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Preface
Many bacterial systems rely on dynamic genetic circuits to control critical processes. A major goal
of systems biology is to understand these behaviours in terms of individual genes and their
interactions. However, traditional techniques based on population averages wash out critical
dynamics that are either unsynchronized between cells or driven by fluctuations, or ‘noise,’ in cellular
components. Recently, the combination of time-lapse microscopy, quantitative image analysis, and
fluorescent protein reporters has enabled direct observation of multiple cellular components over
time in individual cells. In conjunction with mathematical modelling, these techniques are now
providing powerful insights into genetic circuit behaviour in diverse microbial systems.

As biologists we must grapple with, and reconcile, two very different views of cellular
behaviour: On the one hand, we frequently think of cellular functions as being determined by
‘circuits’ of interacting genes and proteins. These chemical circuits, loosely analogous to
electronic circuits, encode genetic programs that underlie differentiation, the cell cycle, and
other behaviours (Fig 1a). They accurately respond to stimuli and generate precise behavioural
programs in individual cells. On the other hand, there is the ‘noisy’ view of the cell we get
whenever we actually look at cells: squishy, dynamic, and heterogeneous populations whose
morphologies, gene expression patterns, and differentiated states differ from one another, even
when environment and genotype are fixed (Fig1b). How can precisely defined genetic circuits
give rise to heterogeneity and, conversely, how does heterogeneity affect the behaviour of
circuits?

Movies offer a powerful way to address these questions (Fig 1c). By engineering microbial
strains to express fluorescent protein reporters for key genes one can follow the changing
characteristics of individual cells over time. Quantitative detection methods, improved
microscope automation and software, and the variety of fluorescent reporter genes, in
conjunction with mathematical modelling, can be combined to analyse gene circuit dynamics.
Together, these techniques allow researchers to characterize epigenetic states, identify new
dynamic phenomena, analyse biochemical interactions within circuits, and elucidate the
physiological function of genetic circuits, all at the single-cell level. Finally, movies provide
an aesthetically compelling view of cellular function that is often fascinating to watch. We
have found that the eye often picks up on subtle patterns in individual living cells that would
be difficult to notice with less direct techniques. Few techniques are more fun.

How does quantitative movie analysis compare to alternative techniques for analyzing gene
circuits? Time-lapse microscopy follows a few genes over time in individual living cells. It
complements approaches such as microarrays (which provide genome-scale expression data
averaged over populations but do not allow analysis of variability) and flow cytometry (which
allows high throughput acquisition of single cell fluorescence values but does not allow the
same cells to be tracked over time). Movies also complement new single-cell Q-PCR
approaches, which enable analysis of expression of multiple genes in individual cells, but,
because they require lysis of the cell, do not permit tracking of expression dynamics1. Movies
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alone permit one to determine the “trajectories” of gene expression levels in individual living
cells. One potential drawback of movies, is that, for a particular process under study, many
genes, and their expression levels, may be important, but most studies presently follow the
dynamics of only a few genes at a time due to the lack of distinguishable reporters. In the future,
multi-spectral techniques may expand the number of simultaneous reporters2. However,
following the dynamics of only 2 or 3 genes at once can still be extremely informative.

Here we will review work in which movies provide new insights into the dynamic behaviour
of genetic components and circuits. For this review, we have confined ourselves to microbial
systems, and have therefore excluded much interesting recent work in mammalian cell culture
and multicellular organisms 3-5. Because our focus is on gene circuit dynamics we have also
excluded a growing literature of fascinating studies on the sub-cellular localization dynamics
of individual cellular components 6-11. We will first review recent work where time-lapse
microscopy has been used to examine and characterize variability in single cell gene
expression. Next, we describe how movies can facilitate quantitative analysis of biochemical
interactions in individual cells. Finally, we explore how movies can provide an integrated
picture of genetic circuit dynamics and thereby reveal key principles of genetic circuit design.
Taken together, these studies are beginning to reveal intimate connections between the
deterministic “circuit” and heterogeneous “noisy” views of the cell described above: On the
one hand, genetic circuits crucially generate and control fluctuations in cellular components
and heterogeneity in cellular states. Conversely, variability is essential for at least some genetic
circuits to function properly.

The origins of variability
If all cells behaved the same, it would be unnecessary to analyse individual cells. Measurements
showed that gene expression is often quite variable, even in clonal cell populations grown in
identical environments 12-14 Where does that variability originate? It can arise from stochastic
fluctuations, or ‘noise,’ in cellular components and biochemical reactions 12,15. These
fluctuations are expected to be significant given the low copy numbers of key molecular species
in the cell16,17. However, variability can also reflect differences in the micro-environments
inhabited by individual cells. Furthermore, pre-existing heterogeneity can be propagated to
subsequent cell generations. Such effects can be observed by following lineages over several
cell-generations. The interplay between these sources of variability is addressed in several
recent studies using movies.

Lineage analysis allows tracking of epigenetic states
In the 1950s and 1960s, E.O. Powell and others used phase contrast microscopy to observe the
growth of bacterial micro-colonies 18,19. They carefully analysed the heritability of growth
rates and other phenotypes, and suggested that stochastic fluctuations in cellular components
might generate the observed variability. Improved acquisition techniques (Box 1, Fig 2) now
enable researchers to address these questions more systematically. Rather than tracking
colonies for 2-3 generations by eye, it is now possible to record growth automatically over
many generations20. Perhaps the best example of how lineage can affect cell-cell variability,
observed in diverse multicellular systems and in yeast 21, comes from the study of aging cells.
Symmetrically dividing bacteria, such as E. coli, have no obvious means of aging. However,
by tracking over 35,000 cells using an automatic tracking program, and using a flat microcolony
growth protocol (Box 2) Stewart et al. showed that Escherichia coli indeed age22. After
division, each daughter cell has one new pole, created by the septation event, and one old pole
inherited from the parent. By sorting the lineage tree by pole age, one can observe a systematic
reduction in growth rate for cells with more older poles, as well as an increased chance of death
(Fig. 3A). Without a specific molecular marker for cell age, it is difficult to imagine how such
effects could have been observed using traditional techniques.
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Persistence at the single-cell level
When antibiotics are added transiently to a population of bacterial cells, most of the population
is killed. In some cases, however, a small percentage of “persister” cells survive antibiotic
treatments, grow, and re-establish the population 23. A second pulse of antibiotics leads to a
similar result, showing that persistence is not due to mutation 24. But is persistence induced by
the antibiotic, or do some cells spontaneously enter a persistent state before the addition of
antibiotics? The persister state can be identified in movies because it causes strongly reduced
cell growth. Using time-lapse microscopy of cells embedded in linear micro-fluidic chambers,
Balaban et al showed that individual E. coli cells switch in and out of the persister state
spontaneously, in the absence of antibiotics 25. In a second study, the group used movies to
identify an intermediate state in the transition to persistence during which cells stop growing
but continue to express proteins26. Cells remain susceptible to antibiotics during this period.

This methodology could provide insight into biomedically relevant pathogens, including the
slow-growing mycobacteria responsible for tuberculosis 23,27. Being able to study rare
spontaneous state changes may help identify strategies that influence the susceptibility of
persistent infections to drug treatments. Currently a limitation of this approach is the difficulty
in analyzing extremely rare events which become increasingly difficult to find at the very low
frequencies that characterize some natural persister states (e.g. 10-6 for E. coli). To circumvent
this problem, the authors used previously identified mutants which exhibit an elevated
frequency of persisters28. With these imaging techniques established an important challenge
is now to work out the underlying circuit responsible for inducing state changes in a
probabilistic fashion. In particular, it will be interesting to see whether this circuitry is similar
to the excitable genetic circuit responsible for competence induction in B. subtilis, described
below.

Heritability of cellular states
Cell state heterogeneity can be analysed without movies, but movies can provide additional
insights into the process. For example, Acar et al recently analysed the galactose utilization
system in yeast. They showed that yeast cells mutant for one feedback loop appear to
spontaneously switch between states of high and low expression of galactose utilization genes.
But it remained unclear whether (and how) these states are inherited across cell generations
(division events). Kaufman et al. addressed this issue by examining the heritability of such
gene expression states 29 by tracking yeast cells over 15 hours through ∼6 divisions in movies
(Fig 3B-D) Remarkably, mother and daughter cells switch on the GAL pathway synchronously
after division, indicating that the timing of these apparently random decisions is heritable. The
authors explain this behaviour in terms of a model based on a single fluctuating regulatory
protein that is synthesized in large bursts. Clearly, the interplay between stochastic switches
and heritable states can be complex.

Cell-cycle variability
As an unsynchronized dynamic oscillatory process continuously operating in individual cells,
the cell cycle represents a key potential source of variability, but how variable is the cell cycle
itself? And where does that variability originate? When examined at the single-cell level cell-
cycle progression can be strikingly variable. Movies have been used to quantify variability in
the timing of specific cell-cycle stages in yeast 30,31. This work broke overall variability in
timing into steps that were either dependent or independent of cell size. The first step is
responsible for controlling cell size prior to division. Interestingly, variability in the cell-size-
independent time interval was reduced by increasing ploidy in a manner consistent with
stochastic variation in expression of certain genes, such as G1 cyclins.
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In a complementary study, Ramanathan and co-workers dissected timing variability leading
up to the cell-fate decision in yeast to initiate meiotic sporulation32. This study showed that
the timing of sporulation varies considerably among cells, even though all cells activate
expression of the master regulator of sporulation at roughly the same time. Variability in the
decision to initiate sporulation results in part from slow and variable accumulation of the master
regulator Ime1p.

These studies have begun to examine molecular mechanisms by which cell cycle progression
can be intrinsically noisy. It will be interesting to now see how this variability impacts other
cellular processes, and to what extent this variability is adaptive.

Movies of clocks
In contrast to the inherently variable oscillations of the cell cycle, circadian clocks are
remarkable for their temporal precision. Cyanobacteria possess a 24-hour circadian clock,
whose molecular components have been identified and shown to reconstitute oscillations in
vitro 33,34. Although colonies and cultures were known to exhibit robust rhythms, it was unclear
how accurately the clock performed at the single-cell level, given the possibility of substantial
noise in the levels of its molecular components. The possibility that the circadian clock might
be inherently noisy was suggested by studies of an unrelated synthetic genetic clock, termed
the Repressilator. Using movies, it was shown that the repressilator generates robust self-
sustaining (limit cycle) oscillations in E. coli cells 35. However, the clock is erratic and its state
quickly becomes desynchronized within the population. In contrast, when Mihalcescu et al
used a sensitive luciferase reporter system to image clock state in individual cells of growing
microcolonies over time 36,37, they found that individual cells oscillated with a robust 24h
rhythm. When two microcolonies with different clock phases were placed next to each other
on the same pad, they did not influence each other's phase, suggesting that clock accuracy was
cell-autonomous 36,38 and did not require active synchronization 39. A mechanism for the
cyanobacterial clock circuit based on interactions among three key proteins KAI A,B and C
has recently been established 34,40. The post-translational nature of this clock circuit
mechanism may help to explain its apparent robustness to noise.

Together these studies show a range of examples in which variability is generated, inherited,
or suppressed in different circuits. They thus raise the question of how the circuit level
variability relates to specific biochemical interactions in the cell.

In vivo biochemistry
Surprisingly, movies can provide the type of detailed and quantitative analyses of biochemical
interactions that are traditionally determined using gels, blots and other biochemical assays.
Several recent studies push the limit on quantitative analysis of movie data.

The Gene Regulation Function
One of the most basic characteristics of a genetic circuit is the interaction between a
transcription factor and its target genes. This interaction can be summarized by the effective
gene-regulation function (GRF): the relationship between the concentration of one or more
transcription factors in a cell, and the rate of production of its target gene. The shape of the
GRF is critical for the function of gene circuits. However, population-average measurements
can “smear out” these response functions, and in vitro measurements may not reflect the many
effects of the intracellular environment. Thus, GRFs must be measured in individual living
cells.

In order to measure a typical GRF, Rosenfeld et al engineered a strain of E. coli in which a
lambda repressor-YFP protein repressed the expression of a cyan fluorescent protein (CFP)
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from one of its key target promoters. They allowed the tagged repressor to dilute out as the
cells grew into microcolonies, while simultaneously monitoring the rate of increase of CFP
fluorescence (Fig 4A-B, Supplementary Information S1 (Movie)). These data give the GRF
for the lambda repressor-promoter interaction. Critically, they showed that the GRF was not a
well-defined function. Rather, CFP expression fluctuates slowly, with a typical timescale of
one cell cycle. Thus, the output of the repressor-promoter system is not solely determined by
the concentration of repressor in the cell. Because these fluctuations are slow, the cell would
require several generations to “average them out”. In this way, GRF fluctuations fundamentally
limit the accuracy of transcriptional regulation.

The measured GRF had remarkably accurate predictive value: when synthetic negative-
feedback circuits were constructed using only the measured promoter, they exhibited the mean
expression levels expected from a simple genetic circuit model, with no free parameters41.
Thus, these techniques will likely facilitate quantitative synthetic biology approaches42-44. A
similar example in which movies have been used to characterize biochemical systems useful
for synthetic biology was recently taken by Grilly et al, who characterized a prokaryotic
protein-degradation system in yeast. In order to determine the protein-degradation rates, they
simply tracked the fluorescence of a GFP construct tagged for degradation in single cells 45.

Single molecules: the final biochemical frontier—Perhaps the ultimate limit to in
vivo analysis of biochemical interactions is detection of individual molecules within a cell.
Recently this milestone was reached in a pair of pioneering studies in E. coli from S. Xie and
colleagues46,47. First, Yu et al fused YFP to a membrane protein to reduce its mobility in the
cell sufficiently that the integrated fluorescence from each molecule could be detected above
the background autofluorescence of the cell (Fig.4c). Second, Cai et al measured expression
of individual molecules of the well-characterized enzyme beta-galactosidase, observing
quantized rates of production of a fluorescent substrate in a microfluidic chamber containing
a single cell. The ability to track the production and degradation of individual molecules over
time using movies enabled development of a predictive model of the distribution of protein
numbers across cells and generated evidence for, and characterization of, burst-like protein
expression 48.

Together these studies and others like them will help bridge the gap between the biochemical
interactions between individual molecules, as they occur in cells, and the behaviour of more
complex circuits consisting of multiple components and interactions.

Movies reveal circuit dynamics
A variety of techniques have begun to reveal the structure of genetic circuits: who regulates
whom, and how. However, despite this information it remains difficult to predict the cellular
dynamics that those circuits will generate. This is especially true for circuits that are only active
in a sub-population of cells, or whose behaviour is highly variable. In B. subtilis under stress,
a small percentage of cells (5–10%) enter a state of competence where they can readily take
up exogenous DNA 49,50. Similarly, B. subtilis undergoes a dramatic differentiation process
in which a cell transforms into a dormant spore. Individual cells vary significantly in when,
and in some cases whether, they initiate sporulation. What accounts for this variability in cell
fate decision-making? Recently, movies have allowed researchers to connect the decision-
making behaviours of individual cells to the architecture of underlying genetic circuits in both
competence 51,52 and sporulation53.

Transient, probabilistic differentiation
Pioneering work by D. Dubnau, P. Zuber, A. Grossman, and others established the key
molecular interactions necessary for competence (Reviewed in 54). The transcription factor
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ComK is both necessary and sufficient to induce cells into the competent state, and positively
autoregulates its own expression. Expression of ComS is necessary, but not sufficient, for
inducing competence. In movies cells appear to spontaneously activate ComK and, after some
time, revert back to vegetative growth. What accounts for the probabilistic, unsynchronized,
activation of competence in only a fraction of cells? And, how do cells ensure a timely exit
from the competent state?

Movies of B.subtilis cells containing reporters for pairs of genes during entry and exit from
competence provided clues to address these questions. For example, cells exhibited a strong
anti-correlation between ComK and ComS: as soon as ComK levels switched ‘on’, ComS
expression switched ‘off’, and vice versa (Fig. 5A-C, Supplementary Information 2 (movie)),
consistent with ComK directly or indirectly repressing the expression of ComS to form a
negative-feedback loop. When combined with positive autoregulation of ComK, the two
feedback loops together explain the probabilistic and transient nature of competence in terms
of excitable dynamics that are mathematically similar to action potentials in neurons 55. But
what is the ‘trigger’ for differentiation? In the mathematical model of competence based on
excitability, noise –fluctuations in molecular components like ComK – triggers differentiation.
To test this idea, cells mutant for the septation gene ftsW were used. These cells grew into long
filaments. Because of their increased size, they exhibited reduced noise (fluctuations in gene
expression ‘averaged out’ more in the larger cells), but similar mean levels of gene expression.
They also exhibited progressively reduced propensity to differentiate at longer lengths,
supporting the idea that fluctuations are necessary for differentiation in this system52.

D. Dubnau and colleagues approached this question from a complementary and more direct
point of view: They tested the hypothesis that fluctuations in ComK expression were
responsible for initiating differentiation. They generated strains differing in the noisiness, but
not the mean rate, of ComK expression. By reducing the rate of ComK translation while
increasing its rate of transcription, the expression of ComK was made less “bursty.” Strikingly,
the frequency of differentiation was reduced56. These experiments established that ComK noise
affects differentiation propensity. This approach could be extended to test the role of noise in
other factors as well, in competence as well as other systems.50,56.

Sporulation: terminal differentiation
In B. subtilis, entry into the sporulation pathway is controlled by the master transcription
regulator Spo0A, whose expression is heterogeneous57,58. Veening et al used time-lapse
movies of a strain with a fluorescent spo0A reporter gene to analyse the decision of individual
cells to sporulate (or not) (Fig 5D). Their movies revealed that B. subtilis implements a ‘bet
hedging’ strategy whereby some cells sporulate (high Spo0A activity) while others use
alternative metabolites to continue growing (low Spo0A activity). By analyzing cell lineages,
they showed that variations in the propensity to sporulate persist up to 2 generations.
Interestingly, these results are similar to those seen for the inheritance of states in a bistable
switch in yeast 29.

Spo0A becomes transcriptionally active upon phosphorylation by a multi-component
phosphorelay59. Multiple feedback loops influence Spo0A activity, including direct
autoregulation of Spo0A. By replacing the Pspo0A promoter with a constitutive inducible
promoter, Veening et al. showed that the autoregulation of Spo0A is not responsible for
bistability of Spo0A activity, nor for epigenetic inheritance53. In addition, when they replaced
Spo0A with a mutant that phenocopies the phosphorylated form, effectively removing the
influence of the phosphorelay, they found that all cells increase expression of Spo0A similarly.
Thus, movies enabled the authors to determine which circuit interactions are required for
heterogeneous differentiation. These results provide a starting point for further analysis of the
role of specific circuit interactions in the heterogeneous process of differentiation.
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Coordinating gene expression—A basic problem for cells is how to coordinate the
expression of multiple target genes, so that they are expressed in fixed proportions. In bacteria,
operons perform this function. How might eukaryotic cells, that lack operons, achieve
coordination? In yeast, movies of a fluorescent protein fused to the calcium-responsive
transcription factor Crz1p revealed coherent bursts of nuclear localization in which a
substantial fraction of Crz1p molecules move together into, and then out of, the nucleus60.
Strikingly, cells responded to increasing levels of calcium stress by increasing the frequency,
but not the duration, of these nuclear localization bursts. Thus, Crz1p activity is regulated by
‘frequency modulation’ (FM). FM regulation enables Crz1p to coordinate the expression of its
many target genes in fixed proportions across many levels of activity. Because the cell regulates
the fraction of time Crz1p is active (nuclear localized) rather than fraction of Crz1p molecules
in the nucleus, all genes are expressed in proportion to nuclear localization burst frequency.
This mechanism coordinates the target genes even when their individual gene regulation
functions (GRFs) differ in affinity, cooperativity, etc. Because nuclear localization dynamics
are unsynchronized, and appear stochastic, this basic principle of gene regulation could only
be identified using movies. It will be interesting to see what role the strategy of FM regulation
plays in regulation in other biological systems, from bacteria to multicellular organisms, as
similar activity dynamics have been observed in diverse systems 61-64.

Conclusions and future directions
As the examples described above make clear, movies are revealing a whole unexplored world
of interesting regulatory strategies, mechanisms, and behaviours. As more systems are imaged
in more ways, we anticipate many more interesting discoveries. In model organisms, circuits
can be studied more systematically and with greater throughput, analyzing interactions among
many pathways or genes simultaneously. Microscopy systems with improved automation can
facilitate this transition 65. Most genetic circuits studied so far involve stress response or
differentiation in model organisms, but many other cellular processes, such as metabolism, are
amenable as well. It will also be interesting to see whether movies can be used to study circuit
behaviours in natural strains or species, in environments that more closely resemble natural
conditions. For all of these techniques, an outstanding question is to what extent correlations,
even dynamic correlations, can provide sufficient information to infer regulatory interactions
or distinguish between possible modes in which circuits may operate.

Synthetic genetic circuits, engineered to implement novel biological functions 42,43 provide
unique opportunities to study potential genetic circuit designs. Can such circuits be engineered
to operate consistently in all cells? Conversely, can they be designed to mimic biological
strategies that take advantage of heterogeneity? Movies provide a powerful means to address
these questions.

Some limitations remain. First, despite spectacular work in diversifying the palette of
fluorescent protein reporters 66,67, we still have relatively few distinguishable colours that can
be used routinely to tag multiple genes. Second, quantitation and tracking of gene expression
in individual cells in movie data remains a time-consuming process that is usually optimized
differently in each lab. This is often the rate-limiting step for using movies to analyse circuits.
More general software tools are needed to expand the usefulness of these techniques. Third,
cell–cell interactions remain mysterious. Proximity of cells in movies can provide clues, but
the multitude of potential communication mechanisms and channels that exist ensure that many
possible interactions can influence cell behaviour. Chemostatic microfluidic systems are
beginning to address some of these concerns68,69. Similarly, many systems grow in 3-
dimensions (for example, biofilms), making quantitation more challenging 70.
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Despite these challenges, movies are providing unique insights into how individual cell
behaviour results from specific genetic circuit architectures. Only movies can provide a direct
view of genetic activities in individual cells — the quantities that we use in mathematical
models — that are at best approximated and at worst completely misrepresented by population
averages.

The examples described above provide a tantalizing glimpse of the kind of direct insights
movies will provide into circuit behaviour. In particular, movie analysis of circuits has already
begun to resolve the two seemingly contradictory views of cellular function introduced at the
beginning of this review: Variability can be generated from certain circuit designs, such as
those incorporating positive feedback. Conversely, circuit functions, such as differentiation,
require variability, in the form of stochastic noise.

Box 1

Movie Acquisition and Analysis Techniques

Movie acquisition

A minimal system for time-lapse microscopy consists of an automated fluorescence
microscope, software to automate acquisition, and software to assist in tracking and
quantification of fluorescence in the resulting movies. The development of microscopes
equipped with computer controllable stages, filter wheels and shutters allows for the
acquisition of movies of cell growth over several days. Diverse variants of green fluorescent
protein 71 now offer three or more distinguishable channels of information in the same cell
66. Using distinct localization signals can expand this repertoire67. Recently, software that
automates time-lapse acquisition of images in multiple stage positions is available
commercially and as a free open source software package (http://micromanager.org/).

Movie analysis

Analysis of even the most breath-taking movies can require yawn- and/or repetitive strain
injury-inducing amounts of time and mouse clicking, respectively. In many systems, the
first stage of analysis is segmentation, which identifies the set of pixels belonging to each
individual cell on each frame of each movie (Figure 2). Segmentation has been performed
successfully on both phase and fluorescent image data using a variety of tactics, including:
edge detection, thresholding, and template matching techniques like the Hough
transform72. Once cells have been identified, tracking algorithms, such as 73], are necessary
for inferring cell lineages. Tracking can be a complex problem, as cells divide, grow, rotate,
die, or move irregularly. Several software packages are being developed to assist with this
problem 74,75, but most are not optimized for bacteria.

Box 2

Issues that impact time-lapse analysis of individual cells

Genetic design considerations

Several issues impact strain design:

• Reporter type: Fluorescent protein genes can either be fused to proteins of interest
to directly monitor protein levels (protein fusion), or inserted downstream of an
additional copy of a natural promoter (promoter fusion). The latter scheme is less
likely to disturb the function of the cell, but does not permit analysis of post-
translational dynamics, including localization and degradation.
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• Protein stability: If promoter fusions express stable reporter proteins (GFP and its
derivatives are generally stable in bacteria), then it may be difficult to visualize a
rapid turn-off in expression, due to lingering previously-expressed proteins. In
such cases, one can analyse the rate of protein accumulation (time derivative of
fluorescence), rather than the amount of protein 76. In this case, protein stability
can be an advantage, since it removes uncertainty in the degradation rate. On the
other hand, time derivatives amplify measurement noise in image data. Another
strategy is to destabilize the reporter protein using genetic tags such as those
derived from ssrA in bacteria 77. This increases time resolution at the expense of
reduced fluorescence levels.

• Maturation time: Fluorescent proteins require widely varying times (minutes to
hours) to become fluorescent, requiring its direct measurement in the strain of
interest. Slow maturation can “smear out” otherwise rapid events in individual
cells.

Growth considerations

Growth of cells on a 2D surface permits use of simple, rapid, and light-efficient wide-field
fluorescence microscopy. However, cells eventually “pile up”, limiting the length of time
of observation. Microfluidic chambers have been introduced to maintain chemostatic
conditions 25, 69. In our own work, we find that imaging cells between coverslip and an
agarose pad of a few mm provides a relatively simple means of sustaining 2D growth for
many cell-generations. While imperfect, this system is sufficient for many applications.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Glossary

Linear micro-
fluidic chambers

Microfluidic devices in which cells are confined to grow in a narrow
groove. These devices facilitate analysis of cell lineages, since more
closely related cells are located closer together.

Noise Fluctuations in molecular components. Noise arises due to the low copy
numbers of molecular species and the burst-like nature of transcription,
among other mechanisms.

Galactose
utilization system

A system of genes used by yeast to control the uptake and metabolism
of galactose. This system is characterized by several feedback loops,
both positive and negative.

Repressilator A synthetic genetic circuit designed to produce clock-like oscillations
in the levels of is components. The circuit consists of a ‘rock-scissors-
paper’ feedback loop of three repressors, in which the first represses the
expression of the second, the second the third, and the third the first.

Spo0A Master transcriptional regulator for sporulation in B.subtilis. Spo0A is
controlled by phosphorylation and transcriptional regulation.

Segmentation breaking up a complex image into individual objects, such as cells.

Locke and Elowitz Page 12

Nat Rev Microbiol. Author manuscript; available in PMC 2010 April 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Edge detection A computational algorithm that identifies sharp changes in intensity,
associated with boundaries between objects, such as cells.

Thresholding One of the simplest segmentation techniques based on identifying
groups of pixels whose intensity exceeds a defined cutoff value.

Hough transform An algorithm for identifying particular shapes, such as circular disks, in
complex images. The Hough transform is useful in many segmentation
systems.
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Figure 1. Circuits, variability, and movies
A) Circuit level view: genes and gene products interact to generate an ordered behavioural
program. B) Noisy view: Isogenic populations exhibit large degrees of heterogeneity, both in
terms of gene expression and differentiated states. As an example, we show an image of a B.
subtilis strain with two chromosomally integrated reporter constructs, PspoIIq-cfp (shown in
yellow), PspoIID-yfp (shown in red), superimposed on a phase contrast image (gray). Cells were
grown in sporulation medium. However, they initiate sporulation at different times, leading
vegetative cells (dark rods) to coexist with cells various stages of sporulation (coloured cells).
C) Movies allow us to analyse the effects of circuit interactions on the relative timing of gene
expression in variable and dynamic circuits. Here, two schematic gene expression traces are
shown in red and green for a simple activating interaction (x activates z). Note that the movie
enables one to observe delayed correlations that would not be evident in snapshots. τ indicates
a typical delay before regulatory effects of x are visible in z.
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Figure 2. Tracking and segmenting single cells
A) Schematic of data flow for a cell tracking and segmentation system. During tracking cell
shapes must first be identified in images (segmentation) and then tracked over time. Finally
the fluorescence values must be extracted. B-E) Segmentation and tracking input and output:
B) Phase-contrast images are obtained at time-intervals (shown at the bottom). C) Fluorescence
images of the microcolony. In this example, filters for yellow and cyan fluorescent proteins
are used (shown in red and green respectively). D) Segmentation, performed on the phase-
contrast images, finds the locations of each cell in the image. Arbitrary colours are used for
labelling. E) The descendents of cell #4, are shown highlighted. The final panel shows the
descendants of each of the 4 initial cells after ≈ 4 generations. Figure is courtesy of J. Young,
California Institute of Technology, California, USA, and N. Rosenfeld, Rosetta Genomics,
Rehovot, Israel.
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Figure 3. Automated lineage analysis reveals epigenetic states
A) The aging of Escherichia coli (from 22). This lineage tree depicts 9 generations of E. coli
from 94 movies. The lengths of the lines connecting cells to their progeny are proportional to
the average growth rate of that cell, so a shorter line represents a shorter growth rate. At each
division, the cell inheriting the old pole is placed on the right side of the division pair, and
shown in red, while new poles are placed on the left side of each pair, and shown in blue. Green
lines indicate the point at which the first cell divides in the last four generations. B-D)
Genealogical switching history in the Yeast Galactose system (from 29). The first cell in each
movie is designated cell number 1 and sequential daughters of that cell 1–1, 1–2, 1–3. These
daughter cells bud in turn, giving rise to cells 1-1-1, 1-1-2, 1-2-1, etc. (B) An initially OFF cell
grows into a variegated microcolony. Beginning at 600 min, or 4 generations, several cells
fluoresce almost simultaneously. This includes the mother-daughter pairs (1,1–2) and
(1-1-1,1-1-1–1). Conspicuously, cell 1–1 does not switch for the duration of the movie, even
though its mother, daughter, and closest sibling all do. (C) The family tree for colony in (B).
Black lines indicate cells in the OFF state, whereas pink lines represent cells after they have
switched to the ON state.(D) Fluorescent time courses for mother cell 1 and her daughter 1–2,
showing each as they switch into the ON state.
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Figure 4. In vivo Biochemistry
A-B) Measuring the gene regulation function (GRF) of a repressor-promoter interaction in
individual E. coli cell lineages (from 78). Here, CI-YFP (lambda repressor fused to yellow
fluorescent protein) represses expression of cyan fluorescent protein (CFP). In the regulator
dilution experiment: Cells are transiently induced to express CI-YFP and then observed in
time-lapse microscopy as repressor dilutes out during cell growth. Part A) shows a filmstrip
of a typical experiment. CI-YFP is shown in red and CFP is shown in green. Part B) shows
quantitation of the movie. CI-YFP levels decrease by dilution (red lines), eventually permitting
expression of the cfp target gene (green lines). The darker lines correspond to the cell lineage
shown in the insets to part A). C) Monitoring transcriptional bursts in single cells (from 46).
Frames from film footage of the expression of Tsr-Venus under the control of a repressed lac
promoter. Tsr-Venus expression is shown in yellow and is overlaid with simultaneous DIC
images (differential interference contrast) images (gray). Note the burst like expression pattern.
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Figure 5. Circuit level Dynamics
A-C) Analysis of Bacillus subtilis competence circuit dynamics in individual cells (from51).
Part A) shows a snapshot from a movie. PcomS expression is shown in green and PcomG
expression is shown in red. The red cell is in the competent state (high ComK levels). White
depicts spores or sporulating cells. Part b shows a quantitative time series of PcomS –yellow
fluorescent protein (yfp) (green lines) and PcomG –cyan fluorescent protein (cfp) red lines) for
the competence event shown in A). Note the anti-correlation in expression between the two
promoters, which can be explained by the circuit diagram in part C. PcomS and PcomG activities
obtained from the non-competent sister cell are shown in light green and light red, respectively.
Part C) shows a map of the effective regulatory interactions in the core competence circuit in
B. subtilis. The dashed inhibitory arrow depicts indirect repression. ComS competes with
ComK for degradation by the MecA–ClpP–ClpC complex, effectively stabilizing ComK. D)
The B. subtilis phosphorelay is required to generate variability in sporulation in B. subtilis
(From 53). Time-lapse microscopy shows that heterogeneity in this system does not require the
positive-feedback loop of Spo0A on itself (top row), but does require the activity of the
phosphorelay (bottom row). Membranes are stained with FM5–95 (red), and expression of the
sporulation reporter PspoIIA is shown in green. The insets show a close-up of the cells.
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