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A UNIVERSAL MAXIMUM LIKELIHOOD DECODER

USING NOISE GUESSING

VAIBHAV BANSAL

ABSTRACT

Wireless communication technologies lie at the forefront of cutting edge and form the

backbone of the Internet and Data first era that we live in. The need for High-speed

data communication also exacerbates the need of data reliability. Data is encoded

before transmission to ensure that it is faithfully reproduced at the receiver. Decoding

an arbitrary code has been described as a NP-complete problem. As a result of this,

previous works have developed decoders that are specific to certain codes, as an

approximation of Maximum Likelihood Decoding. This co-development of codes and

decoding schemes, however, limits the functionality of the decoders, which can only

work with a finite number of encoding schemes that were designed for it. It has

also been seen that the performance of these decoders degrade as we increase the

code-rate.

In our proposed approach we leverage a new algorithm, Guessing Random Addi-

tive Noise Decoding (GRAND) algorithm, for realizing Maximum Likelihood (ML)

decoding based on noise, contrasting traditional algorithms which decode the infor-

mation directly. Since GRAND decodes the noise rather than the information, it

reduces computational complexity and storage. In contrast to traditional architec-

tures, GRAND decoder can be designed independently of the encoder due to its

dependency only on the noise making it a universal maximum-likelihood decoder.

Hence this architecture is agnostic to any coding scheme. GRAND algorithm is also

proven to be capacity achieving when using random code-books. The decoder works
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for high-rate, small block-size code-words, at low latency and low complexity, making

it ideal for implementing in the control channel.

Our approach holistically develops and integrates GRAND and embedded security

to demonstrate a secure hardware solution that has high-energy efficiency with low

latency and low complexity performance metrics addressing next-generation com-

munication system requirements. We present preliminary estimates of throughput

around 250 Mbps, at a Bit Error Rate of 10−3, with an energy per bit value of 16.5

pJ/b at a clock frequency of 50 MHz for a supply voltage of 0.9 V.
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Chapter 1

Introduction

1.1 Motivation

Communication is one of the most essential tools that facilitate connections and in-

teractions. It continues to form the backbone of all human activity, be it social or

economical. The communication industry was revolutionized when Alexander Gra-

ham Bell invented the telephone 1876. Communication which used to take days or

weeks could now be done in a matter of minutes. We saw the advent of the first

mobile telephony systems in the 1980s which revolved around phone calls using bulky

handheld devices. When the next generation of mobile communication technology

landed in the 1990s, we saw widespread adoption of text messages through SMS. An-

other decade later, the 3G technology enabled us to access emails on our phones, and

brought many businesses in grasp of their hands. It wasn’t until the fourth generation

of wireless technology when video streaming became mainstream. Each generation

brought with it additional bandwidth to play with, higher throughput, and lower

latency operations, which made it possible to see such unprecedented advancements

in media consumption, and gave rise to new businesses and business models. These

advancements amalgamated into the electronic telecommunication technologies and

transformed the mobile phones from a niche luxury to a basic necessity.

Walking into the next decade, we can see the advent of the fifth generation of

wireless communication technology, more commonly referred to as 5G, which is a

suite of telecom technologies that are standardized by industry-led bodies. Following
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similar pattern of the past, 5G brings higher data rates, more reliable and ubiqui-

tous communications, ultra-low latency services, which find themselves being utilized

for operations such as haptic communications, remote surgery, centralized gaming

services, and 5G-enabled services for specific industries such as automotive networks

and satellite services. An important thing to note is that the integration of 5G with

other technologies does not follow the traditional assignment of roles between mobile

telephone service providers and equipment manufacturers, and brings new entrants

into the 5G market. (Médard, 2020)

Millions of mobile and wireless communication devices are being used everyday,

transmitting and receiving unprecedented amounts of data every second. These com-

munications are susceptible to various different types of disturbances, be it noise in

transmission channels, poor signal strength, interference from other devices commu-

nicating simultaneously, or jamming etc. Owing to these phenomena, the bits of data

received could be different from the ones that were transmitted. To ensure that the

data is faithfully received at the other end, we use different techniques such an chan-

nel and source coding which preserve the reproducibility of the data to some finite

extent.

Channel coding is defined as adding redundancy in the data that is to be trans-

mitted, to ensure that the receiver identifies the originally sent bits. Reed-Solomon

codes (Reed and Solomon, 1960), Hadamard codes (Bell, 1966), and Hamming codes

(Hamming, 1950) are some of the most commonly used examples of channel coding

methodologies.

Linear codes are one of the most commonly used type of codes. Let u be any string

of information comprising of symbols from alphabet X that has to be transmitted.

The linear code is defined as a vector c, such that

c = uG

2



Figure 1·1: Data flow in a real communication channel

where G is known as the generator matrix. The set of all n bits wide vectors c is

known as the code-book. Linear codes can be of two types: systematic codes and

non-systematic codes. All codes that can be represented in the form

c = [u, r]

are called systematic codes, where u is a k bits wide string of information that is to be

transmitted, and r is a string n− k bits wide, which is the redundancy added during

the encoding process. All other codes which cannot be defined using the expression

above are called non-systematic codes.

Figure 1·1 describes the the system in a real communication channel. In a typical

communication system, the data to be transmitted is compressed into smaller packets

through source coding. Let u be the output of source coding. Channel coding is per-

formed on these data packets to add redundancy, which allows for error detection and

correction at the receiver. The code-word c is now modulated over a carrier signal and

transmitted through a wireless channel. Since the transmission channel is not perfect,

some random channel noise E gets added to the code-word. E can be envisioned as

another n bits wide vector that gets added to the code-word, representing the corrup-

tion observed in data during transmission. When the carrier signal is demodulated at
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the receiver, we get the channel output as Y = c+ E, another n bit wide vector. To

obtain the data that was transmitted, a channel decoding algorithm, say f , tries to

decode the data received at the channel output and produce the expected code-word

ĉ, another n bit wide vector. The various redundancies that were added to the data

during transmission make it possible to retrieve transmitted data from the corrupted

channel output.

Most codes are co-designed along with a number of decoding schemes, which makes

it necessary to change the decoder if the codes are to be changed. Reed-Mueller (RM)

(Reed, 1953; Muller, 1954) and Majority Logic, Cyclic-Redundancy-Check Assisted

(CA) Successive Cancellation List (SCL) decoding for CA-Polar codes (Arikan, 2008)

and Low Density Parity Check (LDPCs) (Gallager, 1962) and Belief Propagation

(BP). Since the codes have to be amenable to the decoding algorithms, they are

limited in their construction.

Only a limited code rates are possible for different code-lengths. The code rate R

is defined as the ratio of the number of information bits k to the code-length n.

R =
k

n

Although work on short length codes (Spectre, 2020) indicates support for all code-

lengths, the bounds of feasibility do not produce codes and associated decoders. At

short code-lengths, the choice for code-rates goes below capacity. To achieve higher

rates, conventional codes require longer code-lengths. To put things into perspective,

lets take an example of the 3GPP 5G NR data channel (ETSI, 2018). In typical

cellular communications, the Bit Error Rate (BER), which is defined as the number

of bit errors per unit time, generally ranges from 10−2 to 10−4. Assuming a Binary

Symmetric Channel model, which is defined as a channel capable of sending and

receiving only one of the two symbols (0 or 1) with a crossover probability p, the
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channel capacity is of the order of 0.92 to 0.999. The capcity of the channel is given

by

C = 1−Hb(p)

where Hb is the binary entropy function. The 3GPP 5G NR data channel uses 3840-

bit LDPCs with rates R as low as 0.2, and 8448-bit LDPCs with R between 0.33 to

0.91. In addition to that, to make the channels appear IID, interleaving takes place

over thousands of bits. (ETSI, 2018) These schemes introduce latency and not even

come close to achieving channel capacity. In Maximum Likelihood (ML) decoding, the

received code-word x is compared to all the code-words in the code-book. The code-

word that is the closest to the input code-word is chosen as the output code-word.

A usual implementation of the Channel decoder usually focuses on finding a match

for the code-word received within the code-book. This inherently necessitates the

knowledge of the encoding scheme for the decoder, hence their inter-dependency. On

the contrary, our decoder focuses on finding the error that the code-word might have

incurred during the transmission. This makes the decoder agnostic to the encoding

scheme since we can decode any type of linear codes using this algorithm. We also

demonstrate that the system is capacity achieving with Random Linear codes for

small code-lengths.

1.2 Thesis Contributions

This thesis presents a universal noise-centric channel decoder hardware using Guess-

ing Random Additive Noise Decoding algorithm (Duffy et al., 2019). The universal

decoder architecture achieves 5× reduction in energy consumption per decoded bit

for a bit error rate (BER) of 10−3, 1.33× increase in throughput, while using 8×

smaller code-length at a high code rate (R) of 0.8 compared to the state-of-the-art

decoder implementations for polar codes used for 5G and next-generation wireless
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communications (Giard et al., 2017), (Liu et al., 2018). Further, we propose new

avenues for security via hardware-architected solutions.

Thesis contributions include:

1. Developing a novel hardware architecture to generate possible noise sequences

in decreasing order of their likelihood to reduce energy consumption.

2. Achieving low latency in matrix-vector multiplication operations by exploiting

sparsity of error vectors.

3. Designing a time-interleaved decoder with built-in security which switches be-

tween multiple parity check matrices (H) on the fly enabling re-randomization

of the code-book for every code-word with zero dead zone in decoding.

1.3 Thesis scope and Organisation

This thesis presents a hardware architecture that is realizing a Universal Maximum

Likelihood Decoder using the Guessing Random Additive Noise Decoding (GRAND)

algorithm, which is capacity achieving when used with random codes (Duffy et al.,

2019). We demonstrate that the decoder achieves low latency, with an order of magni-

tude lower energy consumption than the state-of-art decoders, while ensuring security

of the operation, making it ideal for use in the next-generation of wireless technolo-

gies. For our purposes, we are going to assume a BSC model with the crossover

probability of p = 10−3.

We discuss channel decoding in Chapter 2 and study its impact on the field of

wireless communication. We then discuss the details of the GRAND algorithm and

how it performs Maximum Likelihood (ML) decoding through noise-guessing.

In Chapter 3 of the thesis, we discuss the system architecture and hardware imple-

mentation of the GRAND algorithm. We go over the design methodology behind the
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various blocks in the chip and evaluate the various decisions taken throughout the im-

plementation process. We discuss a novel method to generate possible error sequences

in an error generator, which is essential for the operation of the algorithm. We also

utilize the channel noise statistics to optimize the architecture for energy consump-

tion and power by splitting the error generator hardware into separate units called

Primary and Secondary blocks to generate error vectors of specific hamming weights.

The chapter also contributes by outlining a method to implement low-latency binary

matrix-vector multiplication leveraging the sparsity of the noise sequences.

Chapter 4 summarizes the thesis contributions, and compares the performance

against the other state-of-the-art decoders published in literature. It also discusses

some of the open research questions and opportunities to build on the current archi-

tecture to improve latency, throughput, and energy consumption, while maintaining

the universality of the decoding approach.
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Chapter 2

Channel Decoding

2.1 Background: Coding Theory

In an ideal communication channel, data transmitted across a channel is received

by the user without any interference or noise. In a real communication channel,

however, errors such as data corruption in the form of bit flips and data erasures are

commonplace. This raises the need to have sophisticated mechanisms to encode the

data during transmission and to decode the data received from the channel output,

which might have errors included in it. One of the ways to do this is channel coding,

where data is padded with extra bits of information which help in the detection and

correction of the received data at the receiver’s end. Some of the commonly used codes

are Cyclic Redundancy Check (CRC) codes (Peterson and Brown, 1961), Reed-Muller

codes (Reed, 1953; Muller, 1954), Reed-Solomon codes (Reed and Solomon, 1960),

Hadamard codes (Bell, 1966), Hamming codes (Hamming, 1950), etc.

The idea of channel coding was perceived by Claude Shannon, in his landmark

paper (Shannon, 1948) in 1948. His idea of a code-book was as follows. Consider a

block of n symbols from an alphabet X of size |X |, such that

X n = {xn,0, xn,1, ..., xn,|X |n−1}

Out of the |X |n possible binary strings of length n, he suggested to choose |X |nR

8



strings, drawn uniformly at random, where R is the code rate, defined as

R =
k

n

The chosen |X |nR strings constitute the code-book C, such that

C = {cn,0, cn,1, ..., cn,|X |nR−1} ⊂ X n

In the example of a Binary Symmetric Channel, X = {0, 1} and |X | = 2.

Figure 2·1: Maximum Likelihood Decoding (Duffy et al., 2018)

One of the many decoding methodologies is Maximum Likelihood (ML) decoding

where we compute a posteriori probabilities of all the code-words and rank order

them. Consider a discrete channel with channel inputs C and outputs Y n, which

take value is X n. The channel inputs are corrupted with a random noise En, that

is independent of the inputs and also present in X . The function of the channel is

represented by ⊕, and can be described as

Y n = cn ⊕ En

The function is assumed to be invertible, such that given C and Y , we can determine

the noise as

cn = Y n 	 En

9



For the implementation of ML decoding, the C is first shared between the sender and

the receiver. For each channel output yn that we receive, we compute the probability

of it being in the code-book by

p(yn|cn,i) = P (yn = cn,i ⊕ En) ∀ i = {0, 1, ..., 2nR − 1} (2.1)

This algorithm, however, has high complexity and is extremely computationally

intensive. Let n = 1024 and R = 0.9. Therefore we now have

21024×0.9 ≈ 10277

code-words in the code-book C. In order to do ML decoding, one has to perform

10277 computations for each received code-word, and the hardware has to store or

needs low-latency access to as many code-words. This limitation makes ML decoding

impractical to achieve in real life.

2.2 GRAND algorithm

The decoding through the Guessing Random Additive Noise Decoding algorithm

(Duffy et al., 2019) focuses on the errors that might get incurred instead of find-

ing the code-words themselves and can be given by

cn,∗ ∈ argmax(p(yn|cn,i) : cn,i ∈ C) = argmax{P (En = yn 	 cn,i) : cn,i ∈ C} (2.2)

The working of the algorithm can be understood from Figure 2·2. Instead of the

most likely code-word, we generate a series of possible noise sequences, also referred

to as error vectors, in the decreasing order of the probability of their occurrence.

These error vectors are representations of the noise that might have gotten added

into the code-word during transmission. We subtract these error vectors from the

received code-word and check against the code-book for membership. The first error

10



Figure 2·2: Maximum Likelihood Decoding through Noise Guessing
(Duffy et al., 2019)

vector that produces a member of the code-book is the resultant code-word, and the

process is called ML decoding through noise guessing. The process requires us to know

the characteristics of the channel of communication, such as the expected uncoded

Bit Error Rate (BER), and a model of the noise, such as the Binary Symmetric

Channel (BSC), that we might observe. This is particularly important to determine

the error vector sequences in their decreasing order of likelihood. Since the errors in

the channel are not dependent on the codes being used, any kind of linear codes can

be used with the algorithm, making the algorithm code-book agnostic and compatible

with different schemes. Hence making it one of the most flexible algorithms to decode.

We can find out the probability of having an error of hamming weight i using the

following expression

P (i) =

(
128

i

)
(BER)i(1−BER)128−i

where BER is the uncoded Bit Error Rate of the channel. Table 3.1 presents the

11



different hamming weights of the errors along with the probability of occurrence for

different uncoded BER values.

Hamming weight BER = 10−2 BER = 10−3 BER = 10−4

0 0.2762 0.8798 0.9872
1 0.3572 0.1127 0.0126
2 0.2291 0.0072 8.02×10−5

3 0.0972 0.0003 3.37×10−7

4 0.0306 9.42×10−6 1.11×10−9

Table 2.1: Probability distribution of errors of different hamming
weights for different BER values

Figure 2·3: Complexity of ML decoding with code-rate and code-
length for a bit flip probability of 10−2 (Duffy et al., 2019)

Figure 2·3 shows the complexity (average number of guesses made per received bit)

for GRAND algorithm and brute-force over a range of block lengths n. The vertical

dashed line shows the channel capacity for BSC. The computational complexity for

brute-force, which computes the conditional probability of each code-word in the

code-book, increases rapidly with the rate. For GRAND however, the complexity of

guessing the noise decreases as the rate is increased. The circles in the plot indicate

the code-rate at which the complexity of guessing the noise is lesser than the brute-

force approach.
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Chapter 3

Universal Noise-Centric Decoder

Figure 3·1: Top level block diagram of the chip

3.1 Background

Most decoding schemes revolve around finding out the code-words from a list of known

code-words, which require the decoder to be co-developed with the encoding scheme

and a decoding algorithm. This helps them achieve higher throughput, lower energy

consumption, and lower latency operations. In doing so, the hardware is naturally

locked onto a particular code-book and therefore rendered useless if the code-book

gets changed. Instead of finding out the code-word itself, we focus on finding the

error that might have been introduced during the transmission of the signal. The
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error can be guessed with high probability given the statistical characteristics of the

channel. The GRAND algorithm generates error vectors in the decreasing order of

their probability. We perform parity checks to match against the value received. This

gives us the error that was introduced during transmission, and allows us to generate

the expected code-word from the channel output. This process is better known as

Syndrome decoding (Masnick and Wolf, 1967).

Let c be the code-word that was sent over the channel and E be the noise that

got added into it during transmission giving us

Y = c⊕ E

as the channel output. Let G be the generator matrix used to generate code-word c

and H be its corresponding parity matrix. Multiplying both sides with parity matrix

H gives us

HY = Hc⊕HE

Syndrome decoding takes advantage of the property of H matrix such that

Hc = 0

which gives us

HY = HE

To perform ML decoding, we look at a pre-computed table of HE mapping to E.

GRAND however, does not depend on a look up table. Instead, we use the channel

noise characteristics to generate the noise sequence in the decreasing order of the

probability and use the code-book membership as a hash to verify the error.

14



Figure 3·2: Decoding algorithm flowchart

3.2 Universal Decoder Hardware Architecture

Figure 3·1 shows the hardware architecture of the universal decoding approach. Fig-

ure 3·2 depicts the algorithm flowchart. The channel output Y is a 128-bit wide

vector (n = 128), which is passed to the Syndrome calculator block, where Y is

multiplied with the parity-check matrix H to calculate the syndrome of the channel

output. The dimensions of the parity matrix H is governed by the code-length n and

the minimum supported code-rate R, and the dimensions can be given as n− k × n.

For a minimum supported rate of 0.656, we get k = 84, therefore the dimensions

of the parity matrix H becomes 44 × 128. The syndrome is a zero-vector iff the

channel output is a member of the code-book. This implies that no error that was

introduced in the transmission and we got the correct code-word. If the syndrome

is not a zero-vector, then the product is passed on to the Primary Block, where we
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generate the error vectors with hamming weight of one and two. It is highly likely

that the error incurred is found in this block. If we find the error, we generate the

code-word and pass it on to the output. If the error is not found, then we pass on

the product to the Secondary block, which generates the error vectors with hamming

weight of three. The same process is repeated again. If error is still not found, we

abandon the search for the same and expect the system to re-transmit.

Figure 3·3: Code-word is found in the Syndrome calculator for Error
Hamming Weight 0

3.3 Error Generator

The error generator creates ordered error sequences in parallel based on the decreasing

order of their likelihood of occurrence. The error generator hardware consists of three

modules; Distance Logic, Pattern Generator, and Error Shifter. Each of the blocks

will be briefly discussed in the following subsections.
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Figure 3·4: Code-word is found in the Primary block for Error Ham-
ming Weight 1 and 2

Figure 3·5: Code-word is found in the Secondary block for Error
Hamming Weight 3

3.3.1 Distance Logic

We consider an example case study of universal decoding in a BSC with a maximum

of three error bits in the received code-word. We can expect the bit flips to emerge

17



anywhere throughout the vector. When we arrange the expected error vectors in the

decreasing order of their probability, we see a pattern emerging. These patterns are

visualized in Figure 3·6. We use D1 to define a pattern with two bit flips, where

D1 represents the distance between the two active high bits (higher significant bit

included). With each subsequent high bit, we would need an extra variable to define

the pattern. Therefore, to define a pattern with three bit flips, we add a second

variable D2, which represents the distance between the most significant high bit and

the next significant high bit (higher significant bit included). As we move down

in the probability order, we see the value of D1 and D2 changing in a particular

order. The first pattern contains one active bit, and is treated as a special case, using

(D1, D2) = (0, 0). The values of the (D1, D2) pair can be given by

{(D1, D2) | D1 ∈ [0, 127] ∧D2 ∈ [0, 126] ∧D1 = 127−D2}

The Distance Logic takes into consideration this pattern of (D1, D2) pairs and se-

quentially generates these values upon getting the appropriate overflow signal.

The Distance logic is realized as counters. On the basis of the various conditional

statements becoming true, the values of the D1 and D2 are incremented. These values

are used as input by the next module called the Pattern Generator.

3.3.2 Pattern Generator

The pattern generator takes the (D1, D2) pair from the Distance logic and constructs

the input seed pattern for the Error shifter module. It uses the following expression

to generate the pattern

X = 1 + 2D1 − (D1 == 0) + 2D1+D2 − (D2 == 0)2D1
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Figure 3·6: Error Vectors mapping to distance pairs (D1, D2)

The output of the pattern generator is the indices of the active high bits of the error

vector. For example, for the error vector ~e = (0000...010001), the pattern generator

gives 0 and 4 as its output. Similarly, for an error vector ~e = (0000...10101), it gives

0, 2 and 4 as the output.
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Figure 3·7: The Distance Logic

3.3.3 Error Shifter

The output from the Pattern generator always starts from the Least significant side

of the error vector. In previous discussion, we established that the errors could

materialize anywhere within the code-length. Therefore we need a mechanism that

can use the seed patterns generated by the pattern generator and generate the shifted

patterns to give the various possible error vectors.

The error shifter module takes the seed pattern from the pattern generator and

cyclically shifts the pattern towards the Most significant bit, essentially performing

the Logical Shift Left (LSL) operation on the vector. In practice, it receives the indices

of the active high bits, so to perform a LSL operation, it adds 1 to the existing values

of the indices. The module is capable of generating as many as 16 error vectors at

the same time, in each clock cycle, which helps to greatly parallelize the operation.

The error vectors are generated in 4 branches in parallel as shown in Figure 3·8. This

helps in reducing the critical path significantly, thereby helping with the timing of
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Figure 3·8: The Error Shifter

the module.

In addition to generating the error vectors, the error shifter is also responsible for

generating the overflow signals. An overflow is defined as the condition where the

MSB of the error vector goes high. This condition is chosen because a further LSL

operation on the vector will reduce the number of high bits in the vector, thereby

changing its hamming weight. The overflow signals are sent collectively to the distance

logic, where a bitwise OR operation is performed on all the overflow values. The result

is used to increment the counters for (D1, D2) pair, to generate the next seed pattern.

This process is repeated till it reaches (1, 126). The total number of cycles required

for different hamming weight of the error vectors is shown in Table 3.1.

3.4 Matrix-Vector Multiplier

Since the architecture has heavy matrix-vector multiplication dependencies for the

several noise sequences (error vectors), you explored architecture and circuit-level

design techniques to achieve low latency and complexity. We have two matrices
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[A]m×n and [B]n×o, then their product can be defined as

[C]m×o = [A]m×n[B]n×o

We need to note here that the number of columns in the first matrix should match

with the number of rows in the second matrix. For a matrix-vector multiplication,

either o = 1, or m = 1, to represent a vector with one dimension. This defines the

size of the [C]. The individual elements of [C] can be given as

Cij =
n∑

k=1

Aik ×Bkj (3.1)

Figure 3·9: An example of matrix multiplication in decimal system

This same can be extended to the binary radix. Here, a row of the first matrix

is multiplied by the column of the second matrix (mod 2) and then their products

are added together (mod 2). We can also say that the multiplication of each element

is analogous to bit-wise AND operation in the binary space, and the addition is

analogous to bitwise XOR operation. (Direct, 2020) (DeTurck, 2019)

3.4.1 Conventional hardware implementation

Equation 3.1 is used to calculate the individual elements of the product matrix [C].

The matrix multiplication operation can be implemented in hardware by incorpo-
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Figure 3·10: An example of matrix multiplication in binary system

rating memory units such as Read Only Memory (ROM) or Static Random Access

Memory (SRAM) for storing matrix elements. The basic operation of the multiplica-

tion in hardware can be described as follows:

Step 1 Read and store a column of the second matrix in registers.

Step 2 Read one row of the first matrix and store in registers.

Step 3 Multiply individual elements and store the respective products in registers.

Step 4 Add the results to get the final value of the element.

Step 5 Repeat the same till all the rows are exhausted and one column of the resul-

tant matrix is obtained.

Step 6 Repeat the above steps for each column of the second matrix.

The successful completion of the steps above give us the final product of the matri-

ces. Since the hardware can exploit parallelism, its possible to make this seemingly

laborious task faster. For example, we can perform simultaneous multiplication of

the elements and store the results in parallel. We can also perform multi-input ad-

ditions to perform it faster. Do note, that we need to consider the area and energy

consumption aspects of the implementation. As it is evident, it is a trade-off between

performance metrics such as latency, energy consumption, and area. Since we are

23



dealing with binary operands, we can further optimize this process by using simpler

units such as bitwise AND and XOR logic gates, instead of typical MAC (Multiply

and accumulate) units, to perform the same functionality.

Figure 3·11: A conventional method to perform matrix multiplication
using memory units

Since the design relies heavily on the matrix-vector multiplication aspect for the

functionality, it is imperative that the implementation is low latency. Figure 3·11

shows the block diagram of a conventional Von-Neumann architecture based imple-

mentation.

Since the channel output Y is a (128 × 1) vector, it can be directly stored in a

register. We read the individual rows of the SRAM which contains the first matrix

(called H from here on). This data is then bitwise-ANDed with Y . The result is

then fed into an XOR engine, which takes the 128 bits of the product and provides

a single bit of output. This is one of the elements of the final result. This value is

then fed into a Shift register to generate the final resultant vector. Since there are

44 rows in our H matrix, this operation will take at least as many cycles to generate

the final product. Due to the low latency requirement of the operation, the cost of

having 44-45 cycles for the multiplication itself doesn’t make a good design choice.
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3.4.2 In-Memory Computation

One of the possible alternatives can be In-memory computation. The implementa-

tion described above is based off of the Von-Neumann architecture (von Neumann,

1993). According to the Von-Neumann architecture, compute and storage units are

separated. The data that is supposed to be processed is first fetched from the storage

location, brought to the computation unit through various busses, then the com-

putation is performed, and the result is stored back at the memory location. This

approach is useful when the type of calculation is not repetitive and diverse. For our

case, the multiplication was always of the same type and only one of the operand was

constantly changing. Instead of fetching the operands from the memory, in-memory

computation emphasizes on integrating the memory and the compute unit. This saves

the latency introduced by repetitively accessing the same data and transporting it to

and from the compute unit. Two of the suitable architectures were X-SRAM (Agrawal

et al., 2018) and Conv-SRAM (Biswas and Chandrakasan, 2018).

X-SRAM uses the inherent structures of the SRAM modules to generate compu-

tation, by the addition of two transistors to form a read path and 4 skewed inverters

to produce NAND, NOR and XOR outputs. Although it is not required to always

fetch the data from the SRAM, and bringing it to the compute unit, it does have

additional challenges associated with it. One of them being the high area cost for

implementation. For each computed bit, it requires two read transistors and 4 skewed

inverters, which quickly adds to the overall cost as the size of the data is increased.

Another problem with this type of implementation would be that the data that has

to be multiplied will have to be stored at multiple locations, hence adding on to the

area cost significantly. This also presents problems in writing to the memory, since

writing the vector at multiple locations will require additional cycles.

Conv-SRAM uses the translation of the data into an analog voltage equivalent and
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then ’multiplying and averaging’ the same with the weights stored in the specifically

designed Conv-SRAM modules. This implementation was also not suitable for our

use case because of the requirements of additional Digital-to-Analog Converter (DAC)

and Analog-to-Digital Converter (ADC) units required to make this work adds area

overhead. In addition to that, the advantage of the approach is realized with larger

decimal based data rather than single bit binary data.

3.4.3 Architecture

Figure 3·12: The active high bits of the second vector acts as the
selection switch for the parity matrix

We analyze the data structure of the the error vector E and the parity matrix

H. An uncoded BER of 10−3 is a reasonable measure of the noise rate that we can

expect in a real communication channel. We check only up to hamming weight of

three because the probability of getting an error of hamming weight 4 or greater is

negligible at 0.00094% (Table 2.1). Therefore, the E vector will at-most contain 3

high bits out of 128. The probability of any bit to flip during transmission is equally

likely in a Binary Symmetric Channel, therefore the bit flip can occur anywhere in
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the code-length. This makes the error vector sparse in nature as the active high bits

are not concentrated at any location. Figure 3·12 shows how the multiplication in

the binary regime could be seen as a selection procedure, where the active high bit

of vector E ’selects’ the particular column of the H matrix. These selected columns

are then XORed together to get the final product. This operation can be performed

by using various hardware architectures. For instance, ROM can be used to store

the H matrix and then read the columns of the parity check matrix. However, ROM

is hard-coded. Once fabricated, the data inside them cannot be altered, because of

which, we cannot change the H matrix when we might want to decode a different

type of code. An alternative approach is to use SRAMs. SRAMs are re-writable,

therefore giving us the freedom of altering the H matrix at will.

Single-Port SRAM Implementation

Figure 3·13: Multiplication module in Primary block using Single-
Port SRAM.

As the name suggests, a Single Port SRAM (SP_SRAM) allows us to read or

write only on one address at once. Therefore, each cycle we get one value from the

output port of the SRAM.

Since the Primary block only generates errors up to the weight of 2, we need at

most 2 SRAM blocks to generate the final product. The secondary block, however
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Figure 3·14: Multiplication module in Secondary block using Single
Port SRAM. Since the error vector E contains only up to 3 active high
bits at sparse locations within the vector, they are used to select the
columns from the parity matrix which are XORed together to generate
the final product.

generates errors up to the weight of 3, so to accommodate that, we need 3 SRAM

blocks to have 3 simultaneous values.

Dual-Port SRAM Implementation

Figure 3·15: Multiplication module in Primary block using Dual-Port
SRAM

Dual Port SRAMs (DP_SRAM) allows us to access two memory locations at once

through its two access ports, enabling us to get 2 columns of the H matrix each cycle,

hence reducing the SRAM block requirement essentially by half.

In the primary block, we need at most 2 columns at once, therefore we can now

just have one DP_SRAM block instead of 2 SP_SRAM blocks. For the Secondary
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Figure 3·16: Multiplication module in Secondary block using Dual-
Port SRAM

block, we need 3 access lines, therefore we need to have 2 DP_SRAMs, which renders

one of the ports of the second SRAM not being used. During multiplication, the

second port of the second DP_SRAM is turned off through the means of the port

enable signal. This helps us save switching power, while still giving us the ability to

use the two ports to write into the SRAM.

Comparison

The DP_SRAM provides more flexibility in the design, compared to its SP_SRAM

counterpart, as it allows for two concurrent reads as well as two concurrent writes.

This helps in reducing the latency for writing into the SRAM, as well as helps in saving

the area since the required number of SRAMs are halved. As shown in Figure 3·16,

one of the ports of the DP_SRAM is not given a valid column address to generate

a value. One can make an argument to use one SP_SRAM and one DP_SRAM, to

reduce redundancy in the design. However, it increases the complexity in terms of

writing the data into the SRAM as it requires additional logic.

As it has been demonstrated, this implementation can be used to perform complex

matrix-vector multiplication with at a very low latency of 1 cycle. This however,
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comes with its own trade-offs. This method is very much dependent on the structure

of the data on which the computations are performed. The sparsity in the error vector

was leveraged for implementing this design of multiplication. If the sparsity of the

active high bits reduce, or the number of active high bits increase, the implementation

does not scale well in terms of area and power consumption. To cater for the increased

number of active high bits in the error vector, more sets of SRAMs will have to be

added to generate as many columns in one cycle. In addition to that, if the code-

length is changed from 128-bit to 256-bit or 1024-bit, it will require a larger SRAM,

which is not suitable from a size perspective of the chip, as larger SRAM sizes will

require larger die area. These trade-offs leave scope for further research from an

implementation standpoint.

3.5 GRAND Chip Implementation

The earliest iterations of the design consisted of two computation blocks, the syn-

drome calculator and the error generator. The syndrome calculator is responsible for

generating the syndrome value by multiplying the channel output Y with the parity

matrix H. The product is a zero-vector if and only if the channel output Y is a

valid code-word. If the value is non-zero, the channel output Y and the syndrome

value H.Y is passed onto the error generator. The error generator starts generating

the errors in sequence starting from errors with Hamming weight 1 going up to the

Hamming weight of 3. The channel output is abandoned if the Hamming weight of

the error is greater than 3.

Since the algorithm takes the probability distribution of the error vectors into con-

sideration, it presents an opportunity to optimize for the different hamming weights

of the errors. Table 2.1 in Section 2.2 shows the probabilities of having an error of

different hamming weights for multiple uncoded BER values. The error generator
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is capable of generating as many as 16 error vectors in parallel. We can figure out

the number of unique error vectors that we need to check for each channel output

with hamming weight i using
(
n
i

)
, where n is the code-length. Table 3.1 presents the

different hamming weights of the errors along with the required number of cycles to

generate them.

Hamming weight Probability of bit-flip No. of error vectors No. of cycles
0 0.8798 NA NA
1 0.1127 128 8
2 0.0072 8128 584
3 0.0003 341376 25840
4 9.6×10−6 10668000 NA

Table 3.1: Probability distribution of errors of different hamming
weights and their cycle requirements

It is evident from Table 3.1 that 87.98% of the received code-words will not have

any error. These code-words are directly sent to output from the Syndrome calculator.

Out of the remaining 12.02% of the channel outputs, 11.27% of the outputs have an

error with 1 bit flip, 0.72% outputs have errors with 2 bit flips, and only 0.03%

outputs have an error with 3 bit flips. Another takeaway from Table 3.1 is that it

takes almost 50× more cycles to generate all the error vectors with Hamming weight

of three compared to error vectors one and two combined. While the error generator

is processing the channel output which has an error of hamming weight 3, other

channel outputs keep piling up for processing. The latency of generating error vectors

of hamming weight three becomes a bottleneck. The probability distribution of the

various error vectors however, allowed us to decouple the single error generator into

two separate units called the Primary block and the Secondary block. The Primary

block is responsible for generating errors of hamming weight one and two, whereas

the Secondary block generates all the errors of hamming weight three. This approach

allows us to process the channel outputs in parallel. While the channel output with

3 bit flips is being processed in the secondary block, the primary block could process
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the incoming channel outputs for errors with up to 2 bit flips. Do note, that the

syndrome calculator is also actively able to process the incoming channel outputs.

This allows for increased parallelism in the design through pipelining, which allows

multiple channel outputs to be processed at the same time. This approach also allows

us to reduce our operating frequency further as the secondary block, which happens

to be the bottleneck in terms of operation frequency does not need to be active for

as many cycles and can be run at a lower frequency to meet the throughput target.

Figure 3·17: Time interleaved architecture for re-randomizing the
code-books

Another goal with the design of the chip was to introduce a physical layer of

security in the communication and decoding methodology. This work achieves that

by re-randomizing the code-book in a time-interleaved architecture, by storing two

sets of the parity matrix in two different sets of SRAMs. Consider for example two

generator matrices G0 and G1 with the corresponding parity matrices being H0 and

H1. The code-words that were encoded using the generator matrix G0 can only be

decoded using H0. Similarly, the code-words encoded with G1 can be decoded with

H1. This is used as the working principle behind the re-randomizing of the code-books.

Figure 3·17 shows the high level diagram of the implementation of the interleaving

architecture. The two different parity matrices are stored in two different sets of

SRAMs on the chip. On the basis of a tag value assigned to each channel output at
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the input, the system automatically determines the appropriate H matrix and utilizes

it for the processing. Additional control also allows to change the parity matrices in

one of the sets while the other one is being used for decoding the incoming channel

output, thereby eliminating downtime for changing the parity matrix. A random

number generator is usually used to generate a string of values to determine the

sequence of the parity check matrices to be used. We generate the sequence at the

start of the chip operation and store it off chip. The values are then used during

the operation thereby amortizing the energy costs of the operation throughout the

functioning of the decoder.

3.6 Power and Energy Consumption

The goal of the thesis was to design and implement an energy-efficient channel decoder

capable of decoding both systematic and non-systematic codes while maintaining the

throughput levels conforming to 3GPP 5G standards (ETSI, 2018). We evaluate the

average energy consumption per code-word by taking into consideration the proba-

bility distribution of the error vectors introduced during transmission and using the

peak power of the modules that will be processing any given code-word. We know

that

energy = power × time

To calculate the energy per decoded bit, we check the average number of cycles it

takes for each code-word to be processed in the respective blocks, i.e. Syndrome

calculator, Primary or Secondary module. For each hamming weight i, we check the

number of cycles taken by each code-word and multiply it with its probability of

occurrence and the time period, to get the operation time.

timei =
cycles× P (E(i))

freq
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The time is then multiplied with the respective block’s power to get the energy con-

sumed

energyi = timei × powerb

where powerb is the power of the block being used to process. This is repeated for all

the blocks the code-word will be processed in throughout the operation. For example,

a code-word with an error of hamming weight 0 is processed in syndrome calculator

only, whereas a code-word with error of hamming weight 3 is processed in syndrome

calculator, primary block as well as secondary block. The total energy is then divided

by the payload of the code-word k to get the energy per decoded bit. Table 3.2 shows

the change of energy per bit values with changing the operating frequency of the

chip. The energy per decoded bit does not change with the frequency due to the

relationship between the power consumption of a block and the time taken for the

computation.

powerb ∝ freq

timei ∝
1

freq

powerb × timei ∝ 1

Frequency (MHz) Energy per decoded bit (pJ/bit) Throughput (Mbps)
10 16.5 50
50 16.5 250
100 16.6 500

Table 3.2: Energy per decoded bit throughput for different operating
frequencies of the chip

3.7 Results

Table 3.3 presents a comparison with the state-of-the-art implementations in pub-

lished literature. We work with a code-length n = 128, whereas PolarBear (Giard
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et al., 2017) uses n = 1024 and Huawei (Liu et al., 2018) uses n = 32768. This

work achieves a 5× lower energy per decoded bit value of 16.6 pJ/bit compared to

Polarbear’s 95pJ/bit, in a noisier channel with an uncoded BER of 10−3, compared

to PolarBear’s target uncoded BER of 10−5. Energy per decoded bit value was

not reported for Huawei. It also achieves a 1.33× higher peak throughput of 250

Mbps compared to PolarBear’s 167.8 Mbps, although Huawei’s chip achieves a higher

throughput of 2599 Mbps. We are also able to achieve a higher code-rate of 0.8,

compared to code-rate of 0.5 for both PolarBear and Huawei.

Performance Metrics This work PolarBear Huawei
BER 10−3 10−5 NA
Rate 0.8 0.5 0.5

Code-length (n) 128 1024 32768
Frequency (MHz) 50 336 1000

Throughput (Mbps) 250 167.8 2599
Energy per bit (pJ) 16.6 95 NA

Process 40 nm 28 nm 16 nm
Supported code-book Code agnostic CA-Polar CA-Polar

Table 3.3: Performance Comparison with the State-of-the-Art De-
coders for 5G Communications, Polarbear (Giard et al., 2017) and
Huawei (Liu et al., 2018)
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Chapter 4

Conclusions

To summarize, this thesis presents a hardware implementation of a Universal Noise-

centric Maximum Likelihood decoder using the Guessing Random Additive Noise

Decoding (GRAND) algorithm (Duffy et al., 2019). We demonstrated that our im-

plementation of the GRAND algorithm is able to provide a 5× improvement in the

energy consumption per decoded bit for an uncoded BER of 10−3 and a 1.33× im-

provement in throughput while using an 8× smaller code-length and a high code-rate

R of 0.8 compared to existing state-of-the-art implementations (Giard et al., 2017)

(Liu et al., 2018). In addition, we presented a time-interleaved architecture to re-

randomize the code-books which provides a physical layer of security. We achieved

these improvements through various optimization techniques, such as (1) implement-

ing a novel architecture to generate possible noise sequences in the decreasing order

of their likelihood to conserve energy, (2) reducing latency in the computation heavy

operation of matrix-vector multiplication by exploiting the sparsity of the error vec-

tors, and (3) designing a time-interleaved architecture with built-in security which

switches between multiple parity check matrices on the fly enabling re-randomization

of the code-book for every code-word with zero dead zone in decoding.

This project can be extended in several possible directions, for example, the cur-

rent implementation relies heavily on the SRAMs for its multiplication operations.

In-memory computation techniques as presented in (Biswas and Chandrakasan, 2018)

and (Agrawal et al., 2018) are interesting approaches to reduce the dependence on
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SRAMs and move away from the Von-Neumann approach (von Neumann, 1993) to

perform matrix-vector multiplication. We could also explore optimal syndrome cal-

culation hardware to reduce complexity, latency, and maximize energy efficiency. It

would also be interesting to utilize characteristics of modulation schemes to implement

modulation-aware decoders, which shall further optimize the energy per decoded bit

by efficient noise guessing. Another possible improvement could be made by adding

flexibility to the error generator to support multiple channel noise models, for exam-

ple, bursty errors in the channel.
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