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Abstract

Additive manufacturing at small scales enables advances in micro- and nano-

electromechanical systems, micro-optics, and medical devices. Materials that lend themselves 

to AM at the nano-scale, especially for optical applications, are limited. State-of-the-art AM 

processes for high refractive index materials typically suffer from high porosity, poor 

repeatability, and require complex experimental procedures. 

We developed an AM process to fabricate complex 3D architectures out of fully dense 

titanium dioxide (TiO2) with a refractive index of 2.3 and nano-sized critical dimensions. 

Transmission Electron Microscopy (TEM) analysis proves this material to be rutile phase of 

nanocrystalline TiO2, with an average grain size of 110 nm and <1% porosity. Proof-of-

concept woodpile architectures with 300-600 nm beam dimensions exhibit a full photonic 

bandgap centered at 1.8-2.9 μm, revealed by Fourier-transform Infrared Spectroscopy (FTIR) 

and supported by Plane Wave Expansion simulations. The developed AM process enables 

advances in 3D MEMS, micro-optics, and prototyping of 3D dielectric PhCs.
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Introduction

Additive manufacturing (AM) represents a set of processes for layer-by-layer fabrication of 

3D parts out of polymers, metals, and ceramics1–3. At the micro- and nano-scales, AM is 

poised to become the enabling technology for efficient 3D MEMS, micro-battery electrodes, 

electrically small antennae, and micro-optical components4–7. Facilitating these technologies 

requires a fabrication process to create a variety of functional materials in 3D, however the 

material choice for AM at the nano- and micro-scale is limited. This limitation is especially 

pronounced when particular material properties, including piezoelectric, magnetic, or optical, 

are required for the final application8–10. 

A conspicuous example is a lack of AM processes for high refractive index (n), low 

absorption materials with nano-sized dimensions11, which are typically required for micro-

optics and device applications. Polymer materials that can be shaped using direct laser 

writing (DLW) methods, such as two-photon lithography (TPL), are limited to refractive 

indices below 1.812. Hybrid materials for TPL that consist of inorganic silica-type networks 
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with embedded heteroatoms, including Zr, Zn, and Ge, have been demonstrated, but their 

refractive indices were below 1.613–16. Direct Laser Writing (DLW) of As2S3 chalcogenide 

glasses with n between 2.45 and 2.53 in the infrared has been demonstrated by taking 

advantage of their photo-induced metastability9, but the high index mismatch between the 

lens and the printed material complicated the feature size control. Metal oxides with 

refractive indices n~1.9 have been nano-architected using DLW of aqueous metal-containing 

photopolymers followed by calcination, but the low metal ion loading in these resins led to 

linear shrinkage of up to 87%, which made it challenging to preserve complex 3D 

geometry8,17. TPL of organic-inorganic resists combined with post-lithography thermal 

treatment has shown promise to create 3D nanolattices of metals and ceramics, but the 

residual porosity of up to 20% within the beams reduces the effective refractive index18,19. An 

AM process that can repeatably and accurately produce 3D architectures with sub-micron 

geometrical features out of high refractive index, low absorption material is yet to be 

developed and would realize multiple micro-optical devices and three-dimensional (3D) 

dielectric photonic crystals (PhCs)10.

3D dielectric PhCs have been a focus of extensive research for their unique ability to tailor 

and manipulate light20,21. 3D PhCs with a full photonic bandgap 22,23, 3D chiral PhCs that 

control light polarization24, and all-angle negative refractive (AANR) index materials25 have 

been demonstrated. Each of these devices is enabled by satisfying stringent optical material 

requirements and dimensional control. For example, obtaining a full photonic bandgap in 

woodpile architectures requires constituent materials with a refractive index n ≳1.926, and 

attaining AANR requires an effective index of n≥2.4927, with individual features smaller than 

the target wavelength. Creating nano-sized three-dimensional architectures out of high 

refractive index materials, such as silicon (Si), gallium arsenide (GaAs), and titanium dioxide 

(TiO2), can only be achieved via sophisticated experimental procedures. Examples include 
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micromanipulation of individually stacked layers28 or single- or double-inversion of a 

polymer templates that often result in features with up to 16% porosity10,23.

Titanium dioxide (titania, TiO2) represents a beneficial material choice for 3D dielectric PhCs 

in the visible and the infrared because of its high refractive index and high transparency10. 

The highest refractive index, between 2.45 and 3.03 for 500-1500 nm wavelengths, is 

attained in the rutile phase of TiO2
29. The processes for AM of titania demonstrated to date 

suffer from high porosity, low refractive index of the constituent material, and poor 

repeatability. An ideal AM process for titania would have to repeatably and accurately 

produce 3D structures with sub-micron features out of fully dense rutile TiO2. Several 

previous studies have described AM processes for TiO2. Direct Ink Writing (DIW) of sol-gel 

inks followed by calcination has been shown to produce TiO2 features with sub-micron 

dimensions that are ~10% porous and contained about a half of a lower-index anatase phase, 

which lowered their effective refractive index by at least 10%30. Femtosecond laser 

processing of liquid TiO2 precursors has been used to selectively introduce insoluble regions 

into the patterned material by breaking chemical bonds, but the poor adhesion between the 

sample and the substrate led to the loss of heat-treated 3D structures18. Laser-induced 

decomposition of sol-gel precursors enabled 2D patterning of TiO2/carbon composites with 

typical feature widths of 3 μm for crystalline TiO2 and has not been extended to three 

dimensions31. Using hybrid organic-inorganic materials in AM has been demonstrated for a 

stereolithography (SLA)-based patterning to create architected titania with 150 μm feature 

sizes. This process could not be extended to sub-micron features due to the resolution limit of 

SLA32. We previously showed feasibility of AM of 3D nano-architected titania using two-

photon lithography; this approach did not achieve precise dimensional control required for 

the emergence of a full photonic bandgap33.
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We demonstrate an AM process capable of repeatably and accurately producing 3D nano-

architected titanium dioxide, with critical feature dimensions between 150 and 600 nm and 

<1% porosity. We synthesize a hybrid organic-inorganic precursor to formulate a pre-ceramic 

TiO2 resist. We use two-photon lithography to pattern the designed 3D shapes and pyrolyze 

them at 750-900°C in air. This process shrinks the dimensions of originally patterned 3D 

nano-architectures by 60% to produce fully dense nanocrystalline TiO2 replicas. As a proof of 

concept, we created 3D dielectric PhCs using this process by fabricating rutile TiO2 patterned 

into woodpile face-centered tetragonal (FCT) architectures with beam dimensions of 300-600 

nm and lateral periods of 0.8-1.5 μm. We use Plane Wave Expansion (PWE) simulations and 

Fourier Transform Infrared Spectroscopy (FTIR) to demonstrate the full photonic bandgaps 

centered at 1.8-2.9 μm. AM process for fabricating 3D nano-architected fully dense TiO2 will 

be crucial for rapid prototyping and manufacturing of 3D PhCs and micro-optical devices.

Results

Process for AM of 3D nano-architected titania

To prepare titania pre-ceramic photopolymer, we first used a ligand exchange reaction 

between titanium (IV) ethoxide and acrylic acid in 1:4 molar ratio to synthesize titanium (IV) 

acrylate (Fig. 1A). The reaction was conducted in a glovebox to minimize exposure to 

oxygen and water. The resulting hybrid organic-inorganic TiO2 precursor can be embedded in 

a polymer network during free-radical polymerization. When combined with an acrylic 

monomer, pentaerythritol triacrylate, the solution becomes clear and orange. A two-photon 

photoinitiator, 7-diethylamino-3-thenoylcoumarin (DETC), was then dissolved in 

dichloromethane and added to the solution (see Methods); the resulting liquid photoresist was 

drop cast onto a silicon substrate and 3D printed in a TPL system (Photonic Professional GT, 

Nanoscribe GmbH). Architected samples were designed to rest on top of a 2D lattice layer 

supported by a spring-and-pillars array that decoupled the architecture from the substrate 
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during pyrolysis and minimized its distortion during shrinkage19,33 (Figs. 1B, C). Non-

polymerized resist was washed away, and free-standing architectures were pyrolyzed in air at 

900°C for 1 hr (see Methods) to create replicas of the original structures, with a concomitant 

~60% reduction in dimensions, made entirely out of titanium dioxide (Fig. 1D).

Feature dimensions

To ensure high accuracy of geometric dimensions in devices fabricated using this AM 

process, we carefully studied the influence of process parameters on the size of individual 

features. Previous studies34–36 reported strong non-linear dependence of the dimensions of the 

polymerized material, or voxel, on the laser power (LP) and the exposure time (ET) in two-

photon lithography, which is unique for each photopolymer. We used ascending scan 

experiments34 to evaluate the voxel width and height for this hybrid photoresist for LP 

between 12.5 and 20 mW and ET between 0.5 and 10 ms. Fig. S1 shows that for ET between 

1 ms and 10 ms at 20 mW, the voxel width varied from 440 to 560 nm, its height changed 

from 1.6 to 3.2 μm, and the voxel aspect ratio varied from 3.8 to 5.3. 

To predict and reliably control the feature size for 3D photonic crystal fabrication, we 

adopted a model by Serbin et al.35 that links the voxel dimensions in a two-photon 

lithography process to the laser exposure parameters (see Supporting Information). Voxel 

height  (Equation (1)) and voxel width  (Equation (2)) can be expressed as𝐿 𝑑

𝐿 = 2𝑧𝑅 𝛼𝑡𝑃2 ― 1, (1)

𝑑 = 𝑤0 log [𝛼𝑡𝑃2], (2)

where   is the Rayleigh distance of the objective [m],  is the laser beam waist [m], and 𝑧𝑅 𝑤0

 is a non-dimensional parameter, where  is the exposure time [s],  is the laser power 𝛼𝑡𝑃2 𝑡 𝑃

[W], and  is a constant that depends on the exposure pattern and the photopolymer 𝛼

formulation (see Supporting Information). Figure S1 demonstrates that experimentally 
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measured voxel dimensions are in good agreement with this model, which provides a 

quantifiable way to tailor the laser exposure parameters to achieve target feature dimensions.

Accuracy and repeatability of geometric features

We demonstrate the efficiency of this approach by fabricating 3D architectures with 

tetragonal woodpile geometry that has overall dimensions of 220 x 220 μm, a lateral period 

xL of 3.7 μm, an axial factor (defined as the ratio of the axial period xa to the lateral period 

xL) of 1.1, and rectangular beams with 1.3 x 1.5 μm cross-sections. Figure 1(F, G) shows 

SEM images of a representative woodpile structure after pyrolysis that contains 60 periods in 

the lateral direction and 9 periods in the axial direction. The beams in this sample had 530 x 

600 nm rectangular cross-sections, a lateral period of 1.47 μm, and overall lateral dimensions 

were 95 x 95 μm. The features appeared to be uniform, and the shrinkage post-pyrolysis 

appeared to be isotropic.

To quantify the effect of shrinkage on geometrical distortions within the structure, we 

analyzed the variability of geometric dimensions in axial (Fig. S2) and lateral directions in 

the woodpile using SEM measurements (Table S1). We found that in the axial direction the 

lateral period did not vary by more than 5%, with no statistically significant deviations in the 

average beam width (Fig. S2). In the lateral direction, we analyzed the variability of the 

lateral period using nested variance analysis37, which revealed a total variability of 25 nm, or 

1.7% of the target dimension, across the entire  sample (Table S2). We also found that the 

contribution of spatial variability of the lateral period was only 13 nm, or less than 1% of the 

target (Table S2).

Material characterization

To characterize the chemical composition of as-fabricated material, we conducted energy-

dispersive X-ray spectroscopy (EDS) on a representative sample with in-plane dimensions of 

Page 7 of 21

ACS Paragon Plus Environment

Nano Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



8

95 x 95 μm and a lateral period of 1.5 μm (Fig. 2A). SEM EDS maps (Fig. 2B-D) show a 

uniform distribution of Ti and O throughout the structure with no apparent segregations into 

titanium- or oxygen-rich phases. EDS spectrum taken from a 20 x 20 μm area in the center of 

the sample (Fig. 2E) reveal the chemical composition to be 66.8 at% oxygen and 33.2 at% 

titanium. Silicon substrate was excluded from the composition estimate.

To evaluate the phase composition, Raman spectra were collected from the as-fabricated 3D 

architectures using a 514 nm laser focused through a 50x microscope objective. Fig. 2F 

shows a representative Raman spectrum along with the reference spectra collected from rutile 

and anatase samples (see Methods). The Raman signature revealed peaks at 145 cm-1, 448 

cm-1, and 613 cm-1 that match the rutile reference spectrum. 

We analyzed the atomic-level microstructure of as-fabricated TiO2 structures using 

Transmission Electron Microscopy (TEM) and electron diffraction. We prepared a 100 nm-

thick cross-section of a sample whose beams had 960 x 150 nm elliptical cross-sections, 

lateral periodicities of 1090 nm, and a footprint of 70 x 70 μm using Focused Ion Beam (FIB) 

lift out procedure (Fig. 3A). High-resolution (Fig. 3B) and dark-field (Fig. 3C) TEM images 

reveal that a typical beam cross-section is >99% dense and is comprised of nanocrystallites 

with a mean size of 110 nm (see Figs. 3D, S3, and S4). Electron diffraction pattern (Fig. 3B, 

inset) confirms the crystalline phase of TiO2 to be rutile.

Optical behavior

We used Plane Wave Expansion (PWE) simulations and Fourier Transform Infrared 

Spectroscopy (FTIR) measurements to investigate the optical behavior of TiO2 woodpiles. 

We chose experimentally-equivalent geometric parameters extracted from images in Fig. 

1(F,H) and a refractive index of 2.3, obtained by ellipsometry measurements on as-fabricated 

films (Fig. S5) for PWE simulations. Figure 4A shows the  band diagram with the 
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corresponding Brillouin zone (inset) calculated for an FCT woodpile architecture with these 

properties, which  exhibits a full photonic bandgap between frequencies of 0.465(2 πc/xL) 

and 0.474(2 πc/xL) (see Fig. S6), where xL is the lateral period of the woodpile and c is the 

speed of light. Woodpiles with xL of 1.47 μm have gap edges at 3.10 and 3.16 μm (Table S2). 

To probe the simulation results experimentally, we measured the reflectance and 

transmittance of the as-fabricated woodpiles using FTIR with a Cassegrain objective with an 

angle range between 16° and 35.5° within a 30 x 30 μm area at the center of the sample. 

Previous experimental studies revealed that the position of FTIR reflectance bands is 

influenced by the stop-band positions that are being probed simultaneously at off-normal 

light incidences23. We calculated the expected stop-band edges from the woodpile band 

diagram probed along X’-U’-L and X’-W’-K’ at experimental off-normal incidence angles to 

be between 0.418(2 πc/xL) and 0.544(2 πc/xL), which corresponds to the wavelengths of 2.7 

to 3.5 μm (Table S2). Fig. 4B contains FTIR spectra that reveals a high reflectance/low 

transmittance band centered at ~2.9 μm, plotted along with the computed position of a full 

photonic bandgap (gray rectangle)  and the range of stop-band positions for the 16°-35.5° 

incidence angles (vertical dash lines). The position of the high reflectance band was found to 

be within 7% from the expected full photonic bandgap.

Varying the TiO2 precursor loading in the photopolymer enables control over the amount of 

post-pyrolysis linear shrinkage and of the structural feature sizes, which enables access to 

multiple wavelengths. We fabricated 3D photonic crystals with reduced  lateral periods of 

1.12, 1.03, and 0.84 μm by starting with the same pre-ceramic 3D sample and varying the 

TiO2 precursor loading by 50-83% (Fig. 4C). These structures were replicas of the titania 

woodpiles with xL=1.47 μm shown in Fig. 1F. Figure 4D shows FTIR reflectance spectra for 

these samples, as well as the computed bandgap positions, that revealed high reflectance 
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10

bands centered at 1.8 um, 2.2 um, and 2.4 um, which are within 0.3%, 4.8%, and 3.0% of the 

target full photonic bandgap positions (Table S2).

Discussion

We developed an AM process to produce three-dimensional networks of fully dense sub-

micron features out of a transparent, high refractive index material that can be used to 

fabricate 3D dielectric photonic crystals. Compositional and microstructural analysis suggests 

that as-fabricated material is comprised of fully dense nano-crystalline rutile TiO2 with 

minimal carbon content. EDS revealed the chemical composition of 33.2 at% Ti and 66.8 at% 

O, which corresponds to a 1:2 atomic ratio of Ti to O characteristic of titanium dioxide. It is 

not possible to accurately determine C content using EDS because of its low sensitivity to 

light elements and because of inevitable carbon contamination in the SEM chamber38. 

Inclusion of the carbon peak in the EDS spectrum fit did not result in the fit improvement, 

which further corroborates extremely low at% C. Processes based on laser-driven formation 

of TiO2/carbon composites yielded a substantial amount of carbon31 that can lower the 

material transparency.

TEM electron diffraction and Raman spectroscopy identified TiO2 to be in its rutile phase. 

Raman spectrum taken from a representative architected sample revealed peaks that are in 

good agreement with first-order vibration modes found in rutile titania39 (B1g at 145 cm-1, Eg 

at 448 cm-1, and A1g at 613 cm-1), as well as with characteristic second-order scattering 

around 240 cm-1 (see Fig. 2F). This finding is also consistent with other works that studied 

phase transformation in sol-gel derived titanium dioxide30,40. For example, dry sol-gels of 

TiO2 were found to convert from anatase into rutile at 550°C, with full transformation 

occurring at 800°C 40. These studies suggest rutile as the predominant expected phase of 

titania resulting from a heat treatment at 900°C. Previous attempts to develop a titania AM 

process resulted in partially converted TiO2 (e.g., rutile/anatase mix of 47 wt%/53 wt% in 
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11

ref.30) and porous features with 10-16% air content10,30, which lowered the effective 

refractive index of individual features.

The ability to predict and reliably control the feature size based on the exposure parameters 

was critical for fabrication of 3D photonic crystals. Estimating polymerization volume in 

two-photon lithography generally requires numerical simulations that take into account 

radical generation and inhibition, oxygen diffusion, local heating, and many other factors36. 

We studied the dependence of the voxel dimensions on the exposure parameters by 

examining polymerization kinetics inside the voxel volume at millisecond time scales. 

Mueller et al.41 experimentally showed that at exposure times between 1 and 10 ms two-

photon polymerization is primarily driven by radical generation. Uppal et al. found that the 

generated radicals remain mostly confined to the voxel volume during the exposure36. 

Mueller et al.42 has demonstrated that the temperature inside the polymerizing voxel did not 

increase by more than 5K at 20 mW laser power. These previous studies allowed us to adopt 

a closed-form solution by Serbin et al. for an isothermal system with no diffusion to predict 

the voxel dimensions in our system.

FTIR reflectance and transmittance spectra of four woodpile samples (Fig. 4B, D) revealed 

that the observed high reflectance peaks were centered within 0.3% to 7% from the expected 

position of full photonic bandgaps predicted by PWE (Fig. 4A). The observed deviations can 

be attributed to (i) the variability of geometric dimensions throughout the sample and (ii) the 

uncertainty of the refractive index measured by ellipsometry and used in PWE simulations. 

The SEM measurements and nested variance analysis showed ~1% in-plane (Table S1) and 

~5% out-of-plane (Fig. S2) deviations of the lateral period throughout the woodpile, and the 

measured refractive index of a TiO2 film of 2.3 is 4-15% lower than the expected index of 

2.40-2.71 for rutile TiO2 within a 1500-3000 nm range29. This could be caused by some 

inherent porosity in the TiO2 film (Fig. S5, left) used for ellipsometry measurements; the 
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beams that comprise TiO2 PhCs are fully dense. Uncertainty in the geometrical dimensions of 

up to 5% and in the refractive index of up to 15% can contribute to the observed deviations 

between experimental and simulated peak positions.

In summary, we developed an additive manufacturing process to create 3D nano-architected 

titania with a sub-micron resolution. We demonstrate the feasibility and efficiency of this 

process using a woodpile FCT architecture with individual feature widths of 150 nm as a 

model system. The as-fabricated material is carbon-free and consists homogeneous, fully 

dense nanoscrystalline rutile TiO2. Taking advantage of the high refractive index and 

transparency of titania, we prototyped several PhCs with sub-micron lateral periods and full 

photonic bandgaps centered at 1.8-2.9 μm, consistently confirmed by PWE simulations and 

FTIR measurements. Fabricating PhCs with full photonic bandgaps in the visible requires 

lateral periods of ~300 nm10, which can be achieved by modulating precursor loading. We 

showed that using lower concentrations of TiO2 precursor allows for two times smaller 

features due to higher post-pyrolysis linear shrinkage.  The developed freeform AM process 

is not limited to woodpile geometries and can be applied to directly fabricate a broad range of 

3D architectures. This nano-scale AM process is also not limited to TiO2: other hybrid 

organic-inorganic-based photopolymers can be formulated to print a variety of materials, 

including other dielectrics, metals, and semiconductors. AM of 3D nano-architected titania is 

poised to enable facile fabrication of components for a much broader set of applications, 

including micro-optics, 3D MEMS, and minimally invasive tools and procedures.

Supporting Information

Supporting information is available online and includes Materials and Methods, voxel shape 

modeling, additional figures and tables.

Figure captions
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Figure 1. Process for nanoscale additive manufacturing (AM) of titanium dioxide and SEM 

characterization of as-fabricated TiO2 3D architectures. (A) Ligand exchange reaction 

between titanium (IV) ethoxide and acrylic acid is used to synthesize a liquid TiO2 precursor 

in the photopolymer. (B) Titania pre-ceramic photopolymer is used in a two-photon 

lithography process to fabricate pre-ceramic 3D architectures. (C) Schematic of a pre-ceramic 

woodpile architecture supported by a set of springs that decouple it from the substrate. (D) 

Titania woodpile structure is formed by calcination of the pre-ceramic part. (E,G) 

Representative SEM images of pre-ceramic woodpile architectures. (F, H, I) Representative 

TiO2 woodpile architectures after calcination at 750-900°C. Scale bars are 50 μm for (E), 20 

μm for (F), 2 μm for (G), 1 μm for (H), and 2 μm for (I)

Figure 2. Characterization of chemical composition and phase of TiO2 using SEM EDS and 

Raman spectroscopy. (A-D) SEM EDS mapping of a representative woodpile architecture 

fabricated on a silicon substrate reveals uniform distribution of titanium and oxygen. (E) 

Estimation of chemical composition from a representative EDS spectrum shows 1:2 at%  

ratio of titanium to oxygen consistent with TiO2. (F) Raman spectrum of as-fabricated TiO2 

compared to reference spectra of rutile and anatase. Scale bars are 50 μm for (A-D)

Figure 3. TEM characterization of as-fabricated TiO2  3D architectures. (A) Low-

magnification TEM image showing a 100 nm thick cross-section of a TiO2 woodpile structure 

prepared using FIB lift-out procedure. (B) HRTEM image of a cross-section of an individual 

beam, an electron diffraction pattern (inset), and (C) a corresponding dark-field TEM image 

reveal that the beams consist predominantly out of nanocrystalline rutile TiO2. (D) Grain size 

histogram for n=100 particles measured from an SEM image showing 95% confidence 

intervals on the mean grain size (μ) and the standard deviation (σ). Scale bars are 2 μm for 

(A), 5 nm for (B, C), and 2 nm-1 for (B, inset).
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Figure 4. Optical characterization of 3D photonic crystals fabricated using the developed 

nanoscale AM process (A) Calculated band structure of the fabricated woodpile FCT 

architecture. Grey band shows the position of a full photonic band gap. (B) FTIR reflectance 

and transmittance spectra taken from a woodpile structure showing the emergence of high 

reflectance and low transmittance bands centered at 2.9 μm. (C) Schematic of a woodpile unit 

cell and SEM of representative woodpile structures with 1120 nm, 1030 nm, and 840 nm 

lateral periods fabricated using the developed AM method. (D) FTIR reflectance spectra for 

as-fabricated woodpile structures with varying periodicities showing passive tuning of the 

reflectance band position between 1.8 and 2.4 μm. Scale bars are 1 μm for (C).
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