
Boston University
OpenBU http://open.bu.edu
Theses & Dissertations Boston University Theses & Dissertations

2020

Imitation learning with dynamic
movement primitives

https://hdl.handle.net/2144/40948
Boston University

BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Thesis

IMITATION LEARNING WITH DYNAMIC MOVEMENT

PRIMITIVES

by

HAOYING ZHOU

B.S., Beijing Institute of Technology, 2018

Submitted in partial fulfillment of the

requirements for the degree of

Master of Science

2020

c© 2020 by
HAOYING ZHOU
All rights reserved

Approved by

First Reader

Calin A. Belta, Ph.D.
Professor of Mechanical Engineering
Professor of Systems Engineering
Professor of Electrical and Computer Engineering

Second Reader

Sean B. Andersson, Ph.D.
Professor of Mechanical Engineering
Professor of Systems Engineering

Third Reader

Roberto Tron, Ph.D.
Assistant Professor of Mechanical Engineering
Assistant Professor of Systems Engineering

Acknowledgments

I would like to express my sincere gratitude to my academic advisor, Dr. Calin Belta

for his guidance and support. Also, I would like to thank Dr. Xiao Li for his assistance

and cooperation.

I am very grateful to Dr. Sean Andersson and Dr. Roberto Tron for serving in

my thesis committee and their interests that they have indicated in my research.

I would like to thank Ms. Anna Masland who is the master’s program adminis-

trator in my department. She has assisted me a lot in scheduling the thesis process.

In addition, I would like to thank Mr. Brendan McDermott, the thesis / dis-

sertation coordinator from Mugar Memorial Library at Boston University, for his

assistance in correcting the format of the thesis.

To my family, my friends and the people who have ever supported me, I would

express my most profound appreciation for their love and encouragement all the time.

Haoying Zhou

Master’s Student

ME Department

iv

IMITATION LEARNING WITH DYNAMIC MOVEMENT

PRIMITIVES

HAOYING ZHOU

ABSTRACT

Scientists have been working on making robots act like human beings for decades.

Therefore, how to imitate human motion has became a popular academic topic in

recent years. Nevertheless, there are infinite trajectories between two points in three-

dimensional space. As a result, imitation learning, which is an algorithm of teaching

from demonstrations, is utilized for learning human motion. Dynamic Movement

Primitives (DMPs) is a framework for learning trajectories from demonstrations.

Likewise, DMPs can also learn orientations given rotational movement’s data. Also,

the simulation is implemented on Robot Baxter which has seven degrees of freedom

(DOF) and the Inverse Kinematic (IK) solver has been pre-programmed in the robot,

which means that it is able to control a robot system as long as both translational and

rotational data are provided. Taking advantage of DMPs, complex motor movements

can achieve task-oriented regeneration without parametric adjustment and consider-

ation of instability.

In this work, discrete DMPs is utilized as the framework of the whole system. The

sample task is to move the objects into the target area using Robot Baxter which

is a robotic arm-hand system. For more effective learning, a weighted learning algo-

rithm called Local Weighted Regression (LWR) is implemented. To achieve the goal,

the weights of basis functions are firstly trained from the demonstration using DMPs

framework as well as LWR. Then, regard the weights as learning parameters and sub-

stitute the weights, desired initial state, desired goal state as well as time-correlated

v

parameters into a DMPs framework. Ultimately, the translational and rotational data

for a new task-specific trajectory is generated. The visualized results are simulated

and shown in Virtual Robot Experimentation Platform (VREP). For accomplishing

the tasks better, independent DMP is used for each translation or rotation axis. With

relatively low computational cost, motions with relatively high complexity can also

be achieved. Moreover, the task-oriented movements can always be successfully sta-

bilized even though there are some spatial scaling and transformation as well as time

scaling.

Twelve videos are included in supplementary materials of this thesis. The videos

mainly describe the simulation results of Robot Baxter shown on Virtual Robot Ex-

perimentation Platform (VREP). The specific information can be found in the ap-

pendix.

vi

Contents

1 Introduction 1

1.1 Problem Definition and Introduction 1

1.2 Related Work . 2

2 Basic Theories and Application 4

2.1 Dynamic Movement Primitives . 4

2.1.1 Introduction . 4

2.1.2 Discrete DMPs . 5

2.1.3 DMPs in Translational Motion 7

2.1.4 DMPs in Rotational Motion 9

2.2 Locally Weighted Regression . 13

2.2.1 Introduction . 13

2.2.2 Application and derivation . 14

2.3 Algorithm . 15

3 Simulation and Result 18

3.1 Model Evaluation . 18

3.1.1 Motion Generated by Formulated Functions 19

3.1.2 Motion Generated by PC Mouse Implementation 30

3.2 Implementation on Baxter Robot . 34

3.2.1 Simple Motion . 35

3.2.2 Complex Motion . 38

3.2.3 Motions with Modification . 45

vii

4 Conclusion and Future Development 52

4.1 Conclusion . 52

4.2 Future Development . 52

A Rotation Matrix, Exponential Map and Video description 54

A.1 Euler Angle and Rotation Matrix . 54

A.1.1 Euler Angle to Rotation Matrix 55

A.1.2 Rotation Matrix to Euler Angle 55

A.2 Rotation Matrix and Exponential Map 56

A.3 Video Description . 58

References 61

Curriculum Vitae 64

viii

List of Tables

2.1 Parameter Table of discrete DMPs model 5

2.2 Parameter Table of rotational discrete DMPs model 9

ix

List of Figures

3·1 Visualized 3D original and DMPs-generated trajectories of linear func-

tions. 20

3·2 Schematic diagram of linear function-generated displacements along

x,y,z axis versus time. 20

3·3 Visualized 3D original and DMPs-generated trajectories of sine or co-

sine functions. 21

3·4 Schematic diagram of sine or cosine function-generated displacements

along x,y,z axis versus time. 22

3·5 Visualized 3D original and DMPs-generated trajectories of the nonpe-

riodic and nonlinear function. 23

3·6 Schematic diagram of the nonperiodic and nonlinear function-generated

displacements along x,y,z axis versus time. 23

3·7 Nonperiodic and nonlinear function-generated trajectories scaled in

time : (a) change Npts = 200; and (b) change Npts = 1000. 24

3·8 Nonperiodic and nonlinear function-generated trajectories scaled and

translated in space : (a) set initial position to be (0,0,0) and goal

position to be (1,1,1); and (b) set initial position to be (0,0,0) and goal

position to be (-1,-1,-1). 24

3·9 Nonperiodic and nonlinear function-generated trajectories scaled and

translated both in space and in time : set initial position to be (0,0,0),

goal position to be (2,2,2) and Npts = 300 25

x

3·10 Linear function-generated orientation: (a) nine entries of the rotation

matrix versus time; and (b) Euler angles versus time. 26

3·11 Sine or cosine function-generated orientation: (a) nine entries of the

rotation matrix versus time; and (b) Euler angles versus time. 27

3·12 Nonperiodic and nonlinear function-generated orientation: (a) nine en-

tries of the rotation matrix versus time; and (b) Euler angles versus

time. 28

3·13 Nonperiodic and nonlinear function-generated orientation scaled in

time : (a) nine entries of the rotation matrix versus time when Ndpts =

100 ; (b) Euler angles versus time when Ndpts = 100; (c) nine entries

of the rotation matrix versus time when Ndpts = 1000 ;and (d) Euler

angles versus time when Ndpts = 1000. 29

3·14 Nonperiodic and nonlinear function-generated orientation scaled and

translated in space, set initial Euler angles to be (0,0,0) : (a) nine en-

tries of the rotation matrix versus time when setting goal Euler angles

to be (-1,-1,-1) ; and (b) Euler angles versus time when setting goal

Euler angles to be (1,1,1). 29

3·15 Nonperiodic and nonlinear function-generated orientation, set initial

Euler angles to be (0,0,0) , goal Euler angles to be (1,1,1) and Ndpts =

500: (a) nine entries of the rotation matrix versus time; and (b) Euler

angles versus time. 30

3·16 Robot Baxter with end-effector’s translational and rotational informa-

tion shown . 31

3·17 Videos of the sample motion: (a) original movement generated by PC

mouse; and (b) DMPs-generated movement. 31

xi

3·18 The translational and rotational information of the PC mouse-generated

movement: (a) 3D visible trajectories; (b) displacements versus time

along x,y and z axis; (c) Euler angles versus time; and (d) nine rotation

matrix entries versus time. 32

3·19 Data of the PC mouse motion from real-time monitor in VREP : (a)

3D coordinates of original movement generated by joystick; (b) 3D

coordinates of DMPs-generated movement; (c)scaled velocities of orig-

inal movement generated by joystick; (d)scaled velocities of DMPs-

generated movement; (e) Euler angles of original movement generated

by joystick; and (f) Euler angles of DMPs-generated movement. . . . 34

3·20 Sample video of extracting data from a complex motion. 35

3·21 Videos of the simple motion case : (a) original movement generated by

joystick ; and (b) DMPs-generated movement. 36

3·22 The translational and rotational information of the simple motion case:

(a) 3D visible trajectories; (b) displacements versus time along x,y and

z axis; (c) Euler angles versus time; and (d) nine rotation matrix entries

versus time. 37

3·23 Data of the simple motion case from real-time monitor in VREP :

(a) 3D coordinates of original movement generated by joystick; (b)

3D coordinates of DMPs-generated movement; (c)scaled velocities of

original movement generated by joystick; (d)scaled velocities of DMPs-

generated movement; (e) Euler angles of original movement generated

by joystick; and (f) Euler angles of DMPs-generated movement. . . . 38

3·24 Videos of the complex motion case 1 : (a) original movement generated

by joystick ; and (b) DMPs-generated movement. 39

xii

3·25 The translational and rotational information of the complex motion

case 1: (a) 3D visible trajectories; (b) displacements versus time along

x,y and z axis; (c) Euler angles versus time; and (d) nine rotation

matrix entries versus time. 40

3·26 Data of the complex motion case 1 from real-time monitor in VREP

: (a) 3D coordinates of original movement generated by joystick; (b)

3D coordinates of DMPs-generated movement; (c)scaled velocities of

original movement generated by joystick; (d)scaled velocities of DMPs-

generated movement; (e) Euler angles of original movement generated

by joystick; and (f) Euler angles of DMPs-generated movement. . . . 41

3·27 Videos of the complex motion case 2: (a) original movement generated

by joystick ; and (b) DMPs-generated movement. 42

3·28 The translational and rotational information of the complex motion

case 2: (a) 3D visible trajectories; (b) displacements versus time along

x,y and z axis; (c) Euler angles versus time; and (d) nine rotation

matrix entries versus time. 43

3·29 Data of the complex motion case 2 from real-time monitor in VREP

: (a) 3D coordinates of original movement generated by joystick; (b)

3D coordinates of DMPs-generated movement; (c)scaled velocities of

original movement generated by joystick; (d)scaled velocities of DMPs-

generated movement; (e) Euler angles of original movement generated

by joystick; and (f) Euler angles of DMPs-generated movement. . . . 44

3·30 Modified motions of the simple motion case at: (a) corner 1; (b) corner

2; (c) corner 3; and (d) corner 4. 45

3·31 3D trajectories of the simple motion case at: (a) corner 1; (b) corner

2; (c) corner 3; and (d) corner 4. 46

xiii

3·32 Orientations of the simple motion after modification at: (a) case 1; (b)

case 2; (c) case 3; and (d) case 4. 47

3·33 Euler angles of the simple motion after modification at: (a) case 1; (b)

case 2; (c) case 3; and (d) case 4. 47

3·34 Video of modified simple motion. 48

3·35 Translational and rotational information of modified simple motion:

(a) 3D trajectories; and (b) Euler angles. 48

3·36 Video of modified complex motion case 1. 49

3·37 Translational and rotational information of modified complex motion

case 1: (a) 3D trajectories; and (b) Euler angles. 49

3·38 Video of modified complex motion case 2. 50

3·39 Translational and rotational information of modified complex motion

case 2: (a) 3D trajectories; and (b) Euler angles. 50

xiv

List of Abbreviations

DMP(s) Dynamic movement primitive(s)
DOF Degrees of Freedom
GMM Gaussian Mixture Model
IK Inverse Kinematics
LWL Locally Weighted Learning
LWR Locally Weighted Regression
ROS Robot Operation System
VREP Virtual Robot Experimentation Platform
3D Three-Dimensional
R3 the real three-dimensional space

xv

1

Chapter 1

Introduction

1.1 Problem Definition and Introduction

Scientists have shown their interest in making robots act like human beings for

decades. Likewise, how to imitate human motion has become a popular academic

topic recent years. Therefore, a trajectory planning framework named Dynamic Move-

ment Primitives (DMPs) was created by Stefan Schaal’s Lab at USC in 2002 (Schaal

et al., 2003; Schaal, 2006; Ijspeert et al., 2013). This method was motivated by the

requirement of representing complex motor movements and it can implement complex

motor actions by adjusting few manual parameters and ensuring the stability.

In this thesis, the DMPs framework is utilized for imitation learning. The input

is some discrete points sampled from a demonstration trajectory of motion generated

by a human using some specific controllers such as a joystick, which includes both

translational and rotational information. Firstly, substitute the processed input data

(DeWolf, 2013b) into the second order differential equation of the DMPs framework.

Then, the weights of the DMPs model’s basis functions are trained (DeWolf, 2013a).

Next, substitute initial state, goal state of the output system and the weights trained

from input system into DMPs for regenerating the output trajectory. Ultimately, the

output is also discrete points which consists of a trajectory that can manage to do

the same task as the demonstration trajectory. Even though the initial states and

goal states may be not identical in input and output systems, similar tasks can still

be done by the same set of weights. The simulations are implemented on a seven

2

DOF robot arm-hand system named Robot Baxter.

In the learning part, a training method called Locally Weighted Regression (LWR)

is utilized (Schaal et al., 2002; Gams, 2018). The weights trained in LWR are used

for motion regeneration. With translation and scaling in both space and time , the

shape of trajectories stays invariant (Schaal et al., 2003).

In this work, both 3D coordinates and orientations of the Robot Baxter’s end-

effector are considered for learning and the two terms’ combination allow further

development of human-robot interaction. For rotational motion representation, rota-

tion matrix is utilized. When imitating both translational and rotational movements,

the time step of simulations is set to be 50 millisecond. The strategy can undertake

some spatial scaling or transformation of the initial or goal states. In addition to

space scale or transformation for smoothing, the task-oriented motion can be also

scaled in time, which may provide more time-saving solution to some specific tasks.

For further development, it can be anticipated to stabilize some disturbances on the

trajectories at any time (Theodorou et al., 2010).

For real-life implementation or future development, this thesis’s work can be uti-

lized to accomplish some task-oriented motions with demonstrations. For further

extension, it may combine with some advanced learning algorithms to achieve higher

generality. Likewise, it can be incorporated within some other algorithms such as

obstacle-avoiding algorithm to solve some advanced or complicated robot control

problems.

1.2 Related Work

DMPs has been developing since it was raised in Schaal’s lab and it has become one

of the most common-used framework for learning trajectories from demonstrations

(Matsubara et al., 2011). This framework is based on a system which consists of

3

second-order ordinary differential equations with nonlinear forcing term. The non-

linear forcing term can be weight-trained and learned for regenerating task-oriented

trajectories. For more complicated movements, limit cycle can be added into the

discrete model (Ude et al., 2010). Since DMPs is sensitive to time and can always

reach the goal state if the running time is long enough, thus reinforcement learning

with time-related reward or some time-related control strategies can be applied to

the DMPs framework (Tamosiunaite et al., 2011; Theodorou et al., 2010) .

The framework was firstly applied on the learning algorithm which is to imitate the

motion described via only point attractors (Ijspeert et al., 2002; Ijspeert et al., 2003)

and further extended to general movements or human motion (Rückert and d’Avella,

2013; Rosado et al., 2014; Nemec and Ude, 2012). To be specific, the framework

has been proved effective in robot learning of some human tasks, which includes

arm swings (Matsubara et al., 2011), drum playing (Ude et al., 2010), handwriting

(Kulvicius et al., 2011) and limb motion learning (Rosado et al., 2014). Likewise, the

approach has shown its flexibility and robustness for allowing to implement obstacle

avoidance algorithm (Park et al., 2008) or some advanced control strategies (Pervez

and Lee, 2018; Chi et al., 2019). In addition to pure point-to-point learning, it has

potential on learning from orientations (Ude et al., 2014; Kramberger et al., 2016;

Ginesi et al., 2019) and generalization for some tasks (Zhou and Asfour, 2017).

Nevertheless, this work mainly focuses on non-cycled movements of hand-arm

system. Considering the difficulty of real-life implementation and the desire to explore

the flexibility and availability of discrete models, the discrete DMPs is the specific

model discussed in later chapters.

4

Chapter 2

Basic Theories and Application

2.1 Dynamic Movement Primitives

Dynamic Movement Primitives (DMPs) is a framework for learning a point-to-point

trajectory from a demonstration. This framework is to represent a movement trajec-

tory with a group of second-order ordinary differential equations. Then, some learning

methods such as Gaussian Mixture Model (GMM) (Pervez and Lee, 2018) can be im-

plemented to the framework for learning some complex motor motion. Ultimately,

a canonical dynamical system defined by a first order differential equation shown in

equation 2.3 is utilized to converge the trained nonlinear term so that the whole dy-

namic system can stay bounded. DMPs is motivated by the desire of representing

complex motor actions. Furthermore, this whole method can implement complex mo-

tor movements with adjusting few manual parameters and without worrying about

instability.

2.1.1 Introduction

Generally, the goal of the motion learning can be formulated to a policy of finding

a control strategy of the specific tasks which is to move the control objects into the

target area: (Schaal et al., 2003)

u = π(x, t, αd, N) (2.1)

5

where x is the state vector, t is the time, u is the control vector, αd is the dynamic

parameter vector which is specific to the control policy π, andN is the hyperparameter

vector about how to run the model more effective.

Likewise, the dynamic system utilized in the policy shown in equation 2.1 can

generally be written as a differential equation:

ẋ = f(x, t, αd) (2.2)

To be specific, in most applications of robots, the complexity of learning the

control policy is reduced because some extra information is provided. The most

common situation is that the desired trajectories are given in some demonstrations.

A potential of combining equation 2.1 and 2.2 exists (Schaal et al., 2003) . DMPs

is a method that can make the two equation correlated.

2.1.2 Discrete DMPs

Parameter table of discrete DMPs model
Sign Name
ck Center of ψk, the mean of Gaussian function
dt Time length of a single time step
f Nonlinear term, feedback term
g Goal state of the desired dynamic system
hk Parameter of ψk, correlated to the variance of Gaussian function
Nbfs Number of the basis functions
Npts Number of the discrete points in the desired dynamic system
T Total running time
ti Time of the ith time step in the desired dynamic system
x Canonical dynamic system state
y Desired dynamic system state
y0 Initial state of the desired dynamic system
wk Weight of the kth basis function
αx Gain term of the canonical dynamic system

αy, αẏ Gain terms of the desired dynamic system
ψk the kth basis function, which is a Gaussian function

Table 2.1: Parameter Table of discrete DMPs model

Generally, all data extracted from demonstration trajectories is sets of discrete

points. Although most robotic trajectories are continuous in our real life, they are

6

sampled discretely when communicating between hardware and software. The ex-

tracted trajectories are first-order and second-order derivable after proper interpo-

lations and approximations (DeWolf, 2013b). Hence, in this work, discrete DMPs

model is implemented (Schaal et al., 2003). The corresponding equations are (De-

Wolf, 2013a):

ÿ(ti) = αẏ(αy(g − y(ti))− ẏ(ti)) + f(ti)

ẋ(ti) = −αxx(ti)

dt = ti − ti−1

T = Npts ∗ dt

(2.3)

In equation 2.3, f is the nonlinear force term for feedback defined as:(DeWolf,

2013a)

f(x(ti), g) =

∑Nbfs

k=1 ψk(ti)wk∑Nbfs

k=1 ψk(ti)
x(ti)(g − y0)

ψk(ti) = e−hk(x(ti)−ck)
2

(2.4)

The canonical dynamic system in 2.3 can be solved by integrating both sides of

the second equation:

x(ti) = e−αxti (2.5)

It can see that x is nonlinear, then the choice of the basis function’s centers and

variances needs to be careful and tricky so that the basis functions can be activated

evenly in time. Only if basis functions are activate evenly in time, the force term

can move along the demonstration trajectory when approaching to the goal state

(DeWolf, 2013a). If we choose the centers of the basis functions linearly, according

to the expression formula of x, most basis functions are activated significantly when

x moves at the beginning, and the activation stretch out when the movement of x

7

approaches to the end.

To make the activation of basis function even in time, the ith Gaussian function

(basis function) center is selected as:

ck = e−αxTk

Tk =
k

Nbfs

T
(2.6)

Likewise, the ith variance-related coefficient hi is expressed as:(DeWolf, 2013a)

hk =
Nbfs

3
2

αx · ck
(2.7)

When having topological equivalence, DMPs retain their qualitative behaviors if

translated or scaled in both space and time. It was proved in Schaal’s paper (Schaal

et al., 2003). Different DMPs with topological equivalence can be converted to one

DMP via simple addition or multiplication to the dynamic equations. This property

allows us to imitate different human motions without changing parameters of dynamic

systems. To be specific, we can scale the results in time via changing the length of one

time step dt. Likewise, the result can also be scaled in space via choosing different

initial and goal state positions.

2.1.3 DMPs in Translational Motion

For translation, the model used is almost identical to the model described in section

2.1.2 (Ijspeert et al., 2003).

Denote the input data of translational movements as yinput, which is the input

system state for DMPs . Then, we can get the nonlinear term finput of the input

system from the dynamic equation of the model which is shown in equation 2.3 :

finput(ti) = ÿinput(ti)− αẏ(αy(g − yinput(ti))− ẏinput(ti)) (2.8)

8

Based on the solution of LWR which is discussed in section 2.2 , the weights of

the basis functions can be expressed by:

wk =
sTΨkfinput
sTΨks

(2.9)

where

s =

x(tp0)(g − y0)
...

x(tpn)(g − y0)

Ψk =

ψk(t

p
0) · · · 0 0

... ψk(t
p
1)

. . . 0

0
.

...
0 0 · · · ψk(t

p
n)

(2.10)

where tp0, t
p
1 ... tpn indicates the corresponding time of discrete points extracted from

different demonstration translational trajectories.

The weights extracted from the training process are the learning parameters calcu-

lated from the demonstration. For generating new trajectories, substitute the weights

into DMPs and calculate the nonlinear term of the output system fout using the same

canonical dynamic system x as equation 2.3:

fout(x(ti), g) =

∑Nbfs

k=1 ψk(ti)wk∑Nbfs

k=1 ψk(ti)
x(ti)(g − y0)

ψk(ti) = e−hk(x(ti)−ck)
2

(2.11)

Then, using the dynamic equation of discrete DMPs model, work out the acceler-

ation of the generated trajectory which is the second derivative of the output system

state:

ÿout(ti) = αẏ(αy(g − yout(ti))− ẏout(ti)) + fout(ti) (2.12)

where yout is the output system state.

9

Ultimately, integrate the accelerations to get the velocity and displacement in

global coordinate system:

ith point velocity = ẏout(ti) = ẏout(ti−1) + ÿout(ti) · dt

ith point displacement = yout(ti) = yout(ti−1) + ẏout(ti) · dt
(2.13)

In above equations, it is assumed that the output trajectory is generated evenly

in time. Also, it is assumed that the initial velocity and acceleration are zero.

2.1.4 DMPs in Rotational Motion

Parameter table for rotational discrete DMPs model
Sign Name
cok Center of ψok, the mean of Gaussian function
D Diagonal matrix in terms of R0 and Rg

fR Nonlinear term, feedback term
R Desired system state, rotation matrix
Rg Rotation matrix at goal state of the desired dynamic system
R0 Rotation matrix at initial state of the desired dynamic system
hok Parameter of ψok, correlated to the variance of Gaussian function
Ndbfs Number of the basis functions
xR Canonical dynamic system state
wok Weight of the kth basis functions
αxR Gain term of the canonical dynamic system

αR, αṘ Gain terms of the desired dynamic system
γ Scaled angular velocity calculated using Rodrigue’s formula
ω Scaled angular velocity of input trajectories, ω ∈ R3

ωx, ωy, ωz Scaled angular velocity components along x,y and z axis
ψok the kth basis function, a Gaussian function

Table 2.2: Parameter Table of rotational discrete DMPs model

For the parameters dt, T , ti and Npts, we use the same parameters as the trans-

lational model, and their definitions can be found from table 2.1.

The implementation of DMPs on rotation is similar to the translation one. Nev-

ertheless, the mathematical method of calculating rotation matrix and its derivatives

is different from the Euclidean ones, which is discussed in appendix A specifically.

Therefore, the model is slight different from the model shown in section 2.1.2. Fur-

thermore, the model of orientations does not have to be intuitive because the rotation

10

centers is the position of the end-effector at the same time, which can be obtained

when implementing the algorithm described in 2.1.3.

The model of DMPs for rotation is based on equation 2.3 (Ude et al., 2014), and

it can be expressed as:

ω̇(ti) = αṘ[αRγ(ti)− ω(ti)] + fR(ti)

γ(ti) = log (RgR(ti)
T) ∈ R3

[ω(ti)]× =

 0 −ωx(ti) ωy(ti)
ωz(ti) 0 −ωx(ti)
−ωy(ti) ωx(ti) 0

Ṙ(ti) = [ω(ti)]×R(ti)

ẋR(ti) = −αxRxR(ti)

(2.14)

where the calculation of logarithmic function and rotation matrix derivative can be

found in appendix section A.2.

In equation 2.14, the nonlinear term can be calculated from following equations:

(Ude et al., 2014)

fR(xR(ti), Rg) =

∑Ndbfs

k=1 ψok(ti)w
o
k∑Ndbfs

k=1 ψok(ti)
xR(ti)D ∈ R3

D = diag(γ(t0)) = diag(log (RgR0
T)) ∈ R3×3

ψok(ti) = e−h
o
k(xR(ti)−cok)

2

(2.15)

After replacing Nbfs with Ndbfs and replacing αx with αxR, the expression and

relationship of xR , cok and hok are identical to equation 2.5 , 2.6 and 2.7.

Using the model which is shown in equation 2.14, given the input data which is

rotation matrix Rinput calculated from appendix section A.1 defined Euler angles, the

11

nonlinear term of the input system fRinput can be expressed as:

fRinput(ti) = ω̇input(ti)− αṘ[αRγinput(ti)− ωinput(ti)]

γinput(ti) = log (RginputRinput(ti)
T)

(2.16)

where γinput is scaled angular velocity of the input system calculated using Rodrigue’s

formula and ωinput is scaled angular velocity extracted from the demonstration tra-

jectory of the input system.

Based on the derivation in section 2.2.2, we can solve the weights of basis functions

:

wok = (sTo Ψo
kso)

−1
sTo Ψo

kfRinput (2.17)

where

so =

xR(to0)γinput(t0)
T

...

xR(ton)γinput(tn)T

=

xR(to0)(log (RgRinput
T (to0)))

T

...
xR(ton)(log (RgRinput

T (ton)))T

Ψo
k =

ψok(t

o
0) · · · 0 0

... ψok(t
o
1)

. . . 0

0
.

...
0 0 · · · ψok(t

o
n)

(2.18)

where to0 , to1 , ... ton indicates the time of different discrete points extracted from

demonstration orientation .

Regard the weight as the learning term, regenerate the orientation movement of

the demonstration. Firstly, work out the nonlinear forcing term of the output system

fRout:

fRout(ti) =

∑Ndbfs

k=1 ψok(ti)w
o
k∑Ndbfs

k=1 ψoi (ti)
xR(ti)D (2.19)

12

Then, substitute the nonlinear terms into the model equations 2.14, it can calcu-

late the derivative of the scaled angular velocity which is the scaled angular acceler-

ation :

ω̇out(t) = αṘ[αRγout(t)− ωout(t)] + fRout(xR(t), Rg)

γout(t) = log (RgRout(t)
T)

(2.20)

where ωout is the output scaled angular velocity, Rout is the output rotation matrix

which can be worked out through equation A.5, γout(t) is a coefficient correlated to

the output rotation matrix, which is calculated by equation A.12 .

Likewise, integrate the scaled angular acceleration to calculate the scaled angular

velocity of the ith orientation demonstration point :

ωout(ti) = ωout(ti−1) + ω̇out(ti) · dt (2.21)

In above equation, it is assumed that the output trajectory of orientation is gen-

erated evenly in time. Likewise, it is assumed that the initial scaled angular velocity

and acceleration are zero.

And the skew symmetry matrix related to scale angular velocity of the ith point

can be expressed as:

[ωout(ti)]× =

 0 −ωxout(ti) ωyout(ti)
ωzout(ti) 0 −ωxout(ti)
−ωyout(ti) ωxout(ti) 0

 (2.22)

Therefore, the rotation matrix for next timestep can be calculated via:

Rout(ti) = Rout(ti−1 + dt) = edt·[ωout(ti)]×Rti−1
(2.23)

The output rotation matrices can be the eventual output. If the robotic system

cannot accept the rotation matrices, it can be converted into Euler angles through

13

equation A.7,A.8 and A.9 .

Nevertheless, the model of rotational movements is slight different from the trans-

lational one. According to equation A.5, the comprehensive rotation matrix is cal-

culated from multiplication of three rotation matrix of components along three axes.

Likewise, in the implementation of the algorithm, three component rotation matrices

are imported into DMPs at the same time, learn and regenerate corresponding output

rotation matrix. Ultimately, multiple the three matrices to work out the comprehen-

sive rotation matrix. This modification allows different DMPs implementations on

rotation matrix around different axes. For simpler rotational movements, we can use

smaller constant on number of basis functions, which can reduce the computational

cost. For more comprehensive motion, we do not have to decompose the rotation

matrix and implement the orientation imitation learning algorithm regularly.

In addition, quaternion can also be used for controlling rotational movements

(Ude et al., 2014). The whole algorithm of quaternion’s are similar to the rotation

matrix one. The rotation matrix is used in the algorithm for testing its availability

and generality.

2.2 Locally Weighted Regression

2.2.1 Introduction

Locally weighted regression (LWR) is one method of locally weighted learning (LWL).

Locally weighted learning (LWL) is a class of techniques from nonparametric statics

that provides useful representation and training algorithms for learning about complex

motor movements in autonomous adaptive control of robotic systems. It is shown that

LWR algorithm has been successfully implemented in real-time learning of complex

robot tasks (Schaal et al., 2002).

Locally weighted regression (LWR) is a memory-based learning algorithm. Its

14

training is very fast, which only needs to add new training data to the memory.

For prediction, LWR only need a query point and the training points in memory.

Furthermore, it can provide sufficiently good local approximation for the motion

trajectory.

2.2.2 Application and derivation

For the implementation in this thesis, LWR algorithm with locally linear models

is utilized. In this section, only the LWR solution derivation of DMPs translational

movements is shown as a demonstration. Likewise, the derviation of DMPs rotational

movement is very similar and not shown in the section.

Based on model described in section 2.1.3 , we want to choose the weights of basis

functions in order that the forcing term function matches the nonlinear term finput

of the input system . Therefore, the loss function which is need to be minimized is

expressed as:

J(wk) =
∑
ti

ψk(ti)(f(ti)− wk(x(ti)(g − y0)))2

ψk(ti) = e−hk(x(t)−ck)
2

(2.24)

where the parameters meaning can be found in table 2.1.

Convert equation 2.24 into a matrix form. Firstly, substitute different ψk values

at different time into a diagonal matrix Ψk:

Ψk =

ψk(t0) · · · 0 0

... ψk(t1)
. . . 0

0
.

...
0 0 · · · ψk(tn)

 (2.25)

where t0, t1 ... tn indicates the corresponding time of different demonstration trajec-

tory points.

15

Then, set up column vectors s and fd for x(t)(g − y0)) and fdesterm:

s =

x(t0)(g − y0)
...

x(tn)(g − y0)

fd =

f(t0)
...

f(tn)

(2.26)

Therefore, the equation 2.24 become:

J(wk) = (fd − sTwk)
T

Ψk(fd − sTwk) (2.27)

Ultimately, using least squares method, we can solve the weight:

wk = (sTΨks)
−1
sTΨkfd =

sTΨkfd
sTΨks

(2.28)

2.3 Algorithm

The algorithm of implementation is shown following:

Algorithm 1 Imitation Learning With DMPs

Input:

Discrete translational and rotational motion information with time sampled from

the demonstration trajectory.

Output:

Discrete translational and rotational motion information with time generated by

DMPs which can accomplish the same or similar tasks as the demonstration.

1: Select parameters αẏ, αy, and αx in equation 2.3 as well as αṘ, αR and αxR

in equation 2.14. The corresponding parameters are the same as the ones in

equations 2.3 and 2.14. These parameters stay invariant in later procedures.

16

2: Extract data from the demonstration discretely. The data consists of both trans-

lational and rotational trajectories with time.

3: Choose the number of basis functions Nbfs properly.

4: Using the models described in section 2.1.3 and 2.1.4, train the basis functions’

weights of translational and rotational trajectories. Store the weights.

5: Pick out the number of points in the generated trajectories Npts properly.

6: Substitute the trained weights of basis functions, initial and goal state of trans-

lational and rotational movements into the models described in section 2.1.3 and

2.1.4 to generated results.

7: Simulate the results in VREP so that it can see the qualitative behaviors of

algorithm directly.

For the gain parameters αd of dynamic systems in the DMPs models, we set them

to be (Schaal et al., 2003; Ude et al., 2014):

αẏ = αṘ = 25.0

αy = αR = 4.0

αx = αxR = 1.0

The above parameters’ values can be modified following the rules of PD controller pa-

rameter selection (Lee et al., 1998) . The hyperparameters N , which are Nbfs, Ndbfs

and Npts, influence the qualitative behaviors of the imitation learning. Moreover,

the hyperparameters which are the learning parameters need be picked out properly.

Too small values may lead to the failure of reaching the minimum and too high ones

may lead to the high computational cost. Generally, given the values of learning

17

parameters Nbfs, Ndbfs and Npts in modest ranges, if the other parameters are invari-

ant constants, with the learning parameters increasing, the demonstrate trajectories

and the DMPs-generated ones have more similar qualitative behaviors. Ultimately,

after picking randomly from modest ranges of Nbfs, Ndbfs and Npts, the qualitative

behaviors in specific situations are shown in detail in chapter 3.

18

Chapter 3

Simulation and Result

3.1 Model Evaluation

This section is to evaluate the capability of the model and algorithm described in

section 2.3 when imitating different motions. Nevertheless, the goal of the model

and algorithm is to regenerated task-oriented trajectories rather than identical tra-

jectories. Also, when doing some task-specific motion, people can do it in extremely

different ways. Therefore, the evaluations mainly focus on qualitative behaviors rather

than precise numerical error analysis. What we need to care about is whether the

point-to-point DMPs trajectories (Ginesi et al., 2019) can accomplish similar tasks

and small errors do not mean the framework and models effective necessarily. To

evaluate the qualitative results, we define that the errors of model evaluation are

acceptable if they are less than 5% of the length of the range of translation or less

than 5 degrees in rotation angles. Furthermore, it is acceptable to has larger errors

around the beginning or end of the trajectories because compared to the points in the

middle part of the trajectory, the beginning and end points have no prior or posterior

points which means that they have less information for learning. This larger errors

may be shown in following figures. Moreover, the defaulted initial and goal states of

the DMPs-generated trajectories are the same as the demonstration ones. Also, the

original trajectories represent the demonstration trajectories.

Here are the principles of selecting parameters: the gain parameters are chosen

as the same ones shown in section 2.3. The hyperparameters are self-defined: the

19

number of basis functions is selected randomly from a modest range so that the

DMPs-generated trajectory would have a shape similar to the shape of input system’s

trajectory. At that time, the shape of trajectory consists of discrete points in defined

as the shape of path connecting all discrete points. For translational movements in

3D space, we will use point cloud to describe the shape. Furthermore, the number of

generated points is picked randomly as long as the discrete DMPs-generated trajectory

can provide enough information for a complete description of the motion.

3.1.1 Motion Generated by Formulated Functions

Translational Motion

According to the theories shown in section 2.1.3, DMPs is implemented on trans-

lational movements generated by given formulas. The input trajectory consists of

the discrete points of position generated using the given functions. Also, the output

trajectory is made up of discrete points.

Firstly, start from an extremely simple motion, which is a straight line defined by

linear functions :

dx(t) = 1.3t

dy(t) = 1.3t

dz(t) = 1.3t

Following the principles of parameter selection defined in the beginning part of

chapter 3, and the corresponding hyperparameters are given:

Nbfs = 50

Npts = 500

For analysing the results, the original and generated trajectories can be drawn:

20

Figure 3·1: Visualized 3D original and DMPs-generated trajectories
of linear functions.

To evaluate the results, plot the figures of displacements along three axes versus

time:

Figure 3·2: Schematic diagram of linear function-generated displace-
ments along x,y,z axis versus time.

21

Then, we try with some periodic functions such as cosine or sine functions:

dx(t) = cos(0.08t)

dy(t) = sin(0.12t)

dz(t) = − sin(0.10t)

Following the principles of parameter selection defined in the beginning part of

chapter 3, the corresponding hyperparameters are given:

Nbfs = 100

Npts = 500

For analysing the results, the original and generated trajectories can be drawn:

Figure 3·3: Visualized 3D original and DMPs-generated trajectories
of sine or cosine functions.

To evaluate the results, plot the figures of displacements along three axes versus

time:

22

Figure 3·4: Schematic diagram of sine or cosine function-generated
displacements along x,y,z axis versus time.

Ultimately, try with some nonperiodic and nonlinear functions:

dx(t) = 0.2 cos(0.08t) + 0.9e−0.02t + 0.16t2

dy(t) = 0.3 sin(0.12t) + 0.85e−0.02t + 0.2t2

dz(t) = 0.4 sin(0.10t) + 0.8e−0.02t + 0.24t2

Following previous principles of parameter selection, the corresponding hyperpa-

rameters in section 2.3 are given:

Nbfs = 100

Npts = 500

For analysing the results, the original and generated trajectories can be drawn:

23

Figure 3·5: Visualized 3D original and DMPs-generated trajectories
of the nonperiodic and nonlinear function.

To evaluate the results, plot the figures of displacements along three axes versus

time:

Figure 3·6: Schematic diagram of the nonperiodic and nonlinear
function-generated displacements along x,y,z axis versus time.

According to above figures, it can anticipated that the demonstration trajectories

24

consisted of function-generated discrete points and DMPs-generated ones would have

similar qualitative behaviors. For the function-generated demonstration trajectories,

we would be able to regenerate the trajectories which can accomplish the same or

similar tasks. Furthermore, the trajectories can be scaled or translated in time or

space without losing its features, which is described in section 2.1.2 :

(a) (b)

Figure 3·7: Nonperiodic and nonlinear function-generated trajectories
scaled in time : (a) change Npts = 200; and (b) change Npts = 1000.

(a) (b)

Figure 3·8: Nonperiodic and nonlinear function-generated trajectories
scaled and translated in space : (a) set initial position to be (0,0,0) and
goal position to be (1,1,1); and (b) set initial position to be (0,0,0) and
goal position to be (-1,-1,-1).

Likewise, it can be scaled both in time and in space :

25

Figure 3·9: Nonperiodic and nonlinear function-generated trajectories
scaled and translated both in space and in time : set initial position to
be (0,0,0), goal position to be (2,2,2) and Npts = 300 .

Rotational Motion

For representing the rotation movement , rotation matrix is chosen. For displaying

results more directly, we may need to convert generated rotation matrices into Euler

angles using equations A.7, A.8 and A.9 . Using the functions in above part of section

3.1.1, we can generate the discrete points of Euler angles and convert them into the

rotation matrices. Ultimately, the results are represented in rotation matrix form.

Correlated equations can be found in section A.1.

Firstly, using linear functions to generate Euler angles:

α(t) = 1.3t

β(t) = 1.3t

γ(t) = 1.3t

26

where Euler angles α, β and γ are defined in section A.1

Following previous principles of parameter selection, the corresponding hyperpa-

rameters in section 2.3 are given:

Ndbfs = 100

Ndpts = 200

For evaluating the results, the information of the original and generated rotation

versus time are shown following:

(a) (b)

Figure 3·10: Linear function-generated orientation: (a) nine entries
of the rotation matrix versus time; and (b) Euler angles versus time.

Then, try with some more periodic functions, such as sine or cosine functions to

generate Euler angles:

α(t) = cos(0.08t)

β(t) = sin(0.12t)

γ(t) = − sin(0.10t)

Following previous principles of parameter selection, the corresponding hyperpa-

27

rameters in section 2.3 are given:

Ndbfs = 100

Ndpts = 200

For evaluating the results, the information of the original and generated rotation

versus time are shown following:

(a) (b)

Figure 3·11: Sine or cosine function-generated orientation: (a) nine
entries of the rotation matrix versus time; and (b) Euler angles versus
time.

Ultimately, using some nonperiodic and nonlinear functions to generate Euler

angles:

α(t) = 0.2 cos(0.08t) + 0.9e−0.02t + 0.16t2

β(t) = 0.3 sin(0.12t) + 0.85e−0.02t + 0.2t2

γ(t) = 0.4 sin(0.10t) + 0.8e−0.02t + 0.24t2

Following previous principles of parameter selection, the corresponding hyperpa-

rameters in section 2.3 are given:

Ndbfs = 100

Ndpts = 200

28

For evaluating the results, the information of the original and generated rotation

versus time are shown following:

(a) (b)

Figure 3·12: Nonperiodic and nonlinear function-generated orienta-
tion: (a) nine entries of the rotation matrix versus time; and (b) Euler
angles versus time.

According to above results, it can anticipate that the imitation algorithm can work

for most function-generated rotation movements since the errors are acceptable. The

generated trajectories are almost overlaid to the original data, which means that they

can manage to accomplish the same or similar tasks. The slightly larger errors around

the beginning or ending points can be explained with lack of necessary information.

Similar to section 3.1.1, the orientation also has potential to retain their qualitative

behaviors if numerically modified or scaled in space or time:

(a) (b)

29

(c) (d)

Figure 3·13: Nonperiodic and nonlinear function-generated orienta-
tion scaled in time : (a) nine entries of the rotation matrix versus time
when Ndpts = 100 ; (b) Euler angles versus time when Ndpts = 100; (c)
nine entries of the rotation matrix versus time when Ndpts = 1000 ;and
(d) Euler angles versus time when Ndpts = 1000.

(a) (b)

Figure 3·14: Nonperiodic and nonlinear function-generated orienta-
tion scaled and translated in space, set initial Euler angles to be (0,0,0)
: (a) nine entries of the rotation matrix versus time when setting goal
Euler angles to be (-1,-1,-1) ; and (b) Euler angles versus time when
setting goal Euler angles to be (1,1,1).

The rotation matrix are not shown since it is kind of meaningless when initial and

goal states are change significantly.

Likewise, it also works when scaling or translating in both space and time:

30

(a) (b)

Figure 3·15: Nonperiodic and nonlinear function-generated orienta-
tion, set initial Euler angles to be (0,0,0) , goal Euler angles to be
(1,1,1) and Ndpts = 500: (a) nine entries of the rotation matrix versus
time; and (b) Euler angles versus time.

3.1.2 Motion Generated by PC Mouse Implementation

According to the results given in section 3.1, most function generated trajectories are

able to be successfully regenerated using DMPs. Also, almost real-life trajectories are

derivable. Therefore, we can utilize the PC mouse combining with VREP to visualize

the qualitative behaviors of some real-life random movements. We can also evaluate

the DMPs models’ availability at the same time.

In VREP, the translational motion is controlled by given coordinates and the

rotational motion can controlled by given Euler angles, rotation matrix or quater-

nion. The robot Baxter is used for data extraction and DMPs implementation. The

end-effector is the control object. Meanwhile, my output which consists of both trans-

lational and rotational information will be executed using the IK solver built in the

model. For rotational movements, quaternion is utilized for execution and Euler an-

gles are utilized for more direct display. Following is a figure of the robot Baxter

shown is VERP:

31

Figure 3·16: Robot Baxter with end-effector’s translational and rota-
tional information shown .

Given a motion generated by PC mouse, extract data and substitute in the al-

gorithm described in section 2.3, generate movement calculated using DMPs. Corre-

sponding videos can be found following:

(a) (b)

Figure 3·17: Videos of the sample motion: (a) original movement
generated by PC mouse; and (b) DMPs-generated movement.

Following previous principles of parameter selection, the corresponding hyperpa-

32

rameters in section2.3 are:

Nbfs = 800

Ndbfs = 200

Npts = 500

Substitute extracted data into DMPs, the trajectories can be obtained :

(a) (b)

(c) (d)

Figure 3·18: The translational and rotational information of the PC
mouse-generated movement: (a) 3D visible trajectories; (b) displace-
ments versus time along x,y and z axis; (c) Euler angles versus time;
and (d) nine rotation matrix entries versus time.

We can observe that the errors of figures 3·18 (c) and (d) are larger than the

other ones at the beginning part and ending part. This is because compared to the

points in the middle part of the trajectory, the beginning and ending points have

no prior or posterior points which means that they have restricted information for

33

learning. Nevertheless, the errors seems acceptable, we can evaluate the qualitative

behaviors in imitation learning of task-oriented movements. In addition, the Euler

angles are calculated from the rotation matrices and their definition can be found

in appendix section A.1. For the first Euler angle, its range is (−π, π]. And it may

lead to some misunderstanding when representing the Euler angles, for instance, the

difference between −π+0.1 and π−0.1 should be 0.2 rather than 2π−0.2. Therefore,

the error of the Euler angle is acceptable since it is actually fluctuating around pi. To

evaluate the qualitative behaviors of the random movements in detail, we may need

some videos which are shown in figure 3·18 to visualize the movements.

In addition, according to the figures 3·18 , the algorithm can be anticipated to work

for this random movement’s imitation learning in simulation. For testing availability

in real world, we can get the real-time data from VREP monitor and plot the figures

of coordinates, velocities and Euler angles versus time are plotted:

(a) (b)

(c) (d)

34

(e) (f)

Figure 3·19: Data of the PC mouse motion from real-time monitor
in VREP : (a) 3D coordinates of original movement generated by joy-
stick; (b) 3D coordinates of DMPs-generated movement; (c)scaled ve-
locities of original movement generated by joystick; (d)scaled velocities
of DMPs-generated movement; (e) Euler angles of original movement
generated by joystick; and (f) Euler angles of DMPs-generated move-
ment.

According to the above results, it can see that DMPs has plenty of potential to

accomplish this random motion’s imitation learning in real life.

Nevertheless, for some motion, PC mouse may not successfully complete the real-

life task due to the high accelerations of mouse movements. Therefore, Joystick

controller becomes an alternative since it can complete relatively complicated tasks

with smaller acceleration. More detailed discussion is shown in 3.2.

3.2 Implementation on Baxter Robot

All movements in section 3.2 are generated by joystick controller. The control targets

in this section are cubes, which is sized as height of 4.5 cm, length of 4.5 cm and

width of 2.8 cm. A mapping is built to convert the electric signal extracted from

joystick controllers into the differences of coordinates and Euler angles every time

step . Data are extracted from VREP via ROS joy package. Following is an example

of extracting data from a complex motion discussed in section 3.2.2:

35

Figure 3·20: Sample video of extracting data from a complex motion.

The simulator’s physics engine is based on Newton’s laws of motion and it is

sensitive to forces, inertia and materials. As mentioned before, the task complete-

ness is the only thing we care about because people can accomplish similar tasks

in extremely different ways. Furthermore, the time step of the simulation is set to

be 50 milliseconds. Compared to the data extraction, the implementation generally

take shorter time. Also, it is assumed that the joystick is controlled manually by

an inexperienced person when extracting data. It may lead to some visible spikes

when extracting the data discretely from the demonstration trajectories. The results

of velocities and accelerations are smoother because they are interpolated (DeWolf,

2013b) and trained in weighted learning algorithm.

3.2.1 Simple Motion

For simple motion, the task is to make the robot arm go and ready to grasp an object

denoting the position and orientation of end-effector as the goal state. Following the

principles of parameter selection, the corresponding hyperparameters in section2.3

36

are:

Nbfs = 50

Ndbfs = 50

Npts = 100

(a) (b)

Figure 3·21: Videos of the simple motion case : (a) original movement
generated by joystick ; and (b) DMPs-generated movement.

Plotting the figures of translational and rotational trajectories, we can see how

DMPs accomplish the learning process and recognize the error roughly:

(a) (b)

37

(c) (d)

Figure 3·22: The translational and rotational information of the sim-
ple motion case: (a) 3D visible trajectories; (b) displacements versus
time along x,y and z axis; (c) Euler angles versus time; and (d) nine
rotation matrix entries versus time.

Although it seems that it has relatively large errors in figure 3·22 (b), given the

videos shown in figure 3·21 , the DMPs-generated trajectory manages to imitate this

simple joystick-generated human motion. The larger errors are acceptable and it has

the same reasons as the errors in figure 3·18. Also, rather than the random movement

discussed in section 3.1.2 , this movement has a conspicuous task which is to reach

the position of an object and the orientation ready for grabbing the object.

To test the availability in real world, we can get the real-time data from VREP

monitor and draw the figures of coordinates, velocities and Euler angles versus time :

(a) (b)

38

(c) (d)

(e) (f)

Figure 3·23: Data of the simple motion case from real-time moni-
tor in VREP : (a) 3D coordinates of original movement generated by
joystick; (b) 3D coordinates of DMPs-generated movement; (c)scaled
velocities of original movement generated by joystick; (d)scaled veloc-
ities of DMPs-generated movement; (e) Euler angles of original move-
ment generated by joystick; and (f) Euler angles of DMPs-generated
movement.

According to the above results, it can see that DMPs has plenty of potential to

accomplish this simple task-oriented imitation learning in real life. The Euler angles

in figure 3·23 may looks extremely different because of the Euler angle representation’s

drawback, nevertheless, the rotation matrix shown in figure 3·22 indicates availability.

3.2.2 Complex Motion

In this part, there are two cases of complex motions to be analyzed. The second

one has higher complexity and longer running time compared to the first one. If we

can divide a complicated motion into several simple movements, we would always be

39

able to solve the imitation learning problem using the algorithm shown in section

3.2.1. Nevertheless, sometimes we cannot divide one motion when some important

information are dismissed. For instance, for the motion which includes grasping and

moving the object, if the position and orientation of object is not given, we cannot

separate the movement. Therefore, we regard a complex trajectory as an independent

trajectory and do not divide the trajectory into several parts for retaining its integrity

sometimes.

The first case is to move one object into the target area. Specifically, the object

in the VREP simulation is the cube described before.

Following previous principles of parameter selection, the corresponding hyperpa-

rameters in section 2.3 are:

Nbfs = 50

Ndbfs = 200

Npts = 200

For evaluating the results of the task-oriented imitation learning directly , the

VREP simulations of original and DMPs-generated trajectories are shown following:

(a) (b)

Figure 3·24: Videos of the complex motion case 1 : (a) original move-
ment generated by joystick ; and (b) DMPs-generated movement.

40

Plotting the figures of translational and rotational trajectories, we can see how

DMPs accomplish the learning process and recognize the error roughly:

(a) (b)

(c) (d)

Figure 3·25: The translational and rotational information of the com-
plex motion case 1: (a) 3D visible trajectories; (b) displacements versus
time along x,y and z axis; (c) Euler angles versus time; and (d) nine
rotation matrix entries versus time.

Although it seems that it has relatively large errors in figure 3·25 (b), given the

videos shown in figure 3·24 , the DMPs-generated trajectory manages to imitate this

simple joystick-generated human motion. The larger errors are acceptable and it has

the same reasons as the errors in figure 3·18. Also, this movement has a conspicuous

task which is to moving an object into target area without knowing any information

about where the object is.

To test the availability in real world, we can get the real-time data from VREP

monitor and draw the figures of coordinates, velocities and Euler angles versus time :

41

(a) (b)

(c) (d)

(e) (f)

Figure 3·26: Data of the complex motion case 1 from real-time mon-
itor in VREP : (a) 3D coordinates of original movement generated by
joystick; (b) 3D coordinates of DMPs-generated movement; (c)scaled
velocities of original movement generated by joystick; (d)scaled veloc-
ities of DMPs-generated movement; (e) Euler angles of original move-
ment generated by joystick; and (f) Euler angles of DMPs-generated
movement.

According to the above results, it can see that DMPs has plenty of potential to

accomplish task-oriented imitation learning in real life. Although the Euler angles

in 3·26 may imply that the DMPs-generated movement cannot accomplish the task

since it comes across the gimbal lock issue, the rotation matrix shown in figure 3·25

42

indicates the availability discussed in previous work (Ude et al., 2014).

The second case is to move two objects into the target area one by one. Specifically,

the objects in the VREP simulation are cubes. This case is to show the availability

of DMPs when the trajectories have relatively high complexity. Following previous

principles of parameter selection, the corresponding hyperparameters in section 2.3

are:

Nbfs = 500

Ndbfs = 200

Npts = 600

For evaluating the results of the task-oriented imitation learning directly , the

VREP simulations of original and DMPs-generated trajectories are shown following:

(a) (b)

Figure 3·27: Videos of the complex motion case 2: (a) original move-
ment generated by joystick ; and (b) DMPs-generated movement.

Plotting the figures of translational and rotational trajectories, we can see how

DMPs accomplish the learning process and recognize the error roughly:

43

(a) (b)

(c) (d)

Figure 3·28: The translational and rotational information of the com-
plex motion case 2: (a) 3D visible trajectories; (b) displacements versus
time along x,y and z axis; (c) Euler angles versus time; and (d) nine
rotation matrix entries versus time.

Although it seems that it has relatively large errors in figure 3·28 (b), given the

videos shown in figure 3·27 , the DMPs-generated trajectory manages to imitate

this simple joystick-generated human motion. The larger errors are acceptable and

it has the same reasons as the errors in figure 3·18. Also, this movement has a

conspicuous task which is to moving objects into target area without knowing any

information about where the objects are. Compared to the first case, this one has

higher complexity and longer running time which indicates the algorithm can be

extended to some more complicated case.

To test the availability in real world, we can get the real-time data from VREP

monitor and draw the figures of coordinates, velocities and Euler angles versus time :

44

(a) (b)

(c) (d)

(e) (f)

Figure 3·29: Data of the complex motion case 2 from real-time mon-
itor in VREP : (a) 3D coordinates of original movement generated by
joystick; (b) 3D coordinates of DMPs-generated movement; (c)scaled
velocities of original movement generated by joystick; (d)scaled veloc-
ities of DMPs-generated movement; (e) Euler angles of original move-
ment generated by joystick; and (f) Euler angles of DMPs-generated
movement.

According to the above results, it can anticipate that DMPs has potential to

accomplish task-oriented imitation learning in real life with relatively high complexity.

Nevertheless, it may come across some problem if the orientation changes too sharply,

45

but it could be overcome by modifying the basis functions (Ginesi et al., 2019) .

3.2.3 Motions with Modification

The parameters of the algorithm in section 3.1 for different motions retain the same

value. In this section, we would like to test the capability of resisting outside distur-

bance.

Simple Motion with Modification

The modifications are based on data extracted from the simple motion case shown in

figure 3·21. To show its flexibility, the goal state becomes a self-defined parameter.

For gripper’s movements, since the object is on a platform which is a table. There-

fore, any differences in vertical direction cannot be made because of the gravity. As

long as the robot Baxter does not have self-collision and the control targets have no

collision with the grippers when moving, the object can be placed in any arbitrary

position of the robot Baxter’s work space:

(a) (b)

(c) (d)

Figure 3·30: Modified motions of the simple motion case at: (a)
corner 1; (b) corner 2; (c) corner 3; and (d) corner 4.

46

The visible 3D trajectories of above figures are drawn:

(a) (b)

(c) (d)

Figure 3·31: 3D trajectories of the simple motion case at: (a) corner
1; (b) corner 2; (c) corner 3; and (d) corner 4.

Similarly, the orientations of the simple motion can also be changed via modifying

the initial state:

(a) (b)

47

(c) (d)

Figure 3·32: Orientations of the simple motion after modification at:
(a) case 1; (b) case 2; (c) case 3; and (d) case 4.

Corresponding Euler angles of the cases shown in figure 3·32 are:

(a) (b)

(c) (d)

Figure 3·33: Euler angles of the simple motion after modification at:
(a) case 1; (b) case 2; (c) case 3; and (d) case 4.

Here is how DMPs response to modifications of both position and orientation:

48

Figure 3·34: Video of modified simple motion.

The detailed translational and rotational information are shown:

(a) (b)

Figure 3·35: Translational and rotational information of modified
simple motion: (a) 3D trajectories; and (b) Euler angles.

Given the simulations and results, we would say that DMPs also have potential

to remain stability when encountering some unexpected disturbances in some simple

movements.

Complex Motion with Modification

The modifications are based on the data extracted the complex motion case 1 and 2

shown in figure 3·24 and 3·27. To display its flexibility, the initial state is self-defined.

49

For complex motion case 1, the video is shown:

Figure 3·36: Video of modified complex motion case 1.

The visible trajectories and Euler angles of rotation are:

(a) (b)

Figure 3·37: Translational and rotational information of modified
complex motion case 1: (a) 3D trajectories; and (b) Euler angles.

For complex motion case 2, the video is shown:

50

Figure 3·38: Video of modified complex motion case 2.

The visible trajectories and Euler angles of rotation are:

(a) (b)

Figure 3·39: Translational and rotational information of modified
complex motion case 2: (a) 3D trajectories; and (b) Euler angles.

Combing the above two simulations and results, the fluctuation of initial coor-

dinates are up to 50% of the cube’s length, height and width. And they work for

both cases. Also, the angles can fluctuate within 5 degrees for orientations. For the

components which are barely changed, the fluctuation can be up to 30 degrees with

full task completeness.

51

In addition to the difference coordinates or Euler angles, DMPs models are also

very sensitive to time, too short simulation time, which means that Npts is too small,

may lead to failure. Likewise, if the system has enough long running time locally

when it comes across any outside disturbances, the system can always manage to

reach the goal state eventually. Increasing larger number of generated points locally

is an available method of improving the DMPs resistance to disturbance (DeWolf,

2013b).

52

Chapter 4

Conclusion and Future Development

4.1 Conclusion

With relative high tolerance, all task-oriented imitation learning achieves its goals.

For simple movements such as grasping, the control targets can be put in almost the

whole work space. For complex motions shown in figure 3·36 and 3·38, the initial

state or the goal state can be transformed or scaled. Furthermore, according to the

result shown in figure 3·36, if we can divide high complexity motion into several

lower complexity motions and combine them later, we can accomplish extremely

complicated task with better qualitative behaviors and higher flexibility. Moreover,

according to the data of real-time monitor of coordinates, velocities and Euler angles,

the real-life implementations are anticipated to be successful.

4.2 Future Development

In addition to non-gripper movements, the gripper algorithm has been designed but

force feedback system is required for further implementation. Furthermore, it can

imply that using gripper to grasp the objects will be more effective than just dragging

with friction forces.

The future of DMPs can be highly anticipated. According to recent papers (Gi-

nesi et al., 2019), the kernel or the basis function of DMPs can still be developed.

Likewise, LWR can be replaced by some other learning algorithm such as compli-

53

cated deep learning or reinforcement learning with time-related reward. In addition,

for better real-life implementation, we can design a feedback system for better and

more stable motor performance. Also, we can add some time-correlated optimization

algorithms into DMPs for better stabilization. For further extension, it may com-

bine with some advanced learning algorithms such as generative adversarial network

(GAN) to achieve higher generality. Likewise, it can be incorporated within some

other algorithms such as obstacle-avoiding algorithm to solve some advanced or com-

plicated robot control problems. Moreover, it may be able to develop some advanced

nonparametric control strategies based on DMPs. And this is because if we have

enough much data for training, we may build a mapping from the weights to different

control policies more generally.

54

Appendix A

Rotation Matrix, Exponential Map and

Video description

A.1 Euler Angle and Rotation Matrix

For representing rotational movements in R3 , one available method is the rotation

matrix R. The rotational motion can be expressed uniquely in SO(3) :

SO(3) =
{
R ∈ R3×3 , RTR = I , det(R) = 1

}
(A.1)

Another available method is the Euler angles. Euler angles are three angles for

describing the orientation of a rigid body with respect to a fixed coordinate system.

The three Euler angles are denoted as α, β and γ, and they represent rotation around

x, y and z axis . Their definitions are following:

• α represents the rotation angle of a rotation around the z axis .

• β represents the rotation angle of a rotation around the y axis .

• γ represents the rotation angle of a rotation around the x axis .

The ranges of Euler angles are :

α ∈ (−π, π]

β ∈ [−π
2
,
π

2
]

γ ∈ (−π, π]

55

A.1.1 Euler Angle to Rotation Matrix

Given the Euler angles α , β and γ, the rotation matrices can be worked out.

For rotation around z axis :

Rz(α) =

cosα − sinα 0
sinα cosα 0

0 0 1

 (A.2)

For rotation around y axis :

Ry(β) =

 cos β 0 sin β
0 1 0

− sin β 0 cos β

 (A.3)

For rotation around x axis :

Rx(γ) =

1 0 0
0 cos γ − sin γ
0 sin γ cos γ

 (A.4)

Ultimately, the total rotation matrix is calculated as:

R(α, β, γ) = Rz(α) ·Ry(β) ·Rx(γ)

=

cosα − sinα 0
sinα cosα 0

0 0 1

 ·
 cos β 0 sin β

0 1 0
− sin β 0 cos β

 ·
1 0 0

0 cos γ − sin γ
0 sin γ cos γ

=

cosα cos β cosα sin β sin γ − sinα cos γ sinα sin γ + cosα sin β cos γ
sinα cos β cosα cos γ + sinα sin β sin γ sinα sin β cos γ − cosα sin γ
− sin β cos β sin γ cos β cos γ

(A.5)

A.1.2 Rotation Matrix to Euler Angle

Given R ∈ SO(3) is the rotation matrix of a rotation:

R =

R11 R12 R13

R21 R22 R23

R31 R32 R33

 (A.6)

56

According to equations A.5, we can solve the Euler angles :

CASE 1: β ∈ (−π
2
, π
2
) , cos β 6= 0

α = arctan 2(R21, R11)

β = arcsin (−R31)

γ = arctan 2(R32, R33)

(A.7)

CASE 2: β = π
2

, cos β = 0 and sin β = 1

β =
π

2

γ − α = arctan 2(−R23, R22)

(A.8)

CASE 3: β = −π
2

, cos β = 0 and sin β = −1

β = −π
2

γ + α = arctan 2(−R23, R22)

(A.9)

In above equations, the function arctan2() is defined as:

arctan 2(y, x) =

arctan(y
x
) x > 0

arctan(y
x
) + π x < 0, y ≥ 0

arctan(y
x
)− π x < 0, y < 0

+π
2

x = 0, y > 0
−π

2
x = 0, y < 0

undefined x = 0, y = 0

A.2 Rotation Matrix and Exponential Map

Every orientation can be represented via a unique R ∈ SO(3). Therefore, any orien-

tation trajectory can be written as a function correlated to time:

R(t) ∈ SO(3), 0 ≤ t ≤ T (A.10)

57

On one side, the rotational motion of any point p ∈ R3 attached to a robot’s end

effector is given by a function p(t). The expressions of the function and its derivative

are (Ude et al., 2014):

p(t) = R(t)p0

˙p(t) = ˙R(t)p0 = ˙R(t)R(t)−1p(t) = ˙R(t)R(t)Tp(t)
(A.11)

where p0 is the initial coordinate of the point.

On the other side, according to the definition of angular velocity ω, it has:

˙p(t) = ω(t)× p(t) = [ω(t)]×p(t)

[ω(t)]× =

 0 −ωx(t) ωy(t)
ωz(t) 0 −ωx(t)
−ωy(t) ωx(t) 0

 (A.12)

where ωx , ωy and ωz are scaled angular velocity components along x,y and z axis.

Combined equation A.11 and A.12, we obtain the following equation :

[ω(t)]× = [ω]× = ṘRT = ˙R(t)R(t)T (A.13)

If ω is constant, then equation A.12 can be solved analytically :

p(t) = et[ω]×p0 = eθ(t)
[ω]×
‖ω‖ p0 (A.14)

where θ(t) = t‖ω‖ denotes the rotation angle of time t.

According to Rodrigue’s formula (Murray et al., 1994), it can get the exponential

map :

et[ω]× = I + sin θ
[ω]×
‖ω‖

+ (1− cos θ)
[ω]2×
‖ω‖2

(A.15)

Likewise, it can be proved that et[ω]× ∈ SO(3) and for any given R ∈ SO(3) there

exists ω ∈ R3 so that R = e[ω]× .

If we limit the domain of ω to 0 ≤ ‖ω‖ ≤ π, the solution of ω is unique. Therefore,

58

the logarithmic map is:

ω = log (R) =

0

0
0

 , R = I

φn, otherwise

(A.16)

where R is the rotation matrix of the rotational movement, and φ and n are expressed

by:

φ = arccos (
trace(R)− 1

2
)

n =
1

2 sinφ

R32 −R23

R13 −R31

R21 −R12

 (A.17)

In above equation, Rij denotes the ith row and jth column entry of R.

When sin θ = 0, the above formula cannot work out the solution since it is gimbal

lock. It can have numerically stable formula in the book (Ayache, 1991). However, it

is a discontinuity in the logarithmic map. It means a boundary where the logarithmic

map switches from positive to negative rotation angles.

Since elog(R) = R, it can obtain that:

elog(R2R1
T)R1 = R2R1

TR1 = R2 (A.18)

where R1, R2 ∈ SO(3) are two rotation matrices of corresponding rotational motion.

Thus, according to equation A.14, the difference vector ω = log(R2R1
T) is the

angular velocity from the rotational movement represented by rotation matrix R1 to

the rotational movement represented by rotation matrix R2.

A.3 Video Description

The detailed information of the videos are shown following:

1. PC original.mov .Figure 3·17 (a)

59

This is a screen record of the running VREP interface on laptop with MacOs.

The video describes the demonstration trajectory of the random PC mouse

movement.

2. PC DMP.mov . Figure 3·17 (b)

This is a screen record of the running VREP interface on laptop with MacOs.

The video describes the DMPs-generated trajectory of the random PC mouse

movement.

3. DMP extract.mov . Figure 3·20

This is a screen record of the running VREP interface on laptop with Ubuntu

16.0.0. The video describes the real-time data extraction process using a man-

ually controlled joystick. Although the joystick is not shown in the video, the

joystick is a Xbox joystick controller.

4. simplemotion original.mov . Figure 3·21 (a)

This is a screen record of the running VREP interface on laptop with MacOs.

The video describes the demonstration trajectory of the simple motion case.

5. simplemotion dmp.mov . Figure 3·21 (b)

This is a screen record of the running VREP interface on laptop with MacOs.

The video describes the DMPs-generated trajectory of the simple motion case.

6. complex1motion original.mov .Figure 3·24 (a)

This is a screen record of the running VREP interface on laptop with MacOs.

The video describes the demonstration trajectory of the complex motion case

1.

7. complex1motion dmp.mov .Figure 3·24 (b)

This is a screen record of the running VREP interface on laptop with MacOs.

60

The video describes the DMPs-generated trajectory the complex motion case

1.

8. complex2motion original.mov .Figure 3·27 (a)

This is a screen record of the running VREP interface on laptop with MacOs.

The video describes the demonstration trajectory of the complex motion case

1.

9. complex2motion dmp.mov .Figure 3·27 (b)

This is a screen record of the running VREP interface on laptop with MacOs.

The video describes the DMPs-generated trajectory the complex motion case

1.

10. simplemotion modify.mov .Figure 3·34

This is a screen record of the running VREP interface on laptop with MacOs.

The video describes the DMPs-generated trajectory of the modified simple mo-

tion case.

11. complexmotion 1 modify.mov . Figure 3·36

This is a screen record of the running VREP interface on laptop with MacOs.

The video describes the DMPs-generated trajectory of the modified complex

motion case 1.

12. complexmotion 2 modify.mov . Figure 3·38

This is a screen record of the running VREP interface on laptop with MacOs.

The video describes the DMPs-generated trajectory of the modified complex

motion case 2.

References

Ayache, N. (1991). Artificial Vision for Mobile Robots: Stereo Vision and Multisen-
sory Perception. Cambridge, Mass.: MIT Press.

Chi, M., Yao, Y., Liu, Y., and Zhong, M. (2019). Learning, generalization, and
obstacle avoidance with dynamic movement primitives and dynamic potential fields.
Applied Sciences, 9(8):1535.

DeWolf, T. (2013a). Dynamic movement primitives part 1: The basics — study-
wolf. https://studywolf.wordpress.com/2013/11/16/dynamic-movement-p

rimitives-part-1-the-basics/.

DeWolf, T. (2013b). Dynamic movement primitives part 2: Controlling end-effector
trajectories — studywolf. https://studywolf.wordpress.com/2013/12/05/

dynamic-movement-primitives-part-2-controlling-a-system-and-compariso

n-with-direct-trajectory-control/.

Gams, A. (2018). Generalization , Locally Weighted Regression , Gaussian Process
Regression. http://abr.ijs.si/upload/1523530180-Generalization.pdf.

Ginesi, M., Sansonetto, N., and Fiorini, P. (2019). Overcoming some drawbacks of
dynamic movement primitives. arXiv preprint arXiv:1908.10608.

Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., and Schaal, S. (2013). Dy-
namical movement primitives: learning attractor models for motor behaviors. Neu-
ral computation, 25(2):328–373.

Ijspeert, A. J., Nakanishi, J., and Schaal, S. (2002). Movement imitation with non-
linear dynamical systems in humanoid robots. In Proceedings 2002 IEEE Interna-
tional Conference on Robotics and Automation (Cat. No. 02CH37292), volume 2,
pages 1398–1403. IEEE.

Ijspeert, A. J., Nakanishi, J., and Schaal, S. (2003). Learning attractor landscapes for
learning motor primitives. In Advances in neural information processing systems,
pages 1547–1554.

Kramberger, A., Gams, A., Nemec, B., and Ude, A. (2016). Generalization of orien-
tational motion in unit quaternion space. In 2016 IEEE-RAS 16th International
Conference on Humanoid Robots (Humanoids), pages 808–813. IEEE.

61

https://studywolf.wordpress.com/2013/11/16/dynamic-movement-primitives-part-1-the-basics/
https://studywolf.wordpress.com/2013/11/16/dynamic-movement-primitives-part-1-the-basics/
https://studywolf.wordpress.com/2013/12/05/dynamic-movement-primitives-part-2-controlling-a-system-and-comparison-with-direct-trajectory-control/
https://studywolf.wordpress.com/2013/12/05/dynamic-movement-primitives-part-2-controlling-a-system-and-comparison-with-direct-trajectory-control/
https://studywolf.wordpress.com/2013/12/05/dynamic-movement-primitives-part-2-controlling-a-system-and-comparison-with-direct-trajectory-control/
http://abr.ijs.si/upload/1523530180-Generalization.pdf

62

Kulvicius, T., Ning, K., Tamosiunaite, M., and Worgötter, F. (2011). Joining move-
ment sequences: Modified dynamic movement primitives for robotics applications
exemplified on handwriting. IEEE Transactions on Robotics, 28(1):145–157.

Lee, Y., Park, S., Lee, M., and Brosilow, C. (1998). PID controller tuning for desired
closed-loop responses for si/so systems. Aiche journal, 44(1):106–115.

Matsubara, T., Hyon, S.-H., and Morimoto, J. (2011). Learning parametric dynamic
movement primitives from multiple demonstrations. Neural networks, 24(5):493–
500.

Murray, R. M., Li, Z., and Sastry, S. S. (1994). Grasp statics. In: A Mathematical
Introduction to Robotic Manipulation. Boca Raton, FL: CRC.

Nemec, B. and Ude, A. (2012). Action sequencing using dynamic movement primi-
tives. Robotica, 30(5):837–846.

Park, D.-H., Hoffmann, H., Pastor, P., and Schaal, S. (2008). Movement reproduction
and obstacle avoidance with dynamic movement primitives and potential fields. In
Humanoids 2008-8th IEEE-RAS International Conference on Humanoid Robots,
pages 91–98. IEEE.

Pervez, A. and Lee, D. (2018). Learning task-parameterized dynamic movement
primitives using mixture of gmms. Intelligent Service Robotics, 11(1):61–78.

Rosado, J., Silva, F., and Santos, V. (2014). Motion generalization with dynamic
primitives. In Mobile Service Robotics, pages 215–222. World Scientific.

Rückert, E. and d’Avella, A. (2013). Learned parametrized dynamic movement prim-
itives with shared synergies for controlling robotic and musculoskeletal systems.
Frontiers in computational neuroscience, 7:138.

Schaal, S. (2006). Dynamic movement primitives-a framework for motor control in
humans and humanoid robotics. In Adaptive motion of animals and machines,
pages 261–280. Springer.

Schaal, S., Atkeson, C. G., and Vijayakumar, S. (2002). Scalable techniques from
nonparametric statistics for real time robot learning. Applied Intelligence, 17(1):49–
60.

Schaal, S., Peters, J., Nakanishi, J., and Ijspeert, A. J. (2003). Control, planning,
learning, and imitation with dynamic movement primitives. In Workshop on Bi-
lateral Paradigms on Humans and Humanoids: IEEE International Conference on
Intelligent Robots and Systems (IROS 2003), pages 1–21.

63

Tamosiunaite, M., Nemec, B., Ude, A., and Wörgötter, F. (2011). Learning to
pour with a robot arm combining goal and shape learning for dynamic movement
primitives. Robotics and Autonomous Systems, 59(11):910–922.

Theodorou, E., Buchli, J., and Schaal, S. (2010). Reinforcement learning of motor
skills in high dimensions: A path integral approach. In 2010 IEEE International
Conference on Robotics and Automation, pages 2397–2403.

Ude, A., Gams, A., Asfour, T., and Morimoto, J. (2010). Task-specific generalization
of discrete and periodic dynamic movement primitives. IEEE Transactions on
Robotics, 26(5):800–815.

Ude, A., Nemec, B., Petrić, T., and Morimoto, J. (2014). Orientation in cartesian
space dynamic movement primitives. In 2014 IEEE International Conference on
Robotics and Automation (ICRA), pages 2997–3004. IEEE.

Zhou, Y. and Asfour, T. (2017). Task-oriented generalization of dynamic movement
primitive. In 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 3202–3209. IEEE.

CURRICULUM VITAE

	Introduction
	Problem Definition and Introduction
	Related Work

	Basic Theories and Application
	Dynamic Movement Primitives
	Introduction
	Discrete DMPs
	DMPs in Translational Motion
	DMPs in Rotational Motion

	Locally Weighted Regression
	Introduction
	Application and derivation

	Algorithm

	Simulation and Result
	Model Evaluation
	Motion Generated by Formulated Functions
	Motion Generated by PC Mouse Implementation

	Implementation on Baxter Robot
	Simple Motion
	Complex Motion
	Motions with Modification

	Conclusion and Future Development
	Conclusion
	Future Development

	Rotation Matrix, Exponential Map and Video description
	Euler Angle and Rotation Matrix
	Euler Angle to Rotation Matrix
	Rotation Matrix to Euler Angle

	Rotation Matrix and Exponential Map
	Video Description

	References
	Curriculum Vitae

