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ABSTRACT Signaling by surface receptors often relies on tethered reactions whereby an enzyme bound to the cytoplasmic tail
of a receptor catalyzes reactions on substrates within reach. The overall length and stiffness of the receptor tail, the enzyme, and
the substrate determine a biophysical parameter termed the molecular reach of the reaction. This parameter determines the
probability that the receptor-tethered enzyme will contact the substrate in the volume proximal to the membrane when separated
by different distances within the membrane plane. In this work, we develop particle-based stochastic reaction-diffusion models to
study the interplay between molecular reach and diffusion. We find that increasing the molecular reach can increase reaction
efficacy for slowly diffusing receptors, whereas for rapidly diffusing receptors, increasing molecular reach reduces reaction ef-
ficacy. In contrast, if reactions are forced to take place within the two-dimensional plasma membrane instead of the three-dimen-
sional volume proximal to it or if molecules diffuse in three dimensions, increasing molecular reach increases reaction efficacy for
all diffusivities. We show results in the context of immune checkpoint receptors (PD-1 dephosphorylating CD28), a standard
opposing kinase-phosphatase reaction, and a minimal two-particle model. The work highlights the importance of the three-
dimensional nature of many two-dimensional membrane-confined interactions, illustrating a role for molecular reach in control-
ling biochemical reactions.

SIGNIFICANCE Signaling by surface receptors often relies on tethered reactions wherein enzyme binding to a receptor’s
cytoplasmic tail catalyzes reactions with nearby substrates. The length and stiffness of the tail, enzyme, and substrate can
be summarized by the molecular reach of the reaction. The role of molecular reach in modulating the efficacy of signaling
reactions is poorly understood. We show that increasing reach increases reaction efficacy when receptor diffusion is slow
but decreases reaction efficacy when diffusion is fast. This switch in efficacy results from the tails of membrane-confined
molecules being able to explore the three-dimensional volume proximal to the membrane. The work highlights the three-
dimensional nature of two-dimensional membrane interactions, identifying reach as a control parameter for reaction
efficacy.

INTRODUCTION molecular reach of the reaction (defined below). Examples
of tethered signaling reactions include those that take place
on scaffolds (1,2) and those that take place on the cyto-
plasmic tails of cell surface receptors. Tethering has also
been used in synthetic biology to modulate endogenous
signaling pathways (3.4). Although binding and catalytic re-
actions have been extensively studied experimentally and
theoretically, the role of molecular reach is less well-

The ability of cells to sense their extracellular environment
and make decisions relies on a diverse set of biochemical
signaling reactions. Common to many of these reactions is
the binding or tethering of an enzyme near its substrate
before catalysis. Tethered signaling reactions are therefore
controlled not only by binding affinities and catalytic spec-
ificities but also by the properties of tethers that control the

understood.
In the case of noncatalytic tyrosine-phosphorylated re-
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FIGURE 1 [Illustration of tethered signaling reactions regulating the
phosphorylation of the costimulatory surface receptor CD28 expressed on
T cells. (A) The membrane-anchored tyrosine kinase LCK is known to
phosphorylate CD28. The cytoplasmic tyrosine phosphatase SHP-2 is
known to dephosphorylate CD28 when tethered (or bound) to the cyto-
plasmic tail of the inhibitory receptor PD-1. The kinase (LCK) and both re-
ceptors (CD28, PD-1) diffuse within the 2D membrane plane. (B) The rate
of CD28 dephosphorylation by SHP-2 will be controlled, in part, by the mo-
lecular reach of the reaction (L), with a larger reach generally increasing re-
action rates when molecules are further apart. The molecular reach of the
reaction will depend on the molecular reach of the individual components
(Lpp.1, Lsup-2, and Lepog). We estimate the molecular reach for this reaction
to be L = 8.5 nm (see Materials and Methods). To see this figure in color,
go online.

costimulatory receptor is expressed on T cells of the adap-
tive immune system and is known to initiate signals impor-
tant for their activation (6). Phosphorylation of CD28 is
mediated by the membrane-anchored SRC-family kinase
LCK. It has been shown recently that CD28’s dephosphory-
lation is mediated by the NTR group member programmed
cell death protein 1 (PD-1) (7,8). This inhibitory receptor
contains a tyrosine motif (ITSM) that serves as a docking
site for the SH2 domain of the cytoplasmic tyrosine phos-
phatase SHP-2. When tethered to PD-1, SHP-2 is able to de-
phosphorylate tyrosines within reach, including those on
CD28. Therefore, in addition to diffusion of these receptors
within the membrane plane, it is expected that the tether will
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also play a role in controlling the ability of PD-1 to inhibit
T-cell activation.

In this example, the rate of CD28 dephosphorylation is
expected to be influenced by the molecular reach of the re-
action (Fig. | B). Molecular reach determines the proba-
bility that the enzyme will contact the substrate when
the two receptors are at a defined separation distance on
the membrane. The overall molecular reach of the reaction
is determined by the reach of the cytoplasmic tail of PD-1
(Lpp-1), the reach of SHP-2 (Lspp.»), and the reach of the
cytoplasmic tail of CD28 (Lcpaog). Here, Lpp.1, Lsup.2, and
Lcpag will, in turn, depend on the respective length and
stiffness properties of each component. By using the
worm-like chain (WLC) polymer model, the overall mo-
lecular reach of the reaction can be defined as the square
root of the squared sum of the individual reach parame-

ters: L = \/L]%D_] + Liyp-r + Lipg- Experimental esti-
mates of the molecular reach have yet to be reported,
but we estimate the molecular reach for this reaction to
be approximately L = 8.5 nm (see Materials and Methods
for further details). We note that binding, catalysis, and
molecular reach as defined in these reactions are structur-
ally independent, and therefore, changes to molecular
reach are not expected to alter the catalytic or binding
rate constants.

We note that SHP-2 and the homologous phosphatase
SHP-1 are recruited to a variety of different receptors and
act on a diverse set of substrates (9). It follows that the mo-
lecular reach for SHP-2 (or SHP-1) catalyzing a reaction on
any given substrate (from different receptors) or from any
given receptor (to different substrates) may exhibit wide var-
iations. Indeed, the cytoplasmic tails of NTRs vary in their
overall length (10).

To understand the role of molecular reach and diffusion in
tethered signaling, we developed a particle-based conver-
gent reaction-diffusion master equation (CRDME) model
for the reaction and diffusion of individual receptors,
kinases and phosphatases (11,12). Importantly, when simu-
lating reactions between molecules confined to the two-
dimensional (2D) plasma membrane, we explicitly allowed
their tails to explore the three-dimensional (3D) volume
proximal to the membrane by using a physiological 3D
kernel that depends on the molecular reach (Fig. 1 B).
This model builds on our previous work investigating teth-
ered reactions without diffusion in surface plasmon reso-
nance assays (10).

Using our particle model, we first study the dephosphor-
ylation of CD28 by PD-1 as the molecular reach of the re-
action is varied. We find that the potency of PD-1
increases as the molecular reach increases for slowly
diffusing receptors. In contrast, for rapidly diffusing re-
ceptors, we find that increases in molecular reach reduce
PD-1 potency. We show that this switch in potency as
the molecular reach increases also holds in a commonly



used biochemical model of reversible phosphorylation by
kinases and phosphatases. In both biochemical models, we
find that the switch is lost if membrane reactions are
modeled using an idealized kernel that forces reactions
within the 2D membrane plane. Using a simplified two-
particle model that can be solved analytically, we repro-
duce these results. We then show that the switch arises
from the constraint imposed by the molecules diffusing
within the plasma membrane, which prevents the tethers
from reaching all possible configurations in which a reac-
tive encounter could occur. Consistent with this, the
switch is lost if molecules continue to interact using the
3D physiological kernel but are instead allowed to diffuse
in 3D. In this case, the region where the molecules diffuse
allows the tethers to sample all possible configurations in
which a reactive encounter can occur. Our work highlights
the 3D nature of 2D membrane-confined reactions and
suggests a possible unexpected role for molecular reach
in controlling biochemical reactions.

MATERIALS AND METHODS
CRDME SSA simulations

With the exception of our final simplified model, in which only one
molecule diffuses, we study each of the biological models by Monte
Carlo simulation of particle-based stochastic reaction-diffusion sys-

Molecular Reach Controls Efficacy

tems. Our simulation method is the CRDME stochastic simulation al-
gorithm (SSA) (11,12). Here, the diffusion of individual molecules is
approximated by a continuous time random walk of the molecules hop-
ping between voxels of a Cartesian mesh. First-order reactions occur
with an exponential clock, sampled independently for each possible
first-order reaction. Bimolecular reactions between two molecules
occur with a separation dependent probability per time (derived from
the Gaussian kernel k.,0(r;L) for separation r, catalytic rate ky, and
molecular reach L; see the next section and (12)). In this way, we
approximate the diffusion and reactions of the molecules by a jump
process. Note that unlike the lattice reaction-diffusion master equation
model (13.14), the CRDME converges to an appropriate spatially
continuous particle reaction-diffusion model, the volume-reactivity
model, as the lattice spacing is taken to zero. In Supporting Materials
and Methods, Section S1, we provide a more detailed description of
how the CRDME is formulated.

To study the first two models in the Results and the simplified two-par-
ticle model (Eq. S13), we used the CRDME SSA on a square (or cubic)
domain with sides of length 300 nm. The first two models had periodic
boundary conditions on the sides of the square (cube), whereas the simpli-
fied two-particle model used a reflecting Neumann boundary condition;
see Eq. S13. The domain was discretized into a Cartesian mesh of 2'°
square voxels in 2D and 2%* cubic voxels in 3D. Each curve in Figs. 2,
B-D, 3, C-H, and S4 was estimated from 50,000 simulations using the pa-
rameters in Tables 1 and 2. For the first two models, simulations were run
until individual trajectories reached steady state. Our protocol for deter-
mining when steady state was reached is described in Supporting Mate-
rials and Methods, Section S8. For the simplified model (Eq. S13),
simulations were run until the two molecules reacted, with the correspond-
ing reaction time then saved. As shown in Supporting Materials and
Methods, Section S7, the qualitative dependence of the models on the
diffusivity of molecules and the molecular reach of reactions was found
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FIGURE 2 The potency of PD-1 receptor can increase or decrease as the molecular reach of the reaction increases depending on diffusivity. (A) A sche-
matic of species and biochemical reactions in our stochastic spatial model. (B and C) Steady-state fraction of phosphorylated CD28 ([CD28*]/([CD28*] +
[CD28])) versus [PD-1] for different values of the molecular reach for (B) a smaller diffusion coefficient and (C) a larger diffusion coefficient. (D) Concen-
tration of [PD-1] producing a 50% reduction in CD28 phosphorylation (also known as ICs or potency) over the molecular reach of the reaction for different
values of the diffusion coefficient. Note that a large potency equates to a small value of ICsy. Parameters are summarized in Table 1. To see this figure in color,

go online.
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TABLE 1 Parameters for the PD-1 Model

Parameter Description Value

D diffusion coefficient indicated um? s~
[PD-1] PD-1 concentration indicated nm 2
[CD28] CD28 concentration 0.0001 nm 2

A phosphorylation rate 1.0s7!

kiy catalytic efficiency 0.1 uM st
L molecular reach indicated nm
Domain periodic square 300 nm x 300 nm

to be relatively insensitive to the domain size (for molecular reaches much
smaller than the domain width).

Derivation of probability density kernel o

In our CRDME-based models, the kernel o;p determines the probability
density that an individual tethered substrate (e.g., the phosphorylation site
on the cytoplasmic tail of CD28) will come in contact with an individual
tethered enzyme (e.g., the catalytic pocket of the phosphatase domain of
SHP-2 tethered to the cytoplasmic tail of PD-1) at different separation dis-
tances between the membrane tether positions. That is, if the substrate’s
tether is at position x in the membrane and the enzyme’s tether is a position
y in the membrane, the separation distance between the tether positions is
r = |x — y|. By assuming that the substrate and enzyme can be approxi-
mated by the WLC polymer model, an analytical expression for the proba-
bility density kernel can be obtained (10,15):

3\ 372
G'SD(”;L) = (27‘(’L2> eXp(sz>, (1)

where L is the molecular reach for the reaction and is given by the square
root of the squared sum of the molecular reach of individual reaction com-
ponents (10). In the specific example of PD-1 dephosphorylating CD28

(Figs. 1 and 2), L = \/ Lpp-y + Liyp-1 /2 + Lénog- For the reversible phos-

phorylation model that we consider in the Results (see Fig. 3),

ko (L)
I

S+E S*+E,

kf 0(1‘;Lf)

cat

S +F =~ S+F,

the molecular reach for the first (kinase) reaction would be L¢ = 4 /Lé + Lg

and for the second (phosphatase) reaction If = /L% + L3. Here, Lg is the

TABLE 2 Parameters for Reversible Phosphorylation Model

Parameter Description Value

[S] substrate concentration 100 ,um’2

[E] kinase concentration indicated

[F] phosphatase concentration 112 ym™

D’ substrate diffusivity indicated um? s~'

D¢ kinase diffusivity indicated um? s~!

D phosphatase diffusivity 6.25 x 107* um? 57!

keae kinase catalytic efficiency 0.04 uM ' 57!
cat phosphatase catalytic efficiency 0.0l uM~'s7!

L kinase molecular reach indicated nm

f phosphatase molecular reach 15 nm

Domain periodic square 300 nm x 300 nm
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molecular reach of the kinase E, L is the molecular reach of the phospha-
tase F, and Lg is the molecular reach of the substrate S and phosphorylated
substrate S*.

We note that the original derivation of Eq. | assumed that tethers
explored free space instead of the half-space imposed by the plasma mem-
brane (10,15). Simulations revealed that the free-space kernel agrees with
the half-space kernel up to a scaling constant (see Supporting Materials
and Methods, Section S10), and therefore, to keep the models in the
main text computationally efficient, we have used Eq. 1.

In a number of simulations, we replace a;p by an idealized 2D interac-
tion kernel to artificially force molecules to interact within the plane of
the membrane, given by

3 3r2
JZD(r,L) WQXP(QU) (2)

A plot of a;p and a;p is provided in Fig. S1. o,p arises by restricting the
physical diffusion of the tails to the membrane plane. In simulations using
aop, we still assume that reactions between catalytic sites that are in con-
tact, characterized by catalytic rate k., is a distinct process from the prob-
ability the sites are in contact (which is determined by o,p). As such, we
still assume that k,, is structurally independent of the reach.

Estimating the molecular reach L for PD-1
dephosphorylating CD28

In the absence of experimental measurements, we approximate the molec-
ular reach parameter for PD-1 dephosphorylating CD28. The molecular
reach parameter for CD28 is simply Lcpog = \/1,,_1(, where [, is the persis-
tence length and /.. is the contour length. The persistence length for unstruc-
tured amino acid chains has previously been estimated to be [, = 0.4 nm
(15,16). The contour length of CD28 can be estimated using [. =
(0.4 nm) x N, where N is the number of amino acids between the membrane
and the phosphorylated tyrosine and 0.4 nm is the C,-C, bond length in a
polypeptide chain. The key activator tyrosine in CD28 is the YMNM motif
located 11 amino acids from the membrane, and therefore, Lcpog = 1.3 nm.
Similarly, the molecular reach parameter for PD-1 is estimated to be Lpp.
1 = 3.0 nm, where the number of amino acids between the membrane
and the tyrosine in the ITSM that binds SHP-2 is N = 56.

The molecular reach of the enzyme SHP-2 is more difficult to estimate
because it is composed of three structured domains with flexible linkers:
N-SH2(linker)C-SH2(linker)protein tyrosine phosphatase (Fig. 1). Given
that SHP-2 docks to its substrate primarily using the N-SH2 and catalyzes
reactions with its protein tyrosine phosphatase catalytic domain, an upper
bound for the molecular reach can be estimated by adding up the distances
of the structured domains and the peptide linkers to obtain a maximal
reach of 17.1 nm. However, the flexible linkers are unlikely to be maxi-
mally stretched, and therefore, a more realistic estimate is obtained by
assuming a persistence length of 0.4 nm for the linkers that leads to an
overall reach of 7.9 nm for SHP-2. We note that estimating the reach
directly from the crystal structure (Protein Data Bank [PDB]: 2SHP) pro-
duces a value of 3.6 nm, but this value is for a single conformation of
SHP-2.

In summary, the molecular reach of the reaction for SHP-2 bound PD-1
dephosphorylating CD28 can be approximated to be L = 8.5 nm.

RESULTS

A larger molecular reach can increase or decrease
PD-1 receptor potency depending on diffusion

To investigate the influence of molecular reach on the ability
of PD-1 to inhibit CD28, we developed a CRDME particle
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model (see Materials and Methods). The model included un-
phosphorylated CD28, phosphorylated CD28, and PD-1
bound to SHP-2, with all molecules able to diffuse in the
plasma membrane (Fig. 2 A). We explicitly included the ef-
fects of molecular reach by modeling the dephosphorylation
of CD28 by PD-1 as a second-order reaction whose rate was
dependent on the separation distance between the molecules
within the membrane (7),

% e
ki o3p (7
Za PV

CD28" + PD-1 2 D28 +PD-1,  (3)

where k7, is the catalytic efficiency and L is the molecular
reach of the reaction. The function o3p is the probability

density (in units of molecules/nm® or uM) for finding the

enzyme and substrate at the same location when their
respective receptors are separated by a distance r within
the plane of the plasma membrane. It depends only on
the membrane position of the receptors but accounts for
the diffusive motion of the tethered enzyme and substrate
within the cytosol; see Materials and Methods. We calcu-
late o3p under the assumption that PD-1 and CD28 can
be approximated by the WLC polymer model, obtaining
the Gaussian interaction given by Eq. 1 (see Materials
and Methods).

We focus on the effects of molecular reach for the
dephosphorylation reactions, and therefore, we have intro-
duced two simplifications to the model. First, we do not
explicitly include the recruitment of SHP-2 to PD-1. Sec-
ond, we do not explicitly model LCK molecules but instead

Biophysical Journal 117, 1189—-1201, October 1, 2019 1193
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model CD28 phosphorylation by a first-order reaction
(CD28—A*CD28*). These simplifications, which decrease
the computational complexity of the model by reducing
the number of molecules that must be resolved in simula-
tions, are not expected to alter our conclusions: first,
explicitly modeling SHP-2 recruitment would reduce the
effective concentration of PD-1 bound to SHP-2 that can
act on CD28 and therefore would be expected to act as a
correction factor for the concentration of PD-1. Second,
explicitly modeling LCK would not be expected to alter
any conclusions because parameters associated with it
were not varied.

As output of the model, we calculated the steady-state
fraction of phosphorylated CD28 as the concentration of
PD-1 was increased. We first focused on a situation in which
diffusion is minimal, which may be the case when immune
receptors bind their ligands (17,18), interact with the cyto-
skeleton (19,20), and/or cluster (21). As expected,
increasing the concentration of PD-1 reduced phosphoryla-
tion of CD28 (Fig. 2 B). In this case, we found that
increasing the molecular reach of the reaction increased
the potency of PD-1 so that fewer PD-1 molecules were
necessary to achieve the same level of inhibition. Unexpect-
edly, when using a diffusion coefficient representative of
free mobility on the plasma membrane for transmembrane
receptors (19,22), we found that increasing the molecular
reach decreased the potency of PD-1 so that more PD-1 mol-
ecules were necessary to achieve the same level of inhibition
(Fig. 2 O).

We quantified the potency of PD-1 by calculating the con-
centration of PD-1 required to reduce the phosphorylation of
CD28 by 50% (also known as ICsq). A plot of ICsq over L
shows that PD-1 potency increases for small but decreases
for large diffusion coefficients, with a transition at intermedi-
ate values of the diffusion coefficient (D = 0.00125 um?/s) at
which potency is largely unchanged (Fig. 2 D). Taken
together, we find a switch in the effect of changing molecular
reach, with larger reaches increasing receptor potency when
diffusion is slow but decreasing receptor potency when diffu-
sion is fast.

Effect of molecular reach in physiological
and idealized membrane reactions

A key novelty of our membrane-bound protein reaction
model is in accounting for reactions involving sites on mo-
lecular tails, which move through the volume proximal to
the membrane. This is achieved through the use of the 3D
interaction kernel g3p, which accounts for the motion and
stiffness properties of the tails, bound enzymes, and sub-
strates (see Materials and Methods). To determine the
importance of the 3D kernel to the observed switch in reac-
tion efficacy, we replaced the physiological kernel with an
idealized 2D interaction kernel g,p (see Eq. 2). This 2D
kernel forced chemical interactions to only occur within

1194 Biophysical Journal 177, 1189-1201, October 1, 2019

the plane of the membrane (see Fig. S1), as in previous
models (23). To simulate this and to generalize beyond the
specific example of PD-1 acting on CD28, we reformulated
the biochemistry of the model to a widely used scheme for
the reversible modification of a substrate by a kinase and
phosphatase (Fig. 3, A and B; (23-25)),

ko (rLe)

S+E S +F,
Caolrar)

S'+F —— < SF,

where S, E, and F are the substrate, kinase, and phosphatase,
respectively, and * indicates the phosphorylation modifica-
tion (Fig. 3, A and B). As before, we allowed for diffusion
of all chemical species and highlight that the rate of these
enzymatic reactions is proportional to the catalytic effi-
cacies (k¢, and k’;al) multiplied by the probability densities
(o6(r;L) and o(r;L/) for physiological 3D or idealized 2D
interactions). The latter explicitly depends on the separation
distance between the molecules in the simulation (r) and
on the reaction molecular reach: L° for the kinase phos-
phorylating the substrate and I for the phosphatase dephos-
phorylating the substrate.

We calculated the steady-state fraction of phosphorylated
substrate as the number of kinase molecules was increased.
Using the physiological 3D kernel, we reproduced the re-
sults for PD-1 (Fig. 2), in which increasing the molecular
reach increased the potency of the kinase when diffusion
was slower but decreased its potency when diffusion was
faster (Fig. 3, C and D). When using the idealized 2D kernel,
we found that increasing the molecular reach of the reaction
increased the potency of the kinase when diffusion was
slower (Fig. 3 F), but when diffusion was faster, it had no
effect on the potency of the kinase (Fig. 3 G). As before,
we summarized these results by calculating the potency of
the kinase as a function of the molecular reach for the phys-
iological and idealized kernels (Fig. 3, E and H). We
confirmed that using the idealized 2D kernel in the PD-1
model of the last section also led the molecular reach to
have a minimal effect in the reaction-limited, i.e., fast diffu-
sion, regime (Fig. S2).

Taken together, these results highlight that the switching
behavior in potency as molecular reach is increased is
observed when using a physiological 3D kernel but not an
idealized 2D kernel. We conclude that the 3D nature of
2D interactions can have profound effects on biochemical
reaction rates.

A minimal two-particle Doi model explains
molecular reach phenotype

The preceding models demonstrate a clear switch in how the
efficacy (quantified as potency) of tethered signaling



reactions depends on molecular reach for large versus
small diffusivities when molecules are confined to the 2D
plasma membrane. They also suggest that such a switch
may not be possible when molecules are forced to interact
within the plane of the membrane. To understand what
gives rise to this switch and why it is not present when the
molecules react in the membrane plane, we developed a
simplified two-particle Doi model that could be solved
analytically.

We consider a system containing just one A molecule
and one B molecule, which can undergo the annihilation
reaction

kearo (r;L)

A+B IR @7

and assume that the A molecule is stationary and located at
the origin, whereas the B molecule diffuses. We will
consider three cases: the physiological model in which the
B molecule diffuses in 2D and tails interact in 3D (through
the 3D Gaussian, g3p(r;L)), a model in which the B mole-
cule diffuses in 2D but tails are forced to only interact in
2D (through the 2D Gaussian, o,p(r;L)), and a model in
which the B molecule diffuses in 3D and tails interact
in 3D (through the 3D Gaussian, o;p(7;L)). In the remainder,
we denote these three combinations as the 2.5D, 2D, and 3D
models, respectively (Fig. 4).

In the Doi model, we assume the B molecule diffuses
with diffusivity D within a circle (sphere) of radius R
about the origin. R was chosen so that the area
(volume) of the circle (sphere) was identical to that of
the square (cube) with sides of length 300 nm used in
the preceding sections. We replace the Gaussian interaction
kearo(r;L) by an approximating indicator function Al .(r),
defined by

A, 0<r<e,

)\1[@4(?‘) = {0

e<r.

Here, A corresponds to the probability per time the
molecules react when within a reaction-radius, &, of each
other.

The mean reaction time (MRT) w(r) for a diffusing mole-
cule that is initially placed a distance r from the origin then
satisfies

I (Rp)

~2 ~2 -~
11 R —Rp*\ Io(Rp) NS
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D d . aw

T (’”d l;(”)> — Mg (r)w(r) = =1, 0<r<R,
dw

dr ( ) b)

“)

where d = 2 when the B molecule diffuses within a circular
patch of membrane (2.5D and 2D models) and d = 3 when
the B molecule diffuses within a spherical volume of cytosol
(3D model). A no-flux boundary condition is used to prevent
the B molecule from leaving the circle (sphere), and we as-
sume that w(0) is finite (because the MRT should be finite
even if the molecules start at the same location).

A and ¢ are calculated by matching the total volume and
the first moment of osp for the 2.5D and 3D models. That
is, given k., and L, we choose A and ¢ such that

© ©

kcat/am(r;L)r” dr = /\/ Loy (r)r" dron = 2,3, (5)
0 0
We find that
kca kCﬂ
e=oal, A = — = - (6)
iwé i7r(ozL)3
3 3

where « = 16/(3/61).

When using o,p in the 2D model, A and ¢ are calibrated
by matching the total area and first moment; see Eqs. S20
and S21. In both calibrations we find that ¢ « L (Egs. 6
and S21), so that in the remainder, we will interchangeably
discuss changing ¢ or L.

We will focus on the well-mixed MRT, (T): the average
time for the two molecules to react assuming the B molecule
is initially placed randomly within the circle (sphere). It is
given by

R

(T = 4 /w(r)rd’1 dr. @)

0

The 2.5D well-mixed MRT, (T), corresponding to
substituting the solution of Eq. 4 into Eq. 7, is given by

ot —4p* +3 +4ln(p)‘|, p<l1,
®)

p>1,
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FIGURE 4 The well-mixed mean reaction time (MRT), (T), only demonstrates a switch in dependence on molecular reach for small versus large diffu-
sivities when considering membrane-bound molecules with cytosolic tails that react in 3D (2.5D model). (A4), (D) and (G) illustrate the effective 2.5D, 2D,
and 3D model regions in which the proteins (darker region) and their tails (region with dashed border) can diffuse. In all graphs, solid lines correspond to the
asymptotic expansions in Eq. 11a (B and C), Eq. 11b (E and F), or Eq. 11c (H and I). Dashed lines give scaling behavior as a function of L. (B) 2.5D model
well-mixed MRT over physical parameter range. (C) Same as (B) but showing an expanded range of L-values. (E) 2D model well-mixed MRT over physical
parameter range. (F) Same as (E) but showing an expanded range of L-values. (H) 3D model well-mixed MRT over physical parameter range. (/) Same as (H)
but showing an expanded range of L-values. In (C), (F), and (I), an extreme range of L-values is used to demonstrate the different scaling regimes of (T') in L.
The vertical red line gives the L-value such that e/R = 1, corresponding to when the Doi interaction distance, ¢, is equal to the domain radius, R. Note that as
& — R from below, the asymptotic expansions break down because /R <« 1. For (B), (C), (H), and (1), the catalytic rate ke, is 0.1 uM ™! s™!. For (E) and (F),
the 2D catalytic rate ke, is (1 /3) x 10°uM ™" s™' m~' = 553.4341 (nm)? s~ ". Diffusion coefficients (blue to yellow): 1.25 x 107%,1.25 x 107%,1.25 x 107%,
1.25 x 1073, 1.25 x 1072, 0.1 ,urn2 s~ To see this figure in color, go online.

where p = ¢/R and R = R\/A/D. Using the calibrated parameters in Eq. 6, the 2.5D well-

To ensure that the replacement of the Gaussian interaction mixed MRT (T') can then be summarized by

with the indicator function and immobility of the A mole-

cule do not qualitatively change the behavior of the system, Z_lﬂRZ R? N ol

we compared Eq. 8 to a 2.5D CRDME model in which both ~3 (al) — — <2ln (—) + 1), — K 1,
molecules diffuse and react through 3. We demonstrate in (T) Kea 4D R R
Supporting Materials and Methods, Sections S2 and S3 that 4 3

(T) obtained from solutions of the Doi model (Eq. 4) gives - §7T(aL) al |
good qualitative agreement with the results of these ke R > b
CRDME SSA simulations. (10)

To further simplify Eq. 8, we note that L/R is small in the
biologically relevant parameter regime, so p = &/R = aL/R

is also small. For p < 1, we therefore expand Eq. 8 in p to Using a similar approach to the preceding analysis (see

obtain Supporting Materials and Methods, Sections S4 and S5),
! R the well-mixed MRT of the Doi model (Eq. 4) can be found
(T) ~~— — ——(2In(p) + 1) 4+ O( 0?), p—0. (9 analytically for both of the 2D (Eq. 8, with calibration given
Ap* 4D by Eq. S21) and 3D (Eq. S16 with calibration given by
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Eq. 6) models. Their corresponding asymptotic expansions
for p < 1 are given by Eqgs. S19 and S22.

In summary, we find that over the physical range of mo-
lecular reach values, the exact solutions for (T) from the
2.5D, 2D, and 3D Doi models can be approximated by the
asymptotic expansions

4
—R? 2 2
3 R al R
L)——(2In[—) ) —=—, (25D
P 4D< “(R)) 3P
7R?> R? ul R?
T) ~ ——(2m(=)) -— 2D
T~ 4D( “(R)) 4D’ (D)
4 3
37 R 1 R (D)
ket 5D oL 5D’
(11a, b, ¢)

where u = +/37/8. As shown in the Supporting Materials
and Methods, for physiological values of L and D, these ex-
pansions agree well with numerical solutions to this model
when using the original Gaussian interactions instead of
the Doi indicator functions; see Fig. S6.

Fig. 4 plots the three asymptotic expansions as L and D are
varied. Similar to our earlier models, in the physiological 2.5D
case (Fig. 4 B), we again see that when the diffusivity is small,
the reaction is most effective ((T) is smallest) for large values
of the molecular reach, whereas for large diffusivities, the re-
action is most effective for small values of the molecular
reach. In contrast, we observe that in both the 2D (Fig. 4 E)
and 3D (Fig. 4 H) models, increasing the reach always in-
creases the reaction efficacy (decreases (T')). We confirmed
the latter result by simulating the biochemical model of the
previous section in the fully 3D setting (molecules diffuse in
3D and interact using the 3D kernel), showing that like the
Doi model prediction, the potency of the kinase can only in-
crease as the molecular reach increases (Fig. S3).

As we show in the Supporting Materials and Methods, Sec-
tion S6, the first two terms in each of the three asymptotic ex-
pansions have a simple physical interpretation. We can write

32 , ‘ R?
20+ (1) - 5
(T) ~ <T(2D)>+<T(2D)>—R—2 (12)
RL DL 4D7
3 6/ 3 3R?
(1) +3(1") ~ 5

Here, (Try) denotes the reaction-limited well-mixed
MRT, corresponding to the well-mixed MRT when diffusion
is assumed to be infinitely fast; see Eq. S23. (TpL) denotes
the leading-order asymptotic expansion of the diffusion-
limited well-mixed MRT for ¢/R < 1; see Eq. S24. This
corresponds to the diffusion-limited regime, in which the
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molecules are assumed to react instantly upon reaching a
separation of &. We therefore see that the well-mixed
MRT (T') can be (approximately) interpreted as the average
time for the two molecules to get close enough to react
((TpL)) added to the average time for the two molecules
to react when diffusion is sufficiently fast that the B mole-
cule is always well-mixed ((Trr)).

The regime in which (T') can increase as L increases only
arises in the physiological 2.5D model. It is due to the reac-
tion-limited well-mixed MRT, (Tl(fl;SD)), which is propor-
tional to L. Eq. S23 shows that in both the 2D and 3D
models, the reaction-limited well-mixed MRT is always in-
dependent of L, whereas Eq. S24 shows that the leading-or-
der diffusion-limited well-mixed MRTs are decreasing in L
for an?/ diffusivity in all three models. The scaling of
(Tl({ZL'SD ) in L results from the use of a 3D Gaussian interac-
tion (with units of inverse volume) in a planar region (with
units of area), resulting in an effective well-mixed bimolec-
ular reaction rate kg; that scales like L~'. Because
(Tl({ZL'S[») = 7R?/kgL, we find that <Tl({2L'5D)> o[ (see Support-
ing Materials and Methods, Section S6 for details).

We can interpret the (physical) differences between the
diffusion- and reaction-limited regimes as follows. The
diffusing molecule is initially placed randomly but, in the
limit of very slow diffusion, is effectively stationary. Let
the initial separation between the two reactants be r. The
probability the reactive sites are in contact is then maxi-
mized for L = O(r) in both g3p and o,p. If L < r, the cyto-
plasmic tails will be too short to contact each other; see
Fig. S7 A. If L >> r, the tails will explore a large region
of space and rarely encounter each other; see Fig. S7 C.
When the domain size is much larger than the reach, most
initial positions of the slowly diffusing reactant will have
r >> L. As such, increasing the reach would be expected
to reduce the average of the MRT over the domain (which,
by definition, is the well-mixed MRT).

In the limit of very fast diffusion, we think of the diffusing
reaction partner as always existing in a uniform probability
cloud. The overall reaction process is like a first-order reac-
tion undergone by the stationary reactant, with effective rate
constant kegr. kefr is given by the product of two factors. The
first is the probability the diffusing reactant is sufficiently
close to the stationary reactant to react, i.e., within
e = O(L) of the stationary reactant in the Doi model.
Because the diffusing reactant is well-mixed, this probabil-
ity scales like L*> when diffusing within the membrane and
like L* when diffusing in three dimensions. The second fac-
tor is the probability per time the molecules can react once
sufficiently close, given by 4 in the Doi model. For a3p, the
latter scales like L3 (see Eq. 6), whereas for o,p, the latter
scales like L™ (see Eq. S21). These scalings reflect the
effective region over which the (equilibrated) tails must
search for each other once the proteins are sufficiently close,
with size O(L?) in the 2.5D and 3D models and size O(L?) in
the 2D model. k. is therefore constant in the 2D and 3D
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models while scaling like L~ "in the 2.5D model (and hence,
the well-mixed MRT will scale like kjf = O(L), as
observed in Fig. 4 C). We therefore see that in the reac-
tion-limited regime, we can interpret the behavior of the re-
action time as being a balance between an exploration effect
of the two proteins (the two molecules are close enough to
react, an increasing function of L) and a dilution effect
(the effective concentration of the reactive site complex
within the region explored by the tails, a decreasing function
of L).

In summary, we find that for tethered signaling reactions,
the reaction time (i.e., (T)) can exhibit a different functional
dependence on molecular reach over physiological param-
eter regimes when diffusion is fast versus slow. This arises
from having 3D interactions between cytoplasmic tails of
molecules confined to diffuse within a 2D membrane
(2.5D model). We also find that when diffusion is suffi-
ciently fast, the reaction time is independent of L for mole-
cules diffusing and reacting in 3D (3D model) or diffusing
and reacting purely in 2D (2D model). In contrast, the reac-
tion time is still dependent on L for molecules diffusing in
the membrane but reacting through the 3D interaction kernel
(2.5D model). This illustrates how molecular reach in teth-
ered signaling can reduce potency in 2D but not 3D
geometries.

DISCUSSION

Using a combination of spatial simulations and analytical
calculations, we have examined the influence of molecular
reach on membrane-confined reactions. Our key finding is
that increases in molecular reach can increase reaction rates
(or receptor potency) when diffusion is slow but decrease re-
action rates (or receptor potency) when diffusion is fast.
This switch is critically dependent on molecules diffusing
in 2D but explicitly allowing them to react in the 3D volume
proximal to the membrane using a 3D reaction kernel. The
work underlines the importance of the 3D nature of 2D
membrane-confined reactions.

Reactions in 2D versus 3D

It is an open problem to understand how membrane confine-
ment modulates receptor-ligand binding and biochemical
reactions. Mathematical models of membrane reactions
commonly restrict molecules to not only diffuse in 2D but
to react through 2D interactions (23,26-29). Although trans-
membrane domains (e.g., that localize PD-1 and CD28) and
membrane-anchoring modifications (e.g., palmitoylation
that localizes LCK) restrict molecules to diffuse in the 2D
membrane, their tethers allow them to explore a 3D cyto-
plasmic volume that is proximal to it. The switch in efficacy
that we report critically relied on explicitly accounting for
this through a physiological 3D kernel; using an idealized
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2D kernel that forced molecules to interact within the plane
of the membrane did not produce the switch.

Modeling 3D reaction kernels for 2D membrane
reactions

We have explored the molecular reach of the reaction pri-
marily using a stationary Gaussian reaction kernel inspired
by the WLC polymer model. It is likely that in some biolog-
ical situations, the polymer does not equilibrate quickly (sta-
tionary assumption) and/or the kernel is not Gaussian. We
calculated that the stationary assumption is valid in our sim-
ulations (see Supporting Materials and Methods, Section
S9), but this assumption will break down if, for example,
longer tethers are simulated. A Gaussian kernel is expected
to accurately capture the molecular reach of freely diffusing
unstructured polypeptide chains such as the unstructured
cytoplasmic tails of immune receptors (5). However, there
is evidence that the cytoplasmic tails of NTRs, including
CD28, may have regulated interactions with the plasma
membrane (30-33), which may lead to a non-Gaussian
kernel. Similarly, a Gaussian kernel is expected to only be
an approximation when applied to structured proteins like
SHP-1/SHP-2 that contain multiple domains connected by
flexible linkers. We note that experimental data of tethered
dephosphorylation by SHP-1 were well-fitted by a Gaussian
kernel (10). Nonetheless, careful consideration is needed
when formulating a 3D reaction kernel, and it may be
feasible to determine the kernel using molecular dynamics
or coarse-grained mesoscale simulations (34) that can be
adapted to the specific molecules of interest.

It should also be noted that we have not considered bio-
logical contexts in which all reactants involved in a tethered
signaling reaction are present at high densities. For suffi-
ciently large concentrations, our general observations con-
cerning the influence of molecular reach on reaction
statistics could potentially change. Such density-dependent
results were recently observed in a model for transport
through the nuclear pore, in which a continuum of elastic
tethers was shown to potentially hinder diffusive particle
motion for small numbers of molecules while enhancing
particle motion at sufficiently large densities (35). At
high densities, steric effects have also been shown to influ-
ence clustering of membrane proteins interacting through
tethered reaction processes (36). We note that our first
model, of PD-1 inhibition of CD28, used physiological
estimates for CD28 concentration while varying PD-1
concentration (37).

Implications for the biology of immune receptors

The ability of receptors within the NTR or immunoreceptor
group (5) to regulate the phosphorylation of specific sub-
strates is dependent on the signaling protein recruited by
the receptor (e.g., SHP-2 in the case of PD-1), the specificity



of the signaling protein to the specific substrate (e.g., SHP-2
has the ability to dephosphorylate CD28 (7)), and the ability
of the receptor and substrate to localize (e.g., PD-1/CD28
coclustering (21)). In addition to these mechanisms, our
work demonstrates that the molecular reach of a reaction
may also control the ability of a receptor to regulate the
phosphorylation state of the substrate and hence determine
receptor potency. A key question that this work raises is
whether increasing the molecular reach will increase or
decrease receptor potency. Although PD-1 and CD28 are ex-
pected to be mobile on resting T cells, their relative mobility
within ligand-induced clusters has yet to be investigated.
Our work indicates that increasing the molecular reach of
this reaction will only increase PD-1 potency if their
mobility is reduced within these ~100 nm clusters (21).

Experimental measurements

Tethered signaling depends on binding, catalysis, and the
molecular reach of the reaction. Although standard assays
are available to study binding (e.g., surface plasmon reso-
nance (38)) and catalysis (e.g., reaction product measure-
ments in solution (39)), it is more challenging to produce
a physiologically relevant assay to explore the role of mo-
lecular reach. Recently, an in vitro reconstitution of the
dephosphorylation of CD28 by PD-1 has been described
whereby CD28 and PD-1 were localized to the two-dimen-
sional surface of liposomes (7). This system can be used to
experimentally determine how changes to the molecular
reach of the reaction influence the potency of PD-1. We
have also recently introduced a surface plasmon reso-
nance-based assay that can directly determine the molecular
reach for fratricide reactions (10). As these experimental
tools mature, it may become feasible to systematically
examine the role of molecular reach in controlling tethered
signaling reactions.

Molecular reach beyond potency

In this work, we have focused on the role of molecular reach
in modulating reaction efficacy or potency. Given that phos-
phorylation reactions, and noncovalent post-translational
modifications more generally, have been shown to give
rise to a variety of information processing phenotypes,
it would be interesting to examine the impact of
molecular reach in these contexts (25,40). For example,
phosphorylation reactions are known to produce ultrasensi-
tive or switch-like responses by multisite phosphorylation
(23,41-45), but processivity, whereby an enzyme modifies
multiple sites per collision, can reduce or even abolish ultra-
sensitivity (23,46). Given that molecular reach can allow en-
zymes to catalyze reactions at a distance, it may effectively
generate processive enzymes that can modulate ultrasensi-
tivity. It would be interesting to examine how molecular
reach controls other features of signaling in the future.

Molecular Reach Controls Efficacy
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S1 Introduction to CRDME Model and Simulation Algorithm

The convergent reaction-diffusion master equation (CRDME) model we use corresponds to a spatial discretization
of the general volume-reactivity model. In the latter, molecules are represented as point particles moving by Brow-
nian motion!~®). First order reactions are modeled as internal processes with Poisson clocks, while bimolecular
reactions between two molecules occur with a separation dependent probability per time (given by the Gaussian
function kcyo (r; L) for separation 7, catalytic rate kcy, and molecular reach L, see Methods). These mathematical
models can be described by their corresponding forward Kolmogorov equation, a high-dimensional coupled sys-
tem of partial-integral differential equations for the probability density of having a given number of each chemical
species at specified locations at a given time>®. For example, Eq. S13 is the forward Kolmogorov equation for
the simplified case of just two molecules that can annihilate through the Gaussian interaction.

For multiparticle systems, the high-dimensionality of these equations precludes their solution by standard nu-
merical methods for solving PDEs. Instead, we approximate the stochastic process of the individual molecules
diffusing and reacting. In this work we do so by first spatially discretizing the forward Kolmogorov equation of
the volume-reactivity model to a continuous-time Master Equation defined on a Cartesian mesh. We call this spa-
tially discrete model the convergent reaction-diffusion master equation (CRDME)®#. As the set of ODEs that
comprise the CRDME are still too high-dimensional to solve numerically, we instead generate exact realizations of
the corresponding jump process associated with the CRDME using the Gibson-Bruck SSA method® (a variant of
the well-known Gillespie method ®7). We will subsequently call this simulation method the CRDME SSA. Here
the diffusion of individual molecules is approximated by a continuous time random walk of the molecules hopping
between voxels of the Cartesian mesh. Bimolecular reactions between reactant molecules in nearby voxels occur
with probabilities per time derived from o (-; L), see ®* for full details.

As an illustrative example, consider a system with three chemical species, {A, B, C}, with each molecule diffusing
within a square with periodic boundary conditions. Assume all molecules have diffusivity D, and the molecules

*Correspondence: isaacson@math.bu.edu or omer.dushek @path.ox.ac.uk.



Table S1: Example of diffusive and chemical transitions in CRDME SSA simulations

Transitions Transition Rates (units of per time) Upon Transition Event
Diffusive hopping Aj— A DA;(t)/h? A=A +1, A= A; -1,
from V} to neigh— Bj — B; DBJ(t)/h2 B, .= B; +1, Bj = Bj —1,
bor V; EN(VJ> Cj — C; DCj(f)/hZ C; = Ci+1,Cj = Cj—l,
Chemical A; + Bj —C; + Bj Oziin(t)Bj(t) A=A, —-1,C;:=C; + 1.
Reactions: Ci— A AC;(t) Aj=A4,+1,C:=C; — 1.

For the C 2> A and A +B Feno(ril), C + B reaction-diffusion system, the table shows the five basic types of jump

process transitions that can occur. Here V; labels a given voxel of the Cartesian mesh, with mesh width % and four
nearest-neighbors N (V). A;(t), B;j(t) and C;(t) denote the stochastic processes for the number of molecules of
each species in the jth voxel at time ¢. See SI S1 for details.

may undergo the reactions C A AandA +B Fenolril), C + B (where 7 denotes the separation of an individual

pair of A and B molecules). To derive the CRDME model, we discretize the square into a collection of IV square
mesh voxels, {V;}I¥,, of width h. Let NV(V;) label the set of the four nearest-neighbor voxels to voxel V;. The
CRDME SSA then simulates the set of possible jump process transitions shown in Table S1. The bimolecular
reaction transition rate in the table (i.e. probability per time) for one specific A molecule in V; and one specific B
molecule in Vj to react is given by

k
aij:w//a(w—y\;L)dwdy,

as derived in®.

S2 Derivation of the Doi model

We show here how to derive the simplified Doi model used in the Results section, beginning with a simplified
model in which both the A and B molecules diffuse and interact through a Gaussian kernel. We again consider the

two-particle annihilation reaction

ALB kearo (L) @

Assume the two molecules diffuse within a square (2.5D or 2D) or a cube (3D), 2, where the length of each edge
of the square (cube) is 300nm. Denote by p(x, y, t) the probability density an A molecule at € 2 and a B at
y € () have not yet reacted at time ¢. We consider the volume-reactivity model,

0
5 = D(8a+ 8.y, 1) ~heuo (| — y|: Lp(e. y. 1),
1 (S13)
) 70 = Y
p(z,y,0) P

with reflecting boundary conditions on the boundary, 02, in each of « and y. Here k.4 is the catalytic rate of the
reaction and L the molecular reach. || denotes the area (or volume) of €2, so that the initial condition corresponds
to starting both molecules well-mixed (i.e. uniformly distributed) within €.

We will focus on the behavior of the well-mixed mean reaction time (MRT), i.e. the average time for the diffusing
A and B molecules to react assuming they are each placed randomly within 2. Let 7' denote the random time
at which the A and B molecules react. The exact well-mixed MRT is then given by the average of 7', which we

denote by (T'). It is defined by
(T) = / / /p(:n,y,t) dx dy dt. (S14)
0 QJQ
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We simulate an approximation to the stochastic process of the two molecules diffusing and reacting using the
CRDME SSA (see Methods and SI Section S1). Fig. S4 shows the estimated well-mixed MRT from 50000
CRDME SSA simulations in 2.5D. Observe that this figure is qualitatively quite similar to the asymptotic ap-
proximation to (7°) found for the Doi model, Fig. 4B.

We now introduce two simplifications to the preceding model to obtain the Doi model. Due to presence of the
3D Gaussian interaction term o(-; L) in Eq. S13, analytically solving for the exact (T") satisfying Eq. S14 is
impractical. We therefore simplify Eq. S13 by transforming to a radially symmetric problem on a circle (sphere) of
equivalent area (volume). In this reduced model one molecule is assumed stationary at the origin, while the other
molecule diffuses with relative diffusivity D within a circle (sphere) of radius R about the origin. The MRT wu(r)
for a diffusing molecule that is initially placed a distance 7 from the origin satisfies

D d d
— rdil—u(r) — keato(r; L)u(r) = =1, 0<r <R,
rd=1dr dr
J (S15)
U
—(R)=0
() =0,
where d = 2 for the 2.5D and 2D models, and d = 3 for the 3D model. In each case we also assume u(0) is finite,
since the time for the two-molecules to react should remain finite even when their initial positions are the same.
The corresponding well-mixed MRT when the position of the diffusing molecule is initially uniformly distributed

where again, d = 2 for the 2.5D and 2D models, and d = 3 for the 3D model. Eq. S15 is easily solved by a standard
finite volume discretization, described in SI Section S3. Fig. S5 (solid lines) shows that in 2.5D this model gives
almost identical results to the CRDME SSA approximation of Eq. S13 shown in Fig. S4.

To obtain an explicit analytical approximation to the solution of Eq. S15, we perform one final transform. We
approximate Eq. S15 by a Doi model. As described in the Results section, the Doi model replaces the Gaussian
interaction o (r; L) by an approximating indicator function Ao (), giving the final model in Eq. 4. In the Results
Section and SI Section S5 we describe how A and ¢ are calibrated for all three cases. In the next section we show
that the exact solutions in 2.5D, 2D and 3D agree well with the corresponding numerical solutions to the Gaussian
interaction model (Eq. S15) over physiological parameter ranges.

S3 Solving the radially (spherically) symmetric problem on a circle (sphere)

A key step in the analysis of the simplified model is to approximate the two-particle problem (Eq. S13) on a square
(cube) with reflecting boundary conditions by a radially (spherically) symmetric problem (Eq. S15) with the same
area (volume) and a reflecting boundary condition. Fig. S5A shows that the numerical solution of the PDE in
Eq. S15 (solid lines) preserves the behavior of the 2.5D well-mixed MRT for the annihilation reaction obtained
by CRDME SSA simulations of Eq. S13 (Fig. S4). We solved Eq. S15 numerically using a standard second-order
finite volume discretization (in both the circle and sphere).

Similarly, in Eq. 4 we replace the Gaussian interaction of Eq. S15 by a calibrated Doi-model step-function inter-
action (see Eqgs. 6 and S21). Fig. S5 shows that the exact solutions to the calibrated Doi model in Eq. 4 (dashed
lines) in 2.5D (Fig. S5A), 2D (Fig. S5B), and 3D (Fig. S5C), each agree well with the numerical solution of the
Gaussian interaction model (solid lines).



S4 3D well-mixed MRT for simplified Doi model

Using the same approach as for the 2.5D MRT analysis (see Results and S2), we map Eq. S15 to a 3D Doi type
model with calibrated parameters that is analytically solvable. The 3D well-mixed MRT, (T'), corresponding to
substituting the solution of Eq. 4 into Eq. 7, is given by

F(p), p<1,
) =" (p): p (S16)
o P Z 17
with p = /R, R = R\/\/D and
1 R? <5 9 5> |1 (R3—R3p3) tanh(Rp)
F = -+ —=(—-—9+5p" - + (1 - < + - < S17
(v) A 15D \p e ( 7) A 3DRp Rp — tanh(Rp) G1D

We use the same parameter calibration (Eq. 5) as we used for the 2.5D Doi model (Eq. 4) with 3D Gaussian
interaction. € and A are then given by Eq. 6. Expanding Eq. S16 in p for p < 1 we find

11 2R?21 3RZ?
- ——+0(p). (S18)

Ty~ g 28
(T) )\p3+5Dp 5D

Substituting in the calibrated values for A and ¢ then gives

47R3 3 2
3 2R° 1 3R alL < 1’

Kecat 5D ol 5D R
(T) (S19)
é7r(aL)3 L
=2 ka7 % > 1,

where o = 16/(3v/67).

S5 2D well-mixed MRT for a 2D concentration kernel

A key feature in all our models of tethered signalling is the use of a 3D Gaussian concentration kernel o (r; L)
to determine interaction functions for bimolecular reactions in the membrane. We now consider how the well-
mixed MRT in the simplified 2.5D model (Eq. S15) changes if we instead use the 2D Gaussian interaction kernel
oap(r; L) defined in Eq. 2. We call this new model the 2D model. We follow a similar analysis as in the preceding
section and the Results.

The 2D well-mixed MRT, (T'), obtained by substituting the solution of Eq. 4 into Eq. 7 is given by Eq. 8. As
we now consider a 2D Gaussian interaction, we match the total area (equivalently total reaction rate) and the first
moment of the 2D Gaussian using

0 o
k:cat/ oap(r; L)r"™ dr = )\/ Lo (r)r™dr, n=1,2, (S20)
0 0
to obtain
kcat kcat
= ulL = = S21

where u = /37 /8. Notice, we now see the key difference from the use of a 3D interaction kernel; A now scales
like L2 instead of L~ as we previously found.



Expanding Eq. 8 in p for p < 1 we again have Eq. 9, which combined with the preceding calibration for € and A
then gives

~ B 2w (t) + 1), HE <

(S22)
_ m(pL)? L
= Tp, B> 1.

S6 The well-mixed mean reaction time from the Doi model is approximately the sum of the
reaction— and diffusion—-limited mean reaction times

In each of the three asymptotic expansions Eqgs. 11a, 11b and 11¢, we now show the first two terms have a simple
physical interpretation. The first term is essentially the mean reaction time if the system were reaction-limited (i.e.
the well-mixed mean reaction time when D = oo). The second term is essentially the leading order diffusion-
limited mean reaction time (i.e. the well-mixed mean reaction time when the reaction occurs instantly once the
reactants are sufficiently close). We will illustrate how the former is responsible for the scaling regime where (7'
grows in L for the (physiological) 2.5D model.

We first consider the well-mixed mean reaction time in the reaction limited regime. Assume that the diffusivity
D of the diffusing molecule is infinite, so that the system is completely well-mixed. The position of the diffusing
molecule is then given by a uniform density,

- B —=,  in2D,
p(r) - p - %RS’ in 3D
37T

For each of the 2.5D, 2D and 3D models considered in the last Results section, in this regime we expect the total
probability per time the molecules react to be given in terms of a well-mixed reaction-limited reaction rate, kry,
by

cat(27) fOR osp(r; L)prdr, 2.5D
cat (277) fOR op(r; L)prdr, 2D
ca(4) [T o3p(r; L)pr2 dr, 3D.

krLp =

I T T

Assuming R is large, the integrals are well-approximated by the integral over € [0, c0), so that

3 ke 1
\/osxre T, 25D

kRLﬁ ~ % ) 2D
k
e D

We note that the latter two are simply the standard probability per time a well-mixed reaction with bimolecular
rate constant k., occurs within a circle (sphere) of radius R. The inverse of kg p then defines the reaction-limited

well-mixed mean reaction time,
27 TR2L
7(25D)y \/> ’
< RL > 3 kcat

R2

<T1§iD)>:7; : (S23)
cat
irR3

() = 5

Only <T}§%5D)) varies with L, increasing linearly as L increases.



Similarly, we may consider a diffusion limited regime in the (calibrated) Doi model, where the molecules react
instantly upon the diffusing molecule reaching » = . The leading order asymptotic expansions for e /R < 1 of
the diffusion limited well-mixed mean reaction time are well-known, see®?, and given by

2
(TS5 ~ - log (OL) ,

2D R
2
@), 7 pHL S24
(TpL ™) 2D10g(R>’ (S24)

3
(3D) R

T, ~ .
(ToL™) 3DaL

All three diffusion limited mean reaction-times are decreasing as L increases.

We therefore see that the first two terms in the asymptotic expansions of (T") from the Doi model (Egs. 11a, 11b
and 11c) can be summarized as essentially a sum of the reaction-limited and diffusion-limited well-mixed mean
reaction times as given in Eq. 12.

S7 Domain size dependence of the CD28 model

As a simple control, we solve the CD28 model (see Results) using a larger domain size to confirm that the steady-
state fraction of phosphorylated CD28 exhibits a similar qualitative behavior with respect to the diffusivity and
molecular reach. We see from Fig. S8C and S8D that solving the model on a larger square of side length of 500nm
preserves the qualitative dependence of the steady-state fraction of phosphorylated CD28 on D and L.

S8 Determining termination time in CRDME simulations

To determine the termination time in the CRDME SSA simulations of the first two models of the Results section, for
each pair of diffusivity and molecular reach values we ran 100 test simulations. We then estimated an approximate
time at which mean concentrations and/or fractions of each chemical species had reached steady state. In our final
larger sampling runs (with O(10%) to O(10°) simulations per parameter set), we then set the termination time to be
40%-50% larger than the estimated time steady-state was reached. In Fig. S9 we plot till the termination time used
in our final simulations the average fraction of phosphorylated CD28 in the CD28 model from 100 simulations (for
different values of the diffusivity and molecular reach). In all nine cases the CD28 model appears to have reached
steady state well before the chosen termination time.

S9 Validity of using a stationary probability density kernel (o)

We have used a stationary kernel (o) to represent the probability that two tethers interact. This assumption is only
valid when the timescale over which the polymer tether explores its space (7) is smaller than the timescale for
reaction and diffusion. An approximate upper bound on 7 can be obtained by assuming the polymer is a freely-
jointed chain with N Kuhn segments of length b, and monomer size < b. These are related to the reach parameter,
L,by L = b\/N/2. A lower bound on the diffusion coefficient of the polymer is 67nL/kpT, leading to the
following upper bound estimate,
671 \r3/2,3 3T .3
~ N3/2p3 — L3, S25
kB T \/i k BT ( )
where 7 is the viscosity of the surrounding medium. Assuming that the viscosity of the cytoplasm is close to that of
water, we find that 7 < 10™* s for the maximum molecular reach of I = 32 nm in Fig. 2. This is smaller than the

T



fastest diffusive timescale (~ L?/D = (32 nm)?/0.125 um?/s = 8 x 1073 s) and reaction timescale (~ &, (1/L?)
=0.1 uM1s71 /(32 nm)3 = 0.2 5).

The above approximation has been derived in a more general setting!!%!" and confirmed in numerical simula-
tion!'~13)_ This model was quantitatively confirmed and in particular the diffusion coefficient equation ! and the
loop closure time equation!> were found to be in close agreement. The scaling law 7 ~ N 3/2 was confirmed
experimentally 1® and by all-atom dynamics 7.

S10 Reaction kernel for surface-tethered molecules

As discussed in the Materials & Methods, if two tethers have their bases fixed at a separation distance r, then
the probability density for the reaction sites of the tethers to interact is given by Eq. 1, which is referred to as
the reaction kernel. This equation was derived by assuming each tether ¢ explores three-dimensional space with
Gaussian probability density. We note that this formulation assumed that the tether was allowed to explore all of
space. In this section, we ask, what is the interaction kernel og,¢(7) for two tethers with base fixed at a distance r,
but which are attached to a 2D surface (i.e. the plasma membrane), and therefore can only explore half-space.

Since surface-adhered polymers do not obey Gaussian probability densities that only depend on L, we must specify
more detailed polymer properties. We assume the tethers are freely-jointed chains composed of N rigid segments
of length 6. In free-space, this chain has a reach parameter of L = /L,Lc = V/NG§/2. We assume § = 0.3
nm consistent with previous models of disordered proteins and PEG 1319 We explore a range of tether lengths
N = 25 — 1000 corresponding to free-space reach parameters L = 1.5 — 13 nm. We simulate the ensemble of
polymer conformations of the two freely-jointed chains, for various base separation distances r, using a standard
Metropolis method 1329 and determine the probability that the reaction sites interact to determine o,f.

In Fig. S10A we show the probability density of the end-to-end distances for various values of L. In all cases,
the distances are slightly elongated by the presence of the surface. This is in agreement with previous findings
that adherence to a surface tends to elongate polymers!. In Fig. S10B, we show the reaction kernel oyt (7).
In all cases, we find that the effective concentrations are enhanced by the presence of the surface. This makes
intuitive sense, since reaction sites are forced by the surface to be in the same half-space. The length-scale of the
separation distance, i.e., the decay length of the curves in Fig. S10B, is approximately unchanged by the surface.
The simulation therefore suggests that the reaction kernel for surface-bound tethers is well-approximated by

Usurf(r) ~ Csurf U3D(T>7 (826)

3 \*? 372
= Csurf <27TLZ> €Xp <_2L2> ) (S27)

where cq s > 1 is an enhancement factor that arises as the surface forces the tethers together.

By fitting Eq. S27 to the simulated kernels in Fig. S10B, we produce estimates for the enhancement factor cgy,¢
in Fig. S10C. We find that ¢, ~ 1.5 over the estimated physiological range of L (for 7 nm< L < 13 nm,
always within 10%). In CRDME simulations of reactions between tethered molecules, the per-second reaction rate
is kcato3p(r). The results here allow us to use the same scheme to simulate reactions between surface-tethered
molecules, but with the prefactor k., reduced by ~ 1.5.

To further verify the validity of this approximation, in Fig. S10D we plot the re-scaled kernel

73D (T) VErsus "

3/2 I
(2#3[/2) %

In this re-scaling, all free-space kernels collapse onto a single curve (black curve in Fig. S10D). We now plot the

(528)




surface-adhered kernels re-scaled as

73D (T) VErsus "

ot (52)""7 a2

We find that these surface-adhered kernels also collapse onto the same single curve. This confirms the approxima-
tion given by Eq. S27.
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Figure S1: Comparison of A) og3p and B) opp over the membrane separation distance (nm) for the indicated value
of the molecular reach of the reaction (L).
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Figure S2: Reproducing Fig. 2 using the idealised 2D interaction kernel o»p shows that increasing the molecular
reach A) increases PD-1 potency in the diffusion-limited regime but B) has no effect in the reaction-limited regime.
C) The potency over the molecular reach quantified from A and B.



A 3D Cytosolic Geometry
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Figure S3: Reproducing Fig. 3A,C,D,E when molecules freely diffuse in 3D using the physiological 3D interaction
kernel o3p. A) Schematic of model highlighting that molecules are not confined to a membrane. B-C) Fraction of
phosphorylated substrate in the steady-state for the indicated values of the molecular reach of the reaction when
reactions B) are limited by diffusion or C) are not limited by diffusion. D) The ratio of kinase-to-phosphatase
that produces half-maximal phosphorylation over the molecular reach of the reaction showing that increasing
the molecular reach can only increase potency in this geometry. Parameter values: [S] = 8.5 x 10*um™3, [F] =
9.4 x 10*um™3, domain size = 300nm x 300nm x 300nm, and all other parameters as indicated in Table 2.
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Figure S4: The well-mixed mean reaction time, (T), of the two-particle A + B Feuo (L), () reaction changes its

dependence on molecular reach for small vs. large diffusivities when the molecules diffuse in a (2D) membrane,
but their tails can react in the (3D) cytosol. For each value of D and L we estimated (7") from 50000 CRDME-SSA
simulations. 95% confidence intervals for each curve are given by dashed lines of the same color (barely visible).
The catalytic rate ke was 0.1 pM~ts~1
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Figure S5: The well-mixed MRT (T") determined from the numerical solution of the Gaussian interaction model
given by Eq. S15 (solid lines) and exact solution to the Doi step function interaction model given by Eq. 4 using
calibrated X\ and ¢ values (dashed lines). See discussion of SI Section S3. (A) 2.5D model, having Doi solution
(Eq. 8) and calibration (Eq. 6); (B) 2D model, having Doi solution (Eq. 8) and calibration (Eq. S21); (C) 3D model,
having Doi solution (Eq. S16) and calibration (Eq. 6). The area (2D)/volume (3D) of the circle/sphere is chosen to
be the same as the square/cube of side length 300 nm. For A and C the catalytic rate ke is set to be 0.1 uM~'s1.
For B the 2D catalytic rate kcy is % x 10 uM~ts™Im~! = 553.4341 (nm)?s~ 1.
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Figure S6: The well-mixed mean reaction time (MRT), (T'), only demonstrates a switch in dependence on molec-
ular reach for small vs. large diffusivities when considering membrane-bound molecules with cytosolic tails that
react in 3D (2.5D model). In all figures solid lines correspond to (7') as estimated by numerically solving the ODE
in Eq. S15. Dotted lines correspond to the asymptotic expansions in Eq. 11a for A/B, Eq. 11b for C/D and Eq. 11c
for E/F. Dashed lines show general scaling behavior as a function of L. A) 2.5D model well-mixed MRT over
physical parameter range. B) Same as A but showing an expanded range of L values. C) 2D model well-mixed
MRT over physical parameter range. D) Same as C but showing an expanded range of L values. E) 3D model
well-mixed MRT over physical parameter range. F) Same as E but showing an expanded range of L values. In
the expanded range figures the red solid line gives the L value such that e /R = 1, corresponding to when the Doi
interaction distance, ¢, is equal to the domain radius, R. Note, as ¢ — R from below the asymptotic expansions
break down as ¢ /R « 1. For A, B, E, and F the catalytic rate ke is 0.1 uM~!s~1. For C and D the 2D catalytic
rate keg 1S % x 108 uM~1s7Im~! = 553.4341 (nm)?s— 1.
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Figure S7: For slowly diffusing membrane-bound proteins, reaction potency is maximized when the reach, L,
is comparable to the protein separation, . (A) When the reach is much smaller than the protein separation, the
cytosolic tails are too short to allow the reactive enzymatic/substrate sites to be in contact. (B) When the reach is
comparable to the protein separation, the probability of contact between the reactive sites is maximized. (C) When
the reach is much larger than the protein separation, the cytoplasmic tails explore too large a 3D volume proximal
to the membrane so that the reactive sites rarely encounter each other.
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Figure S8: Dependence of the steady-state fraction of phosphorylated CD28 in the CD28 model for two different
domain sizes when diffusion is slow (A,C; D = 1.25 x 107%um?/s) and fast (B,D; D = 1.25 x 10~2um?/s). A)
and B) The steady-state fraction of phosphorylated CD28 using a square domain of side length 300nm. C) and D)
The steady-state fraction of phosphorylated CD28 using a square domain of side length 500nm. [PD-1] is shown
on a logarithmic scale in each figure. Each curve was estimated from 100000 simulations. The catalytic rate £,
was set to be 0.01uM s~ 1,
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Figure S9: Average fractions of phosphorylated CD28 in the CD28 model versus time. Each figure ends at the
termination time at which we concluded the system had reached steady-state. These times were then used in
larger sets of simulations to produce Fig. 2. A) D = 1.25 x 107 %um?/s. B) D = 1.25 x 10~%um?/s. C)
D = 1.25 x 10~ 'um?/s. Each curve is an average from 100 simulations with an initial PD-1 concentration of

3.5556 x 10~%/nm?. Remaining parameters are as in Table 1.
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Figure S10: Simulation of tethers of various lengths adhered to a surface. (A) End-to-end distances for surface-
bound tethers (blue dashed) have probability densities shifted slightly larger than free-space (red dashed). Free-
space results can be compared with analytical theory (black solid) for validation. (B) Reaction kernel for surface-
adhered tethers gy ¢(7) (blue-dashed) and free-space o3p(r) (red dashed). The surface enhances the reaction
kernel by approximately 1.5-fold. Free-space result is compared to analytical theory (black solid). (C) Best-fit
factor cgyf that fits the surface-adhered kernel (blue curves in (B)) to the approximation (Eq. S27). (D) If the
reaction kernels from (B) are re-scaled according to Eq. S29, we find that all kernels, for the full range of tether
length N we explored, collapse onto a single curve, demonstrating the validity of the approximation (Eq. S27)

with this choice of enhancement factor cgy,f.
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