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We present wall-resolved large-eddy simulations (LES) of the incompressible Navier-
Stokes equations together with empirical modeling for turbulent Taylor-Couette (TC)
flow where the inner cylinder is rotating with angular velocity Ωi and the outer cylinder
is stationary. With Ri, Ro the inner and outer radii respectively, the radius ratio is
η = 0.909. The subgrid-scale (SGS) stresses are represented using the stretched-vortex
subgrid-scale model while the flow is resolved close to the wall. LES is implemented in
the range Rei = 105 − 3 × 106 where Rei = ΩiRi d/ν and d = Ro − Ri is the cylinder
gap. It is shown that the LES can capture the salient features of the TC flow, including
the quantitative behavior of span-wise Taylor rolls, the log-variation in the mean velocity
profile and the angular momentum redistribution due to the presence of Taylor rolls. A
simple empirical model of the turbulent, TC flow is developed consisting of near-wall, log-
like turbulent wall layers separated by an annulus of constant angular momentum. The
model is closed by a proposed scaling relation concerning the thickness of the wall layer
on the inner cylinder. Model results include the Nusselt number Nu (torque required to
maintain the flow) and various measures of the wall-layer thickness as a function of both
the Taylor number Ta and η. These agree reasonably with experimental measurements,
direct numerical simulation (DNS) and the present LES over a range of both Ta and
η. In particular, the model shows that, at fixed η < 1, Nu grows like Ta1/2 divided
by the square of the Lambert, (or Product-Log) function of a variable proportional to
Ta1/4. This cannot be represented by a power law dependence on Ta. At the same time
the wall-layer thicknesses reduce slowly in relation to the cylinder gap. This suggests an
asymptotic, very large Ta state consisting of constant angular momentum in the cylinder
gap with uθ = 0.5 ΩiR

2
i /r, where r is the radius, with vanishingly thin turbulent wall

layers at the cylinder surfaces. An extension of the model to rough-wall turbulent wall
flow at the inner cylinder surface is described. This shows an asymptotic, fully rough-wall
state where the torque is independent of Rei/Ta, and where Nu ∼ Ta1/2.

1. Introduction

Taylor-Couette (TC) flow of a viscous fluid in the annular gap between two con-
centric cylinders, where one or both cylinders are rotating, is a classical turbulent
flow that exhibits interesting shear-flow phenomena (Taylor 1923; Grossmann
et al. 2016). TC flow is perhaps more experimentally accessible than the related
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plane-Couette (PC) flow (e.g. Pirozzoli et al. (2014)) owing to the cylindrical ge-
ometry and the convenience of torque measurement. The parameter space covered
by most experimental and computation studies of TC flow includes independent
Reynolds numbers associated with inner and/or outer rotation angular velocities,
respectively, a radius ratio and the distinction between co-rotating and counter-
rotating cylinder motion. TC flow can be defined by two independent length
and two independent velocity scales. For incompressible TC flow of a Newtonian
fluid, this gives three dimensionless numbers which typically are the radius ra-
tio η = Ri/Ro and the inner and outer Reynolds numbers Rei = ΩiRi d/ν and
Reo = ΩoRo d/ν respectively. Here d = Ro − Ri with Ri the radius of the inner
cylinder and Ro that of the outer cylinder, Ωi, Ωo are rotation angular velocities
of the inner and outer cylinders respectively and ν the kinematic viscosity of the
fluid. Alternative specifications are sometimes useful such as the Taylor number
Ta for the purpose of analogy with Rayleigh-Bénard flow, and Rew, a Reynolds
number based on the standard deviation of the radial velocity (Huisman et al.
2012).

Figure 1 of Andereck et al. (1986), reproduced as figure 2 of Grossmann
et al. (2016), shows a classification of observed flow types in a Rei − Reo plane
up to moderate Reynolds number Rei ≈ 2000. These include wavy vortex flow,
modulated waves, spiral turbulence and Taylor vortex flow among others. The
review article of Grossmann et al. (2016) surveys and summarizes research on
these fluid-dynamical phenomena associated with TC flow. At large sufficiently
large Rei (or large Taylor number Ta, which for Reo = 0 is proportional to Re2i )
they point out that the near-wall layers on the cylinder walls become turbulent
signalling a transition toward an “ultimate regime”. Here the two cylinder wall
layers appear to conform to the classical law of the wall and are separated by a
region of bulk flow that is dominated by large-scale unsteady phenomena such as
span-wise Taylor roll structures. Experiments at different η have been conducted
in this regime in the range Ta = 1011− 1013 (Merbold et al. 2013; Van Gils et al.
2011, 2012). These show a Nusselt number Nu - the ratio of torque required to
maintain the motion to the laminar-flow torque - variation with Ta that can be
reasonably approximated over this range by Nu ∼ Tap where p is less than 0.5.

Ostilla-Mónico et al. (2016) report direct numerical simulation (DNS) of TC
flow with the outer cylinder stationary up to Rei = 3 × 105 for η = 0.909. This
corresponds to a maximum Taylor number Ta = 9.969 × 1010. Their results
show two Taylor rolls and also demonstrates that the bulk region separating
the cylinder wall layers consists of a region of almost constant mean angular
momentum density that corresponds to the average of that corresponding to the
two cylinder radii and angular velocities.

Presently we investigate Taylor-Couette flow at relatively large Reynolds num-
bers using the numerical technique of large eddy simulation (LES). Our aim in
part is to provide data at larger Rei than is presently available from DNS as a pre-
lude to wall-modeled LES at even larger Rei. We utilize η = 0.909 with Reo = 0
and Rei = 105, 3 × 105, 6 × 105, 106, 3 × 106, with a maximum Taylor number
Ta = 9.969 × 1012. In §2 we outline the numerical method and the subgrid-
scale model for our wall-resolved LES. This is followed in §3 by an account of
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the present LES results. Good agreement with the DNS of Ostilla-Mónico et al.
(2016) is obtained at our lower Rei . The higher Rei results show a clear log-like
profile for the wall layer of the inner cylinder. All LES reproduce a bulk inner
region with almost constant azimuthal-spanwise averaged angular momentum.
§4 describes an empirical, one dimensional (radial) model for the mean TC flow
for relatively large Rei and Reo = 0. This comprises wall bounded regions with
law-of-the wall mean velocity profiles together with a uniform angular momen-
tum central region. The model is closed with a scaling hypothesis concerning the
relative thickness of the inner wall layer. It is shown that the model gives satisfac-
tory agreement with experiment, DNS and LES for several important mean-flow
parameters. In §5 an extension of the model to rough-wall layers is described,
while concluding remarks are presented in §6.

2. Large-eddy simulation

2.1. Numerical method

The governing equations for LES of incompressible viscous flow are derived by
formally applying a spatial filter onto the Navier-Stokes equation. In Cartesian
co-ordinates xi, i = 1, 2, 3 these are

∂ũi
∂t

+
∂ũi ũj
∂xj

= − ∂p̃

∂xj
+ ν

∂2ũi
∂x2j

− ∂Tij
∂xj

,
∂ũi
∂xi

= 0. (2.1)

with ũi the filtered velocity and p̃ the filtered pressure, and Tij = ũiuj − ũiũj de-
notes the effect of subfilter scales on the resolved-scale motion. In practice, this is
represented on a computational grid using a subgrid-scale (SGS) model. For con-
venience we will also utilize (x, y, z) as Cartesian coordinates with (ũ, ṽ, w̃) as the
corresponding filtered velocity components. Additional coordinate systems are
also used. Cylindrical coordinates (θ, y, r) with velocity components (uθ, uy, ur)
are convenient for diagnosing results. General curvilinear coordinates (ξ, y, η) will
be described for the implementation of the numerical method.

2.2. Numerical method

In the curvilinear coordinate system, the (formally) filtered governing equations
in conservation-law form can be written as (Zang et al. 1994)

∂Um

∂ξm
= 0,

J−1∂ũi
∂t

+
∂Fmi
∂ξm

= 0, (2.2)

where Um and Fm are given as

Um = J−1
∂ξm

∂xi
ũi and Fmi = Umũi+J

−1∂ξ
m

∂xj
Tij+J

−1∂ξ
m

∂xi
p̃−νGmn ∂ũi

∂ξn
, (2.3)

respectively where J−1 is the inverse of the Jacobian and Gmn is the mesh skew-
ness tensor defined as:

J−1 = det

(
∂xi
∂ξj

)
, Gmn = J−1

∂ξm

∂xj

∂ξn

∂xj
. (2.4)
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A semi-implicit fractional step method was used to solve the governing equa-
tions with successive solution of modified Helmholtz equations that results from
implicit treatment of the viscous terms, pressure Poisson equation and the veloc-
ity correction step. Integration in time is implemented using an Adams-Bashforth
method for explicit terms and Crank-Nicolson for implicit terms. A parallel multi-
grid solver with a line-relaxed Gauss-Seidel iteration method is used for numeri-
cal solution of the Poisson equations. The spatial discretization of the nonlinear
term utilizes a fourth-order energy-conservative scheme of the skew-symmetric
form by Morinishi et al. (1998), while for all other terms are discretized using
a fourth-order central difference scheme. The present code framework has been
verified and validated for several flows that include flow over an airfoil using
both DNS (Zhang et al. 2015) and wall-modeled LES (Gao et al. 2019) and wall-
resolved LES of flow over a circular cylinder in different configurations (Cheng
et al. 2017, 2018,?) . All LES described presently were performed on the Cray
XC40 supercomputer Shaheen at KAUST.

2.3. Stretched vortex SGS model

We utilize the stretched-vortex (SV) SGS model (Misra & Pullin 1997; Voelkl
et al. 2000; Chung & Pullin 2009) in regions away from the wall. This is a
structure-based model where the subgrid flow is represented by tube-like, spi-
ral vortices (Lundgren 1982) stretched by the rate-of-strain tensor of the local
resolved-scale flow. Inside a computational cell there exists an (virtual) SGS vor-
tex with direction vector ev resulting in the subgrid stress

Tij = (δij − evi e
v
j )K, (2.5)

where K is the subgrid kinetic energy, expressed as integral of the SGS energy
spectrum Lundgren (1982)as

K =

∫ ∞
kc

E(k)dk =
K ′

0

2
Γ

[
−1/3,

2νk2c
3|ã|

]
, (2.6)

where Γ[.., ..] is the incomplete gamma function, kc = π/∆c is the cutoff wavenum-

ber, ã = evi e
v
j S̃ij is the resolved-scale stretching along the subgrid vortex with

S̃ij the resolved-scale, rate-of-strain tensor. The evj are aligned with the principal

extensional eigenvector of S̃ij while the parameter K ′
0 can be calculated dy-

namically from the resolved-scale velocity using a matching procedure as K ′
0 =

〈F2〉/〈Q(κc, d)〉 where 〈〉 denotes an averaging strategy, computed as the arith-
metic mean of 26 neighboring points and κc = kc (2 ν/3|ã|)1/2 (Chung & Pullin
2009). The second-order local structure function of the resolved-scale velocity
field is F2 and Q(κc, d) is calculated using an asymptotic approximation with
d = r/∆c where r the distance from neighbor point to the vortex axis. The SV
SGS model is implemented in a strictly local setting and does not require either
local isotropy of homogeneity in one or more co-ordinate directions. For details
see Misra & Pullin (1997); Voelkl et al. (2000); Chung & Pullin (2009). The
present LES is “wall-resolved” meaning that the wall-normal grid size at the wall
is of order the local viscous wall scale uτ/ν where uτ ≡

√
|τw|/ρ is the friction
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Figure 1. Flow configuration for Taylor-Couette flow with rotating inner cylinder (Ωi 6= 0)
and stationary outer cylinder (Ωo = 0). Ri is the radius of the inner cylinder, Ro is the radius
of the outer cylinder, d = Ro −Ri.

Rei Nθ Nr Ny Ta Reτi ri∆θ
+ ∆r+min ∆y+

1× 105 256 256 1024 1.108× 1010 1.400× 103 34.3 0.75 5.74
3× 105 512 512 1536 9.969× 1010 3.908× 103 47.9 0.54 10.7
6× 105 1024 512 2048 3.988× 1011 7.289× 103 44.7 0.51 14.9
1× 106 2048 1024 4096 1.108× 1012 1.125× 104 68.9 0.77 11.5
3× 106 2048 1024 4096 9.969× 1012 3.178× 104 97.4 1.07 32.6

Table 1.
Parameters for LES at varying Rei with η = 0.909. Nθ, Nr and Ny are mesh num-
bers employed in the azimuthal direction, radial direction and spanwise direction, respec-
tively. For all cases, the domain size is a sector of ∆θ = π/10 in the azimuthal θ di-
rection and is Ly = 2πd/3 in the span-wise y direction. Reτi = uτid/2ν as calculated
from the LES. Mesh sizes in viscous wall scaling are ri∆θ

+ and ∆y+ respectively, uni-
form in azimuthal and spanwise directions. ∆r+min is the minimal near wall mesh size.

velocity with |τw| the magnitude of the wall shear stress and ρ the constant fluid
density.

3. LES results

3.1. Cases implemented

In the present LES of Taylor-Couette flow, the outer cylinder is stationary; Ωo =
0, as shown in the flow configuration of figure 1. The relevant dimensionless
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Figure 2. Visualization of an instantaneous flow field in a radial-spanwise plane:
r′ = (r − Ri)/d, θ. Rei = 105, η = 0.909. (a), streamlines of the azimuthal-averaged flow
field (ur, uy); (b), instantaneous azimuthal velocity field at mid-span plane; (c), instantaneous
span-wise velocity field at mid-span plane.

parameters defining the flow are then the radius ratio η and the inner-cylinder
Reynolds number Rei. The inner-cylinder friction Reynolds number is

Reτi =
uτi d

2 ν
, (3.1)

where uτi =
√
τi,w/ρ is the inner cylinder friction velocity, with τi,w the shear

stress at the wall.

Generally, and in experiments, both η,Rei are fixed but Reτi must be de-
termined by measurement, numerical simulation, theory or modeling. The torque
that must be applied to the outer cylinder to sustain the motion is T = 2πRiLyRiτi,w.
In the present LES we use η = 0.909 and vary only Rei. In cylindrical (r, θ, y) co-
ordinates, the computational domain is a sector of angle π/10 in the θ-direction,
which is a well-accepted domain size in DNS simulation by Ostilla-Mnico et al.
(2015a); Ostilla-Mónico et al. (2016). In the span-wise direction the domain
length is Ly = 2πd/3. Periodic boundary conditions are implemented in both
θ and y. Grid spacing is uniform both θ and span-wise y but is stretched in the
r direction.

The present study focuses on the flow behavior at relatively high Rei. For
numerical verification we utilize DNS Rei at 105 and 3 × 105 (Ostilla-Mónico
et al. 2016). LES at higher Rei up to 3× 106 are also presented. Parameters for
the five LES performed are listed in table 1. These include the number of grid
cells in each direction (Nθ, Nr, Ny) and the Taylor number, which is defined as
(Grossmann et al. 2016)

Ta =
(1 + η)4

64 η2
(Ro −Ri)2(Ro +Ri)

2 (Ωi − Ωo)
2

ν2
. (3.2)
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For Ωo = 0 this becomes

Ta =
(1 + η)6

64 η4
Re2i . (3.3)

With η = 0.909 this is Ta = 1.1076Re2i .
For the purpose of defining averaged quantities the flow is assumed to be sta-

tistically stationary in time over a sufficiently long time period following initial
transients, and spatially homogeneous in the θ direction only. In the span-wise
direction the flow is generally non-homogenous owing the presence of Taylor rolls.
Starting from a scalar field φ(θ, y, r, t), “ .̂.” denotes an average of a space-time
dependent quantity in both time and the azimuthal (θ) direction, resulting in

φ̂(y, r), while “.̄. ” denotes an additional span-wise average of φ̂(y, r), resulting

in φ̂(r) .
We denote the mean radial velocity in the laboratory frame of reference as

U(r) = û. For computation of turbulent statistics, a velocity fluctuation is first
defined as u′(θ, y, r, t) = u(θ, y, r, t) − û(y, r). Then the turbulent intensity is

computed as Ruu = û′u′. In displaying data, both mean velocity and turbulent
intensities are scaled using uτi . With focus on the inner cylinder, following Ostilla-
Mónico et al. (2016), we use a scaled and adjusted mean azimuthal velocity U+ =
U(r)/uτi with U(r) = ΩiRi − Uθ(r) and scaled turbulent intensities (ujuj)

+ =
Rujuj/u

2
τi with j denoting θ, y or r. These comprise the one-point turbulent

statistics in present LES study.

3.2. Verification with DNS at Rei = 105, 3× 105

We document verification of our LES using the benchmark DNS of Ostilla-Mónico
et al. (2016) at both Rei = 105 and Rei = 3× 105, the latter being highest Rei.
Comparisons mainly include mean velocity profiles and also turbulent intensities.
We can observe the flow field either in the sector domain in Cartesian coordinates,
or in a developed (r, θ) domain in cylindrical coordinates.

Figure 2 shows diagnostics of the flow field at Rei = 105 viewed in an r − y or
radial-spanwise plane, where coordinates are scaled using the cylinder gap d. In
the r direction, a dimensionless length scale is defined based on the distance off
the inner cylinder, as r′ = (r −Ri)/d. r′ = 0, 1 correspond to the inner, rotating
cylinder and the outer static cylinder respectively. The left sub-panel in figure
2 shows streamlines of the stream-wise-averaged, instantaneous flow field in an
(r − y) plane. One pair of Taylor rolls is observed. The center and right-hand
panels show color coded images of the instantaneous azimuthal component uθ
and the span-wise velocity component uy, respectively.

In Figure 3, radial profiles of the mean azimuthal velocity and turbulent in-
tensities are shown for Rei = 105, 3 × 105. Both mean and turbulent intensities
are scaled with uτi , with U+ in left panels and (u′θu

′
θ)

+, (u′yu
′
y)

+ and (u′ru
′
r)

+ in

the right panels versus the scaled length r+ = (r −Ri)/l+ with l+ = ν/uτi . The
LES mean-velocity profile shows satisfactory agreement with the direct numeri-
cal simulation (DNS) by Ostilla-Mónico et al. (2016) for both Rei. A clear log
variation is evident in both U+ versus r+ plots. The present LES mesh is substan-
tially coarser than required for DNS. For Rei = 105, the total LES mesh count
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Figure 3. Comparison of LES with DNS by Ostilla-Mónico et al. (2016). (a), mean flow velocity
profiles U+ at Rei = 105; (b), turbulent intensities (u′θu

′
θ)

+, (u′yu
′
y)+, (u′ru

′
r)

+ at Rei = 105. (c),

U+ at Rei = 3 × 105; (b), turbulent intensities at Rei = 3 × 105. Square symbols: DNS by
Ostilla-Mónico et al. (2016). Solid lines with filled squares: present LES.

N = NθNrNz is 1/32 of that for the corresponding DNS, while for Rei = 3×105,
this fraction is 1/24.

3.3. Mean profiles

As shown for TC flows at Rei = 105 and 3× 105, the log-variation in the velocity
profile U+ persists only in a range of r+. When r+ is relatively large, meaning
close to the gap center, the profile deviates substantially from the log law. This
can be attributed to the strong span-wise redistribution effect produced by Taylor
vortices which results in an almost constant angular momentum. This will be
discussed further subsequently. In the estimate of Ostilla-Mónico et al. (2016),
r+ = 0.1Reτ is considered as an upper bound for the log layer for η = 0.909.
Mean velocity profiles U+(r+) obtained from LES at higher Rei are shown in Fig
4, which plots five lines, representing the five cases implemented.

Another way to clarify a possible log region is a scaled parameter which is
typically defined as

Ξ = r+
dU+

dr+
. (3.4)

In the sense of a classic log law, Ξ is equal to the inverse of the Kármán constant,
1/κ. In figure 4(b), we show plots of Ξ for all cases. A horizontal straight line at
Ξ = 2.5 is also shown, corresponding to κ = 0.4. It can be observed that Ξ in
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Figure 4. Mean velocity profile for all present LES. (a), the mean azimuthal velocity versus
r+; (b), parameter Ξ versus 2r′ with r′ = (r−Ri)/d. Lines for different Rei: , 105, ;
3× 105; 6× 105; , 106; , 3× 106.
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Figure 5. Turbulent intensities for all present LES. (a), versus r+; (b), versus 2r′. Lines for
different Rei: , 105; , 3× 105; , 6× 105; , 106; , 3× 106.

all higher Rei LES extends to about 1% of the half gap, which is consistent with
DNS at Rei up to 3× 105.

3.4. Turbulence intensity profiles

We consider azimuthal velocity intensities near the inner cylinder. In figure 5, we
show the scaled radial variation of (u′θu

′
θ)

+ in two different length scales. Figure
5(a) uses inner scaling in the form (u′θu

′
θ)

+ versus r+ , while in figure 5(b), the
outer scale r′ is utilized. For the purpose of readability we follow usage with
channel flow as 2r′, which reaches unity at the gap centerline. The turbulence
intensity profiles display interesting features that are now discussed.

When (u′θu
′
θ)

+ is plotted versus r+, all present LES with η = 0.909 show an
inner peak in the range 10 < r+ < 15. This is consistent with the peak location
at r+ ≈ 12 in TC flow experiments with η = 0.716 and with Reynolds number
up to 1.5× 106 (Huisman et al. 2013), with a peak location at about y+ ≈ 15 in
experiments of boundary layer flows up to Reτ = 21, 430 (Squire et al. 2016) and
with super-pipe experiments up to Reτ = 98, 187 (Hultmark et al. 2012). DNS
of channel flow (Lee & Moser 2015) shows a weak increase in the location of the
peak value of turbulent intensities from y+ ≈ 15.0 at Reτ = 1, 000 to y+ ≈ 15.6
at Reτ ≈ 5, 200. In wall units, the present LES does not show a clear tendency
for the peak to move outwards as Reτi increases at our largest values.
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In contrast, our LES does indicate an unambiguous increasing tendency of the
magnitude of the inner-scaled, peak azimuthal intensity, reaching about (u′θu

′
θ)

+ ≈
10.0 at Rei = 3 × 106. In experiments of pipe low (Hultmark et al. 2012), the
peak stream-wise intensity at large Reτ is found to saturate and even decrease,
while such saturation is not observed in experiments on zero-pressure-gradient
boundary-layer flow (Hutchins et al. 2009). At similar Reτ ≈ 5, 000, the peak
stream-wise intensities for both channel flow and pipe flow are similar, at around
9.0, while the peak in boundary layer flow is smaller, at about 7.8; see figure 4(c)
of Lee & Moser (2015). For DNS of plane Couette flow, Pirozzoli et al. (2014) find
a peak streamwise intensity u′ u′ = 10 at Reτ ≈ 1, 000, and no saturation limit
is observed. Owing to the presence of Taylor rolls in both TC and plane-Couette
flow, we would expect that these are more similar to each other than to canonical
pipe/channel flows. The possible saturation in turbulence intensities for TC/PC
flows at larger Reτ than have been explored to date remains an open question.

In the numerical study canonical turbulent flow like channel (Lee & Moser 2015)
or boundary-layer flow (Simens et al. 2009), the effect of simulation parameters
such as computational domain and mesh size, on mean velocity and turbulent
intensity profiles, has been carefully studied. For PC flow and TC flow, it is
known that span-wise roll motion can strongly impact the zone of wall-bounded
turbulence. In order to alleviate spurious effects for PC flow, large computational
domains of order 30d stream-wise and 8d span-wise are needed (Pirozzoli et al.
2014), where d is the flat-plate gap. Ostilla-Mnico et al. (2015b) investigated the
effect of both span-wise and azimuthal domain size on TC flow. They found that
finite-domain effects both on the structure of the near-wall log region and on
turbulent intensity profiles were generally non-negligible at moderate Reynolds
numbers. Again the issue remains to be resolved.

In figure 5(b), we plot (u′θu
′
θ)

+ in outer-flow scaling. Profile collapse is observed
at around r′ ≈ 0.05. For larger r′, (u′θu

′
θ)

+ shows a plateau, which extends to the
centerline r′ = d/2. This behavior is different than that found in either channel
flow or pipe flow. In the latter, stream-wise turbulent intensities in the near-center
region, for example y/δ > 0.2 with δ the half height in channel flow and the radius
in pipe flow, show monotonically decreasing behavior in the wall-normal direction
away from the wall, approaching a minimum at the centerline. No obvious plateau
region is observed. The plateau region of (u′θu

′
θ)

+ near the centerline region for
TC flow can probably be ascribed to span-wise roll motion which transports and
redistributes angular momentum.

Finally we note that, owing to the existence of span-wise roll motion for the
present TC flow, the definition of one-point turbulent intensities is not unambigu-
ous. We have utilized a diagnostic that includes only local small-scale turbulence,
and that does not explicitly recognize the presence of large-scale roll motion. Ac-
cording to our present azimuthal intensity metric, a tendency to form a hump
and possibly a second peak as the driving Reynolds number increases up to
Rei = 3× 106, is not observed. Nor was this found by the DNS of Ostilla-Mónico
et al. (2016) with this same metric up to Rei = 3× 105 where Reτi = 3, 920. The
detailed evaluation and study of alternative definitions of turbulent intensity that
additionally includes clarification of the effect of domain size is beyond the scope
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Figure 6. Nondimensional angular momentum profiles. L = r Uθ/(ΩiR
2
i ) lines for different

Rei: , 105; , 3× 105; , 6× 105; , 106; , 3× 106.

of the present study. The issue is interesting as indicated by the substantial vari-
ation in profile shapes indicated in figure 12 of Ostilla-Mónico et al. (2016), for
turbulent intensities outside the inner peak in both TC and channel/pipe flow .

3.5. Angular momentum L

The presence of Taylor vortices is thought to transport angular momentum per
unit mass r uθ between the two cylinders leading to constant angular momentum
in the region separating the two cylinder wall layers (Wereley & Lueptow 1999;
Ostilla-Mónico et al. 2016). The constant is equal to the average of the angular
momentum per unit mass of two particles rotating with the angular velocities of
both the inner and outer cylinder. With Ωo = 0 this is Lav = ΩiR

2
i /2. Figure 6

shows radial profiles of the nondimensional angular momentum L = r Uθ/(ΩiR
2
i ).

A horizontal straight line of L = 1/2 is also plotted for comparison For all Rei
shown L ≈ 1/2 over most of the gap between the two cylinders.

4. Empirical flow model

4.1. Three-region model

The constancy of angular momentum across the cylinder gap with in a region
bounded by the two turbulent log-like layers adjacent to the cylinder walls sug-
gests a simple empirical mean-flow model of the present TC flow with the outer
cylinder stationary. The model development to follow is strictly one-dimensional
in the radial direction. It predicated on the existence of a finite region of constant
angular momentum L = 1/2 for arbitrarily large Rei. We first divide the radial
domain Ri 6 r 6 Ro into three regions, denoted I, II, III. In regions I and III
the azimuthal mean flow is modeled as wall layers represented by log-like profiles
relative to the wall while in the central region, U corresponds to radially constant
angular momentum. The dimensions and mean velocity profiles in the laboratory
frame are then given by
I: Ri 6 r 6 Ri + δi with mean azimuthal velocity:
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Uθ = ΩiRi − uτi
(

1

κ
ln

(
(r −Ri)uτ1

ν

)
+A

)
. (4.1)

II: Ri+δi 6 r 6 Ro−δo with mean azimuthal velocity corresponding to constant
angular momentum given by the average of values of the two cylinder angular
velocities

Uθ =
1

2 r
ΩiR

2
i . (4.2)

III: Ro − δo 6 r 6 Ro with mean azimuthal velocity

Uθ = uτo

(
1

κ
ln

(
(Ro − r)uτo

ν

)
+A

)
. (4.3)

where uτi ,uτo are friction speeds at the inner/outer cylinder surfaces, δi,δo are
respectively the thicknesses of the inner and outer cylinder layers, and κ and A are
the Kármán constant and turbulent boundary-layer offset parameter respectively.
The model replaces the wake region, present in pipe and boundary layer flows,
by a zone of constant but known azimuthal velocity corresponding to constant
angular momentum.

For given Ωi, Ri, Ro, ν there are four unknowns: (uτi , uτo , δi, δo). Two equations
can be obtained by matching U at r = Ri + δi and r = Ri − δo. A third is the
relation, obtained by equality of the magnitude of the torque exerted at each
cylinder surface on the fluid

uτo = η uτi . (4.4)

The velocity matching equations are

ΩiRi − uτi
(

1

κ
ln

(
δi uτi
ν

)
+A

)
− ΩiR

2
i

2 (Ri + δi)
= 0, (4.5)

η uτi

(
1

κ
ln

(
δo η uτi
ν

)
+A

)
− ΩiR

2
i

2 (Ro − δo)
= 0. (4.6)

where (4.4) has been used in (4.6).
For our purposes it will be sufficient to consider (4.5), which is one equation for

the two unknowns (uτi , δi). A closure relation is required. The wall layer region
is of thickness δi, achieved by the action of the span-wise rolls which mixes the
angular momentum to a constant state in region II and perhaps also act to limit
the radial growth of the wall layers. We introduce the assumption that δi scales
on uτi and Ωi as

δi = K
uτi
Ωi
, (4.7)

where K is a dimensionless constant that is independent of η. There are other
possibilities, for example scaling the left side of (4.7) by d/Ri. Equation (4.7)
seems the most simple and most physically appropriate. This can be expressed
in a dimensionless form as

δi
d

= α
Reτi
Rei

η

1− η
, (4.8)
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where α = 2K and we have used that Ri = d η/(1 − η). Next, we substitute
(4.8) into (4.5) to obtain a single equation for Reτi when other parameters are
specified. After some algebra, this can be expressed in nondimensional form as

κ(Re2i − 4αARe2τi + 2 (α− 2A)ReiReτi)

− 4Reτi (Rei + αReτi) ln

(
2αηRe2τi
Rei (1− η)

)
= 0. (4.9)

In (4.9) κ,A can be chosen as standard log-law parameters but α is a model-
dependent parameter. When these are specified together with η and Rei, (4.9)
can be solved numerically for Reτi . Then δi/d can be calculated from (4.8). Once
the parameters of the inner-cylinder wall layer are known, then (4.6) can be used
to determine the single remaining parameter δo/d.

In the sequel we will choose A = 4.5, κ = 0.4. In their DNS of TC flow
with η = 0.909, Ostilla-Mónico et al. (2016) report Reτi = 1410 at Rei =
105. Solving (4.9) with these parameters and with α = 0.25, 0.5, 0.75, 1.0 gives
Reτi = 1529, 1418, 1360, 1323 respectively. For all subsequent calculations with
the present model, we will use α = 0.5 which gives satisfactory agreement with
DNS for this case. Setting α = 1/2 in (4.9) leads to our basic model equation

κ(Re2i − 2ARe2τi + (1− 4A)ReiReτi)

− 2Reτi (2Rei +Reτi) ln

(
ηRe2τi

Rei (1− η)

)
= 0. (4.10)

According to the structure of the model, the presence of a uniform angular mo-
mentum zone separating the two wall layers means that these behave somewhat
independently but are connected by (4.4). Numerical calculations show that for
smooth walls, to a good approximation δo = δi/η.

4.2. Approximate analytical solution

Equation (4.10) is not solvable in terms of standard special functions. A useful
approximation for the Reτi(η,Rei) relation can be obtained by observing that
generally Reτi << Rei. This is supported by experiment, DNS, LES and nu-
merical calculations with (4.10). Neglecting the term 2ARe2τi in the bracketed
expression multiplied by κ and also the Reτi term in the factor multiplying the
log in (4.10) and dividing by Rei then gives

κ (Rei +Reτi(1− 4A))− 4Reτi ln

(
ηRe2τi

Rei (1− η)

)
= 0. (4.11)

This reduction is supported by inspection of the numerical order of magnitude of
all terms in (4.10) for solutions with parameters in the present range of interest.
This (not shown) indicates that the neglected terms are subdominant. Equation
(4.11) will be seen to provide a good analytical approximation to exact numerical
solutions of (4.10) over the range of parameters considered presently.
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Rei Reτi Reτi Reτi Reτi
δi
d

δo
d

DNS WR-LES Eq. (4.10) Eq. (4.12)

1× 105 1410 1400 1418 1426 0.0708 0.0779
2× 105 2660 2633 2646 0.0657 0.0723
3× 105 3920 3908 3788 3807 0.0631 0.0694
6× 105 7289 7078 7112 0.0589 0.0648
1× 106 11250 11246 11298 0.0562 0.0618
3× 106 31780 30622 30751 0.0510 0.0561
1× 107 92583 92916 0.0462 0.0508
1× 108 7.829× 105 7.856× 105 0.0391 0.0430
1× 109 6.765× 106 6.785× 106 0.0338 0.0372

Table 2. Model calculations compared with DNS (Ostilla-Mónico et al. 2016) and the present
wall-resolved LES. Two versions of the model calculations for Reτi are shown in columns 4 and
5.

Equation (4.11) has an analytic solution for Reτi as

Reτi(Rei, η) =
κRei

8W (Z1)
, Z1 =

κ η1/2Re
1/2
i exp[κ(4A− 1)/8]

8 (1− η)1/2
, (4.12)

where W (Z) is the principal branch of the Lambert (or ProductLog) function,
defined as the inverse of Z = W lnW . The Lambert function is sub-logarithmic,
with expansion for large Z (Corless et al. 1996)

W (Z) = L1 − L2 +
L2

L1
+
L2 (−2 + L2)

2L2
1

+
L2 (−6− 9L2 + 2L2

2)

6L3
1

+
L2 (−12 + 36L2 − 22L2

2 + 3L3
2)

12L4
1

+O

((
L2

L1

)5
)
,

L1 = ln(Z), L2 = ln(ln(Z)). (4.13)

Some results are shown in table 2 in comparison with the DNS of Ostilla-Mónico
et al. (2016) and also with the results of the present wall-resolved LES. Results
using both (4.10) and (4.12) are shown, where differences in calculated values of
Reτi are less than 0.5%. Other values of η in the range 0.5 − 0.91 show similar
errors in the approximate versus exact numerical model estimates of Reτi(η,Rei).
Also shown are calculations for both δ0/d and δi/d, where δ0 = η δi. Equations
(4.12) and (4.8) show that δi/d decreases slowly with increasing Reτi as the

reciprocal of the Lambert function with argument proportional to Re
1/2
τi .

The above model is expected to be valid for 0.6 6 η < 1 but not (1− η) << 1.
This is because, when η → 1 with Ωo = 0, the turbulent flow is expected to
similar to plane-Couette flow where δi/d = δo/d ≈ 1/2. Substitution of (4.12)
into (4.8) gives δi/d as a function of (η,Rei). When η → 1 at fixed Rei it is found
that δi/d diverges, which is nonphysical. At any fixed Rei we can calculate the
value of η for which δi/d = 1/2, which may be taken as defining rough limits
on the validity of the model. For Rei = 105, 106, 107, 108, 1010 these values are
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respectively η = 0.9887, 0.9909, 0.9923, 0.9934, 0.9949. These are sufficiently close
to η = 1 to give confidence that the model is useful for practical TC cylinder
radii ratios.

4.3. Nusselt number approximation

The Taylor number is defined by equation (3.3). The Nusselt number Nu is
defined as the ratio of the torque required to sustain a statistical steady state
of turbulent motion to the torque required for strictly laminar viscous motion at
the same Rei (Grossmann et al. 2016). Using the viscous flow solution and the
definition of u2τi = τw,i/ρ, Nu can be expressed, for Ωo = 0 as

Nu =
2 η (1 + η)Re2τi

Rei
. (4.14)

Hence, for given η and Rei, if Reτi is known from a solution to (4.10), then both
Ta and Nu can be calculated. Alternatively, when (4.12) is combined with (4.14),
this gives

Nu(Ta, η) =
κ2 η3 Ta1/2

4 (1 + η)2 (W (Z2))2
, Z2 =

κη3/2 Ta1/4 exp[κ (4A− 1)/8]

23/2(1− η)1/2 (1 + η)3/2
.

(4.15)
Specific calculations show, that for the range of η and Ta considered presently,
numerical solutions of (4.10) together with (4.14) agree with (4.15) to 1% or
better, improving with increasing Ta.

Figure 7 shows Nu verses Ta for η fixed using (4.15) compared with DNS
(Ostilla-Mónico et al. 2016), our wall-resolved LES for η = 0.909 and with data
for η = 0.5, 0.72, 0.909 (Merbold et al. 2013; Van Gils et al. 2011, 2012) obtained
from Grossmann et al. (2016), while figure 8 shows Nu versus η for two values of
Ta = 1011, 1012. The model appears to capture well the dependence of Nu(Ta, η)
on both Ta and η over the range shown. The decrease of Nu with η larger than
about η = 0.91 may not be physically correct and may indicate the limitation of
the model when η → 1. It is clear from the analytic form and the known behavior
of the Lambert function, that Nu(η, Ta) with η fixed increases more slowly than
Ta1/2. Using (4.13), (4.15) has the leading order asymptotic form

Nu(Ta, η) =
κ2 η3 Ta1/2

4 (1 + η)2 (ln(Z3)− ln(ln(Z3)))2
+HOT, (4.16)

For gigantic Ta, this becomes

Nu(Ta, η) =
4κ2 η3 Ta1/2

(1 + η)2 (ln[Ta])2
+HOT. (4.17)

Equation (4.17) is not a good approximation to (4.15) at Ta typical of the highest
Ta experimental data. Power law behavior for Nu(η, Ta) has been proposed (see
Grossmann et al. (2016)). A power-law approximation to (4.15) may be a good
fit over a few decades in Ta but, according to the present model, this cannot
represent the correct very large Ta asymptote.
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Figure 7. Nu versus Ta. Open symbols; experiment η = 0.909 ( ), 0.72(◦) Van Gils et al.
(2011, 2012); η = 0.5 (4) Merbold et al. (2013). ; DNS of η = 0.909 by Ostilla-Mónico et al.
(2016) . N; present LES of η = 0.909. Lines: from (4.15). ; η = 0.909. ; η = 0.72.

;η = 0.5.

Figure 8. Nu versus η. Dashed line Ta = 1011. Solid line Ta = 1012. Symbols key; see figure 7

4.4. Angular momentum profiles

It is straightforward to calculate profiles of the angular momentum L from the
model. When normalized such that L = rUθ/(ΩiR

2
i ), this gives, with r′ = (Ri −

r)/d

I: L =
(
(1−η)r′

η + 1
)(

1− 2Reτ1
Rei

(
1
κ ln[2Reτ1 r

′] +A
))
, 0 6 r 6 δi/d,
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Figure 9. Radial angular momentum profiles. Model compared with DNS and LES. (a);
Rei = 105. (b), Rei = 3× 106. , model prediction; , present LES; , DNS by
Ostilla-Mónico et al. (2016).

II: L = 0.5, δi/d 6 r′ 6 1− δ0/d,
III: L =

(
(1−η)r′

η + 1
)

2 η Reτ1
Rei

(
1
κ ln[2 η Reτ1 (1− r′)] +A

)
, 1− δo/d 6 r′ 6 1.

Radial angular momentum profiles calculated from these expression are com-
pared with DNS and the present LES in figure 9. The agreement is satisfactory.

4.5. Boundary layer thickness

Once the parameters Reτi and ηi have been determined, the velocity profile in the
log-regions I and II can be calculated. This allows calculations of the displacement
and momentum thicknesses as functions of Reτi . For the inner cylinder, these are
defined presently as

δ∗ =

∫ δi

0

(
1− U(r)

UL

)
dr, θ =

∫ δi

0

U

UL

(
1− U(r)

UL

)
dr (4.18)

where UL = ΩiRi− 1
2 ΩiR

2
i /(Ri+δi). Using the log-part of the velocity profile in

(4.1) , these expressions can be evaluated analytically. The resulting expressions
are cumbersome and details are omitted presently. Both δ∗ and θ can be calculated
from DNS and LES. An issue is the upper cutoff in the integrations. Presently
this was determined as δ99 = Ri − r where r satisfies

U(r)− (ΩiRi − 0.5 ΩiR
2
i /r)

(ΩiRi − 0.5 ΩiR2
i /r)

< 0.01. (4.19)

Results for δ99, δ
∗, θ and the shape factor H = δ∗/θ from the model are shown

in figure 10 in comparison with both DNS and LES. Identifying δi with the
measured δ99 provides an over estimate. Both DNS and LES indicate a decline
in the respective measures of wall-layer thicknesses as rei increases, in agreement
with the model.

4.6. Discussion

It is of interest to discuss the state of flow for arbitrarily large Rei/Ta. Because
the DNS/LES appear to be in good agreement with the model for mean-flow
properties, we will consider the large Rei limit of the model behavior. It is clear
that the model indicates that when Rei/Ta increase at fixed η for smooth-wall
flow on both cylinder surfaces, δi/d and δo/d decline as the inverse of the Lambert
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Figure 10. Measures of Boundary layer thickness and shape factor H parameter versus Rei. (a),
δ99/d; (b), δ∗/d; (c), θ/d; (d), H. Solid line; present model. Symbols: , DNS by (Ostilla-Mónico
et al. 2016); N LES.

W -function. This follows from (4.12) and (4.8). If the constant L region separating
the two wall layers remains intact at exceptionally large Rei or Ta, this suggests
a limiting mean flow consisting of two asymptotically thinning wall layers in
relation to the cylinder gap d, separated by a region where

Uθ =
1

2 r
ΩiR

2
i . (4.20)

The present model does not contain a description of turbulent intensities. But
both DNS and LES appear to support the hypothesis that u′θ u

′
θ and other inten-

sities scale on u2τi . Since uτi/(ΩiRi) ∼ Reτi/Rei must also decline (this follows

from (4.12)) as Rei increases, then it follows that u′θ u
′
θ/(ΩiRi)

2 must also de-
crease slowly. Hence the present results may be interpreted to imply that the very
large Rei state consists of a mean flow over most of the cylinder gap described
by (4.20) together with slowly declining turbulent intensities in relation to the
square of the driving cylinder surface speed ΩiRi. Huge Rei would be required
to access this asymptotic state.

5. Rough walls

It is of general interest to develop the extension of the present empirical mode
to turbulent rough-wall flow with sand-grain-type roughness of scale ks. We rep-
resent the effects of sand-grain roughness by use of the mean-velocity offset as
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represented by the Colebrook roughness function

∆+U(k+s ) =
1

κ
ln
(
1 + βk+s

)
, β = exp (κ (A−B)) (5.1)

where B = 8.5 is a standard constant and k+s = ks uτi/ν. The functional form for
β in (5.1) guarantees that when ks is very large, the expression for the velocity
profile is asymptotic to the standard fully rough profile form u = uτ (log((r −
Ri)/ks)/κ+B) (Jiménez 2004). The Colebrook ∆U+(ks) by no means represents
all roughness types but can be taken as typical of the transition from fully smooth,
k+s → 0, to fully rough, k+s > 100, near-wall behavior. Again we can treat the
inner wall in isolation provided that the uniform angular momentum region exists,
separating the wall layers on the inner and outer cylinder walls. For the inner
wall, the velocity matching equation (4.5) is replaced by

ΩiRi − uτi
(

1

κ
ln

(
δi uτi
ν

)
+A− 1

κ
ln
(
1 + β k+s

))
− ΩiR

2
i

2 (Ri + δi)
= 0. (5.2)

Equation (4.8) is retained. Again, a single equation for Reτi can be obtained by
substituting (4.8) into (5.2) with α = 1/2 and converting to non-dimensional
parameters

− 2AReτi +
Rei (Rei +Reτi)

2Rei +Reτi
− 2Reτi

κ
ln

(
η Re2τi

(1− η)Rei (1 + 2β εReτi)

)
= 0

(5.3)
where ε = ks/d is the ratio of the sand-grain roughness scale to the cylinder gap.
When β = 0, (4.10) is recovered.

To illustrate the behavior with rough walls, it is preferable to utilize the skin-
friction coefficient defined as Cf ≡ 2 τi,w/(ΩiRi)

2 where τi,w = ρ u2τi . In terms of
other parameters Cf can be expressed as

Cf = 8
Re2τi
Re2i

=
4Nu

η (1 + η)Rei
. (5.4)

Substituting an expression for Reτi obtained from the first of (5.4) into (5.3)
gives, after some algebra

2− 8

8 +
√

2
√
Cf

−
√

2Cf

κ

(
Aκ+ ln

(
η Cf Rei

4 (1− η) (2 +
√

2Cf εRei exp(κ (A−B)))

))
= 0.

(5.5)

Two limits are of interest. The first is the smooth-wall case ε→ 0 with Rei fixed.
This follows directly by putting ε = 0 in (5.5), The second is Rei → ∞ at any
finite ε > 0, which takes the form

2− 8

8 +
√

2
√
Cf
−
√

2Cf

κ

(
B κ+ ln

(
η
√
Cf

4
√

2 ε (1− η)

))
= 0. (5.6)
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Figure 11. Skin-friction coefficient Cf for different roughness level. Left :
Cf versus Rei for η = 0.909. Solid lines: model prediction. Top to bottom
ε = ks/d = 4 × 10−3, 2 × 10−3, 10−3, 4 × 10−4, 10−4, 10−5, 10−6, 0. , DNS by Ostilla-Mónico
et al. (2016); N, present LES. Right: Cf versus ε = ks/d. Top to bottom η = 0.5, 0.72, 0.909
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Figure 12. Nu versus Ta for rough, inner cylinder walls. Left η = 0.5, right η = 0.909. Solid
lines: model prediction. Dashed line; slope 1/2. Symbol key; see figures 7 and 11.

Hence for fully rough-wall, turbulent wall layer flow, the skin friction, and there-
fore the torque required to sustain the motion becomes independent of Rei, and
depends only on η and ε.

Neither (5.5) nor (5.6) can be solved analytically for Cf . But if the first two
terms of the left-hand side of (5.6) are replaced by their leading-order Taylor
expansion in the small quantity

√
Cf , we obtain

1 +

√
Cf

4
√

2
−
√

2Cf

κ

(
B κ+ ln

(
η
√
Cf

4
√

2 ε (1− η)

))
= 0. (5.7)

This equation has the solution

Cf =
κ2

2W 2(Z)
, Z =

κ η exp(B κ− κ/8)

8 ε (1− η)
. (5.8)

For the range of parameters considered presently, numerical solutions to (5.5)
agree with (5.8) to 3–4 significant figures. Other relevant quantities can now be
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calculated as

k+s =
1√
2
ε
√
Cf Rei,

δi
d

=
η
√
Cf

4
√

2 (1− η)
. (5.9)

Together with (5.7), the second of (5.9) shows that when Rei → ∞, δi/d is
also independent of Rei. The model predicts that, at sufficiently high Rei and
sufficiently small ε, the asymptotic rough-wall state consists of constant Cf and
wall-layer thickness δi/d that are independent of Rei (and hence of Ta). Figure
11 (left) shows Cf versus Rei with η = 0.909 with several values of ε including
the smooth-wall limit ε → 0, obtained from numerical solution of (5.5). This is
essentially a Moody diagram for a TC flow with a uniformly rough inner cylinder
and an outer stationary cylinder. The right panel of figure 11 shows the fully-
rough Cf (η, ε) given by (5.8).

The large Rei limit behavior at finite ε is clear. With η = 0.909, the second of
(5.9) shows that δi/d = 1.766

√
Cf . Hence figure 11 with the ordinate rescaled

also shows the large Rei behavior of δi/d ∼
√
Cf . For ε = 10−3, 10−4, 10−5, 10−6,

the limiting values are δi/d = 6.62 × 10−2, 5.20 × 10−2, 4.27 × 10−2, 3.62 × 10−2

respectively. We expect the model to be physically reasonable provided that
δi/ks > 10 approximately so that the log-like wall layer can exist. This is satisfied
by all numerical solutions presented.

For completeness we also show rough-wall model results in Nu, Ta variables
Using (5.4), Nu is proportional to Rei with a coefficient proportional to Cf , and
that depends on both η and ε. Using (3.3) and (5.4) we can obtain generally

Nu =
2 η3Cf
(1 + η)2

Ta1/2 (5.10)

Hence in the fully rough limit it follows that Nu ∼ Ta1/2, again with a coefficient
that depends on both η and ε. Figure 12 shows model results for Nu versus Ta
for rough walls. The transition from smooth wall flow where Nu ∼ Ta1/2 with
Lambert-function corrections to fully rough behavior Nu ∼ Ta1/2 is clear.

6. Conclusion

The present study uses wall-resolved large-eddy simulation (LES) to simulate
Taylor-Couette flow with a narrow gap (radius ratio η = ri/ro = 0.909) between
the inner, rotating cylinder and the outer stationary cylinder. The LES imple-
mented via a general curvilinear coordinate code with a fully staggered velocity
mesh. Fourth-order central difference schemes are used for all spatial discretiza-
tion.

Two cases at Rei = 105 and 3×105 are used as verification cases. By comparing
mean velocity profile U+ and turbulent intensities (u′θu

′
θ)

+, (u′yu
′
y)

+ and (u′ru
′
r)

+,
we show that the present LES framework can reasonably capture the salient
features of TC flows, including the quantitative behavior of span-wise Taylor
rolls, the log profile in the mean velocity profile and the angular momentum
redistribution due to the presence of Taylor rolls, up to Rei = 3 × 106, which
corresponds to a Taylor number Ta = 9.969× 1012.
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A simple empirical model is developed for the mean-flow properties of Taylor-
Couette flow when the outer cylinder is stationary. The model consists of three
contiguous flow regions; two contain turbulent wall layers, one at each cylinder
wall while the third is a central, annular region of constant angular momentum.
The model requires that this constant angular momentum per unit mass is known
and equal to one half of that corresponding to rotation with the inner cylinder
angular velocity Ωi. It is supposed that this three-region state is produced by re-
distribution of angular momentum by either mean-flow or instantaneous, fluctu-
ating Taylor-roll motion, and further, that this persists to arbitrarily high Taylor
number. Inside each wall layer, the flow is modeled by a standard log-like profile
with κ = 0.4, A = 4.5. The model takes an analytic form by implementing equal-
ity of azimuthal velocity at the region boundaries. It is closed by an additional
assumption that the inner boundary-layer thickness is proportional to the local
friction velocity divided by the cylinder angular velocity. This introduces a single
arbitrary parameter which is set equal to 0.5.

The composite model is shown to capture the effects of both the cylinder ratio
η and the Taylor number Ta over the range of available DNS, experiment and the
present LES. At large Ta an approximate but sufficiently accurate model reduc-
tion gives a specific analytical form where the Nusselt number grows somewhat
slower than the square root of the Taylor number. This growth is not of power-law
form. As Ta increases both wall layers shrink in thickness. An asymptotic state
is indicated where the uniform angular momentum region occupies almost all of
the cylinder gap, with asymptotically small turbulence intensities.

The model is extended to a rough inner wall comprising uniform sand-grain
roughness. Use of a Colebrook-type roughness function allows construction of
a Moody-diagram for Taylor-Couette flow. For given η and ratio of sand-grain
roughness to cylinder gap, an asymptotic rough-wall state is found with constant
skin friction and boundary-layer thickness that is independent of Rei− Ta. Here
the Nusselt number is proportional to Ta1/2.
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