm{~m}, 10 \mathrm{H}), 4.02-4.00(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.18(\mathrm{~m}$, $1 \mathrm{H}), 1.88-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.41(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}), 0.85(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}$ $=6.4 \mathrm{~Hz}$).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 172.2,142.7,130.0-125.0$ (broad), $61.8,47.9,34.2,32.3,25.3,23.0,21.4$.
FT-IR (film) 2957, 2360, 1674, 1491, 1381, 1270, 756, $701 \mathrm{~cm}^{-1}$.
MS (EI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{ClNO}$: 330, found: 330 .

4-Bromo- \mathbf{N}, \mathbf{N}-diphenylhexanamide. ${ }^{5}$ In accordance with a literature procedure, ${ }^{6} \gamma$ caprolactone ($8.0 \mathrm{~g}, 70 \mathrm{mmol}$) was added to a round-bottom flask that contained HBr in AcOH ($70 \mathrm{~mL} ; 30 \%$ in AcOH). The flask was equipped with a reflux condenser, and the reaction mixture was stirred at room temperature for 2 hours and then at $70^{\circ} \mathrm{C}$ for 5 hours. Next, the mixture was allowed to cool to room temperature, and then the AcOH was removed by rotary evaporation. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and a solution of saturated sodium thiosulfate (50 mL) were then added, and the mixture was transferred to a separatory funnel, where the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL} x 2)$, and the combined organic layers were washed with brine (50 mL), dried over magnesium sulfate, filtered, and concentrated to furnish 4-bromohexanoic acid (light-red oil). The product was used in the following step without further purification.

Anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(240 \mathrm{~mL})$ and then oxalyl bromide (20.4 g , 94.5 mmol ; Aldrich) were added to an oven-dried round-bottom flask under nitrogen. The solution was cooled to $0{ }^{\circ} \mathrm{C}$, and the unpurified 4-bromohexanoic acid (13.7 g , 70.1 mmol) was added. Next, DMF (1.1 mL , 14 mmol) was added dropwise, and the reaction was monitored at $0^{\circ} \mathrm{C}$ for 2 h , at which time gas evolution ended. The reaction mixture was concentrated to remove the excess oxalyl bromide and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, affording 4-bromohexanoyl bromide, which was used without purification in the next step.

The flask was equipped with a reflux condenser and purged with nitrogen. Anhydrous benzene (240 mL) was added, followed by diphenylamine ($11.8 \mathrm{~g}, 69.7 \mathrm{mmol}$). The reaction mixture was refluxed for 6 h , and then it was allowed to cool to room temperature. The mixture
(5) Wise, L. D.; Pattison, I. C.; Butler, D. E.; DeWald, H. A.; Lewis, E. P.; Lobbestael, S. J.; Nordin, I. C.; Poschel, B. P. H.; Coughenour, L. L. J. Med. Chem. 1985, 28, 606-612.
(6) Sashida, H.; Nakayama, A.; Kaname, M. Synthesis 2008, 3229-3236.
was transferred to a separatory funnel, and brine (100 mL) was added. The layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$. The combined organic layers were washed with brine ($50 \mathrm{~mL} \times 2$), dried over magnesium sulfate, filtered, and concentrated. The product was purified by flash chromatography ($10 \rightarrow 70 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes), which furnished 4-bromo-N,N-diphenylhexanamide as a white solid ($15.0 \mathrm{~g}, 62 \%$ over three steps). This compound is stable for at least 3 months when stored under an inert atmosphere at $0^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.33-7.23(\mathrm{~m}, 10 \mathrm{H}), 4.06-4.02(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.18(\mathrm{~m}$, $1 \mathrm{H}), 1.88-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.54(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 172.0,142.6,130.6-125.5$ (broad), 60.0, 34.2, 34.5, 32.6, 12.1.
FT-IR (film) 3061, 2969, 1672, 1593, 1492, 1452, 1381, 1271, 756, $702 \mathrm{~cm}^{-1}$.
MS (EI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{BrNO}: 346,348$, found: $346,348$.

5-Chloro- N, N-diphenylhexanamide. The amide was prepared according to General Procedure B, using δ-hexalactone and diphenylamine. White solid ($3.70 \mathrm{~g}, 41 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.34-7.23(\mathrm{~m}, 10 \mathrm{H}), 3.91-3.88(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.18(\mathrm{~m}$, $1 \mathrm{H}), 1.88-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.00-0.96(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 172.2,142.7,129.3-126.4$ (broad), 65.2, 33.6, 32.4, 31.9, 11.0.
FT-IR (film) 3062, 3038, 2969, 2936, 1673, 1594, 1492, 1452, 1381, 1272, $1162 \mathrm{~cm}^{-1}$.
MS (EI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{ClNO}$ 302, found: 302.

4-Chloro- N-methoxy- N-methylhexanamide. The first step was performed as described in General Procedure B.

Next, N, O-dimethylhydroxylamine hydrochloride ($1.9 \mathrm{~g}, 19 \mathrm{mmol}$) and $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ were added to a stirred $0^{\circ} \mathrm{C}$ solution of potassium carbonate ($6.6 \mathrm{~g}, 48 \mathrm{mmol}$) in water (30 mL). Then, 4-chlorohexanoyl chloride ($4.0 \mathrm{~g}, 24 \mathrm{mmol}$) was added dropwise over 5 minutes. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 minutes, and then it was diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$. The layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The combined organic layers were washed with $1 \mathrm{~N} \mathrm{HCl}(30 \mathrm{~mL})$, dried over magnesium sulfate, filtered, and concentrated. The product was purified by flash chromatography with $20 \rightarrow 90 \%$ $\mathrm{Et}_{2} \mathrm{O}$ /hexanes, which furnished the amide as a yellow oil ($2.9 \mathrm{~g}, 79 \%$ yield for step 2). This compound is stable for at least 6 months when stored under an inert atmosphere at $0{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.91-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}), 2.16-$ $2.12(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.01(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 173.3,65.0,61.0,32.5,31.9,31.6,28.6,10.7$.
FT-IR (film) 2969, 1775, 1666, 1417, 1386, 1178, 1120, $994,848,815 \mathrm{~cm}^{-1}$.
MS (ESI / APCI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{ClNO}_{2}$: 194, found: 194.

III. Preparation of Nucleophiles

General procedure for the preparation of B-alkyl-(9-BBN) reagents. In a nitrogen-filled glovebox, the olefin (6.0 mmol ; purified) was added to $9-\mathrm{BBN}$ dimer (3.0 mmol) in a $20-\mathrm{mL}$ vial equipped with a stir bar. $\mathrm{Et}_{2} \mathrm{O}$ was then added to provide a concentration of 1.5 M of the organoborane, and the vial was sealed with a teflon-lined septum cap. The mixture was heated at $40^{\circ} \mathrm{C}$ for 1.5 hours (outside of the glovebox), during which time it became homogenous. The solution was allowed to cool to room temperature. This solution could be stored in a glovebox at ambient temperature for 3 months without noticeable degradation.

Procedure for the preparation of B-phenyl- and B-cyclopropyl-(9-BBN) reagents. These reagents were prepared according to a literature procedure ${ }^{7}$ by reacting phenylmagnesium bromide ($3.0{\mathrm{M} \mathrm{in} \mathrm{Et}_{2} \mathrm{O} \text {; Aldrich) or cyclopropylmagnesium bromide (} 0.5 \mathrm{M} \mathrm{in}_{\mathrm{Et}}^{2} \mathrm{O} \text {; Aldrich) }}^{2}$; with $B-\mathrm{MeO}-(9-\mathrm{BBN})$. The resulting products were purified by distillation.

(Hept-6-en-1-yl)-1H-indole. The title compound was synthesized via a modification of a literature method. ${ }^{8}$ Anhydrous DMF (7 mL) and indole ($1.1 \mathrm{~g}, 9.4 \mathrm{mmol}$) were added to an oven-dried two-neck round-bottom flask under nitrogen. The reaction mixture was cooled to 0 ${ }^{\circ} \mathrm{C}$, and then $\mathrm{NaH}(0.21 \mathrm{~g}, 8.7 \mathrm{mmol})$ was added, followed by the dropwise addition of 7-bromo-hept-1-ene $(2.0 \mathrm{~g}, 11.3 \mathrm{mmol})$. The reaction was warmed to room temperature and stirred for 5 hours. Next, water was added $(10 \mathrm{~mL})$, and the mixture was transferred to a separatory funnel. Brine (20 mL) was added, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL} x 3)$. The combined organic layers were dried over magnesium sulfate, filtered, and concentrated. The product was purified by flash chromatography with $5 \rightarrow 40 \% \mathrm{Et}_{2} \mathrm{O}$ /hexanes, which furnished the 1-(hept-6-en-1-yl)-1H-indole as a red oil ($1.0 \mathrm{~g}, 54 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.05-8.04(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.50(\mathrm{~m}, 1 \mathrm{H})$, $7.34(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.2 \mathrm{~Hz}), 6.88-6.83(\mathrm{~m}, 1 \mathrm{H}), 6.12-6.10(\mathrm{~m}, 1 \mathrm{H}), 5.41-5.35(\mathrm{~m}, 2 \mathrm{H}), 4.29(\mathrm{t}, 2 \mathrm{H}, J=7.1$ $\mathrm{Hz}), 2.38-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.11-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.53(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 139.0,136.4,129.1,128.1,121.7,121.4,119.6,115.0,109.8,101.3,46.6,34.0$, 30.5, 28.9, 26.8.

FT-IR (film) 3074, 2930, 2856, 1640, 1612, 1511, 1484, 1353, 1316, $910,740 \mathrm{~cm}^{-1}$.
(7) Fang, G. Y.; Wallner, O. A.; Di Blasio, N.; Ginesta, X.; Harvey, J. N.; Aggarwal, V. K. J. Am. Chem. Soc. 2007, 129, 14632-14639.
(8) Xenon Pharmaceuticals, Inc. Spiro-Oxindole Compounds and Their Uses as Therapeutic Agents. WO2006/110917 A2, October 19, 2006; pp 74-75.

MS (EI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}: 214$, found: 214.

IV. Catalytic Asymmetric γ-Alkylation of Carbonyl Compounds

General procedure for catalytic asymmetric $\boldsymbol{\gamma}$-alkylations. In a nitrogen-filled glovebox, a solution of the organoboron reagent $(670 \mu \mathrm{~L}, 1.0 \mathrm{mmol} ; 1.5 \mathrm{M})$ was added to a slurry of potassium tert-butoxide ($78.5 \mathrm{mg}, 0.70 \mathrm{mmol}$) and 1-hexanol ($113 \mu \mathrm{~L}, 92 \mathrm{mg}, 0.90 \mathrm{mmol}$) in a 4mL vial equipped with a stir bar. The vial was sealed with a teflon-lined septum cap, and the mixture was stirred vigorously for 30 minutes and then used in the next step.

In a glovebox, $\mathrm{NiBr}_{2} \cdot$ diglyme ($\left.17.6 \mathrm{mg}, 0.050 \mathrm{mmol}\right),(R, R)-\mathbf{1}(14.5 \mathrm{mg}, 0.060 \mathrm{mmol})$, hexanes $(3.1 \mathrm{~mL})$, and $\mathrm{Et}_{2} \mathrm{O}(1.4 \mathrm{~mL})$ were added in turn to a $20-\mathrm{mL}$ vial equipped with a stir bar. The vial sealed with a teflon-lined septum cap, and the mixture was stirred vigorously for 45 minutes (a light-blue slurry forms). The solution of the activated organoboron reagent was then added to the slurry, and the vial was sealed with a teflon-lined cap and stirred for 30 minutes (the reaction mixture turns brown). The electrophile (0.50 mmol in $0.5 \mathrm{~mL} \mathrm{of} \mathrm{Et}_{2} \mathrm{O}$; purified) was added to the slurry via syringe, and the vial that contained the electrophile was then rinsed with additional $\mathrm{Et}_{2} \mathrm{O}(0.5 \mathrm{~mL})$, and this solution was added to the slurry. The mixture was sealed with a teflon-lined cap and stirred vigorously at room temperature for 24 hours (outside of the glovebox). Next, the reaction mixture was passed through a short plug of silica gel, eluting with $\mathrm{Et}_{2} \mathrm{O}$. The solution was concentrated to furnish an oil, which was purified by reverse-phase flash chromatography on C-18 silica gel with $10 \rightarrow 100 \%$ acetonitrile/ water.

A second run was conducted with $(S, S)-\mathbf{1}$.

Glovebox-free procedure for catalytic asymmetric γ-alkylation (Table 1, entry 4). A 25-mL two-neck round-bottom flask equipped with a stir bar was capped with a septum and with a hose adapter, which was connected to a Schlenk line. The flask was placed under vacuum and flame-dried. The flask was then filled with nitrogen, and, under a positive pressure of nitrogen, $9-\mathrm{BBN}$ dimer ($732 \mathrm{mg}, 3.0 \mathrm{mmol}$) was added. The flask was purged with nitrogen for 3 minutes, and then 1-allyl-4-methoxybenzene ($890 \mathrm{mg}, 6.0 \mathrm{mmol}$) was added via syringe. Next, anhydrous $\mathrm{Et}_{2} \mathrm{O}$ was added by syringe to bring the concentration to 1.5 M , and the mixture was heated at $40^{\circ} \mathrm{C}$ for 1.5 hours, during which time it became homogenous. The solution was allowed to cool to room temperature and then used in the next step.

A $50-\mathrm{mL}$ two-neck round-bottom flask equipped with a stir bar was capped with a septum and with a hose adapter, which was connected to a Schlenk line. The flask was placed under vacuum and flame-dried. The flask was then filled with nitrogen, and, under a positive pressure of nitrogen, potassium tert-butoxide ($78.5 \mathrm{mg}, 0.70 \mathrm{mmol}$) was added. The flask was purged with nitrogen for 3 minutes, and then anhydrous 1-hexanol ($92 \mathrm{mg}, 113 \mu \mathrm{~L}, 0.90 \mathrm{mmol}$) and a solution of the B-alkyl-($9-\mathrm{BBN}$) reagent ($670 \mu \mathrm{~L}, 1.0 \mathrm{mmol} ; 1.5 \mathrm{M}$) were added in turn via syringe. The resulting mixture was stirred vigorously for 30 minutes and then used in the next step.

A 50-mL two-neck round-bottom flask equipped with a stir bar was capped with a septum and with a hose adapter, which was connected to a Schlenk line. The flask was placed under vacuum and flame-dried. The flask was then filled with nitrogen, and, under a positive pressure of nitrogen, $\mathrm{NiBr}_{2} \cdot$ diglyme ($17.6 \mathrm{mg}, 0.050 \mathrm{mmol}$) and $(R, R)-\mathbf{1}(14.5 \mathrm{mg}, 0.060 \mathrm{mmol})$
were added. The flask was purged with nitrogen for 3 minutes, and then anhydrous hexanes (3.1 mL) and $\mathrm{Et}_{2} \mathrm{O}(1.4 \mathrm{~mL})$ were added via syringe. The mixture was stirred vigorously for 45 minutes (a light-blue slurry forms). The solution of the activated B-alkyl-(9-BBN) reagent was then transferred to the slurry via cannula, and the reaction mixture was stirred for 30 minutes (the reaction mixture turns brown). The electrophile ($151 \mathrm{mg}, 0.50 \mathrm{mmol}$ in 0.5 mL of $\mathrm{Et}_{2} \mathrm{O}$; in a flame-dried flask under nitrogen) was added to this reaction mixture via syringe, and the flask that contained the electrophile was rinsed (under nitrogen) with an additional $0.5 \mathrm{~mL}^{\text {of } \mathrm{Et}_{2} \mathrm{O} \text {, }}$ which was also added to the slurry via syringe. The reaction mixture was stirred vigorously under nitrogen for 24 hours at room temperature. Next, the mixture was passed through a short plug of silica gel, eluting with $\mathrm{Et}_{2} \mathrm{O}$. The solution was concentrated to furnish an oil, which was purified by reverse-phase flash chromatography on C-18 silica gel with $10 \rightarrow 100 \%$ acetonitrile/ water. Colorless oil ($147 \mathrm{mg}, 71 \%$; 88\% ee).

4-Methyl-8-(2-methyl-1,3-dioxolan-2-yl)-N,N-diphenyloctanamide (Table 1, Entry 1). The title compound was prepared according to the general procedure, using 4-chloro- N, N diphenylpentanamide ($144 \mathrm{mg}, 0.50 \mathrm{mmol}$) and a solution of the alkylborane prepared by hydroboration of 2-(but-3-en-1-yl)-2-methyl-1,3-dioxolane ${ }^{9}$ with 9-BBN dimer (1.5 $\mathrm{M} \mathrm{in} \mathrm{Et}_{2} \mathrm{O}$; $670 \mu \mathrm{~L}, 1.0 \mathrm{mmol})$. Colorless oil.

First run: 125 mg ($63 \%, 84 \%$ ee). Second run: 123 mg ($62 \%, 85 \%$ ee).
The ee was determined by HPLC analysis (CHIRALPAK AD-H, 5\% i-PrOH in hexanes; 1.0 $\mathrm{mL} / \mathrm{min}$; retention times (when (R, R)-1 is employed): 32.9 min (minor), 37.9 min (major)).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.33-7.21(\mathrm{~m}, 10 \mathrm{H}), 3.92-3.87(\mathrm{~m}, 4 \mathrm{H}), 2.25-2.19(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.61(\mathrm{~m}$, $1 \mathrm{H}), 1.58-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.15(\mathrm{~m}, 9 \mathrm{H}), 1.08-0.99(\mathrm{~m}, 1 \mathrm{H}), 0.71(\mathrm{~d}, 3 \mathrm{H}, J=$ $6.8 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 173.5,143.0,129.2-126.8$ (broad), 110.1, 64.6 (2C), 39.2, 36.6, 33.0, 32.6, 32.3, 27.1, 24.3, 23.8, 19.4.

FT-IR (film) 3438, 2941, 2870, 1673, 1595, 1492, 1375, 1273, 1051, 757, $701 \mathrm{~cm}^{-1}$.
MS (EI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{NO}_{3}: 396$, found: 396.
$[\alpha]^{25}{ }_{\mathrm{D}}=0.61\left(c=1.06, \mathrm{CHCl}_{3} ;\right.$ obtained with $\left.(S, S)-1\right)$.
(9) Collins, P. W.; Gasiecki, A. F.; Perkins, W. E.; Gullikson, G. W.; Jones, P. H.; Bauer, R. F. J. Med. Chem. 1989, 32, 1001-1006.

5-Cyclohexyl-4-methyl-N,N-diphenylpentanamide (Table 1, Entry 2). The title compound was prepared according to the general procedure, except that the catalyst loading was doubled: $\mathrm{NiBr}_{2} \cdot$ diglyme ($35.2 \mathrm{mg}, 0.10 \mathrm{mmol}$) and $\mathbf{1}(29 \mathrm{mg}, 0.12 \mathrm{mmol}) .4$-Chloro- N, N diphenylpentanamide ($144 \mathrm{mg}, 0.50 \mathrm{mmol}$) was used, along with a solution of the alkylborane prepared by hydroboration of methylenecyclohexane with 9-BBN dimer ($1.5 \mathrm{M} \mathrm{in}_{\mathrm{Et}}^{2} \mathrm{O} ; 670 \mu \mathrm{~L}$, 1.0 mmol). White solid.

First run: 96 mg ($55 \%, 90 \%$ ee). Second run: 91 mg ($52 \%, 90 \%$ ee).
The ee was determined by HPLC analysis (CHIRALPAK AD-H, $2 \% i$-PrOH in hexanes; 1.0 $\mathrm{mL} / \mathrm{min}$; retention times (when (R, R)-1 is employed): 19.3 min (minor), 25.0 min (major)).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.34-7.25(\mathrm{~m}, 10 \mathrm{H}), 2.31-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.62(\mathrm{~m}, 6 \mathrm{H}), 1.44-1.36(\mathrm{~m}$, 2H), 1.20-1.15 (m, 4H), 1.05-0.95 (m, 1H), 0.95-0.88 (m, 1H), 0.88-0.70 (m, 5H).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 173.7,143.1,129.2-125.0$ (broad), 44.9, 34.8, 34.0, 33.3, 33.0, 32.9, 29.2, 26.7, 26.4, 26.3, 19.6.

FT-IR (film) 2921, 2850, 2360, 1675, 1593, 1491, 1449, 1375, 1272, 755, $701 \mathrm{~cm}^{-1}$.
MS (EI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{NO}: 350$, found: 350 .
$[\alpha]^{24}{ }_{\mathrm{D}}=-1.2\left(c=1.26, \mathrm{CHCl}_{3}\right.$; obtained with $\left.(S, S)-1\right)$.

9-((tert-Butyldimethylsilyl)oxy)-4-ethyl-N,N-diphenylnonanamide (Table 1, Entry 3; eq 6). The title compound was prepared according to the general procedure, using 4-chloro- N, N diphenylhexanamide ($151 \mathrm{mg}, 0.50 \mathrm{mmol}$) and a solution of the alkylborane prepared by hydroboration of tert-butyldimethyl(pent-4-en-1-yloxy)silane ${ }^{10}$ with 9-BBN dimer (1.5 M in $\left.\mathrm{Et}_{2} \mathrm{O} ; 670 \mu \mathrm{~L}, 1.0 \mathrm{mmol}\right)$. Colorless oil.

First run: 178 mg ($76 \%, 90 \%$ ee). Second run: 168 mg ($72 \%, 92 \%$ ee).
The ee was determined by HPLC analysis (CHIRALPAK AD-H, $1 \% i$-PrOH in hexanes; 1.0 $\mathrm{mL} / \mathrm{min}$; retention times (when (R, R)-1 is employed): 12.6 min (minor), 13.2 min (major)).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.33-7.22(\mathrm{~m}, 10 \mathrm{H}), 3.55(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 2.22-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.56(\mathrm{~m}$, $2 \mathrm{H}), 1.45-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.19-1.10(\mathrm{~m}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 1.06(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 0.01(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}^{2}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 173.7,143.1,129.3-126.6$ (broad), 63.3, 38.5, 32.9, 32.8, 29.0, 26.3, 26.2, 26.0, 25.6, 18.4, 10.7, -4.9, -5.2.

FT-IR (film) 2929, 2857, 1676, 1594, 1492, 1462, 1360, 1255, 1098, 835, 775, 755, $701 \mathrm{~cm}^{-1}$.
MS (EI) $m / z\left(\mathrm{M}+\mathrm{H}-t\right.$ - $\left.\mathrm{Bu}^{+}\right)$calcd for $\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{NO}_{2} \mathrm{Si}$: 468 , found: 411.
$[\alpha]^{24}{ }_{\mathrm{D}}=-0.84\left(c=1.1, \mathrm{CHCl}_{3}\right.$; obtained with $\left.(S, S)-\mathbf{1}\right)$.
(10) Liang, B.; Negishi, E.-i. Org. Lett. 2008, 10, 193-195.

When 4-bromo-N,N-diphenylhexanamide ($173 \mathrm{mg}, 0.50 \mathrm{mmol}$) was employed as the electrophile (eq 6): First run: $164 \mathrm{mg}(60 \%, 86 \%$ ee). Second run: $166 \mathrm{mg}(62 \%, 86 \%$ ee).

4-Ethyl-7-(4-methoxyphenyl)-N,N-diphenylheptanamide (Table 1, Entry 4). The title compound was prepared according to the general procedure, using 4-chloro- N, N diphenylhexanamide ($151 \mathrm{mg}, 0.50 \mathrm{mmol}$) and a solution of the alkylborane prepared by hydroboration of 1-allyl-4-methoxybenzene with 9-BBN dimer (1.5 $\mathrm{M} \mathrm{in}_{\mathrm{Et}}^{2} \mathrm{O} ; 670 \mu \mathrm{~L}, 1.0$ mmol). Colorless oil.

First run: 164 mg ($79 \%, 89 \%$ ee). Second run: 166 mg ($80 \%, 88 \%$ ee).
The ee was determined by HPLC analysis (CHIRALPAK AD-H, $10 \% i-\mathrm{PrOH}$ in hexanes; 1.0 $\mathrm{mL} / \mathrm{min}$; retention times (when (R, R)-1 is employed): 17.2 min (minor), 18.4 min (major)).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.33-7.20(\mathrm{~m}, 10 \mathrm{H}), 7.02(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 6.78(\mathrm{~d}, 2 \mathrm{H}, J=4.0 \mathrm{~Hz}), 3.76(\mathrm{~s}$, $3 \mathrm{H}), 2.43(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 2.25-2.16(\mathrm{~m}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 1.61-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.41(\mathrm{~m}, 2 \mathrm{H})$, $1.30-1.18(\mathrm{~m}, 5 \mathrm{H}), 0.77(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 173.7,157.7,143.1,134.8,129.3,127.4-125.6$ (broad), 113.7, 55.3, 38.4, 35.3, 32.8, 32.4, 29.0, 28.6, 25.6, 10.7.

FT-IR (film) 2931, 1674, 1594, 1558, 1540, 1512, 1491, 1456, 1245, 1177, 1035, 756, $702 \mathrm{~cm}^{-1}$.
MS (EI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{NO}_{2}$: 416, found: 416.
$[\alpha]^{24}=1.8\left(c=1.26, \mathrm{CHCl}_{3} ;\right.$ obtained with $\left.(R, R)-\mathbf{1}\right)$.

4-Ethyl-11-(1H-indol-1-yl)-N,N-diphenylundecanamide (Table 1, Entry 5). The title compound was prepared according to the general procedure, using 4-chloro- N, N diphenylhexanamide ($151 \mathrm{mg}, 0.50 \mathrm{mmol}$) and a solution of the alkylborane prepared by hydroboration of 1-(hept-6-en-1-yl)- 1 H -indole with 9-BBN dimer ($1.5 \mathrm{M} \mathrm{in}_{\mathrm{Et}}^{2} \mathrm{O} ; 670 \mu \mathrm{~L}, 1.0$ mmol). Yellow oil.

First run: 147 mg ($61 \%, 89 \%$ ee). Second run: 154 mg ($64 \%, 90 \%$ ee).
The ee was determined by SFC analysis (CHIRALPAK AD-H, $10 \% \mathrm{MeOH} ; 3.0 \mathrm{~mL} / \mathrm{min}$; retention times (when (R, R)- $\mathbf{1}$ is employed): 43.0 min (major), 47.6 min (minor)).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.28-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 7 \mathrm{H}), 7.14-7.10(\mathrm{~m}$, $2 \mathrm{H}), 6.52-6.51(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}), 2.26(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 1.85-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.67-$ $1.62(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.11(\mathrm{~m}, 13 \mathrm{H}), 0.81(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 173.9,143.3,136.2,129.4-127.2$ (broad), 128.8, 128.0, 121.5, 121.2, 119.4, 109.6, 101.0, 46.6, 38.7, 33.0, 32.9, 30.5, 30.1, 29.5, 29.2, 27.2, 26.6, 25.8, 10.9.

FT-IR (film) 2927, 2855, 1673, 1592, 1491, 1464, 1315, 740, $702 \mathrm{~cm}^{-1}$.
MS (EI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}: 481$, found: 481.
$[\alpha]^{24}{ }_{\mathrm{D}}=0.33\left(c=1.82, \mathrm{CHCl}_{3} ;\right.$ obtained with $\left.(S, S)-\mathbf{1}\right)$.

9-Cyano-4-ethyl- N, N-diphenylnonanamide (Table 1, Entry 6). The title compound was prepared according to the general procedure, except that the reaction was heated to $60^{\circ} \mathrm{C}$ in i $\mathrm{Pr}_{2} \mathrm{O}$, using 4-chloro- N, N-diphenylhexanamide ($151 \mathrm{mg}, 0.50 \mathrm{mmol}$) and a solution of the alkylborane prepared by hydroboration of hex-5-enenitrile with 9-BBN dimer (1.5 M in Et ${ }_{2} \mathrm{O}$; $670 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$). Colorless oil.

First run: 94 mg ($52 \%, 68 \% \mathrm{ee}$). Second run: 91 mg ($50 \%, 70 \%$ ee).
The ee was determined by HPLC analysis (CHIRALPAK AD-H, 5\% i-PrOH in hexanes; 1.0 $\mathrm{mL} / \mathrm{min}$; retention times (when (R, R)-1 is employed): 55.8 min (minor), 59.2 min (major)).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.28-7.18(\mathrm{~m}, 10 \mathrm{H}), 2.28(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.24-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.55(\mathrm{~m}$, $5 \mathrm{H}), 1.40-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.25-1.00(\mathrm{~m}, 6 \mathrm{H}), 0.74(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 173.6,143.0,130.2-126.8$ (broad), 119.9, 38.4, 32.7, 32.4, 29.0, 28.9, 25.7, 25.5, 25.3, 17.1, 10.7.

FT-IR (film) 2931, 2859, 1671, 1595, 1491, 1452, 1357, 1273, 757, $703 \mathrm{~cm}^{-1}$.
MS (EI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}: 363$, found: 363.
$[\alpha]^{24}{ }_{\mathrm{D}}=-1.3\left(c=1.45, \mathrm{CHCl}_{3}\right.$; obtained with $\left.(R, R)-1\right)$.

4-(3-(4-Fluorophenyl)propyl)-N,N-diphenyloctanamide (Table 1, Entry 7). The title compound was prepared according to the general procedure, using 4-chloro- N, N diphenyloctanamide ($165 \mathrm{mg}, 0.50 \mathrm{mmol}$) and a solution of the alkylborane prepared by hydroboration of 1-allyl-4-fluorobenzene with 9-BBN dimer ($1.5 \mathrm{M} \mathrm{in}_{\mathrm{Et}}^{2} \mathrm{O} ; 670 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$). Colorless oil.

First run: 134 mg ($62 \%, 89 \%$ ee). Second run: 140 mg ($65 \%, 90 \%$ ee).
The ee was determined by HPLC analysis (CHIRALPAK AD-H, 3\% i-PrOH in hexanes; 1.0 $\mathrm{mL} / \mathrm{min}$; retention times (when (R, R)-1 is employed): 19.2 min (minor), 20.8 min (major)).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.32-7.20(\mathrm{~m}, 10 \mathrm{H}), 7.07-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.89(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{t}, 2 \mathrm{H}, J=7.6$ $\mathrm{Hz}), 2.20-2.16(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.24-1.07(\mathrm{~m}, 9 \mathrm{H}), 0.80(\mathrm{t}, 3 \mathrm{H}, J=7.2$ Hz).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 173.6,161.2(\mathrm{~d}, \mathrm{~J}=964 \mathrm{~Hz}), 143.0,138.2,129.7,129.6-126.6$ (broad), 115.0, 114.8, 36.9, 35.5, 35.4, 33.1, 32.9, 29.4, 28.7, 28.4, 23.0, 14.1.

FT-IR (film) 2928, 2858, 2361, 2340, 1675, 1598, 1509, 1491, 1362, 1273, 1220, 1157, 832, 756, $702,668 \mathrm{~cm}^{-1}$.

MS (EI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{FNO}: 432$, found: 432.
$[\alpha]^{24}{ }_{\mathrm{D}}=1.9\left(c=1.21, \mathrm{CHCl}_{3} ;\right.$ obtained with $\left.(S, S)-\mathbf{1}\right)$.

7-(4-Methoxyphenyl)-4-phenethyl-N,N-diphenylheptanamide (Table 1, Entry 8). The title compound was prepared according to the general procedure, using 4 -chloro- $\mathrm{N}, \mathrm{N}-6-$ triphenylhexanamide ($189 \mathrm{mg}, 0.50 \mathrm{mmol}$) and a solution of the alkylborane prepared by hydroboration of 1-allyl-4-methoxybenzene with 9-BBN dimer ($1.5 \mathrm{M} \mathrm{in} \mathrm{Et}_{2} \mathrm{O} ; 670 \mu \mathrm{~L}, 1.0$ mmol). Colorless oil.

First run: 202 mg ($82 \%, 88 \%$ ee). Second run: $206 \mathrm{mg}(84 \%, 88 \%$ ee).
The ee was determined by HPLC analysis (CHIRALPAK AD-H, 3% i-PrOH in hexanes; 1.0 $\mathrm{mL} / \mathrm{min}$; retention times (when (R, R)-1 is employed): 56.7 min (minor), 65.3 min (major)).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.33-7.14(\mathrm{~m}, 13 \mathrm{H}), 7.07-7.02(\mathrm{~m}, 4 \mathrm{H}), 6.81-6.79(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.48-$ $2.43(\mathrm{~m}, 4 \mathrm{H}), 2.25-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.35(\mathrm{~m}, 5 \mathrm{H}), 1.22-1.19(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 173.5,157.7,143.0,142.9,134.7,130.0-125.0$ (broad), 129.3, 128.4, 128.3, $125.7,113.7,55.3,53.5,36.6,35.3,32.9,32.71,32.66,29.3,28.5$.

FT-IR (film) 2930, 2857, 1672, 1594, 1511, 1491, 1452, 1245, 1177, 1033, 756, $701 \mathrm{~cm}^{-1}$.
MS (EI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{NO}_{2}$: 492, found: 492.
$[\alpha]^{24}{ }_{\mathrm{D}}=0.84\left(c=1.12, \mathrm{CHCl}_{3}\right.$; obtained with $\left.(S, S)-\mathbf{1}\right)$.

4-Isobutyl-N,N,7-triphenylheptanamide (Table 1, Entry 9). The title compound was prepared according to the general procedure, using 4 -chloro- 6 -methyl $-\mathrm{N}, \mathrm{N}$ diphenylheptanamide ($165 \mathrm{mg}, 0.50 \mathrm{mmol}$) and a solution of the alkylborane prepared by hydroboration of allylbenzene with 9-BBN dimer ($1.5 \mathrm{M} \mathrm{in}_{\mathrm{Et}}^{2} \mathrm{O} ; 670 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$). Colorless oil.

First run: 124 mg ($60 \%, 82 \%$ ee). Second run: $128 \mathrm{mg}(62 \%, 82 \%$ ee).
The ee was determined by HPLC analysis (CHIRALPAK AD-H, $3 \% i$-PrOH in hexanes; 1.0 $\mathrm{mL} / \mathrm{min}$; retention times (when (R, R)-1 is employed): 15.8 min (minor), 17.9 min (major)).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.32-7.10(\mathrm{~m}, 15 \mathrm{H}), 2.48(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 2.21-2.16(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.56(\mathrm{~m}$, $2 \mathrm{H}), 1.53-1.40(\mathrm{~m}, 3 \mathrm{H}), 1.39-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.14-1.10(\mathrm{~m}, 2 \mathrm{H}), 0.96-0.95(\mathrm{~m}, 1 \mathrm{H}), 0.88-0.86(\mathrm{~m}, 1 \mathrm{H})$, $0.77-0.74(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 173.7,143.1,142.7,129.2-125.0$ (broad), 128.5, 128.3, 125.7, 43.4, 36.4, 34.6, 33.3, 32.6, 29.6, 28.2, 25.2, 23.1, 22.9.

FT-IR (film) 2952, 2929, 1675, 1594, 1492, 1453, 1364, 1271, 755, $700 \mathrm{~cm}^{-1}$.
MS (EI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{NO}: 414$, found: 414.
$[\alpha]^{24}{ }_{\mathrm{D}}=0.79\left(c=1.07, \mathrm{CHCl}_{3} ;\right.$ obtained with $\left.(R, R)-\mathbf{1}\right)$.

8-(4-Methoxyphenyl)-5-methyl- N, N-diphenyloctanamide (eq 7). The title compound was prepared according to the general procedure, using 5 -chloro- N, N-diphenylhexanamide (144 mg , 0.50 mmol) and a solution of the alkylborane prepared by hydroboration of 1-allyl-4-

First run: 131 mg ($63 \%, 83 \%$ ee). Second run: 135 mg ($65 \%, 84 \%$ ee).
The ee was determined by HPLC analysis (CHIRALPAK AD-H, $10 \% i$-PrOH in hexanes; 1.0 $\mathrm{mL} / \mathrm{min}$; retention times (when (R, R)- $\mathbf{1}$ is employed): 18.3 min (minor), 19.8 min (major)).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.33-7.21(\mathrm{~m}, 10 \mathrm{H}), 7.04-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.80-6.78(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.44$ $(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 2.21-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.20-1.11(\mathrm{~m}, 5 \mathrm{H})$, 0.75-0.71 (m, 3H).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 173.6,157.6,143.0,134.8,129.2,129.2-125.2$ (broad), 113.7, 55.3, 38.4, 35.3, 32.8, 32.4, 29.0, 28.6, 25.5, 10.7.

FT-IR (film) 2931, 2858, 1674, 1594, 1512, 1491, 1457, 1374, 1246, 1035, 756, $702 \mathrm{~cm}^{-1}$.
MS (EI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{NO}_{2}: 416$, found: 416.
$[\alpha]^{24}=1.3\left(c=1.30, \mathrm{CHCl}_{3} ;\right.$ obtained with $\left.(R, R)-1\right)$.

4-Ethyl-N-methoxy-N-methyl-7-phenylheptanamide (eq 8). The title compound was prepared according to the general procedure, except that potassium iodide ($21 \mathrm{mg}, 0.13 \mathrm{mmol}$; water content: 180 ppm) was added to the vial containing $\mathrm{NiBr}_{2} \cdot$ diglyme and 1, before the solvent was added. 4-Chloro- N-methoxy- N -methylhexanamide ($97 \mathrm{mg}, 0.50 \mathrm{mmol}$) was used, along with a solution of the alkylborane prepared by hydroboration of allylbenzene with 9-BBN dimer ($1.5 \mathrm{M} \mathrm{in}_{\mathrm{Et}}^{2} \mathrm{O} ; 670 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$). Colorless oil.

First run: 87 mg ($63 \%, 86 \%$ ee). Second run: 86 mg ($62 \%, 86 \%$ ee).
The ee was determined by HPLC analysis (CHIRALPAK OJ-H, $1 \% i-\mathrm{PrOH}$ in hexanes; 1.0 $\mathrm{mL} / \mathrm{min}$; retention times (when (R, R)- $\mathbf{1}$ is employed): 14.2 min (minor), 15.0 min (major)).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.24-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}$ $=7.6 \mathrm{~Hz}), 2.33(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.62-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.33-1.24(\mathrm{~m}, 5 \mathrm{H}), 0.86(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz})$.
${ }^{13} \mathrm{CNMR}^{2}\left(\mathrm{CDCl}_{3}\right) \delta 175.0,142.8,128.4,128.2,125.6,61.2,38.5,36.3,32.5,32.2,29.4,28.5,27.9$, 25.6, 10.8.

FT-IR (film) 2930, 1670, 1457, 1382, 1003, 747, $699 \mathrm{~cm}^{-1}$.
MS (EI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{NO}_{2}$: 278, found: 278.
$[\alpha]^{24}{ }_{\mathrm{D}}=0.42\left(c=4.40, \mathrm{CHCl}_{3}\right.$; obtained with $\left.(R, R)-\mathbf{1}\right)$.

$N, N, 4$-Triphenylhexanamide (eq 10 and eq 9). The title compound was prepared according to the general procedure, using 4-chloro- N, N-diphenylhexanamide ($151 \mathrm{mg}, 0.50 \mathrm{mmol}$), along with a solution of 4,4,5,5-tetramethyl-2-phenyl-1,3,2-dioxaborolane (Aldrich; diluted to 1.5 M in $\left.\mathrm{Et}_{2} \mathrm{O} ; 670 \mu \mathrm{~L}, 1.0 \mathrm{mmol}\right)$. Colorless oil.

First run: $81 \mathrm{mg}(47 \%, 83 \%$ ee). Second run: $81 \mathrm{mg}(47 \%, 81 \%$ ee).
The ee was determined by HPLC analysis (CHIRALPAK OD-H, $3 \% i$-PrOH in hexanes; 1.0 $\mathrm{mL} / \mathrm{min}$; retention times (when ligand (R, R) $\mathbf{- 1}$ is employed): 16.0 min (minor), 17.5 min (major)).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.28-7.00(\mathrm{~m}, 15 \mathrm{H}), 2.41-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.03(\mathrm{~m}, 3 \mathrm{H}), 1.85-1.75(\mathrm{~m}$, $1 \mathrm{H}), 1.62-1.48(\mathrm{~m}, 2 \mathrm{H}), 0.72(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 173.2,144.7,142.8,128.2,127.8,126.0,130.0-125.0$ (broad), 47.0, 33.3, 31.8, 29.8, 12.1.

FT-IR (film) 3060, 2827, 1680, 1593, 1492, 1375, 1270, 756, $700 \mathrm{~cm}^{-1}$.
MS (ESI / APCI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}: 344$, found: 344 .
$[\alpha]^{25}{ }_{\mathrm{D}}=11\left(c=1.80, \mathrm{CHCl}_{3}\right.$; obtained with $\left.(R, R)-\mathbf{1}\right)$.
When B-phenyl-(9-BBN) ${ }^{11}$ was employed instead of 4,4,5,5-tetramethyl-2-phenyl-1,3,2dioxaborolane (eq 9): First run: $75 \mathrm{mg}(44 \%, 80 \%$ ee). Second run: $77 \mathrm{mg}(45 \%, 78 \%$ ee).

4-Cyclopropyl- \mathbf{N}, \mathbf{N}-diphenylhexanamide (eq 11). The title compound was prepared according to the general procedure, except that $\mathrm{Et}_{2} \mathrm{O}$ was the only solvent $(0.08 \mathrm{M})$ and the catalyst loading was doubled: $\mathrm{NiBr}_{2} \cdot$ diglyme ($35.2 \mathrm{mg}, 0.10 \mathrm{mmol}$) and $\mathbf{1}(29 \mathrm{mg}, 0.12 \mathrm{mmol})$. 4-Chloro-6-methyl-N,N-diphenylheptanamide ($165 \mathrm{mg}, 0.50 \mathrm{mmol}$) was used, along with a solution of B-cyclopropyl-(9-BBN) ($1.5 \mathrm{M} \mathrm{in}^{2} \mathrm{Et}_{2} \mathrm{O} ; 670 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$). Colorless oil.
(11) Fang, G. Y.; Wallner, O. A.; Di Blasio, N.; Ginesta, X.; Harvey, J. N.; Aggarwal, V. K. J. Am. Chem. Soc. 2007, 129, 14632-14639.

First run: 108 mg ($68 \%, 84 \%$ ee). Second run: 109 mg ($71 \%, 83 \%$ ee).
The ee was determined by HPLC analysis (CHIRALPAK OJ-H, $1 \% i-\mathrm{PrOH}$ in hexanes; 1.0 $\mathrm{mL} / \mathrm{min}$; retention times (when $(R, R)-\mathbf{1}$ is employed): 14.2 min (minor), 15.0 min (major)).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.33-7.00(\mathrm{~m}, 10 \mathrm{H}), 2.42-2.27(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.25(\mathrm{~m}$, $2 \mathrm{H}), 0.84(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 0.44-0.39(\mathrm{~m}, 1 \mathrm{H}), 0.32-0.29(\mathrm{~m}, 3 \mathrm{H}),-0.03--0.10(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 173.8,143.1,129.3-126.5$ (broad), 44.4, 33.2, 30.3, 27.5, 15.5, 11.3, 4.0, 3.6. FT-IR (film) 2961, 2924, 1675, 1491, 1373, 1271, 756, 702, $693 \mathrm{~cm}^{-1}$.
MS (EI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}: 308$, found: 308.
$[\alpha]^{24}{ }_{\mathrm{D}}=-0.80\left(c=1.54, \mathrm{CHCl}_{3} ;\right.$ obtained with $\left.(S, S)-\mathbf{1}\right)$.

V. Transformation of the Cross-Coupling Products

(S)-4-Ethyl-7-(4-methoxyphenyl)heptan-1-ol (eq 3). (S)-7-(4-Methoxyphenyl)-4-ethyl-N,Ndiphenylheptanamide ($100 \mathrm{mg}, 0.24 \mathrm{mmol} ; 89 \%$ ee) and THF (13 mL) were added to an ovendried two-neck round-bottom flask under nitrogen. This solution was cooled to $0{ }^{\circ} \mathrm{C}$, and a solution of lithium aluminum hydride ($1.45 \mathrm{~mL}, 2.9 \mathrm{mmol} ; 2.0 \mathrm{M}$ in THF) was added dropwise with stirring. The mixture was allowed to warm to room temperature, and it was stirred for 12 h . The reaction mixture was then cooled to $0^{\circ} \mathrm{C}$, and the reaction was quenched by the addition of water (1 mL). The mixture was filtered through Celite, which was washed with THF. The filtrate was concentrated, and the residue was purified by flash chromatography with $10 \rightarrow 70 \%$ $\mathrm{Et}_{2} \mathrm{O} /$ hexanes, which furnished the product as a clear oil. First run: $55 \mathrm{mg}(92 \%, 88 \% \mathrm{ee})$. Second run: 57 mg ($95 \%, 88 \%$ ee).

The ee was determined by HPLC analysis (CHIRALPAK IC, $2 \% i-\mathrm{PrOH}$ in hexanes; 1.0 $\mathrm{mL} / \mathrm{min}$; retention times: 41.9 min (minor), 44.0 min (major)).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.07(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.81-6.79(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{t}, 2 \mathrm{H}, J=6.7$ $\mathrm{Hz}), 2.50(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}), 1.54(\mathrm{~s}, 1 \mathrm{H}), 1.54-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.28-1.26(\mathrm{~m}, 7 \mathrm{H}), 0.81(\mathrm{t}, 3 \mathrm{H}, J=6.8$ Hz).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 157.6,134.9,129.2,113.7,63.5,55.3,38.6,35.5,32.7,30.0,29.1,28.9,25.8$, 10.8.

FT-IR (film) 3336 (broad), 2932, 2858, 2360, 2340, 1512, 1457, 1419, 1245, 1039, 829.
MS (EI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{2}: 251$, found: 251.
$[\alpha]^{24}{ }_{\mathrm{D}}=-2.0\left(c=2.67, \mathrm{CHCl}_{3}\right)$.

(S)-4-Ethyl-7-(4-methoxyphenyl)heptanoic acid (eq 4). (S)-7-(4-Methoxyphenyl)-4-ethylN, N-diphenylheptanamide ($100 \mathrm{mg}, 0.24 \mathrm{mmol} ; 89 \%$ ee), EtOH (7 mL), water (0.5 mL), and then sodium hydroxide (0.93 mg of a $30 \% \mathrm{w} / \mathrm{w}$ solution) were added to a $20-\mathrm{mL}$ vial, which was then sealed with a septum cap and heated to $90^{\circ} \mathrm{C}$ for 8 h . The reaction mixture was allowed to cool to room temperature, and then $2 \mathrm{~N} \mathrm{HCl}(2 \mathrm{~mL})$ was added. The mixture was transferred to a separatory funnel, to which $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$ were added. The layers were separated, and the aqueous layer was washed with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL} x 2)$. The combined organic layers were dried over magnesium sulfate, filtered, and concentrated. The product was purified by flash chromatography with $10 \rightarrow 70 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes, which furnished the product as a clear oil. First run: $57 \mathrm{mg}(90 \%, 88 \%$ ee). Second run: $59 \mathrm{mg}(93 \%, 88 \%$ ee).

The ee was determined by HPLC analysis (CHIRALPAK IC, $1 \% i$-PrOH in hexanes; 1.0 $\mathrm{mL} / \mathrm{min}$; retention times: 24.7 min (major), 27.9 min (minor)).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.04(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.86(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{t}, 2 \mathrm{H}, J=$ $7.6 \mathrm{~Hz}), 2.29(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.61-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.29-1.26(\mathrm{~m}, 5 \mathrm{H}), 0.81(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 180.1,157.8,134.9,129.4,113.9,55.4,38.4,35.5,32.5,31.7,28.8,28.1,25.6$, 10.9.

FT-IR (film) 2932 (broad), 2859, 1708, 1512, 1457, 1300, 1245, 1177, 1039, 829.
MS (EI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{O}_{3}: 265$, found: 265.
$[\alpha]^{24}{ }_{\mathrm{D}}=-0.62 \quad\left(c=2.22, \mathrm{CHCl}_{3}\right)$.

(S)-4-Ethyl-7-(4-methoxyphenyl)-1-morpholinoheptan-1-one (eq 5) (modified from a literature method ${ }^{12}$). In a nitrogen-filled glovebox, activated molecular sieves ($20 \mathrm{mg} ; 4 \AA$), (S)-4-ethyl-7-(4-methoxyphenyl)-N,N-diphenylheptanamide ($50 \mathrm{mg}, 0.12 \mathrm{mmol} ; 89 \%$ ee), and toluene (0.36 mL ; anhydrous, Aldrich) were added to a flame-dried $4-\mathrm{mL}$ vial equipped with a stir bar. The mixture was stirred for 20 minutes, and then it was filtered through a $2 \mu \mathrm{~m}$ acrodisc filter into another flame-dried 4-mL vial equipped with a stir bar (the original vial was rinsed with toluene ($0.1 \mathrm{~mL} \times 2$), and the washings were filtered through the acrodisc into the second vial). Freshly distilled morpholine ($23 \mu \mathrm{~L}, 0.27 \mathrm{mmol}$) was added to the vial by syringe. In another flame-dried 4-mL vial, a stock solution of $\mathrm{Zr}\left(\mathrm{NMe}_{2}\right)_{4}$ in anhydrous toluene was
(12) Stephenson, N. A.; Zhu, J.; Gellman, S. H.; Stahl, S. S. J. Am. Chem. Soc. 2009, 131, 10003-10008.
prepared (10.8 mg per 1.0 mL of toluene). This solution ($143 \mu \mathrm{~L}, 1.6 \mathrm{mg}, 0.0060 \mathrm{mmol}$) was added to the solution of amine and amide, immediately resulting in a light-yellow solution. The vial was sealed with a teflon-lined septum cap, and the mixture was stirred at $50^{\circ} \mathrm{C}$ for 10 hours. The reaction mixture was then allowed to cool to room temperature, the solvent was removed, and the product was purified by reverse-phase flash chromatography on C-18 silica gel with $10 \rightarrow 100 \%$ acetonitrile/water.

A second run was conducted using (R)-4-ethyl-7-(4-methoxyphenyl)- $\mathrm{N}, \mathrm{N}-$ diphenylheptanamide and afforded (R)-4-ethyl-7-(4-methoxyphenyl)-1-morpholinoheptan-1one.

First run: 35 mg ($87 \%, 89 \%$ ee). Second run: 34 mg ($85 \%, 89 \%$ ee).
The ee was determined by HPLC analysis (CHIRALPAK AD-H, $3 \% i-\mathrm{PrOH}$ in hexanes; 1.0 $\mathrm{mL} / \mathrm{min}$; retention times (when (S)-4-ethyl-7-(4-methoxyphenyl)- N, N-diphenylheptanamide is employed): 28.6 min (major), 30.7 min (minor)).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.05(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=5.2 \mathrm{~Hz}), 6.79(\mathrm{~d}, 2 \mathrm{H}, J=4.8 \mathrm{~Hz}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.64-3.57(\mathrm{~m}$, $5 \mathrm{H}), 3.38(\mathrm{t}, 2 \mathrm{H}, J=5.2 \mathrm{~Hz}), 2.92(\mathrm{~d}, 1 \mathrm{H}, J=16.8 \mathrm{~Hz}), 2.50(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 2.20(\mathrm{t}, 2 \mathrm{H}), 1.58-1.50$ $(\mathrm{m}, 4 \mathrm{H}), 1.29-1.28(\mathrm{~m}, 5 \mathrm{H}), 0.81(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 172.1,157.7,134.7,129.3,113.7,67.0,66.7,55.3,46.0,41.9,38.6,35.3,32.3$, 30.5, 28.6, 28.5, 25.7, 10.8.

FT-IR (film) 2930, 2856, 2361, 2339, 1653, 1512, 1457, 1300, 1245, 1116, 1035, $830 \mathrm{~cm}^{-1}$.
MS (EI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{NO}_{3}: 334$, found: 334.
$[\alpha]_{\mathrm{D}}^{24}=0.97\left(c=0.95, \mathrm{CHCl}_{3} ;(S)\right.$-4-ethyl-7-(4-methoxyphenyl)-1-morpholinoheptan-1-one).

VI. Determination of Absolute Configuration

Assignment of absolute configuration of the γ-alkylated products. The absolute configuration of the product of entry 2 of Table 1 (using ligand (S,S)-1) was determined by X-ray crystallography. The absolute configurations of the other γ-alkylation products were assigned by analogy.

The cross-coupling product was purified to $>99 \%$ ee by chiral HPLC (CHIRALPAK AD-H). Crystals suitable for X-ray structural analysis were obtained by solvent evaporation of a pentane solution.

Half of the molecule (C2-C12) was modeled as a two-part disorder (68:32). Pictured above is one of the two modeled structures.

Absolute configuration: The Flack test is inconclusive due to quality of the data. However, the method by Spek and Hooft, which is based on Bayesian statistics, results in the following probabilities: The probability P2 of the model to be correct assuming that the sample is KNOWN to be enantiomerically pure is 1.0 . The probability P3 of the model to be correct assuming that the structure is either right or wrong or a $50: 50$ racemic twin is 0.90 . The probability of the model to be a $50: 50$ racemic twin is 0.10 . The inverted model gives rise to opposite results in the Bayesian statistics, further improving the confidence in the absolute configuration as determined by X-ray diffraction.

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\approx^{2} \times 10^{3}\right)$ for $\mathrm{x} 10032 _t 4$. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	U(eq)
$\mathrm{O}(1)$	7176(1)	2053(3)	3198(1)	48(1)
C(1)	6488(1)	2303(4)	3075(1)	43(1)
C(2)	6151(1)	3704(5)	2478(1)	51(1)
C(3)	6590(2)	3275(8)	1842(2)	43(1)
C(4)	6577(3)	764(9)	1616(2)	43(1)
C(5)	5760(2)	-186(9)	1445(2)	61(1)
C(6)	7008(2)	374(9)	1005(2)	60(1)
C(7)	7831(3)	1169(12)	1064(2)	56(1)
C(8)	8309(3)	-92(13)	1632(2)	75(2)
C(9)	9135(3)	511(18)	1645(2)	111(2)
$\mathrm{C}(10)$	9450(3)	-196(18)	999(3)	111(2)
$\mathrm{C}(11)$	8997(3)	1136(19)	439(3)	104(2)
$\mathrm{C}(12)$	8173(3)	544(15)	409(2)	90(2)
$\mathrm{C}(3 \mathrm{~A})$	6735(5)	4233(17)	2105(5)	51(2)
$\mathrm{C}(4 \mathrm{~A})$	7045(4)	2140(17)	1744(4)	54(2)
$\mathrm{C}(5 \mathrm{~A})$	6405(7)	710(20)	1351(7)	70(3)
$\mathrm{C}(6 \mathrm{~A})$	7653(5)	3111(17)	1357(4)	60(2)
C(7A)	8044(7)	1400(20)	943(6)	62(2)
$\mathrm{C}(8 \mathrm{~A})$	8406(6)	-686(18)	1358(4)	59(2)
$\mathrm{C}(9 \mathrm{~A})$	8843(5)	-2260(20)	967(5)	74(2)
C(10A)	9431(6)	-1030(20)	583(5)	80(3)
$\mathrm{C}(11 \mathrm{~A})$	9095(8)	1110(30)	193(6)	85(3)
$\mathrm{C}(12 \mathrm{~A})$	8672(6)	2730(20)	614(5)	75(2)
N(1)	5976(1)	1306(3)	3457(1)	40(1)
C(21)	6230(1)	-247(4)	3992(1)	39(1)
C(22)	5988(1)	123(5)	4602(1)	54(1)
C(23)	6207(2)	-1440(6)	5108(1)	64(1)
C(24)	6666(1)	-3361(5)	5012(1)	54(1)
C(25)	6911(1)	-3700(5)	4395(1)	48(1)
C(26)	6690(1)	-2173(4)	3891(1)	42(1)
C(31)	5162(1)	1771(4)	3363(1)	39(1)
C(32)	4873(1)	3876(5)	3574(1)	55(1)
C(33)	4088(2)	4251(6)	3485(2)	66(1)

$\mathrm{C}(34)$	$3604(1)$	$2565(6)$	$3209(1)$	$62(1)$
$\mathrm{C}(35)$	$3889(1)$	$464(6)$	$3008(1)$	$54(1)$
$\mathrm{C}(36)$	$4676(1)$	$64(4)$	$3084(1)$	$41(1)$

Table 3. Bond lengths $[\approx]$ and angles $[\infty]$ for x10032_t4.

$\mathrm{O}(1)-\mathrm{C}(1)$	1.216 (3)
$\mathrm{C}(1)-\mathrm{N}(1)$	1.374(3)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.524(4)
$\mathrm{C}(2)-\mathrm{C}(3 \mathrm{~A})$	1.374(8)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.600(4)
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	0.9900
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	0.9900
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{C})$	0.9900
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{D})$	0.9900
$\mathrm{C}(3)-\mathrm{C}(4)$	1.496(7)
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	0.9900
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	0.9900
$\mathrm{C}(4)-\mathrm{C}(5)$	1.539(6)
$\mathrm{C}(4)-\mathrm{C}(6)$	1.544(5)
$\mathrm{C}(4)-\mathrm{H}(4)$	1.0000
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	0.9800
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	0.9800
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{C})$	0.9800
$\mathrm{C}(6)-\mathrm{C}(7)$	1.508(7)
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	0.9900
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	0.9900
$\mathrm{C}(7)-\mathrm{C}(8)$	1.537(7)
$\mathrm{C}(7)-\mathrm{C}(12)$	$1.566(5)$
$\mathrm{C}(7)-\mathrm{H}(7)$	1.0000
C(8)-C(9)	1.489(7)
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9900
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	0.9900
$\mathrm{C}(9)-\mathrm{C}(10)$	1.540(8)
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	0.9900
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	0.9900
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.525(9)$
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	0.9900
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	0.9900
$\mathrm{C}(11)-\mathrm{C}(12)$	1.480(8)
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9900
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	0.9900

$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9900
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.9900
$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$	$1.529(12)$
$\mathrm{C}(3 \mathrm{~A})-\mathrm{H}(3 \mathrm{~A} 1)$	0.9900
$\mathrm{C}(3 \mathrm{~A})-\mathrm{H}(3 \mathrm{~A} 2)$	0.9900
$\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$	1.500(10)
$\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	$1.543(13)$
$\mathrm{C}(4 \mathrm{~A})-\mathrm{H}(4 \mathrm{~A})$	1.0000
$\mathrm{C}(5 \mathrm{~A})-\mathrm{H}(5 \mathrm{~A} 1)$	0.9800
$\mathrm{C}(5 \mathrm{~A})-\mathrm{H}(5 \mathrm{~A} 2)$	0.9800
$\mathrm{C}(5 \mathrm{~A})-\mathrm{H}(5 \mathrm{~A} 3)$	0.9800
$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	1.500(13)
$\mathrm{C}(6 \mathrm{~A})-\mathrm{H}(6 \mathrm{~A} 1)$	0.9900
$\mathrm{C}(6 \mathrm{~A})-\mathrm{H}(6 \mathrm{~A} 2)$	0.9900
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})$	1.547(11)
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$	$1.554(11)$
$\mathrm{C}(7 \mathrm{~A})-\mathrm{H}(7 \mathrm{~A})$	1.0000
$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})$	$1.468(11)$
$\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{~A} 1)$	0.9900
$\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{~A} 2)$	0.9900
$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$	1.530(11)
$\mathrm{C}(9 \mathrm{~A})-\mathrm{H}(9 \mathrm{~A} 1)$	0.9900
$\mathrm{C}(9 \mathrm{~A})-\mathrm{H}(9 \mathrm{~A} 2)$	0.9900
$\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$	$1.533(12)$
$\mathrm{C}(10 \mathrm{~A})-\mathrm{H}(10 \mathrm{C})$	0.9900
$\mathrm{C}(10 \mathrm{~A})-\mathrm{H}(10 \mathrm{D})$	0.9900
$\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})$	1.508(13)
$\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{C})$	0.9900
$\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{D})$	0.9900
$\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{C})$	0.9900
$\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{D})$	0.9900
$\mathrm{N}(1)-\mathrm{C}(21)$	1.438(3)
$\mathrm{N}(1)-\mathrm{C}(31)$	1.446(2)
$\mathrm{C}(21)-\mathrm{C}(22)$	1.377(3)
$\mathrm{C}(21)-\mathrm{C}(26)$	1.387(3)
$\mathrm{C}(22)-\mathrm{C}(23)$	1.385(4)
$\mathrm{C}(22)-\mathrm{H}(22)$	0.9500
$\mathrm{C}(23)-\mathrm{C}(24)$	1.382(4)

$\mathrm{C}(23)-\mathrm{H}(23)$	0.9500
$\mathrm{C}(24)$-C(25)	1.389(4)
$\mathrm{C}(24)-\mathrm{H}(24)$	0.9500
$\mathrm{C}(25)-\mathrm{C}(26)$	1.371(3)
$\mathrm{C}(25)-\mathrm{H}(25)$	0.9500
$\mathrm{C}(26)-\mathrm{H}(26)$	0.9500
$\mathrm{C}(31)-\mathrm{C}(36)$	1.374 (3)
$\mathrm{C}(31)-\mathrm{C}(32)$	$1.384(3)$
$\mathrm{C}(32)-\mathrm{C}(33)$	$1.388(4)$
$\mathrm{C}(32)-\mathrm{H}(32)$	0.9500
$\mathrm{C}(33)-\mathrm{C}(34)$	1.361(5)
$\mathrm{C}(33)-\mathrm{H}(33)$	0.9500
$\mathrm{C}(34)$-C(35)	1.370(4)
$\mathrm{C}(34)-\mathrm{H}(34)$	0.9500
$\mathrm{C}(35)-\mathrm{C}(36)$	$1.394(3)$
$\mathrm{C}(35)-\mathrm{H}(35)$	0.9500
$\mathrm{C}(36)-\mathrm{H}(36)$	0.9500
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{N}(1)$	122.1(2)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	121.3(2)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	116.62(18)
$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(2)-\mathrm{C}(1)$	108.0(4)
$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(2)-\mathrm{C}(3)$	29.5(4)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	113.2(2)
$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	84.5
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	108.9
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	108.9
$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	134.2
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	108.9
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	108.9
$\mathrm{H}(2 \mathrm{~A})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	107.8
$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{C})$	110.1
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{C})$	110.1
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{C})$	81.5
$\mathrm{H}(2 \mathrm{~A})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{C})$	130.8
$\mathrm{H}(2 \mathrm{~B})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{C})$	30.3
$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{D})$	110.1
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{D})$	110.1

$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{D})$	128.5
$\mathrm{H}(2 \mathrm{~A})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{D})$	28.2
$\mathrm{H}(2 \mathrm{~B})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{D})$	81.2
$\mathrm{H}(2 \mathrm{C})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{D})$	108.4
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	113.8(3)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	108.8
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	108.8
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	108.8
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	108.8
$\mathrm{H}(3 \mathrm{~A})-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	107.7
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	112.7(4)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(6)$	113.2(4)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(6)$	106.9(3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	107.9
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	107.9
$\mathrm{C}(6)-\mathrm{C}(4)-\mathrm{H}(4)$	107.9
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	109.5
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	109.5
$\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	109.5
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{C})$	109.5
$\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{C})$	109.5
$\mathrm{H}(5 \mathrm{~B})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{C})$	109.5
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(4)$	116.2(3)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	108.2
$\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	108.2
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	108.2
$\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	108.2
$\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	107.4
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	111.3(4)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(12)$	108.4(4)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(12)$	108.4(4)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	109.6
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	109.6
$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{H}(7)$	109.6
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	111.1(5)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	109.4
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	109.4
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.4

$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.4
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	108.0
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	111.4(5)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	109.4
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	109.4
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.4
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.4
$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	108.0
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	108.1(5)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	110.1
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	110.1
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	110.1
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	110.1
$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	108.4
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	110.5(6)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	109.6
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	109.6
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.6
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.6
$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	108.1
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(7)$	112.0(5)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	109.2
$\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	109.2
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.2
$\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.2
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	107.9
$\mathrm{C}(2)-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$	115.1(7)
$\mathrm{C}(2)-\mathrm{C}(3 \mathrm{~A})-\mathrm{H}(3 \mathrm{~A} 1)$	108.5
$\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{H}(3 \mathrm{~A} 1)$	108.5
$\mathrm{C}(2)-\mathrm{C}(3 \mathrm{~A})-\mathrm{H}(3 \mathrm{~A} 2)$	108.5
$\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{H}(3 \mathrm{~A} 2)$	108.5
$\mathrm{H}(3 \mathrm{~A} 1)-\mathrm{C}(3 \mathrm{~A})-\mathrm{H}(3 \mathrm{~A} 2)$	107.5
$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$	106.4(7)
$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	116.0(8)
$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	112.5(8)
$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{H}(4 \mathrm{~A})$	107.2
$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{H}(4 \mathrm{~A})$	107.2
$\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{H}(4 \mathrm{~A})$	107.2

$\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{H}(5 \mathrm{~A} 1)$	109.5
$\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{H}(5 \mathrm{~A} 2)$	109.5
$\mathrm{H}(5 \mathrm{~A} 1)-\mathrm{C}(5 \mathrm{~A})-\mathrm{H}(5 \mathrm{~A} 2)$	109.5
$\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{H}(5 \mathrm{~A} 3)$	109.5
$\mathrm{H}(5 \mathrm{~A} 1)-\mathrm{C}(5 \mathrm{~A})-\mathrm{H}(5 \mathrm{~A} 3)$	109.5
$\mathrm{H}(5 \mathrm{~A} 2)-\mathrm{C}(5 \mathrm{~A})-\mathrm{H}(5 \mathrm{~A} 3)$	109.5
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$	117.2(8)
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{H}(6 \mathrm{~A} 1)$	108.0
$\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{H}(6 \mathrm{~A} 1)$	108.0
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{H}(6 \mathrm{~A} 2)$	108.0
$\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{H}(6 \mathrm{~A} 2)$	108.0
$\mathrm{H}(6 \mathrm{~A} 1)-\mathrm{C}(6 \mathrm{~A})-\mathrm{H}(6 \mathrm{~A} 2)$	107.3
$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})$	108.9(9)
$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$	111.5(9)
$\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$	109.8(9)
$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{H}(7 \mathrm{~A})$	108.9
$\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{H}(7 \mathrm{~A})$	108.9
$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{H}(7 \mathrm{~A})$	108.9
$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	111.8(8)
$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{~A} 1)$	109.2
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{~A} 1)$	109.2
$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{~A} 2)$	109.2
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{~A} 2)$	109.2
$\mathrm{H}(8 \mathrm{~A} 1)-\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{~A} 2)$	107.9
$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$	115.1(9)
$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{H}(9 \mathrm{~A} 1)$	108.5
$\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{H}(9 \mathrm{~A} 1)$	108.5
$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{H}(9 \mathrm{~A} 2)$	108.5
$\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{H}(9 \mathrm{~A} 2)$	108.5
H(9A1)-C(9A)-H(9A2)	107.5
$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$	112.6(9)
$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{H}(10 \mathrm{C})$	109.1
$\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{H}(10 \mathrm{C})$	109.1
$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{H}(10 \mathrm{D})$	109.1
$\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{H}(10 \mathrm{D})$	109.1
$\mathrm{H}(10 \mathrm{C})-\mathrm{C}(10 \mathrm{~A})-\mathrm{H}(10 \mathrm{D})$	107.8
$\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$	111.7(9)
$\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{C})$	109.3

$\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{C})$	109.3
$\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{D})$	109.3
$\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{D})$	109.3
$\mathrm{H}(11 \mathrm{C})-\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{D})$	107.9
$\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	111.7(10)
$\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{C})$	109.3
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{C})$	109.3
$\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{D})$	109.3
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{D})$	109.3
$\mathrm{H}(12 \mathrm{C})-\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{D})$	107.9
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(21)$	121.02(17)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(31)$	123.14(19)
$\mathrm{C}(21)-\mathrm{N}(1)-\mathrm{C}(31)$	115.82(16)
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(26)$	119.7(2)
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{N}(1)$	119.7(2)
$\mathrm{C}(26)-\mathrm{C}(21)-\mathrm{N}(1)$	120.47(19)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	119.5(2)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{H}(22)$	120.3
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{H}(22)$	120.3
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(22)$	121.2(2)
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{H}(23)$	119.4
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23)$	119.4
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	118.7(3)
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24)$	120.7
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{H}(24)$	120.7
$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(24)$	120.4(2)
$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{H}(25)$	119.8
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{H}(25)$	119.8
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(21)$	120.5(2)
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{H}(26)$	119.7
$\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{H}(26)$	119.7
$\mathrm{C}(36)-\mathrm{C}(31)-\mathrm{C}(32)$	120.2(2)
$\mathrm{C}(36)-\mathrm{C}(31)-\mathrm{N}(1)$	119.3(2)
$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{N}(1)$	120.4(2)
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	118.9(3)
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{H}(32)$	120.5
$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{H}(32)$	120.5
$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{C}(32)$	121.0(3)

$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{H}(33)$	119.5
$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{H}(33)$	119.5
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	$120.2(2)$
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{H}(34)$	119.9
$\mathrm{C}(35)-\mathrm{C}(34)-\mathrm{H}(34)$	119.9
$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)$	$119.8(3)$
$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{H}(35)$	120.1
$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{H}(35)$	120.1
$\mathrm{C}(31)-\mathrm{C}(36)-\mathrm{C}(35)$	$119.9(2)$
$\mathrm{C}(31)-\mathrm{C}(36)-\mathrm{H}(36)$	120.1
$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{H}(36)$	120.1

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $\left(\approx^{2} \times 10^{3}\right)$ for $\times 10032 _t 4$. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{O}(1)$	$29(1)$	$52(1)$	$64(1)$	$-8(1)$	$13(1)$	$-7(1)$
$\mathrm{C}(1)$	$34(1)$	$36(1)$	$61(1)$	$-10(1)$	$16(1)$	$-4(1)$
$\mathrm{C}(2)$	$38(1)$	$43(1)$	$75(2)$	$1(1)$	$18(1)$	$4(1)$
$\mathrm{C}(3)$	$40(2)$	$44(2)$	$47(2)$	$13(2)$	$12(2)$	$-1(2)$
$\mathrm{C}(4)$	$40(2)$	$53(2)$	$34(2)$	$6(2)$	$3(2)$	$0(2)$
$\mathrm{C}(5)$	$59(2)$	$62(3)$	$62(2)$	$2(2)$	$4(2)$	$-10(2)$
$\mathrm{C}(6)$	$61(2)$	$83(3)$	$35(2)$	$-2(2)$	$8(1)$	$7(2)$
$\mathrm{C}(7)$	$58(2)$	$86(3)$	$27(2)$	$3(2)$	$14(2)$	$8(2)$
$\mathrm{C}(8)$	$64(2)$	$110(4)$	$52(2)$	$8(3)$	$7(2)$	$23(3)$
$\mathrm{C}(9)$	$55(2)$	$204(7)$	$75(3)$	$19(4)$	$8(2)$	$18(4)$
$\mathrm{C}(10)$	$57(2)$	$170(7)$	$112(4)$	$11(4)$	$37(3)$	$26(4)$
$\mathrm{C}(11)$	$72(3)$	$181(6)$	$68(3)$	$-1(4)$	$43(3)$	$18(3)$
$\mathrm{C}(12)$	$69(2)$	$158(5)$	$48(2)$	$-20(3)$	$22(2)$	$9(3)$
$\mathrm{C}(3 \mathrm{~A})$	$48(4)$	$39(5)$	$68(5)$	$15(3)$	$11(3)$	$-2(3)$
$\mathrm{C}(4 \mathrm{~A})$	$47(4)$	$57(5)$	$59(4)$	$4(3)$	$10(3)$	$18(3)$
$\mathrm{C}(5 \mathrm{~A})$	$63(6)$	$63(6)$	$85(9)$	$-11(6)$	$12(6)$	$16(4)$
$\mathrm{C}(6 \mathrm{~A})$	$74(4)$	$59(5)$	$47(4)$	$13(3)$	$8(3)$	$11(3)$
$\mathrm{C}(7 \mathrm{~A})$	$62(5)$	$82(5)$	$44(5)$	$12(4)$	$12(3)$	$15(4)$
$\mathrm{C}(8 \mathrm{~A})$	$78(5)$	$63(5)$	$36(4)$	$5(3)$	$11(4)$	$6(4)$
$\mathrm{C}(9 \mathrm{~A})$	$61(5)$	$76(6)$	$88(6)$	$19(5)$	$21(4)$	$17(4)$
$\mathrm{C}(10 \mathrm{~A}) 72(5)$	$107(7)$	$64(5)$	$17(5)$	$22(4)$	$12(5)$	
$\mathrm{C}(11 \mathrm{~A}) 74(6)$	$123(7)$	$61(6)$	$26(5)$	$24(4)$	$12(5)$	
$\mathrm{C}(12 \mathrm{~A}) 85(5)$	$87(6)$	$55(4)$	$25(4)$	$16(4)$	$2(4)$	
$\mathrm{N}(1)$	$28(1)$	$38(1)$	$57(1)$	$-5(1)$	$11(1)$	$0(1)$
$\mathrm{C}(21)$	$24(1)$	$39(1)$	$54(1)$	$-10(1)$	$4(1)$	$-4(1)$
$\mathrm{C}(22)$	$53(1)$	$54(2)$	$53(1)$	$-15(1)$	$-1(1)$	$17(1)$
$\mathrm{C}(23)$	$69(2)$	$77(2)$	$44(1)$	$-13(1)$	$-5(1)$	$23(2)$
$\mathrm{C}(24)$	$46(1)$	$58(2)$	$56(1)$	$-5(1)$	$-10(1)$	$8(1)$
$\mathrm{C}(25)$	$29(1)$	$45(2)$	$71(2)$	$-7(1)$	$4(1)$	$0(1)$
$\mathrm{C}(26)$	$27(1)$	$40(1)$	$61(1)$	$-9(1)$	$11(1)$	$-3(1)$
$\mathrm{C}(31)$	$31(1)$	$36(1)$	$52(1)$	$6(1)$	$14(1)$	$4(1)$
$\mathrm{C}(32)$	$45(1)$	$42(2)$	$82(2)$	$0(1)$	$28(1)$	$6(1)$
		$50(2)$	$99(2)$	$22(2)$	$45(2)$	$21(1)$
			$\mathrm{S})$			

$\mathrm{C}(34)$	$33(1)$	$79(2)$	$78(2)$	$41(2)$	$27(1)$	$17(1)$
$\mathrm{C}(35)$	$32(1)$	$74(2)$	$54(1)$	$23(1)$	$5(1)$	$-6(1)$
$\mathrm{C}(36)$	$34(1)$	$43(1)$	$46(1)$	$9(1)$	$7(1)$	$-1(1)$

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\approx^{2} \times 10^{3}\right)$
for $\mathrm{x} 10032 _\mathrm{t} 4$.

	x	y	z	U(eq)
$\mathrm{H}(2 \mathrm{~A})$	6170	5406	2588	61
H(2B)	5607	3260	2374	61
$\mathrm{H}(2 \mathrm{C})$	5753	2760	2217	61
H(2D)	5912	5173	2620	61
H(3A)	6353	4277	1480	52
H(3B)	7129	3782	1941	52
H(4)	6832	-220	1981	51
H(5A)	5783	-1829	1298	92
H(5B)	5494	772	1093	92
H(5C)	5481	-108	1835	92
H(6A)	6992	-1331	899	72
H(6B)	6727	1214	630	72
H(7)	7857	2913	1136	67
H(8A)	8124	377	2054	90
H(8B)	8242	-1820	1582	90
H(9A)	9428	-317	2016	133
H(9B)	9203	2229	1715	133
H(10A)	10000	214	1018	133
H(10B)	9396	-1918	928	133
H(11A)	9066	2855	506	125
H(11B)	9191	714	17	125
H(12A)	8104	-1164	319	109
H(12B)	7890	1419	42	109
H(3A1)	7161	4939	2396	62
H(3A2)	6550	5442	1777	62
H(4A)	7304	1062	2085	65
H(5A1)	6630	-632	1138	105
H(5A2)	6131	1721	1016	105
H(5A3)	6046	126	1649	105
H(6A1)	7420	4370	1067	72
H(6A2)	8050	3861	1669	72
H(7A)	7658	767	592	74

H(8A1)	8749	-57	1732	71
H(8A2)	7995	-1598	1538	71
H(9A1)	8478	-3126	652	89
H(9A2)	9113	-3435	1265	89
H(10C)	9627	-2173	276	96
H(10D)	9868	-505	894	96
H(11C)	9514	1992	17	101
H(11D)	8740	553	-183	101
H(12C)	8434	4024	338	90
H(12D)	9040	3442	958	90
H(22)	5674	1440	4675	64
H(23)	6038	-1186	5528	77
H(24)	6812	-4429	5360	65
H(25)	7234	-4997	4322	58
H(26)	6853	-2438	3469	51
H(32)	5206	5045	3777	66
H(33)	3886	5706	3619	79
H(34)	3069	2847	3154	74
H(35)	3550	-716	2819	64
H(36)	4876	-1385	2943	49

Assignment of absolute configuration of the $\boldsymbol{\delta}$-alkylated product. $\boldsymbol{\gamma}$-Alkylated product (R)-7-(4-methoxyphenyl)-4-methyl-N,N-diphenylheptanamide, synthesized using (R, R)-1, was homologated. The specific rotation of the final product, 8-(4-methoxyphenyl)-5-methyloctanoic acid, was determined.

84\% ee prepared with $(R, R)-1$

$$
[\alpha]^{24} \mathrm{D}=1.7\left(c=0.98, \mathrm{CHCl}_{3}\right)
$$

(R)-8-(4-Methoxyphenyl)-5-methyloctanoic acid.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.07(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 6.81(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.53-2.48(\mathrm{~m}$, $2 H), 2.32-2.29(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.57(\mathrm{~m}, 5 \mathrm{H}), 1.55-1.41(\mathrm{~m}, 3 \mathrm{H}), 1.31-1.22(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{~d}, 3 \mathrm{H}, J=$ 6.5 Hz).
${ }^{13} \mathrm{C}^{\mathrm{N} M R}\left(\mathrm{CDCl}_{3}\right) \delta 180.3,157.6,134.9,129.2,113.7,55.3,36.4,36.3,35.3,34.4,32.5,29.2,22.2$, 19.5.

FT-IR (film) 2931 (broad), 1708, 1612, 1512, 1463, 1300, 1245, 1177, 1038, 829.
MS (EI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{O}_{3}: 265$, found: 265.
$[\alpha]^{24}{ }_{\mathrm{D}}=1.7\left(c=0.98, \mathrm{CHCl}_{3}\right)$.

This specific rotation was compared to the product that was generated through the δ alkylation illustrated in eq 7 (with $(R, R)-\mathbf{1}$), followed by hydrolysis of the amide. The specific rotations had the same sign.

VII. Determination of Enantiomeric Excess

Inatrument 18/23/2021 6:38205 WN 5:
230 t 06xa

... Emid of Report **

Arca Percont Report

8
$\mathbf{0}$
-
0
0

Ingtrusent 18/2:/2011 6:37:43 PM 51:
(-(s's) पum

 signal it Dral A, Slg-2Se, 4 Rof-360. 100

Araa Rercent Report
Daca file Civapctrmildataloreoupls25s9-2.D
Inatrivent : 7/7/2010 Si16i24 PM jeo
[30 I abed

,
Off HA 12:97:5 0102/L/L I כwocraniod
csiz'ct izecz'bosi : etvios

 secle.eboi nost6et'z : etesos

 mosulea obrasned with enhanced integratorl turergis rosesso.t : etezos

 Stgral 2: tapl B, sig-254, 16 Rot-360, 100 gesulta dotained with enhanced integrator! Tots19: $\quad 1.08444$ e4 530.57637

Uoo Rwitipliex a dilution ractor with rstibe

Stgran 41 9001 D. Sce-230, 16 Rof-360, 100
stqual 3t Cubl C. stg-220,8 Ret-360, 100
stomal 2: Dasel B, stg-25t, 16 Ref-360, 100 Tota3s : 1.19005 ed 125.31530
Rosults oblatinced with enhanced Integratorl

 Dilution vae kuitiplor \& Diturion racior with sstos

a^{-1} T-05szBy uno

... 3xdow 30 pus ...
8
0
0
0
0

-.. End of Ropert …

Siçnal 2: DRAD B, 51q-254, 16 Refo360, 100 Reaulta obtalned with enhanced integrator! rotala: $9230.15442 \quad 353.01395$ $\begin{array}{llllll}1 & 17.30180 & 0.3987 & 6683.53613 & 234.72333 & 94.0779 \\ 2 & 18.653 \mathrm{BP} & 0.4140 & 546.61829 & 19.05062 & 5.9221\end{array}$
 stgnal t: anol A. s59-254, 4 Ret-360, 100
dilution
Use Multiplier 4 dilution Factor with istos
 -

Data File cilapcaball

Table 1, entry 5
with (R, R)-1

CCP2189.lmp.DAT - HP1100 DAD Signal A

Table 1, entry 5
with $(S, S)-1$

28018004

2301 abed

Tincinime
data Flie C: hapchentidoataicroursszsotind.d
Incerusane 1 8/21/2011 6:36.30 FH 54

... 320dow 30 pus. .:-

stgnal 4t Dani D. Stge230, 16 Ref $=360,100$

 Resulte obesined with emhanced Integratort Totala : $7866.56396 \quad 211.05691$

 Stgnat 1: DROS A. Sts-234, 4 Rot-360, 100
Ose miltiphee a ollution Factor wich istos

xs ke otic5:9 1toz/iz/8 is zuemazous

z 10 z abed

ns me acteq:9 troz/tize it zuxanazuy

S1gral 5: DADI E, 5tgm200,16 Ref-360, 100
Stgan 4i dal D, Sig-230, 16 Rof-360, 100 Slganal 3: dapl C. sign210, 1 Rof-360,100
Stgral 2: papl B. Sigo25d,16 Rof-360, 100 resulta abtalned with anheanced intogratorl Totals: 2.1219304 245.69536

Data File cilupehionildatalaroupls263l-2.D
＊s Md zri65：9 itoz／iz／日 I 3uasm230ut 2301

N5 кג 27 6519 1102／12／9 i zubxaracus

 Table 1，entry 9 9
Stgnal 4：Dapl d．819－230．16 Refe360， 100
Reaults abtasnad uth enhonced integrator：
Tocals：$\quad 1.03445 e s$ 378．23979
都

Dzte Fila C：\IPCHEMI LDATA

－l－bosastan

Inctrument 3 日/21/2013 7100:27 PM 5p

slenal 5: mad E, s1g-280, 16 ReZu360, 100
stgral 4: dapl D, sige230, 16 Ret-360,100
stgnol 3: bapl.C. siq-210, 8 tef-360,100
signal 2: ©NDI B, Sige254, 16 Ref-360, 100 Results obtained with enhanced integrator! Totals : 9405.90833 384.44866
 S1gnal 1: Davi A. S19-254.4 Ref-360, 100
 $\begin{array}{lll}\text { Sorted By } & : & 31 \text { gan } \\ \text { Kositiplier } & : & 1.0000 \\ & : & 1.0000\end{array}$

SIgnal 5: ondi E. SIgw280, 16 Res-360, 100
Slgnal it dadi D. stg-230, 16 Rof-360, 200 Resulto abtained wdeh anbanced inzegrator: totals : 1.49377 et 360.18199

 styant 3: Dabl C. Stq-210, E Ros-360. 100 rectulta cbeatined uith enhanced tategrator! Totala : 6.62441 1.00594 $1+3.645 \mathrm{pg} \quad 0.0405 \quad 6.62441 \quad 1.00594100 .0600$
 Stgral 2: axDl Bo 5Lg-254, 16 Rof-360, 100 Stgnal tit bapl A. Stg-254, 4 Rel-360, 100 dact miltiplier 6 dilucion factor with istba

.... 3x0doy zo pus ...

2301 2brd

51gnal 5: bxOl E. s1g-200,16 Ref-360,100
signal 4: DAD1 D. 81g-230, 16 Ref-360, 100 Rosults abtasined with enhanced lacegrator: fotals: 1.61102 e 487.60427

 Stqnal 3: dadl C, slg-210, a Ret-350, 100 signal 2: Dadi b, siq-254,16 Ref-360,100
8ignal 1: dadi A. Slq-234, 4 Raf-360, 100
tre fultiplat 4 dilution ractor with istie

开
 Gatd File Ci पHPCKENTI IDATAVGROUPISt6301AD.D
3301060 d

Signal 5: QADI E, SIg-280, 10 Ral-350. 100
Signal i: axol D, Siq-230,10 Ref-360,100 Resulta obtafaed with entuanted Integratort 66561'P5 90t60'strz : ejozol

 Signal 3: Dadi C, sig-210, 10 Rof-360, 100
Stgal 2: Dadi B. Sig-254, 10 Ref-350, 100
Signal 1: DADI A, $\$ 19-250,10$ 801-360, 100
 $\begin{array}{lll}\text { Hulelpilior } & : & 1.0000 \\ \text { Dilutias } & 1 & 1.0000\end{array}$

data file cilhpchzilildatalgrouplize301a0.0 $z 302050 \mathrm{~d}$
Tnat rwant 1 e/21/2011 7z07:31 PK NB
2301 0608

lajoction bato $110 / 9 / 2020$ Si 3514 BEM
Data File Ci VHPCHENILIDATAICROUPISZ630zad.D

2302060 d

23010 Dra

230 tabrd
Me csistil ftoz/tz/e it subentarut

Signal 4: DAD1 D, SIq-230, 16 Rel-360, 100
Signal 3: Dapl C, 61 g-210, $8 \operatorname{Re} 5-360,100$
Signal 2: madi B, 81g-254, 26 Ret-360, 100 Resulta obralned with eahnered integratarl Totale : 6052.41458295 .59286 $\begin{array}{ccccccc}-1 & 12.758 & \text { 日v } & 0.3127 & 5623.20369 & 279.52429 & 92.9098 \\ 2 & 13.540 \text { VB } & 0.3295 & 429.13089 & 20.06857 & 7.0902\end{array}$

Signal Sz madi 5, sig-280, 16 Raf-160, 100

Signal 4: Diol D, stg-230, 16 Ret $=360,100$
S1gnal 3: and C, SLg-210, 8 Ref-360, 100
SLqnal 2: DNDI Be 3ig-254, 16 Ref-360, 200 Resulta obealned with enhaticed integrateri Totelo : $\quad 5741.67343$ 190.5202

Dilution
Uoe meleiplier $\&$ dilueion ractor with istos
Sortod gy
Hultipilar
Dilut lon
Uoe muleip

Z
B
N
N
N
Inatrument 1 8/21/2011 7:21:04 7W 5R
2301 ansed

31gnal 5: RADIE, $31 g 0200,16$ Rot-360, 100
Stgal 4: mabl D. S19-230,16 Refo360, 100
asgnal 3:
Signal 2: Dapl B, s1g-254, 16 Req-360, 100 Totale :
Reaulte obtained with entanced Integratorl

 SLgmal 1: DNDI λ, 51g-254, 4 Ref-360, 100
Dilution
Sorted By
naileiplior
Dfluefon

Data flie Cilarcatmiloatalorcoplszsi92nd.D

2801 abed

Ti
=
Data File Ci vaphrivivartalgrouplszsal-1.D

Stpral 4: DAOL D. S1g-230, 16 rel $-360,100$
5sgnal 3: DADI C, sig-210, θ nefo360, 100
stuml 2: afDl g, sig-254,16 net-360,100 Results abzasned with enhonced integratorl Totals : $310.65547 \quad 21.56096$

Data fillo Ci hipcamildatalabouplszsel-1.0
Jnotrument 1 0/21/2011 7:27:08 8M 53
$z 30$ Itasd

Inatrument a 8/21/2011 7:27:08 8m 5n

Signal S: DADIE, Sig-280,16 Refo360, 100
SLgral 4: DNDL D, 51go230, 16 Rc $\$ 0360,100$ ghasults obtained with enhaneed integratar! Totala : 1.66045 c 447.57380

 Results abtalned with erthaneed incegrator!

 Ssgnol 2: DxD1 R, S1ge25t, 16 fot-360, 100 SIgnal 1: DNDI A, SIg-254, 4 Ref-350, 100 oilutian haltipliez \& Dilution raceor with istos Maltipliex Sorted
Malltipl
Aroa Porcent Repor

2302068 c
ns ra otioctl tioztiz/e : zuzunazcus

... 230doy 30 bug .a..

Stpral 2: and B. 3Lg-23f, 16 Res-360, 100 Mesulce obtaliged with eahanced Integrator: Totala : $\quad 3130.60120 \quad 79.69703$

 sorted iy
salepplice
pilurica

0

良
3 matit \%
 an

... End of raport
signal S: Dadite, 3sg-290, 16 Ref-360, 100
signal fi bani d, 5sg-230, 16 Res-360, 100

Stgnal 2: badi b. s1g-254, 16 Rof-360, 100 Reaulta cbtatned with enhanced integratori Tetals: 1983.33705 140.80777

 Signal t: axdi h, sig-23c, 4 Rel-360, 100
 Data flle C: infeamildantalguouplszese-2.0

tratrument 18/21/2011 7:36:27 8H 5u

51gael 2: Dapl B, Slgw-254, 16 Raf-360, 100 Rosules cbralned with enhancod Integratorl Totals : $\quad 1743.08498119 .71418$
 S1gral 2: MxD1 A, s19-25c, 4 Rof-360, 100

8

Dasa File C:Thechemiliontalorcuplstes2.D
2301 abia
Insexvent 1 8/2:/2011 2:36:36 84 5\%

Stqual 5: dadi E, stg-280, 16 Rera960, 100

stgnal A: DNOLD, SLgo230, 16 Ret-360, 100 31gnal 3: Dapl C, $5290210, \theta$ Refo360, 300
 Resuits obesined with enhanced integrator! Totels $1 \quad 6691.99170 \quad 270.16034$
 stonal 2: mani A, s1q-254,4 net-360, 100

$z 30 z$ oted

230 t 060

Stgnal 5: dnde E, Stg-280, 10 Ref-360, 100

Signal 3: Ondi C, 31g-210, 10 Rof-360, 100
Signal 2: DADl a, 31g-254, 10 fofe360,100 Resultes abteined with onhanced integrator!
Potals : $\quad 9669.00774223 .51717$

 Slgnal 1: padi A, Slg-2S0, 10 Rot -360, 100
USO Mustiplior 6 Dilation ractor with tstou

Dase flio Ci Mepchewildanthiorouplszel5-2.0
2 jo zobed

VIII. ${ }^{1} \mathrm{H}$ NMR Spectra

7.324
7.258
7.228
7.223
7.203
7.065
7.060
7.051
7.051
7.044
7.031
6.934
6.931
6.929
6.929
6.913
6.895
6.891
2.475
2.456
2.437
-2.437
2.200
2.185
2.180
2.175
2.160
-1.613
$\left[\begin{array}{l}1.613 \\ 1.597\end{array}\right.$
1.572
-1.558
-1.477
1.458
-1.438
-1.241
1.241
$\Gamma_{1}^{1.228}$
1.228
-1.180
1.163
-1.157
1.157
1.147
-1.131
1.111
1.092
1.092
1.086
1.076
1.076
-0.823
-0.805
0.823
0.805
0.787
을

