
Boston University
OpenBU http://open.bu.edu
Biology BU Open Access Articles

2019-06-13

Metabolic network percolation
quantifies biosynthetic capabilities
across the human oral microbiome

This work was made openly accessible by BU Faculty. Please share how this access benefits you.
Your story matters.

Version Published version
Citation (published version): David B Bernstein, Floyd E Dewhirst, Daniel Segrè. 2019. "Metabolic

network percolation quantifies biosynthetic capabilities across the
human oral microbiome.." Elife, Volume 8,
https://doi.org/10.7554/eLife.39733

https://hdl.handle.net/2144/40871
Boston University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Boston University Institutional Repository (OpenBU)

https://core.ac.uk/display/322973321?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.bu.edu/disc/share-your-open-access-story/


*For correspondence:

dsegre@bu.edu

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 26

Received: 05 July 2018

Accepted: 13 June 2019

Published: 13 June 2019

Reviewing editor: Wenying

Shou, Fred Hutchinson Cancer

Research Center, United States

Copyright Bernstein et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Metabolic network percolation quantifies
biosynthetic capabilities across the human
oral microbiome
David B Bernstein1,2, Floyd E Dewhirst3,4, Daniel Segrè1,2,5,6,7*
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Abstract The biosynthetic capabilities of microbes underlie their growth and interactions,

playing a prominent role in microbial community structure. For large, diverse microbial

communities, prediction of these capabilities is limited by uncertainty about metabolic functions

and environmental conditions. To address this challenge, we propose a probabilistic method,

inspired by percolation theory, to computationally quantify how robustly a genome-derived

metabolic network produces a given set of metabolites under an ensemble of variable

environments. We used this method to compile an atlas of predicted biosynthetic capabilities for

97 metabolites across 456 human oral microbes. This atlas captures taxonomically-related trends in

biomass composition, and makes it possible to estimate inter-microbial metabolic distances that

correlate with microbial co-occurrences. We also found a distinct cluster of fastidious/uncultivated

taxa, including several Saccharibacteria (TM7) species, characterized by their abundant metabolic

deficiencies. By embracing uncertainty, our approach can be broadly applied to understanding

metabolic interactions in complex microbial ecosystems.

DOI: https://doi.org/10.7554/eLife.39733.001

Introduction
Metabolism, in addition to enabling growth and homeostasis for individual microbes, contributes to

the organization of complex, dynamic microbial communities. Within these communities, different

microbes have diverse metabolic capabilities that lead to interactions driving microbial community

structure and dynamics at multiple spatial and temporal scales (Ponomarova and Patil, 2015;

Phelan et al., 2012; Watrous et al., 2013; Harcombe et al., 2014; Embree et al., 2015). For exam-

ple, through cross-feeding, a compound produced by one species might benefit another, leading to

a network of metabolic interdependences (Embree et al., 2015; Goldford et al., 2017; Mee et al.,

2014; Pande et al., 2015; D’Souza et al., 2018; Zengler and Zaramela, 2018; Pacheco et al.,

2019; Mee and Wang, 2012). This type of interaction has been proposed as one of the main rea-

sons for the prevalence, in natural microbial communities, of uncultivated (or fastidious) microbes

(Stewart, 2012; Epstein, 2013; Pande and Kost, 2017; Staley and Konopka, 1985). These

microbes do not grow in pure culture on standard laboratory conditions as they may depend on dif-

fusible metabolites produced by neighboring microbes (Pande and Kost, 2017). The prominence of

uncultivated/fastidious microbial organisms across the tree of life and their potential importance in

microbial community structure is highlighted by the recent identification of the candidate phyla radi-

ation – a large branch of the tree of life consisting mainly of uncultivated organisms with small
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genomes and unique metabolic properties (Kantor et al., 2013; Brown et al., 2015; Hug et al.,

2016). Efforts towards understanding this important component of microbial communities require

further knowledge of metabolic interdependencies driven by biosynthetic deficiencies.

Some of the most promising strides in understanding metabolic interdependences between

microbes have been taken in the study of the human oral microbiome. The human oral microbiome

serves as an excellent model system for microbial communities research, due to its importance for

human health and ease of access for researchers (Dewhirst et al., 2010; Wade, 2013). For example,

the order of colonization of species in dental plaque has been characterized physically

(Kolenbrander et al., 2010) and metabolically (Mazumdar et al., 2013), and visualized microscopi-

cally (Mark Welch et al., 2016). The human oral microbiome consists of roughly 700 different micro-

bial species, identified by 16S rRNA microbiome sequencing and cataloged in the human oral

microbiome database (Dewhirst et al., 2010; Chen et al., 2010). Importantly, 63% of species in the

human oral microbiome have been sequenced, including several uncultivated and recently-cultivated

strains implicated in oral health and disease (Krishnan et al., 2017; Siqueira Jr and Rôças, 2013).

Exciting recent work has led to successful laboratory co-cultivation of at least three previously uncul-

tivated organisms, the Saccharibacteria (TM7) phylum taxa: Saccharibacteria bacterium HMT-952

strain TM7x (Bedree et al., 2018; He et al., 2015; Bor et al., 2016; Bor et al., 2018), Saccharibac-

teria bacterium HMT-488 strain AC001 (Collins et al., 2019a), and Saccharibacteria bacterium HMT-

955 strain PM004 (Collins et al., 2019b). Saccharibacteria are prominent in the oral cavity and rele-

vant for periodontal disease (Brinig et al., 2003; Ouverney et al., 2003). Due to their importance,

they were among the first uncultivated organisms from the oral microbiome to be fully sequenced

via single-cell sequencing methods (Marcy et al., 2007), and represent the first co-cultivated mem-

bers of the candidate phyla radiation (He et al., 2015). Thus, their metabolic and phenotypic proper-

ties are of great interest for oral health and microbiology in general.

In parallel to achieving laboratory growth of diverse and uncultivated bacteria, a major unresolved

challenge is understanding the detailed metabolic mechanisms that may underlie their dependen-

cies. Ideally, one would want to computationally predict, directly from the genome of an organism,

its biosynthetic capabilities and deficiencies, so as to translate sequence information into mecha-

nisms and community-level phenotypes (Widder et al., 2016). A number of approaches, based on

computational analyses of metabolic networks, have contributed significant progress towards this

goal (Schuster et al., 2000; Oberhardt et al., 2009; Lewis et al., 2012). At the heart of these meth-

ods are metabolic network reconstructions, formal encodings of the stoichiometry of all metabolic

reactions in an organism, that are readily amenable to multiple types of in silico analyses and simula-

tions (Feist et al., 2009). Recent exciting progress has led to the automated generation of ‘draft’

metabolic network reconstructions for any organism with a sequenced genome (Henry et al., 2010),

opening the door for the quantitative study of large and diverse microbial communities. The most

commonly used metabolic network analysis methods – flux balance analysis (FBA) (Orth et al.,

2010a) and its dynamic version (dFBA) (Mahadevan et al., 2002) – have been extensively applied to

study microbial communities (Harcombe et al., 2014; Embree et al., 2015; Pacheco et al., 2019;

Magnúsdóttir et al., 2017; Magnúsdóttir and Thiele, 2018; Zarecki et al., 2014; Stolyar et al.,

2007; Klitgord and Segrè, 2010; Freilich et al., 2011; Zelezniak et al., 2015; Cook and Nielsen,

2017; Biggs et al., 2015; Zomorrodi and Segrè, 2016). However, FBA and dFBA are not easily

applicable to automatically-generated draft metabolic networks due to gaps (missing or incorrect

reactions) in the metabolic network, and are thus difficult to scale to large and diverse microbial

communities. Methods for ‘gap-filling’ draft reconstructions can address this problem, and ensemble

methods potentially present a promising approach (Biggs and Papin, 2017; Machado et al., 2018).

However, any gap-filling comes at the expense of an increased risk for false positive predictions.

Additionally, gap-filling typically requires specific knowledge or assumptions on the growth media

composition – which are often difficult to obtain for diverse environmental isolates and by definition

unknown for uncultivated organisms. Alternatively, topology-based metabolic network analysis

methods, such as network expansion (Ebenhöh et al., 2004) and NetSeed-based methods

(Borenstein et al., 2008), are less dependent on gap-filling and have been applied to the analysis of

draft metabolic reconstructions. These methods have provided valuable large-scale insight into met-

abolic processes in microbial communities, including the biosynthetic potentials of organisms and

metabolites (Basler et al., 2008; Matthäus et al., 2008), the chance of cooperation or competition

between species (Carr and Borenstein, 2012; Kreimer et al., 2012; Levy et al., 2015;

Bernstein et al. eLife 2019;8:e39733. DOI: https://doi.org/10.7554/eLife.39733 2 of 33

Research article Computational and Systems Biology

https://doi.org/10.7554/eLife.39733


Opatovsky et al., 2018), and the relationship between organisms and environment

(Borenstein et al., 2008; Freilich et al., 2009; Handorf et al., 2008), for example in the human gut

microbiome (Levy and Borenstein, 2013). While all of these approaches are promising, an addi-

tional issue that continues to limit the use of metabolic network analysis for prediction of biosyn-

thetic capabilities is the difficulty of generating these predictions when the chemical environment of

the microbes is unknown. In complex microbial communities, such as the human microbiome, the

exact chemical composition of the environment is difficult to estimate, due both to the molecular

complexity of the environment itself, and to the likely prevalence of secretions, lysing and cross-

feeding within the community. Thus, the capacity to provide metabolic predictions based on unela-

borated genome annotation, and on limited knowledge about an organism’s growth environment

remains an important open challenge.

Here we introduce a new method, which begins to address the above limitations, and provides a

novel prediction of an organism’s biosynthetic capabilities. Our method applies a probabilistic

approach to define and compute a metric that estimates which metabolites, such as biomass compo-

nents, are robustly synthesized by a given metabolic network and which would likely need to be sup-

plied from the environment/community. Discrepancies in these calculated estimates between

organisms can be used to generate hypotheses regarding microbial auxotrophy and metabolic

exchange in microbial communities. Importantly, our metric has the capacity to estimate biosynthetic

capabilities in spite of uncertainty about environmental conditions by randomly sampling many dif-

ferent possible nutrient combinations. In this study, we first demonstrated our method on E. coli to

clarify its performance and interpretation. Next, we applied our method to a large number of organ-

isms from the human oral microbiome, and predicted broad trends in biosynthetic capabilities asso-

ciated with taxonomy and microbial co-occurrence. We further focused our analysis on uncultivated

microorganisms, including three recently co-cultivated Saccharibacteria (TM7) strains. In addition to

highlighting their biosynthetic deficiencies, we developed specific hypotheses for their metabolic

exchange with growth-supporting partner microbes.

Analysis method
Our newly developed method quantifies the robustness with which a given metabolic network can

produce a given metabolite from variable metabolic precursors. In essence, we quantify a metabolic

network specific metric for metabolite producibility by probabilistically sampling sets of possible

environments. While the probabilistic sampling can be adjusted to reflect a specific environment, its

power lies largely in the capacity to explicitly incorporate in a statistical way the lack of knowledge

about environmental composition.

The inspiration for this method comes from the statistical physics concept of percolation. Percola-

tion theory has been applied in a wide range of fields, including the study of cascading metabolic

failure upon gene deletions in metabolism (Smart et al., 2008; Barabási, 2015). In percolation the-

ory the robustness of a network can be characterized by randomly adding or removing components

(nodes or edges) of a network and assessing network connectivity (Barabási, 2015). The smaller the

number of components that need to be randomly added to the network before it becomes con-

nected, the more robust it is to perturbations. We utilized this concept to characterize the network

robustness of a particular metabolic network towards producing a specified target metabolite by

randomly adding input metabolites to the network and assessing the network’s ability to produce

the target.

To implement our method, we first introduced a probabilistic framework for analyzing metabolic

networks (Figure 1 and Figure 1—figure supplement 1). In this framework, every metabolite can

be considered to be drawn from a Bernoulli distribution, i.e. present in the network with a given

input probability (Pin). These probabilities could represent beliefs about the environment, chances of

metabolites being available from a host organism, or any arbitrary prior assumption on metabolite

inputs. Throughout the majority of our analyses we have assigned Pin to be an identical value for all

input metabolites. However, as illustrated in an example in our results section (Metabolite produci-

bility in a protein vs. carbohydrate-enriched environment) this probabilistic framework can utilize Pin

values that vary across metabolites. Following the assignment of Pin, the network structure is used to

calculate the output probability (Pout) of some specified target metabolite. In practice, random sam-

pling of probabilistically drawn input metabolite sets is used to calculate the probability of produc-

ing the target metabolite. For each random sample, a modified version of FBA (Orth et al., 2010a)
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is used to assess the network’s ability to produce the target metabolite (for a complete explanation

of how FBA is implemented in this context, see methods section: Algorithm functions, feas).

Using the above probabilistic framework, we defined a novel metric quantifying biosynthetic

capabilities, the producibility metric (PM) (Figure 1B). The PM is calculated as follows: First, a pro-

ducibility curve describing Pout as a function of Pin is generated for a given metabolic network and

metabolite target. This curve can be estimated by sampling input metabolites for different values of

Pin (between 0 and 1), and calculating Pout. Next, we calculated the Pin value along the producibility

curve at which Pout is equal to 0.5 (Pin,0.5, analogous to the Km in the Michaelis-Menten curve).

Finally, PM is defined as PM = 1-Pin,0.5, such that larger PM values correspond to increased robust-

ness. Our method calculates PM efficiently by random sampling and a nonlinear fitting algorithm (for

details, see methods section: Algorithm functions calc_PM_fit_nonlin). In addition to calculating PM

computationally for arbitrary metabolic networks and metabolites, we also derived a way to calculate

PM analytically using combinatorial equations. The combinatorial equations are built up from simple

scenarios to the most general in Figure 1—figure supplement 2. This analytical result, verified in

detail for one specific pathway (Figure 2—figure supplement 2) clarifies the connection between

our metric and the concept of minimal precursor sets (Andrade et al., 2016). It describes mathemat-

ically how the PM captures the multiplicity of routes through which a given target metabolite can be

produced, and could serve as the basis for further theoretical work on the fundamental properties of

metabolic networks.

The algorithms used to implement our method are written in MATLAB and designed as a set of

modular functions that interface with the COBRA toolbox – a popular metabolic modeling software

compendium (Schellenberger et al., 2011; Heirendt et al., 2019). The methodology behind each

function is further explained in the methods section. The code is freely available online at https://

github.com/segrelab/biosynthetic_network_robustness (Bernstein, 2019; copy archived at https://

github.com/elifesciences-publications/biosynthetic_network_robustness).
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Figure 1. A probabilistic framework for calculating the producibility metric (PM). (A) Random samples of input metabolites are added to the metabolic

network with probability Pin. Samples are shown here with gray or red circles. Sampled input metabolites are then used to calculate if a specified target

output metabolite can be produced or not. Here the solid red circled sample leads to production of the target metabolite while the dotted gray circled

samples do not. The probability of producing the target output metabolite (Pout) is calculated by taking many random samples at a specified Pin. (B) A

producibility curve is calculated which represents Pout as function of Pin. Points along this curve are sampled by assigning the Pin value and estimating

Pout. The Pin value at which Pout = 0.5 (Pin,0.5) is used to define the producibility metric (PM) as PM = 1-Pin,0.5.

DOI: https://doi.org/10.7554/eLife.39733.002

The following figure supplements are available for figure 1:

Figure supplement 1. Probabilistic framework simple example.

DOI: https://doi.org/10.7554/eLife.39733.003

Figure supplement 2. Theoretical properties of the producibility curve.

DOI: https://doi.org/10.7554/eLife.39733.004
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Results

Using the E. coli core metabolic network to demonstrate features of
metabolite producibility
Before applying our approach to the systematic study of genome-scale metabolic networks from the

human oral microbiome, we used the model organism E. coli to illustrate the performance and inter-

pretation of our method. We started with the E. coli core metabolic network, a simplified network

consisting of central carbon metabolism and lacking peripheral metabolic pathways, such as amino

acid or cofactor biosynthesis (Orth et al., 2010b). We calculated the PM for all intracellular metabo-

lites in this network using a uniform ensemble of environments (as described in the methods). The

results are shown in Figure 2A, overlaid on the E. coli core metabolic network itself, with each

node’s color indicating its PM value and node size indicating its degree of connectivity. Consistent

with the high connectivity of the E. coli core metabolic network, most metabolites have high PM val-

ues (PM >0.950). For example, the metabolites H+ and pyruvate are both highly connected in the

metabolic network and have high PM (PM = 0.968 and 0.952 respectively). However, the network

PM=1

PM=0

O2
PM=0

H+

PM=0.968

Pyruvate
PM=0.952

NADH
PM=0.505

NAD+

PM=0.507

ADP
PM=0.696

ATP
PM=0.692

NAD+NADH

Pyruvate

H+
D-Lactate

PM=0.951

A

B

D-Lactate

Figure 2. E. coli core metabolic network metabolite producibility. (A) The E. coli core metabolic network is represented as a bipartite graph with

metabolites shown as circles and reactions shown as squares. Reactions shown with a black border are irreversible in the model, those with no border

are reversible. All intracellular metabolites are colored based on their PM value (low – blue, high – red). Reactions and metabolite nodes are sized

based on their total node degree. Several key metabolites of interest are highlighted with their corresponding PM values shown. Central metabolites

such as H+ and Pyruvate have high degree and high PM. Cofactors such as AMP/ADP/ATP and NAD+/NADH have high degree but low PM, as they

cannot be synthesized in this network. Oxygen is an example of a PM=0 metabolite that cannot be produced from any other metabolites in this

network. D-lactate is an example of a metabolite with low degree and high PM that is it is easily produced but not well-connected. (B) The lactate

dehydrogenase reaction producing D-Lactate is shown as an example to illustrate that poorly connected metabolites can display a high PM, and how

recycled cofactors have minimal impact on PM values. Lactate dehydrogenase produces D-lactate and NAD+ from pyruvate, H+ and NADH. The

metabolite D-lactate has high PM despite being produced only by this one reaction in the metabolic network because it can be produced from the

high PM metabolites pyruvate and H+, which are themselves produced from a large number of possible precursors. Although NADH is also used to

produce D-lactate, and has a relatively low PM in this core model, it has minimal impact on the PM of D-lactate as NADH can be recycled from NAD+

by a large number of reactions (represented by the arrows at the bottom of the figure) and thus production of NADH is not necessary for the

production of D-lactate.

DOI: https://doi.org/10.7554/eLife.39733.005

The following figure supplements are available for figure 2:

Figure supplement 1. Node degree and producibility metric do not correlate for E. coli core metabolic network intracellular metabolites.

DOI: https://doi.org/10.7554/eLife.39733.006

Figure supplement 2. Producibility analysis of the histidine biosynthetic pathway.

DOI: https://doi.org/10.7554/eLife.39733.007
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also contains several metabolites that are well connected, but have lower PM values. These include,

for example, the cofactors AMP/ADP/ATP and NAD+/NADH, which have PM values of ~0.7 and ~0.5

respectively, because they can be produced from each other, but not biosynthesized in this network.

The network also includes several examples of metabolites that are poorly connected but have high

PM values. One example is D-lactate, which is produced only via Lactate Dehydrogenase from the

high PM metabolites Pyruvate and H+ (Figure 2B). This reaction also consumes NADH and produces

NAD+ but because these cofactors can be easily recycled from each other by a large number of dif-

ferent reactions, their relatively low PM (as described above) has minimal influence on the PM value

of D-lactate (Figure 2B). This example demonstrates the fact that our metric captures metabolites

which are easily produced because their precursors are easily produced, and that the PM of recycled

cofactors has minimal influence on the PM of a target metabolite. Overall, there is also no significant

correlation between the PM values and the node degree of a metabolite in the network (Figure 2—

figure supplement 1), indicating that our metric describes a more complex property of a metabolite

in a network that is not captured simply by node degree.

Producibility of metabolites differs from pathway completeness and
captures minimal precursor set structure
We next applied our method in detail to a specific biosynthetic pathway within a genome-scale

model to demonstrate how our PM provides information that is richer than what can be learned

from simply counting the percent of reactions present in a given biosynthetic pathway. Specifically,

we analyzed the histidine biosynthetic pathway in the curated E. coli iJO1366 genome-scale meta-

bolic network (Orth et al., 2011), and checked how the two methods differ in their capacity to cap-

ture the effect of reaction knock-outs along the pathway (Figure 2—figure supplement 2). The PM

is more sensitive than pathway completeness, as it captures features beyond the percent of reactions

in the biosynthetic pathway. For different knockouts in the histidine biosynthetic pathway (which

counts nine distinct reactions) the PM is related to the distance of the removed reaction from the tar-

get metabolite (histidine), whereas the completeness score would be the same (8 out of 9) for each

auxotroph (Figure 2—figure supplement 2B). This same capacity of PM to capture finer details of

the effect of missing reactions in a pathway is also confirmed by a similar analysis of histidine biosyn-

thesis across all oral microbiome draft metabolic networks (oral microbiome network reconstruction

and analysis described later in the manuscript) (Figure 2—figure supplement 2C).

In general, in contrast with the percent completion of the biosynthetic pathway, the PM depends

deeply on the pathway structure, ultimately capturing the number of different routes through which

the target metabolite can be synthesized (also called the minimal precursor sets; Andrade et al.,

2016). This property stems intuitively from the way the PM is defined, and is explained precisely by

our combinatorial theory (Figure 1—figure supplement 2). While our method’s computational esti-

mate of the PM is based on sampling the space of possible precursor sets, the combinatorial theory

provides an exact value for the producibility of a molecule with a given minimal precursor set struc-

ture. The close match between the sample-based PM and the combinatorial theory for the histidine

biosynthetic pathway (Figure 2—figure supplement 2B) suggests that the PM indeed captures the

complex multiplicity of avenues for producing a given metabolite.

Producibility analysis shows improved tolerance to missing reactions
compared to flux balance analysis
One of the challenges we wished to address with our method is the possibility of making robust

inferences about the metabolic capabilities of different organisms in spite of missing reactions – a

situation often encountered upon reconstructing metabolic networks from newly sequenced

genomes. To assess the performance of our approach in this context, we compared it with flux bal-

ance analysis (FBA) calculations for a genome-scale metabolic networks with a given number of ran-

domly removed reactions. In particular, we applied both FBA and our method to the E. coli iJO1366

genome-scale metabolic network, which we gradually perturbed by removing an increasing number

of randomly chosen reactions. In this performance test, the unperturbed iJO1366 metabolic network

was used as a ground truth against which the predictions of our method and FBA on perturbed met-

abolic networks were compared. Figure 3 shows the accuracy of both FBA and the PM as a function

of the percentage of reactions removed from the iJO1366 metabolic network. While the output of
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our method (the PM for any metabolite) is different from that of FBA (the flux through all reactions),

one can use the PM values observed across all biomass components as a proxy for the growth

capacity of an organism, providing a metric that is comparable with the FBA-predicted biomass pro-

duction flux. The specific metrics used to compare the PM and FBA predictions for biomass produc-

tion are described further in the Figure 3 legend. One can see that both the FBA and the PM

predictions become worse as the metabolic networks are further perturbed. However, the PM pre-

dictions are more tolerant to missing reactions than the FBA predictions. While the FBA production

of biomass becomes infeasible for the majority of the perturbed metabolic networks after removing

less than 1% of the reactions, the PM results remain fairly quantitatively accurate when removing up

to 10% of the reactions. This analysis provides insight into the accuracy of our method for analyzing

metabolic networks with gaps, such as draft (non-gap-filled) metabolic networks produced through

automated reconstruction pipelines.

Metabolite producibility points to putative metabolic mechanisms for
E. coli auxotroph co-cultures
As a first test of our approach in its capacity to provide metabolic insight about experimental meas-

urements of inter-microbial interactions, we used the PM to estimate the capacity of different E. coli
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Figure 3. The accuracy of flux balance analysis and the producibility metric for different perturbed E. coli genome-scale metabolic networks. Reactions

were randomly removed from the E. coli iJO1366 metabolic network generating 50 different networks at five different levels of reaction removal. These

networks were then analyzed with the producibility metric (PM) and flux balance analysis (FBA) in a minimal and complete medium. The accuracy of the

PM and FBA results were assessed through two different measures and plotted as a function of the number of reactions removed on a semi-log plot.

(A) Quantitative difference accuracy – The accuracy was measured quantitatively based on the L1 norm of the difference between the original network

metric and the randomly perturbed network metric. For FBA the L1 norm was computed as the absolute value of the difference between the biomass

flux of the original network and the perturbed network. For the PM the L1 norm was calculated as the sum of the absolute value of the difference

between each PM value. The L1 norm for both metrics was then normalized and subtracted from one to give a measure of accuracy. The mean of 50

different randomly perturbed networks at five different reaction removal levels is shown with dots connected by solid lines (FBA on minimal medium:

Blue, FBA on complete medium: Red, PM: Purple). The standard error of the metric is shown as a shaded region around the line. (B) Biomass

production accuracy – The accuracy was measured by the fraction of randomly perturbed metabolic networks that were capable of producing biomass.

For FBA this was calculated as the fraction of networks capable of producing biomass flux above 1% of the unperturbed biomass flux (FBA on minimal

medium: Blue, FBA on complete medium: Red). For the PM, the biomass production accuracy was calculated as the fraction of networks capable of

producing all biomass components above a specified PM threshold. The threshold was either PM >0.1 (solid purple) or PM >0.6 (dashed purple).

DOI: https://doi.org/10.7554/eLife.39733.008

The following figure supplement is available for figure 3:

Figure supplement 1. E. coli auxotroph co-cultures metabolite producibility.

DOI: https://doi.org/10.7554/eLife.39733.009
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auxotrophs to compensate for each other’s metabolic limitations. In particular, we compared experi-

mental data from co-cultures of E. coli auxotrophs from Wintermute and Silver (2010) with corre-

sponding PM calculations. After reconstructing in silico the specific auxotroph strains used in this

work (based on the E. coli iJO1366 metabolic network), we calculated the PM for all essential bio-

mass components in each auxotroph and compared the PM values to the experimentally measured

synergistic growth of auxotroph pairs (Figure 3—figure supplement 1). Different auxotrophs, clus-

tered by PM, were seen to group based on the pathway of the removed gene, and auxotrophs with

knockouts in different locations of the same biosynthetic pathway showed a graded decrease in PM

for the corresponding biomass component, similar to what was seen in our histidine biosynthetic

pathway analysis in Figure 2—figure supplement 2. The overall distance between auxotroph PM

values was positively correlated with synergistic growth, suggesting that auxotrophs with different

biosynthetic capabilities could better support each other’s growth (Figure 3—figure supplement

1A). Several examples and counter-examples that further elaborate this trend are highlighted in Fig-

ure 3—figure supplement 1B and C. This analysis also gave us the opportunity to query in more

depth the capacity of our approach to provide insight into whether auxotrophs with higher PM val-

ues may be more easily supplemented by partner auxotrophs. We did not detect a clear general sig-

nal on whether auxotrophs could rescue each other based on the average PM across all biomass

components. However, for a specific instance, namely auxotrophs for tryptophan, we found a corre-

lation between tryptophan PM and average synergistic growth with other auxotrophs (Figure 3—fig-

ure supplement 1D), possibly suggesting that the PM captures the ease with which auxotrophs in

this pathway can be supplemented by other auxotrophs. Overall, our method enables the compari-

son of model-based producibility predictions with experimental data on auxotrophic interdependen-

cies. These predictions helped identify metabolic complementarity patterns, but did not fully

capture all of the complexity of interactions between E. coli auxotrophs.

Reconstruction of human oral microbiome metabolic networks
We next applied our method to the human oral microbiome, aiming at a mechanistic characteriza-

tion of the biochemical capabilities of different microbes in this community based on metabolic net-

works reconstructed directly from their genomes. As a first step, we reconstructed metabolic

networks for 456 different microbial strains representing a diverse set of human oral microbes whose

annotated genomes were available from the Human Oral Microbiome Database. These organisms

represent 371 different species, 124 genera, 64 families, 35 orders, 22 classes, and 12 phyla. Meta-

data related to the selected organisms can be found in Supplementary file 4. Notably, the database

includes several sequenced yet uncultivated or recently co-cultivated organisms. In particular, the

following sequenced yet uncultivated, or recently co-cultivated, strains were included in our analysis:

Saccharibacteria (TM7) bacterium HMT-952 strain TM7x (He et al., 2015), Saccharibacteria (TM7)

bacterium HMT-955 strain PM004 (Collins et al., 2019b), Saccharibacteria (TM7) bacterium HMT-

488 strain AC001 (Collins et al., 2019a), Tannerella HMT-286 strain W11667 (Vartoukian et al.,

2016a), Anaerolineae (Chloroflexi phylum) bacterium HMT-439 strain Chl2 (Vartoukian et al.,

2016b), Absconditabacteria (SR1) bacterium HMT-874 strain MGEHA (Campbell et al., 2013a), and

Desulfobulbus HMT-041 strains Dsb2 and Dsb3 (Campbell et al., 2013b). All of the selected

genomes were used to reconstruct sequence-specific draft metabolic networks using the Depart-

ment of Energy Systems Biology Knowledgebase (KBase) ‘build metabolic model’ app (Henry et al.,

2010; Arkin et al., 2018; Overbeek et al., 2014). The networks were reconstructed without any

gap-filling. A KBase narrative containing the genomes and draft metabolic network reconstructions

can be found at: https://narrative.kbase.us/narrative/ws.27853.obj.935. The complete collection of

all network models is also available for download in MATLAB (.mat) format at https://github.com/

segrelab/biosynthetic_network_robustness (Bernstein, 2019).

Large-scale patterns in biosynthetic capabilities identified across the
human oral microbiome
We analyzed the PM for 88 different biomass metabolites across the aforementioned 456 metabolic

networks from the human oral microbiome. The 88 biomass metabolites included all biomass build-

ing blocks considered to be essential for either Gram-negative or Gram-positive biomass, as listed in

the KBase build metabolic models app (Henry et al., 2010; Arkin et al., 2018; Overbeek et al.,
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2014) (listed in Supplementary file 5). Through this analysis we calculated 40,128 PM values which

represent an atlas of predicted biosynthetic capabilities across these human oral microbiome organ-

isms. The ensuing atlas is represented as a hierarchically clustered matrix of PM values for all 456

organisms and 88 metabolites in Figure 4. The same data are available in Figure 4—figure supple-

ment 1 (clustered by taxonomy), and in Supplementary file 6.

The hierarchically clustered heat map (Figure 4) shows extensive variability in the PM values of

different organisms and metabolites across the oral microbiome. There are three main large clusters

of metabolites: one cluster with consistently high PM (top), one cluster with low PM (middle), and

one cluster with variable PM (bottom). Different classes of metabolites cluster quite differently across

this landscape. In addition to simple ubiquitous metabolites, such as H2O or glycine (Figure 4 I), all

nucleotides have high PM across the oral microbiome organisms. Amino acids generally have high

PM as well, with the notable exception of tryptophan (Figure 4 II). Interestingly, tryptophan is known

to be a particularly difficult amino acid to synthesize (Akashi and Gojobori, 2002). Metal ions gener-

ally had PM value of 0 across all organisms, serving as an expected negative control. Some excep-

tions, such as Mg2+, Co2+, Cl-, Fe3+, and Fe2+, can be explained based on their presence in larger

compounds, such as porphyrins. For example, Co2+ has increased PM values in a pattern that closely

follows the PM values of the cobalt containing vitamin cobamamide (Figure 4 III).

Before analyzing in detail the patterns identifiable in the PM matrix of Figure 4, we showed that

such patterns could not be simply attributed to the broad property of genome size – even if genome

size is known to be an important predictor of the overall biosynthetic capabilities of an organism

(Zarecki et al., 2014). Fastidious or parasitic organisms tend to have reduced genomes and conse-

quently reduced metabolic capabilities. In our data, the overall average PM value for each organism

can be partially predicted by genome size. A linear regression model and quadratic regression

model which used the log of genome size to predict the average PM value across all metabolites for

each organism had R-squared values of 0.498 and 0.551 respectively (Figure 4—figure supplement

2 A). The fit of this model was further improved by adding taxonomic information as additional

parameters (see methods section for additional details on adding taxonomic information). We

inferred this by using the Akaike information criterion (AIC) and Bayesian information criterion (BIC),

two measures of model accuracy that include a penalty for added parameters to discourage over-fit-

ting (Clarke et al., 2009). The BIC has a stronger penalty for additional parameters and improved

up to the order level, while the AIC improved up to the genus level (Figure 4—figure supplement

2 B, C). These improvements in AIC and BIC indicate that our data contain additional structure that

is described by taxonomy beyond simply genome size.

Taxonomic trends capture biosynthetic patterns across human oral
microbiome organisms
Many of the patterns in our large-scale analysis of the human oral microbiome PM matrix indicated

taxonomic trends in the PM of different metabolites across organisms. While the clustering of the

PM matrix was not entirely driven by taxonomy (Figure 4), we did see significant taxonomic trends

in our data beyond what was explained simply be genome size (Figure 4—figure supplement 2).

We further investigated, quantitatively, which specific phyla and orders were associated with specific

PM trends by calculating the log likelihood ratio between a quadratic regression model predicting

the PM values for a particular metabolite-based solely on genome size against one that incorporates

a specific taxonomic parameter of interest (Figure 4—figure supplement 3). This allowed us to

highlight metabolites with highly significant increased or decreased PM values in certain taxonomic

groups, and to confirm patterns that we observed by eye in Figure 4. Numerous patterns and

details of the PM matrix could be relevant for addressing specific biological questions or model

refinement challenges. Here we focus in detail on two specific classes of compounds: (i) cell-wall and

membrane components, which tend to vary broadly across organisms, and are important for antimi-

crobial susceptibility and immune system recognition; and (ii) amino acids and essential factors (e.g.

vitamins), which could be relevant for understanding metabolic exchange among bacteria and with

the host.

A first striking pattern in the PM matrix is the complexity of cell-wall and membrane components

of different taxa. Some aspects of this pattern are consistent with standard attribution of metabolites

associated with the Gram staining categories (estimated using the KBase build metabolic model app

[Henry et al., 2010; Arkin et al., 2018; Overbeek et al., 2014]). However, we also observed
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Figure 4. Human oral microbiome organisms PM matrix. The producibility metric (PM) was calculated for 456 different oral microbiome organisms

(columns) and 88 different essential biomass metabolites (rows). The resulting matrix is hierarchically clustered based on average distances between

organisms and metabolites PM values. Organism Gram-stain and phylum/class are indicated by several annotation columns at the top of the matrix.

The biomass metabolites analyzed consisted of several different types of metabolites indicated with different colors. Several metabolites that showed

interesting patterns across oral microbiome organisms are highlighted with roman numerals. The most distinct cluster of organisms, highlighted and

annotated (top left), consisted of fastidious reduced-genome organisms (Mycoplasma, Treponema) and uncultivated or recently cultivated organisms

(SR1, TM7, Desulfobulbus, Anaerolineae).

Figure 4 continued on next page
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interesting deviations, which could be partially attributed to known finer resolution in the specific

membrane components across taxa. Compared to other metabolites, cell-wall components generally

tend to have variable or low PM values across the oral microbiome organisms. We analyzed in detail

fifteen different teichoic acids, a class of metabolites expected to be found in the cell wall of Gram-

positive organisms that play an important role in microbial physiology and interactions with the host

(Weidenmaier and Peschel, 2008). Of these, nine were found to have higher PM values in Gram-

positive organisms, as expected (Figure 4 IV). In particular, the D-alanine substituted lipoteichoic

acids had high PM values in the phylum Firmicutes and specifically the class Bacilli. However, there

was another set of 6 teichoic acids that had intermediate PM values across a large number of organ-

isms and didn’t follow Gram-staining trends (Figure 4 V). These consisted of three N-acetyl-D-glu-

cosamine linked and three unsubstituted teichoic acids. This mismatch in expected patterns

suggests that the metabolic pathways involving these particular cell-wall components may merit

closer inspection in the network reconstruction process.

We further observed clear trends associated with several lipids which are expected to be found in

the cell membrane of both Gram-positive and Gram-negative organisms. In particular, we found a

strong increase in the PM value for three phosphatidylethanolamine lipids in Gram-negative organ-

isms (Figure 4 VI). Interestingly, these lipids have been previously observed to be more commonly

produced in Gram-negative organisms, and have implications for antimicrobial susceptibility

(Epand et al., 2007; Epand and Epand, 2009). We also identified trends associated with three car-

diolipin and three phosphatidylglycerol lipids that display generally similar PM patterns across differ-

ent species (Figure 4 VII). One class of organisms that stands out with respect to lipid biosynthesis

are the Negativicutes. These organisms have relatively high PM values for phosphatidylethanolamine

but PM values of 0 for cardiolipin and phosphatidylglycerol lipids. Consistent with this result, it has

been previously observed that the Negativicutes organism Selenomonas ruminantium lacks cardioli-

pin and phosphatidylglycerol lipids in its inner and outer cell membranes, but does have phosphati-

dylethanolamine (Kamio and Takahashi, 1980). It has been hypothesized that the membrane

stabilizing role of these two missing lipids could be partially fulfilled by peptidoglycan bound poly-

amines, including spermidine, in Selenomonadales organisms (Kamio and Takahashi, 1980;

Hamana et al., 2012). Concordantly, we see an increased PM value for the polyamine spermidine

across Negativicutes in our data (Figure 4 VIII). These patterns suggest that the PM could be used

to obtain organism-specific estimates of biomass composition from genomes for metabolic network

reconstruction, facilitating assignments beyond gram positive/negative compositions.

Aside from lipids and cell-wall components, there are a number of interesting trends related to

several amino acids and other essential factors in our data. A number of metabolites had increased

PM in the phylum Proteobacteria and decreased PM values in the phylum Bacteroidetes. A notable

example is heme, which can be seen to follow this trend (Figure 4 IX). Heme plays an important role

Figure 4 continued
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The following figure supplements are available for figure 4:

Figure supplement 1. Taxonomically ordered human oral microbiome organisms PM matrix.

DOI: https://doi.org/10.7554/eLife.39733.011

Figure supplement 2. Prediction of average producibility metric using genome size and taxonomic parameters.

DOI: https://doi.org/10.7554/eLife.39733.012

Figure supplement 3. Taxonomic parameters as predictors of metabolite specific producibility.

DOI: https://doi.org/10.7554/eLife.39733.013

Figure supplement 4. Producibility of different organic acids across human oral microbiome organisms.

DOI: https://doi.org/10.7554/eLife.39733.014

Figure supplement 5. Analysis of metabolite producibility change for a proteolytic organism (Porphyromonas gingivalis) and a saccharolytic organism

(Streptococcus mutans) in a protein enriched environment.

DOI: https://doi.org/10.7554/eLife.39733.015

Figure supplement 6. Correlations of various pairwise metabolic metrics.

DOI: https://doi.org/10.7554/eLife.39733.016

Figure supplement 7. Comparison of PM complementarity vs Seed complementarity.

DOI: https://doi.org/10.7554/eLife.39733.017
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in microbe host interactions, as bacterial pathogens often acquire it from their human host

(Choby and Skaar, 2016). In the context of the human oral microbiome, the oral pathogen Porphyr-

omonas gingivalis (belonging to the phylum Bacteroidetes) is known to scavenge heme

(Olczak et al., 2005), compatible with the above pattern. Other metabolites that displayed the

same trend include: arginine, cysteine, methionine, tryptophan, and glutathione. Arginine can be

catabolized via the arginine deiminase pathway to regenerate ATP and is thus an interesting

exchange metabolite beyond its use as a protein building block (Plugge and Stams, 2001;

Schink, 2006). Tryptophan is one of the highest cost amino acids to biosynthesize (Akashi and Gojo-

bori, 2002), and thus is an intriguing exchange candidate. Methionine and Cysteine are the only two

sulfur containing standard amino acids, and glutathione is synthesized from Cysteine. It is possible

that the discrepancies between PM values observed here are indicative of broad amino acid and

vitamin exchange between the phyla Proteobacteria and Bacteroidetes in the human oral

microbiome.

Organic acid production predicted for human oral microbiome
organisms
In addition to calculating the producibility of biomass components, we were interested in applying

the PM to other metabolites that could be produced by microbes and impact microbial community

structure or function in the human oral microbiome. We thus used our method to compute the PM

of various organic acids across oral microbiome organisms. We analyzed nine different organic acids

and observed a large amount of variability in PM (Figure 4—figure supplement 4). Acetate had the

highest median PM while butyrate had variable PM, with most organisms having PM of 0 but some

having relatively high PM. In particular, Fusobacterium genus organisms were found to have high

PM for butyrate, reflecting observations obtained from transcriptomic data, with important implica-

tions for periodontal disease (Jorth et al., 2014). Additionally, increased butyrate PM was observed

in some but not all Porphyromonas and Prevotella species, which have been further implicated in

periodontal disease due to their potential production of inflammation inducing organic acids (Taka-

hashi, 2015). For reference, the organic acids analyzed in this section were added to

Supplementary file 5, and the calculated PMs were added to Supplementary file 6.

Metabolite producibility in a protein vs. carbohydrate-enriched
environment
Although one of the most useful features of our method is the capacity to provide an environment-

independent measure of metabolite producibility, it can also be tailored to ask environment-specific

questions. To exemplify this capability, we applied our method to investigate the biosynthetic capa-

bilities of a proteolytic organism (Porphyromonas gingivalis) and a saccharolytic organism (Strepto-

coccus mutans) in a protein and a carbohydrate-enriched environment. The hypothesis was that the

proteolytic organism would have a higher PM increase in the protein enriched environment as it is

able to breakdown amino acids to synthesize other biomass components and likewise the saccharo-

lytic organism would have a higher PM increase in the carbohydrate-enriched environment. We simu-

lated a protein-enriched environment by fixing all amino acids to always be present (Pin = 1) when

calculating the PM, and simulated a carbohydrate-enriched environment by fixing D-glucose to

always be present (Pin = 1). Target metabolites were never fixed to be present; for example when

calculating the PM of an amino acid in the protein-enriched environment we did not fix that amino

acid to be present. We measured the increase in PM in the enriched environments relative to the

originally calculated PM, for all 88 biomass metabolites and nine organic acids (Figure 4—figure

supplement 5). Overall, we saw only small increases in PM in the enriched environments, with partic-

ularly small increases in the carbohydrate-enriched environment. The modest trends that we identi-

fied matched our expectation, with the proteolytic organism showing a larger increase in PM in the

protein-rich environment and the saccharolytic organism showing a larger increase in PM in the car-

bohydrate-enriched environment. One possible reason for the small effects observed in this analysis

is the fact that our baseline random environment is fairly rich. For example, fixing D-glucose to be

available in the carbohydrate-enriched environment had minimal effect as D-glucose already had a

high PM in the original random environment. However, this application does highlight the value of
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further exploring variants of our method that explicitly translate environmental information into non-

uniform metabolite input probabilities.

Metabolic similarity correlates with microbial co-occurrence in the
human oral microbiome
Our approach is a bottom-up approach, that starts from genomes and predicts metabolic capabili-

ties that could underlie interactions. A key question in the field of metabolic modeling is whether

these bottom-up metrics can be compared to and provide insight into top-down analyses of large

datasets, such as the patterns of co-occurrence of microbial taxa from microbiome sequencing data.

To address this question for our approach, we used the PM to calculate pairwise measures of meta-

bolic difference or complementarity between any two organisms and assessed the correlation of

these metrics with microbial co-occurrence. Through this analysis we sought to identify metabolic

trends associated with co-occurring microbes. We simultaneously evaluated the correlation between

microbial co-occurrence and other previously defined metrics (Carr and Borenstein, 2012;

Kreimer et al., 2012; Levy et al., 2015), so that we could compare these to the performance of the

PM. While there are a few additional methods that have utilized gap-filled metabolic models to pro-

vide insight into microbial co-occurrence data (Freilich et al., 2011; Zelezniak et al., 2015), in this

study we focused our direct comparison on alternative methods that could be used to analyze draft

(non-gap-filled) metabolic networks as these were closest in scope and applicability to our own

method. Future analyses could broaden the scope of this comparison. All of the pairwise metabolic

metrics we calculated are described further in the methods section. For co-occurrence data, we ana-

lyzed the supplementary data from Friedman and Alm (2012), which contains microbial co-occur-

rences identified from 16S rRNA sequencing data using their SparCC method for seven different

oral microbiome sites. The correlations between all pairwise metabolic metrics and microbial co-

occurrence in all seven oral microbiome sites are presented in Supplementary file 7.

Across the seven different oral microbiome sites, the pairwise metabolic metric ‘PM distance’

(see methods section for description of metrics) showed the most consistent significant correlation

with co-occurrence of any pairwise metabolic metric. The PM distance was consistently negatively

correlated with the co-occurrence, indicating that organisms that are more similar in PM tend to co-

occur. Several other pairwise metabolic metrics were found to be correlated with co-occurrence,

although in a less consistent manner than the PM distance (Supplementary file 7). Additionally,

many of the pairwise metabolic metrics that we analyzed were highly correlated with each other as

we show in Figure 4—figure supplement 6. To further disentangle correlations between pairwise

metabolic metrics and co-occurrence data, we looked at the partial-correlation between a pairwise

metabolic metric and co-occurrence when controlling for another pairwise metabolic metric. We

found that the PM distance always had significant partial-correlation with co-occurrence when con-

trolling for any of the other pairwise metabolic network metrics, a trend not observed for the other

metrics. We further repeated this entire correlation analysis for co-occurrence measured by Pear-

son’s correlation (also from the supplementary data of Friedman and Alm, 2012.), and interestingly

found that correlations between pairwise metabolic metrics and co-occurrence were weaker and less

consistent when using Pearson’s correlation, in line with previously reported inconsistency in co-

occurrence prediction by Pearson’s correlation (Friedman and Alm, 2012). Overall, our analysis cor-

roborates and enhances previous analyses showing how co-occurrences in 16S rRNA sequencing

data from the human microbiome project tend to reflect ‘habitat filtering’, where organisms with

similar metabolic capabilities tend to co-occur (Freilich et al., 2011; Zelezniak et al., 2015;

Levy and Borenstein, 2013).

We next examined more closely the correlation between the pairwise metabolic metrics PM com-

plementarity and Seed complementarity (see Methods and Figure 4—figure supplement 7). These

measures of complementarity summarize the potential for any one organism to provide metabolic

products to another. While the two metrics are highly correlated with each other, the distribution of

their values display some significant differences. In particular, the PM complementarity displays a

clear bi-modal distribution, which is absent from the distribution of Seed complementarity values.

The high-valued peak of the PM complementarity distribution captures most of the interactions

between small-genome/fastidious microorganisms and their partners. This indicates that our method

is good at resolving biosynthetic deficiencies in fastidious/uncultivated organisms, as further investi-

gated next.
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Biosynthetic properties predicted in a cluster of fastidious human oral
microbiome organisms
In addition to dissecting the patterns associated with specific metabolites, one can analyze the PM

landscape of Figure 4 from the perspective of the organisms and their agglomeration into clusters.

Strikingly, in our large clustered PM matrix, the most distinct hierarchical cluster of organisms con-

sisted of a number of fastidious organisms (Figure 4 top left). This cluster included all of the Myco-

plasma genomes that we analyzed, and one Treponema genome. Mycoplasma and Treponema are

genera that are known to be parasitic and have evolved to have reduced genomes and metabolic

capabilities (Fraser et al., 1995; Fraser et al., 1998; Meseguer et al., 2003; Davis et al., 2013;

Razin, 1978). The remaining members of this cluster included nearly all of the sequenced yet unculti-

vated, or recently co-cultivated, organisms in our study. The organisms included were from the

phyla: Absconditabacteria (SR1), Saccharibacteria (TM7), Proteobacteria (genus Desulfobulbus), and

Chloroflexi (class Anaerolineae). Many of these organisms are thought to have reduced genomes

and limited metabolic capabilities underlying their fastidious nature, much like Mycoplasma. Only

one of the previously uncultivated organism we analyzed was found outside of this fastidious cluster,

namely Tannerella HMT-286. Interestingly, this bacterium is hypothesized to rely on externally sup-

plied siderophores to support its growth (Vartoukian et al., 2016a). This type of dependency is not

captured by our metabolic analysis and highlights the fact that, while uncultivability can be driven by

many different mechanisms, our method captures the prominent effect of reduced biosynthetic

capacity.

We sought to gain clearer insight into the metabolic properties of these co-clustered fastidious

organisms by re-clustering their PM submatrix (Figure 5 A). By comparing the PM values in this fas-

tidious cluster to those in the average oral microbiome organisms, it is clear that the fastidious

organisms had reduced PM for a large number of metabolites including cell-wall components, lipids,

amino acids, and other essential factors. When ranking metabolites by their difference in average

PM between all oral microbiome organisms and the fastidious cluster a number of amino acids and

vitamins stand out as being the most depleted in the fastidious cluster. The top metabolites where:

pyridoxal phosphate, valine, putrescine, isoleucine, bactoprenyl diphosphate, thiamin diphosphate,

5-methyltetrahydrofolate, lysine, deoxyguanosine triphosphate, tryptophan, and guanosine-triphos-

phate. These metabolites may be particularly relevant with regards to exchange between fastidious

organisms and their oral microbiome community partners. Amino acids, in particular, have been

hypothesized to be involved in metabolic exchange between microbial organisms in communities

(Ponomarova and Patil, 2015; Mee et al., 2014; Mee and Wang, 2012; Zelezniak et al., 2015).

Amino acids with reduced PM in the fastidious cluster tend to have high biosynthetic cost (cost cal-

culated in Akashi and Gojobori, 2002.), as indicated by Spearman correlation analysis (r = 0.4595,

p-value=0.0415). An exception to this trend, potentially interesting for follow up studies, is the case

of the branched chain amino acids valine, and isoleucine, which are the two amino acids with most

reduced PM in fastidious organisms, but are not among the costliest. Notably, branched chain amino

acid supplementation has been shown to alter the metabolic structure of the gut microbiome of

mice (Yang et al., 2016).

We next sought to gain more specific insight into a specific class of recently-cultivated fastidious

organisms, Saccharibacteria (TM7). To gain specific insight into the biosynthetic capabilities of these

TM7 relative to other fastidious microorganisms, we further focused our analysis on identifying dis-

crepancies between Mycoplasma and TM7. Our analysis included eight Mycoplasma genomes and

three TM7 genomes. Mycoplasma are a relatively well characterized genus of intracellular parasites

with reduced metabolic capabilities, and TM7 are a recently co-cultivated phylum of the candidate

phyla radiation that display reduced metabolic capabilities and a parasitic lifestyle. There are several

cell-wall components for which TM7 has relatively high PM values and Mycoplasma has PM values of

zero (Figure 5 I). These include nine different teichoic acids, bactoprenyl diphosphate, and peptido-

glycan. This highlights extensive cell-wall/peptidoglycan metabolism in TM7 organisms and the

known lack of a cell-wall in Mycoplasma (Razin, 1978). Furthermore, a set of three nucleotides:

dGTP, GTP, and TTP, have high PM values for TM7 and PM values of zero for Mycoplasma organ-

isms (Figure 5 II). This pattern of nucleotide biosynthesis deficiency in Mycoplasma is consistent with

the observation that some strains have been shown to be dependent on supplementation of thymi-

dine and guanosine but not adenine or cytosine nucleobases for growth (Mitchell and Finch, 1977).
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Finally, the cofactors acyl carrier protein (ACP) and flavin adenine dinucleotide (FAD) had high PM

values in Mycoplasma and PM values of zero in TM7 organisms (Figure 5 III). The lack of these cofac-

tors in TM7 seems surprising, but is indeed matched by a complete lack of any metabolic reactions

annotated to utilize FAD and ACP as cofactors in the draft reconstruction of the TM7 metabolic

networks.

In addition to investigating the metabolic deficiencies of fastidious organisms, the PM landscape

gave us the opportunity to compare these gaps with possible complementary capabilities in
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Figure 5. Fastidious/uncultivated and TM7/host producibility sub-matrices. Sub-matrices of the larger PM matrix were re-clustered to highlight

variations within specific groups of fastidious and uncultivated organisms. (A) The fastidious/uncultivated organisms that were identified as the most

unique cluster in the larger matrix from Figure 4 were re-clustered hierarchically. The average producibility metric (PM) value across all oral microbiome

organisms analyzed in this study is shown in the far left column. Differences between the fastidious Mycoplasma genus organisms and the previously

uncultivated TM7 organisms are highlighted with roman numerals. (B) The PM values for the previously uncultivated TM7 organisms and their growth-

supporting hosts bacteria were extracted and re-clustered hierarchically. Differences between the TM7 and their bacterial hosts are highlighted with

roman numerals.
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organisms known to support their growth. The three TM7 strains that we analyzed were recently co-

cultivated with host bacteria from the human oral microbiome. TM7x was shown to be a parasitic

epibiont of Actinomyces odontolyticus XH001 (McLean et al., 2016). TM7 AC001 and PM004 were

recently both co-cultivated successfully with either of the host strains Pseudopropionibacterium pro-

pionicum F0230a or F0700 (Collins et al., 2019c). We further investigated these newly discovered

relationships to gain insight into possible metabolic exchange (Figure 5 B). Interestingly, TM7 organ-

isms had higher PM values than their host strains for several cell-wall components: three glucose-

substituted teichoic acids, and glucose-substituted and unsubstituted glycerol teichoic acid

(Figure 5 IV), suggesting that TM7 is capable of producing several cell-wall components that its host

cannot. Conversely, as expected, a large number of metabolites had increased PM values in the host

strains compared to the TM7 strains. These metabolites are hypothesized to be easily synthesized

by the host and not TM7 and are thus interesting candidates for growth supporting exchange. Four-

teen different metabolites had average PM values in the hosts greater than 0.60 higher than in the

TM7 organisms (Figure 5 V). The ranked list includes: isoleucine, valine, acyl carrier protein, 5-meth-

yltetrahydrofolate, pyridoxal phosphate, flavin adenine dinucleotide, thiamin diphopsphate, putres-

cine, tryptophan, Fe2+, heme, Fe3+, lysine, and menaquinone-8. Interestingly, the branched chain

amino acids isoleucine and valine are again at the top of the list. The correlation of amino acid bio-

synthesis cost (Akashi and Gojobori, 2002) with the difference in PM values between host and TM7

is even higher than what we observed across all fastidious organisms (Spearman correlation

r = 0.6011, p-value=0.0051) indicating that PM values are further decreased in TM7 for costly amino

acids.

Our results provide context and putative mechanistic details related to observed gene expression

and metabolic changes in the co-cultivation of TM7x with the host Actinomyces odontolyticus

XH001 (McLean et al., 2016). Transcriptomic data for TM7x and A. odontolyticus XH001 showed

that a number of genes associated with N-acetyl-D-glucosamine were up regulated in A. odontolyti-

cus in this interaction (He et al., 2015). Our results show that, although TM7 does have extensive

cell wall metabolism, A. odontolyticus has higher PM for N-acetyl-D-glucosamine substituted compo-

nents (Figure 5 VI). This suggests that the host is responsible for the biosynthesis of these cell-wall

components, which may be overexpressed during co-cultivation. Metabolomics experiments from

this co-cultivation have identified the cyclic peptide cyclo(L-Pro-L-Val) as a potential signaling mole-

cule in this relationship. Our PM analysis suggests that this molecule would be synthesized by the

host as it has increased PM values for both of the amino acids included (Figure 5 VII). In fact, valine

has one of the highest discrepancies in PM for host and TM7. Finally, another potentially exchanged

amino acid of interest is arginine. All three TM7 draft metabolic network reconstructions that we

analyzed were annotated to possess either all or all but one of the reactions in the arginine deimi-

nase pathway (TM7 PM004 is missing the arginine iminohydrolase reaction) (Figure 6—figure sup-

plement 1 and Supplementary Cytoscape (Shannon et al., 2003) files 1–3). This catabolic pathway

can be used to degrade arginine to regenerate ATP, and has been implicated in syntrophic microbial

interactions (Plugge and Stams, 2001; Schink, 2006). In our PM analysis arginine had consistently

higher PM in host than TM7 (Figure 5 VIII). Thus, arginine exchange and metabolism via the arginine

deiminase pathway could contribute to the dependence of TM7 on its hosts (Figure 6).

Discussion
Our method provides an estimate of the putative biosynthetic capabilities of a metabolic network

from genomic information. We first implemented this method in E. coli, to demonstrate its applica-

tion and capacity to address multiple questions, even in presence of uncertainty that would prevent

the use of other stoichiometric methods. Next, we reconstructed metabolic networks for 456 differ-

ent organisms from the human oral microbiome, and generated an atlas of predicted biosynthetic

capabilities across these organisms. We highlighted trends in the biosynthetic capabilities of these

microbes related to taxonomy, and showed that these predicted biosynthetic capabilities can par-

tially explain co-occurrence data. We further focused on describing putative biosynthetic deficiencies

of a cluster of fastidious/uncultivated organisms and predicted exchanged metabolites between

three recently co-cultivated Saccharibacteria (TM7) strains and their growth supporting partner

microbes. Overall, our method provides preliminary insight into the metabolic capabilities of a large
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Figure 6. Hypothesized metabolic exchange between TM7 and their bacterial hosts. (A) We summarize here hypotheses generated for the exchange of

metabolites between TM7 and their growth-supporting hosts based on differences in biomass PM values. We also highlight any insight that our PM was

capable of providing into experimental transcriptomic and metabolomic data from the co-cultivation of TM7x and Actinomyces odontolyticus that was

previously collected and analyzed in a separate study (He et al., 2015). (B) The cell-wall components containing glucose-substituted teichoic acids were

among the only metabolites with PM higher in TM7 than in hosts. N-acetyl-D-glucosamine-substituted teichoic acids had increased PM in the host

relative to TM7, and previous gene expression data from TM7x and A. odontolyticus shows several genes related to N-acetyl-D-glucosamine that are

overexpressed in A. odontolyticus during co-cultivation (He et al., 2015). (C) Several vitamins/cofactors/other essential factors had decreased PM in

TM7 compared to the hosts. The cofactors acyl carrier protein and flavin adenine dinucleotide had decreased PM in TM7, and were also not found to

be utilized in the TM7 draft metabolic network reconstructions. (D) Several amino acids had decreased PM in TM7 compared to the hosts. Valine and

proline were both decreased in TM7 relative to the host, and previous metabolomics data from TM7x and A. odontolyticus identified the cyclic

dipeptide cyclo(L-Pro-L-Val) as a potential signaling molecule (He et al., 2015). Arginine had decreased PM in TM7 relative to the host and could

potentially be exchanged and catabolized by TM7 via the arginine deiminase pathway.

DOI: https://doi.org/10.7554/eLife.39733.019

The following figure supplement is available for figure 6:

Figure supplement 1. TM7 metabolic network visualization.

DOI: https://doi.org/10.7554/eLife.39733.020
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number of human oral microbiome organisms and helps further the understanding of the structure

of this complex microbial ecosystem.

Our method differs from other approaches in several key ways that we have demonstrated

throughout our analysis. First, it is different from a pathway-based analysis where the percent com-

pletion of biosynthetic pathways is analyzed. Our method is based on the entire metabolic network

and captures the multitude of different routes through which a metabolite could be synthesized. An

additional advantage is that our method does not rely on previously defined biosynthetic pathway

annotations and instead seeks to use the entire metabolic network structure to define biosynthetic

capabilities. While prior knowledge of pathways can be quite useful in many contexts, specific bio-

synthetic routes can cross the boundaries of annotated pathways, making pathway completeness

uninformative. A prior notable example of this effect is the discovery of an alternative pathway to

bypass a TCA cycle gene impairment (Frezza et al., 2011). This pathway connects in an unexpected

way two distinct pathways, generating a new crucially important and experimentally validated type

of connectivity that would be missed from regular pathway-based analysis. Another such example, in

our current data, is the case of the arginine deiminase pathway and the urea cycle, which contain

several overlapping metabolites and reactions. In fact, we have noticed that KEGG mappings of

TM7x metabolism often highlight the urea cycle as a result of TM7x containing the complete argi-

nine deiminase pathway. Our method differs substantially also from standard flux balance analysis,

even if it is based on stoichiometry and Linear Programming. Specifically, our method has improved

tolerance for missing reactions compared to flux balance analysis (Figure 3), and thus does not rely

on gap-filled metabolic networks. Therefore, it is capable of providing preliminary insight into ‘draft’

genome-derived metabolic networks that can be used to study diverse microbes and microbial com-

munities, and could potentially help guide the gap-filling process and predict putative biomass com-

ponents. Our method also differs from alternative topology-based methods (Borenstein et al.,

2008; Carr and Borenstein, 2012; Kreimer et al., 2012; Levy et al., 2015) as it represents metabo-

lism as a bipartite graph constrained by stoichiometry (enabling enforcement of mass balance con-

straints), rather than projecting the network onto an adjacency matrix between metabolites, which is

not constrained by stoichiometry (i.e. two metabolites can be connected in an adjacency matrix

despite a missing reactant or cofactor for the reaction that connects them).

It is important to highlight the limitations of our approach. In particular, many of the issues that

limit the accuracy of metabolic network analyses in general affect our method as well. The primary

limitation is enzyme annotation. Aside from missing or incorrect annotations, subtle processes such

as enzyme promiscuity and spontaneous reactions may have unquantified effects on metabolic net-

work function. Reaction direction/reversibility is also difficult to predict as it requires detailed knowl-

edge of reaction thermodynamics and metabolite concentrations. In particular, inaccurate or missing

information about reaction direction/reversibility could lead to uncertainty about whether a high PM

from our method should be interpreted as reflecting biosynthetic or degradative capabilities (or

both). Throughout our analysis we have utilized default reversibility constraints provided by the

KBase build metabolic models app (Henry et al., 2010; Arkin et al., 2018; Overbeek et al., 2014),

but more stringent constraints on directionality could possibly improve our results. Transport reac-

tions are also notoriously difficult to annotate accurately, and the current implementation of our

method addresses this limitation by naı̈vely adding intracellular metabolites as input metabolites.

However, any future efforts to use extracellular metabolites as inputs would rely on accurate trans-

port reaction annotations. In general, all metabolic network analysis methods face similar limitations.

Even as newly developed experimental methods gradually improve metabolic reaction annotation

(Price et al., 2018a; Vaccaro et al., 2016; Price et al., 2018b; Sévin et al., 2017), it is likely that we

will have to continue dealing with incomplete knowledge. Thus, approaches like the one presented

here are valuable for providing initial predictions of metabolic capabilities with minimal arbitrary

assumptions, and for pinpointing specific areas of a metabolic model that are in need of refinement.

One additional limitation of our method, in comparison to alternative methods, is that it requires a

longer run time than alternative methods, such as FBA (Orth et al., 2010a) or NetSeed

(Borenstein et al., 2008; Carr and Borenstein, 2012). Future efforts towards simplifying the calcula-

tions to improve the algorithm’s speed would be beneficial. For example, utilizing heuristics or belief

propagation could possibly improve the efficiency and run time of our algorithm (Yedidia et al.,

2003).
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Despite these limitations, by translating genotype into phenotype with minimal assumptions, our

approach has the potential to serve as a baseline estimate of metabolic mechanisms in different

microbial communities. Moving forward, our method could be easily applied to other human-associ-

ated or environmentally relevant microbial communities, providing valuable putative insight into

inter-microbial metabolic dependencies. For example, in this analysis we have analyzed three previ-

ously uncultivated Saccharibacteria (TM7) phylum organisms that were recently successfully co-culti-

vated with growth supporting bacterial host organisms. These TM7 species are the first successfully

cultured organisms from the candidate phyla radiation, a large branch of the tree of life consisting

mainly of uncultivated organisms (Kantor et al., 2013; Brown et al., 2015; Hug et al., 2016), and

therefore are of general interest beyond their role in human oral health. Further analysis of the candi-

date phyla radiation through our method could provide preliminary phenotypic insight into this

unusual, but large, group of bacteria. Additionally, our method could be applied to other classes of

uncultivated bacteria, many of which will be gradually added to the collection of genomes recon-

structed from metagenomic sequencing of communities.

Another promising application of our approach is evaluating draft models during the metabolic

network reconstruction process. In particular, in building new draft stoichiometric models, the pro-

ducibility metric, which displays nuanced variability across taxa, could be used as an initial estimate

of the biomass composition, to be compared to the reference biomass compositions currently used

in most reconstructions (Lakshmanan et al., 2019). More generally, our approach fits into an emerg-

ing class of metabolic reconstruction and analysis methods that address uncertainty by statistically

sampling ensembles (of environments, as done here; fluxes, as studied extensively

[Schellenberger and Palsson, 2009]; or network reconstructions, as recently implemented

[Biggs and Papin, 2017; Machado et al., 2018]). We envisage that the metabolic insight gained

from the application of these methods will continue to help bridge the gap between top down stud-

ies and a mechanistic understanding of microbial community metabolism and dynamics.

Materials and methods

Method implementation
The framework for implementing our method was developed as several different modular functions

that interact in a nested manner to run our analysis. The functions are written in MATLAB and inter-

face with the COBRA toolbox (Schellenberger et al., 2011; Heirendt et al., 2019). The code is built

around the COBRA toolbox commands changeObjective and optimizeCbModel. Thus, running our

code requires installation of the COBRA toolbox. Additionally, the nonlinear fitting function utilizes

the MATLAB function lsqnonlin for nonlinear least squared fitting. Additional functions were devel-

oped to implement our probabilistic framework and run our analysis method. We describe here each

modular function, providing details on the computations performed. The full code for implementing

our method, with examples for running the code, is available online at https://github.com/segrelab/

biosynthetic_network_robustness (Bernstein, 2019).

Algorithm functions
feas – This function determines if the production of a given target metabolite set is feasible given

the metabolic network model with specified constraints. Flux balance analysis was used to determine

the feasibility of production (Orth et al., 2010a). Flux balance analysis was chosen over the alterna-

tive network expansion algorithm due to its treatment of cofactor metabolites (Kruse and Ebenhöh,

2008). In network expansion, cofactors must be added to the network to ‘bootstrap’ metabolism,

whereas in flux balance analysis any reaction utilizing a cofactor can proceed given that the cofactor

can be recycled by a different reaction, which is a less restrictive constraint on the metabolic network

flux. Furthermore, our implementation allows for inequality or equality mass balance constraints. Tra-

ditional flux balance imposes an equality mass balance which is often referred to as a steady state

constraint. This constraint restricts the rate of change of all metabolite concentrations to be equal to

0. We provide the option of implementing inequality mass balance, which constrains the rate of

change of metabolite concentrations to be greater than or equal to 0. In practice, inequality mass

balance is implemented by adding unbounded exporting exchange reactions and calculating steady

state solutions. We have implemented inequality mass balance for all of our calculations due to the
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fact that we are analyzing local properties of the metabolic network (the production of a single

metabolite) and do not want the network to be constrained by the global requirement to achieve

steady state. During the production of a particular metabolite, the metabolic network is thus free to

produce byproducts that are used elsewhere or secreted. To determine production feasibility, the

export of a particular target metabolite is set to the objective function and maximized. If the maxi-

mal flux is greater than a hard-coded threshold (>0.001), then the target metabolite is considered to

be feasibly produced. This function uses the COBRA commands changeObjective and optimizeCb-

Model to set and maximize the appropriate objective function. Mathematically, flux balance analysis

is implemented as a linear programming problem with the following definition:

maximize: CTv

subject to:Sv¼ 0 equality mass balanceð Þ;or Sv � 0 inequality mass balanceð Þ

and subject to:lb� v� ub

Where: CT is the transpose of a column vector indicating which reactions are to be maximized. In

this case, this specifies the exporting exchange reactions corresponding to the target metabolites.

v is a column vector of metabolic reaction fluxes. S is the stoichiometric matrix describing the reac-

tions present in the metabolic network (a metabolites by reactions size matrix). Each element in the

matrix is the stoichiometry of a particular metabolite associated with a particular reaction. Negative

values indicate that a metabolite is a reactant of that reaction being consumed, while positive values

indicate that a metabolite is a product of that reaction being produced. lb and ub are the lower and

upper bounds of all reactions, which define reaction reversibility or are set to -1000 and 1000

respectively when unbounded. Additional information on flux balance analysis can be found in this

publication describing its implementation in detail (Orth et al., 2010a).

rand_add – This function is designed to give a random sample of input metabolites to be added

based on the Bernoulli parameter for each input metabolite. This function uses the MATLAB rand

function to choose a random number between 0 and 1 for each input metabolite. If this number is

less than the Bernoulli parameter for that input metabolite, then the metabolite is added.

prob – This function utilizes rand_add and feas to determine the probability of producing the tar-

get metabolite given the input metabolite Bernoulli parameters, the metabolic network structure,

and the specified constraints. A chosen number of random samples of input metabolites are gener-

ated by repeatedly running the rand_add function. The probability of producing the target metabo-

lite is determined as the number of feasible trials divided by the total number of samples. The

default number of samples used for the bulk of the analysis in this work was 50.

calc_PM_fit_nonlin – This function calculates the producibility metric (PM) for a specified meta-

bolic network model and metabolite using an efficient nonlinear fitting technique. The nonlinear fit-

ting algorithm estimates the PM by randomly sampling points on the producibility curve that fall

near PM. The algorithm starts by sampling a point in the middle of the producibility curve (Pin = 0.5)

and then using the MATLAB function lsqnonlin to fit a sigmoidal curve to the sampled points of the

producibility curve. The fit sigmoidal curve is then used to estimate a value for the PM. Next, a new

sample point is obtained which is offset from the estimated PM value with some noise introduced

with the specified noise parameter. In this way the algorithm converges on the PM value and sam-

ples points around PM, thus increasing the accuracy of its estimate with each iteration. The estimate

converges when a specified n estimates of the PM value are all within a specified threshold. The

default parameters associated with this function, used for the bulk of our analysis, were: noise = 0.3,

n = 7, thresh = 0.01. The parameters chosen were selected by hand to provide reasonable

performance.

prep_mod – This function is used to prepare the metabolic network model for analysis with our

method. The input for this function is a COBRA model, which is saved as a MATLAB structure vari-

able. This code has been developed and optimized to work with KBase generated metabolic net-

works and is not guaranteed to work with networks from other sources that have different naming

conventions. The first modification to the networks is to find and turn off all exchange and mainte-

nance reactions to standardize the network models. Second, the extracellular and intracellular

metabolites are identified based on naming conventions and output from the function. Third,
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exchange reactions are added for each metabolite (producing 1 unit of that metabolite), and a vec-

tor indicating the mapping from metabolites to these exchange reactions is output from the func-

tion. This vector is used by our method to control the presence and absence of input metabolites in

the network model as well as to adjust the inequality mass balance constraints. The final output is a

new network model which has been standardized for our method and in which the presence and

absence of metabolites can be easily manipulated.

find_PM_mods_mets – This function is designed to facilitate the parallelization of the PM calcula-

tion. The function takes as inputs a directory of metabolic network models, a directory to store

results, a list of target metabolite names, the index of the current network model and metabolite

being analyzed and all of the specifications necessary for running calc_PM_fit_nonlin. The metabolite

and model being analyzed can be changed dynamically to allow for parallelization. In addition to

these inputs, this function has several inputs that allow for standard modifications to the PM calcula-

tion procedure. It allows for certain metabolites to be fixed on or off. It allows for several choices of

metabolites to be added during the PM calculation process, including adding all intracellular or

extracellular metabolites and including the target metabolite or not. It also allows for specification of

the inequality mass balance constraint as either all metabolites set to inequality mass balance or all

metabolites set to equality mass balance. Furthermore, it has a parameter for the number of runs to

calculate the PM to obtain statistics regarding the variability of calc_PM_fit_nonlin. For the analysis

done in this work: calculation of PM for single metabolites was done by adding all intracellular

metabolites (excluding targets), the mass balance constraint was set to use inequality constraints for

all metabolites, the number of runs was set to 10.

Parallelization
We used the Boston University shared computing cluster to run our analysis for a large number of

metabolic networks and metabolites. The calculation of the PM for each individual network model

and metabolite can be run in parallel, vastly increasing the number of possible computations. The

average runtime for computing the PM for an individual network and metabolite for 10 repeated

runs was ~9 min and the maximum run time was ~45 min, given the default parameters used in this

study: a = 0, s = 1, samp = 50, noise = 0.3, n = 7, thresh = 0.01, runs = 10. We note that these

parameters were chosen by hand to provide adequate performance for our algorithm, and future

implementations could possibly alter these parameters to provide improved run-time and/or

accuracy.

Using the E. coli core metabolic network to demonstrate features of
metabolite producibility
Our analysis method was initially demonstrated on the E. coli core metabolic network. We used the

network provided by the BiGG database (King et al., 2016). We calculated the PM value for each

intracellular metabolite. The input metabolites for our PM calculations were assigned as all intracellu-

lar metabolites in the E. coli core metabolic network. This was the most naı̈ve assumption we could

use for assigning input metabolites, and was consistently used throughout the majority of our analy-

ses. Additionally, using intracellular metabolites as input metabolites avoids errors that could arise

from poorly annotated transporters in draft metabolic network reconstructions. Calculations were

performed using the Boston University shared computing cluster to parallelize runs across networks

and metabolites and improve computation time. The results of our simulation were visualized using

the Cytoscape network visualization software (Shannon et al., 2003). The entire E. coli core meta-

bolic network is shown, excluding the biomass reaction for clarity.

Producibility of metabolites differs from pathway completeness and
captures minimal precursor set structure
We analyzed the PM for the histidine biosynthetic pathway with auxotrophic metabolic networks

generated by knocking out different reactions along the pathway in the E. coli iJO1366 metabolic

network. The PM was calculated for all essential biomass components using default parameters. The

PM for all biomass components, excluding histidine, was unchanged and the PM for histidine was

reported. The PM for histidine was seen to match the theoretical values based on our combinatorial

theory. The theoretical values were calculated using the formula in Figure 1—figure supplement
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2 C, where n corresponds to the number of main intermediate metabolites that remain connected to

the end product (L-histidine). For our analysis of the histidine pathway across all 456 oral microbiome

metabolic networks, the histidine pathway sum was the total number of reactions in the histidine

pathway and the pathway length was the total number of reactions starting at histidine and counting

until the first missing reaction. Both values were compared to the PM values of each organism for

histidine by Spearman’s rank correlation.

Producibility analysis shows improved tolerance to missing reactions
compared to flux balance analysis
We demonstrate the performance of our method on a network with missing reactions on perturbed

E. coli iJO1366 metabolic network by randomly removing reactions and observing the results of flux

balance analysis (FBA) and our producibility metric (PM). The iJO1366 metabolic network consists of

2583 reactions, and was perturbed by removing n random reactions (n = 4, 16, 64, 256, 1024). The

biomass reactions (full and core) and the maintenance reaction were not candidates to be randomly

removed. For each value of n, 50 different randomly perturbed metabolic networks were generated

(a total of 250 metabolic networks). For each of these networks, the core biomass reaction flux was

optimized using FBA in a complete medium and a minimal glucose medium and the biomass flux

was recorded. Next, the PM for all core biomass metabolites, excluding those with consistent PM of

0 (ex. metal ions), were calculated using our method. The accuracy of each method was calculated

using a quantitative difference measure and a biomass production measure. For FBA the quantitative

difference measure was calculated as the absolute value of the difference between the original bio-

mass flux and the perturbed biomass flux. For the PM the quantitative difference measure was calcu-

lated as the sum of the absolute value of the differences between the PM value of each metabolite

in the original model and the perturbed models. Note that for both FBA and the PM this measure is

equivalent to the L1 norm of the difference between the original network metric and the perturbed

network metric. The accuracy was measured as one minus the normalized difference measure. Means

and standard errors across the 50 different randomly perturbed metabolic networks were calculated

and reported. The biomass production measure was calculated in FBA as the fraction of perturbed

metabolic networks that could produce biomass flux greater than 1% of the original optimal biomass

flux. The biomass production measure was calculated for the PM as the fraction of perturbed meta-

bolic networks that had PM for all biomass components analyzed above a specified threshold.

Thresholds of 0.1 and 0.6 were analyzed and reported.

Metabolite producibility points to putative metabolic mechanisms for
E. coli auxotroph co-cultures
We analyzed experimental data from E. coli auxotrophs using our PM metric. Experimental data

were taken from the supplementary growth data of Wintermute and Silver (2010). The growth data

used were the mean of the day 4 replicates 1 and 2. E. coli auxotrophs were modeled using the

iJO1366 metabolic network. All reactions related to a gene, including those involving isoenzymes,

were knocked out from the model by setting the upper and lower bound of the reaction to zero. Iso-

enzyme related reactions were included based on prior evidence that this improves performance of

metabolic modeling of auxotrophs (Jacobs et al., 2017). The PM was calculated for all biomass com-

ponents for each auxotroph metabolic network using default parameters consistent with other PM

calculations in this study. The PM distance between auxotrophs was calculated as the L1 norm of the

difference between two auxotrophs PM vectors. Additional details on PM distance can be found in

methods section Metabolic similarity correlates with microbial co-occurrence in the human oral

microbiome. The correlation between PM distance and experimentally measured growth matrices

was assessed using a Mantel permutation test with 10,000 permutations, and calculating the correla-

tion of the upper triangle of the matrices. Additional details on the Mantel permutation test can be

found in the methods section Metabolic similarity correlates with microbial co-occurrence in the

human oral microbiome.

Reconstruction of human oral microbiome metabolic networks
A set of 456 draft metabolic networks were reconstructed for oral microbiome strains. Strains were

chosen to match the sequences chosen for dynamic annotation on HOMD which cover at least one
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strain for each sequenced species and repeated strains for sequences of particular interest for the

human oral microbiome. Several strains were additionally selected due to our interest in fastidious

and uncultivated organisms. These included eight uncultivated or recently co-cultivated strains.

When considering the taxa TM7 and Tannerella sp. oral taxon 286, we chose to include the most

recent genome sequences from co-cultivation experiments, although there are several additional sin-

gle-cell and metagenome assembled sequences available for Tannerella sp. oral taxon 286 and TM7

(Kantor et al., 2013; Marcy et al., 2007; Beall et al., 2014; Albertsen et al., 2013; Podar et al.,

2007). The host strains Actinomyces odontolyticus XH001, Pseudopropionibacterium propionicum

F0700, and Pseudopropionibacterium propionicum F0230a were included due to their support of

TM7 organisms. All genomes were either found in the KBase central data repository or manually

annotated with RAST and uploaded to KBase (Arkin et al., 2018; Overbeek et al., 2014;

Aziz et al., 2008; Brettin et al., 2015). Strains that were dynamically annotated on HOMD but could

not be found on KBase, were not of interest due to uncultivability, and already had a representative

strain from their matching species were not included in our set of strains. Several naming discrepan-

cies existed between KBase and HOMD, which are highlighted in the KBase download notes column

of Supplementary file 4. All metabolic networks were reconstructed using a KBase narrative con-

taining all of the genomes and metabolic networks from this work, which is available to be copied,

viewed, edited, or shared at https://narrative.kbase.us/narrative/ws.27853.obj.935. Metabolic net-

works were reconstructed for each strain with automatic assignment of Gram-stain, and without

gap-filling. Metabolic network reconstructions were then downloaded from KBase as SBML files and

converted to COBRA. mat files using the COBRA command readCbModel. Metadata related to all

organisms and metabolic networks are available in Supplementary file 4.

Large-scale patterns in biosynthetic capabilities identified across the
human oral microbiome
We investigated the large-scale biosynthetic properties of the human oral microbiome by analyzing

reconstructed metabolic networks for 456 different oral microbiome strains. For each metabolic net-

work we calculated the PM value for 88 individual biomass components (40,128 total PM calcula-

tions). The biomass components were chosen to be the union of the set of default KBase Gram-

positive and Gram-negative biomass compositions (see Supplementary file 5 for details). The

metabolites sulfate and phosphate were not included, while the metabolite H2O was included as a

positive control. The calculations were parallelized across metabolic networks and metabolites using

the Boston University shared computing cluster to improve computation time. The PM values were

stored as a matrix of organisms by metabolites PM values. This matrix was analyzed using hierarchi-

cal clustering based on average differences between groups. The matrix was clustered and visualized

using the R package pheatmap.

For the comparison of average PM values and genome size, genome size was taken from KBase

and added to Supplementary file 4. We used regression modeling to identify the broad relationship

between genome size, taxonomy, and the average PM value. We fit PM values to linear and qua-

dratic models of log genome size:

Linear : average PMð Þ ¼ c1þ c2 � log genome sizeð Þ

Quadratic : average PMð Þ ¼ c1þ c2�log genome sizeð Þþ c3 � log genome sizeð Þ2

Nominal taxonomic parameters were added to these models to determine if they could improve

the models prediction of PM values. Gram-stain, and taxonomic labels from phylum to genus were

used as nominal taxonomic parameters. For each taxonomic level, each label was added as an addi-

tional nominal parameter, for example: adding the predictor of phylum meant adding 12 indepen-

dent variables, one for each different phylum. Gram-stain was assigned based on KBase default

assignments. Taxonomic labels were assigned based on human oral microbiome database taxonomy

annotations. Regression models were developed using the MATLAB command fitlm. The AIC and

BIC were calculated to assess model improvement upon subsequent addition of taxonomic parame-

ters using the MATLAB command aicbic.
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Taxonomic trends capture biosynthetic patterns across human oral
microbiome organisms
We investigated specific trends in metabolite PM values related to taxonomy by analyzing the clus-

tered matrix of PM values. Additionally, a regression model was used to provide quantitative insight.

The base regression model was a quadratic model using the log of genome size as the predictor of

the specific PM value for a certain metabolite across all organisms:

PM metaboliteð Þ ¼ c1þ c2�log genome sizeð Þþ c3 � log genome sizeð Þ2

Nominal taxonomic parameters were then added one at a time. Taxonomic parameters of Gram-

stain (+ or -), phylum (belonging to 1 of 12 phyla or not) and class (belonging to 1 of 22 classes or

not) were used. We calculated the log likelihood ratio by taking difference between the log likeli-

hood of the base quadratic model of genome size and the model including a specific taxonomic

parameter. We identified highly significant relationships using an alpha value of 10�6 and Bonferroni

correction for multiple hypothesis testing.

Organic acid production predicted for human oral microbiome
organisms
Organic acid production was assessed by calculating the PM for nine different organic acids for each

human oral microbiome organism. The organic acids analyzed were: acetate, formate, L-lactate, suc-

cinate, propionate, D-lactate, butyrate, isobutyrate, and isovalerate. The organic acids were chosen

by searching through the literature for those that were found to be relevant for oral health

(Jorth et al., 2014; Takahashi, 2015). While this is certainly not an exhaustive list of organic acids, it

demonstrates the applicability of our method to non-biomass metabolites. The PM was calculated

using default parameters consistent with other calculations in this study. The organic acids chosen

where included in Supplementary file 5, and the PM results were included in Supplementary file 6.

Metabolite producibility in a protein vs. carbohydrate-enriched
environment
The production of metabolites in variable environments was implemented in our method by re-calcu-

lating the PM for all metabolites in a protein-enriched and carbohydrate-enriched environment for

two organisms: a saccharolytic organism (Streptococcus mutans UA 159) and a proteolytic organism

(Porphyromonas gingivalis W83). These organisms were chosen because they are known to be asso-

ciated with oral diseases involving either saccharolytic or proteolytic activity, namely dental carries

and periodontitis (Wade, 2013; Takahashi, 2015). The protein-rich environment was simulated by

fixing all 20 amino acids to always be present (Pin = 1), by adding them to the fixon parameter, and

then adding all other metabolites randomly. As in the other PM calculations, the target metabolite is

never added or fixed to be on. The carbohydrate-enriched environment was simulated in a similar

manner by fixing D-glucose to always be present.

Metabolic similarity correlates with microbial co-occurrence in the
human oral microbiome
Co-occurrence data were collected from supplementary Dataset_S1 of Friedman and Alm (2012).

Seven different oral sites were analyzed and co-occurrence calculated with SparCC and Pearson’s

correlation were analyzed. Various pairwise metabolic metrics where compared to the patterns of

microbial co-occurrence, and significant correlations were found using a Mantel permutation test

with 10,000 permutations. These pairwise metabolic metrics were likewise compared to each other

using a Mantel permutation test with 1000 permutations. Additional details on metrics used and

Mantel test are described below. To compare the pairwise metabolic metrics with microbial co-

occurrence, we collapsed all interaction metrics to the genus level by averaging scores across spe-

cies in the same genus such that we could match predictions from our method with co-occurrence

based on 16S rRNA sequencing, which was mapped at best to the genus level.

Calculation of various metrics for correlation analysis:

PM distance – Calculated as the L1 norm of the difference between the PM vectors of any two

organisms. The L1 norm is calculated as the sum of the absolute values of the differences of all of

the elements of the vector.
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PM complementarity – Calculated as the complementarity between two organisms, quantifying

the amount by which one organism can supplement the PM of another organism. For organism A

supplementing B, the metric is calculated by summing over i = 1 to N metabolites.

PM complementarity A!B ¼

PN
i¼1

max PMA
i ;PMB

i

� �

�PMB
i

� �

PN
i¼1

PMA
ið Þ

Seed distance – Calculated as the L1 norm of the difference between the seed vectors of any two

organisms. The seed vectors were calculated using the NetSeed method (Borenstein et al., 2008;

Carr and Borenstein, 2012). The code used to calculate the seeds was taken from http://elbo.gs.

washington.edu/software_netcooperate.html. The minComponentSize parameter was set to 0 and

the onlyGiant component parameter was set to false.

Seed competition – Calculated following the formula used in the NetCmpt method

(Kreimer et al., 2012; Levy and Borenstein, 2013). The competition from A to B is the fraction of

seeds of organism A that are also seeds of organism B. The threshold for seed vs. non-seed was a

seed score of greater than 0.

Seed complementarity – Calculated following the formula used in the NetCooperate method

(Levy et al., 2015; Levy and Borenstein, 2013). The complementarity from A to B is the fraction of

seeds of organism A that are in the metabolic network of organism B but not seeds of organism B.

This metric was calculated using code from http://elbo.gs.washington.edu/software_netcooperate.

html.

Reaction distance – Calculated as the L1 norm of the difference between the reaction vectors of

any two organisms. Reaction vectors were vectors of 0’s and 1’s indicating which metabolic reactions

where present in the draft metabolic network of each organism.

Reaction Jaccard – Calculated as the Jaccard distance between the reaction vectors of any two

organisms. The Jaccard distance is calculated as one minus the intersect of the vectors divided by

the union of the vectors. In other words, it is one minus the fraction of shared metabolic reactions.

Mantel test – A Mantel test was used to assess correlation between matrices as done in Levy and

Borenstein (2013). The Spearman’s rank correlation was calculated for all elements of the two matri-

ces (excluding the diagonal). Then the first matrix was permuted 10,000 times, and the number of

times the correlation was stronger than the original correlation was recorded. The p-value was calcu-

lated using the formula below, where n is the number of times the permuted correlation was stron-

ger (absolute value of the correlation coefficient r was larger) than the original and N is the number

of permutations.

Mantel P value¼
nþ 1

Nþ 1

Partial Mantel tests were calculated in a similar manner, but using partial correlations between

the first and second matrix while controlling for a third matrix. For the partial correlation permuta-

tions, only the first matrix is permuted and the partial correlation is recalculated.

Biosynthetic properties predicted in a cluster of fastidious human oral
microbiome organisms
A subset of fastidious organisms identified from the larger clustered matrix of all oral microbiome

organisms PM values were re-clustered based on average distances and analyzed further. Addition-

ally, three previously uncultivated TM7 organisms (TM7x, AC001, and PM004) and several host

strains for the uncultivated TM7 (Actinomyces odontolyticus XH001, Pseudopropionibacterium pro-

pionicum F0700, and Pseudopropionibacterium propionicum F0230a) were re-clustered and ana-

lyzed. Metabolites were ranked and analyzed based on the difference between the average PM

value of separate groups. Three different rankings were used throughout this analysis: (1) average

fastidious cluster organisms PM subtracted from average oral microbiome organisms PM, (2) aver-

age Mycoplasma PM subtracted from average TM7 PM (3), average TM7 host PM subtracted from
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TM7 PM. Correlations between amino acid biosynthetic cost and difference in PM were calculated

using Spearman’s rank correlation between the amino acid cost (Akashi and Gojobori, 2002) and

the difference in average PM between average and fastidious organisms, or between hosts and

TM7, using the MATLAB command corr.
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Defense Advanced Research
Projects Agency

HR0011-15-C-0091 Daniel Segrè
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National Institute of General
Medical Sciences

T32GM008764 David B Bernstein

National Science Foundation 1457695 Daniel Segrè
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https://github.com/elifesciences-publications/biosynthetic_network_robustness). All genomes used

to derive the metabolic networks are available from the Human Oral Microbiome Database (http://

www.homd.org/), except for three strains whose genomes are available on NCBI GenBank, with the

following accession numbers: Saccharibacteria (TM7) bacterium HMT-488 strain AC001: NCBI

CP040003, Saccharibacteria (TM7) bacterium HMT-955 strain PM004: NCBI CP040008, Pseudopro-

pionibacterium propionicum HMT-439 strain F0700: NCBI CP040007. The data shown in the figures

are also available in the form of supplementary tables included in the article.

The following datasets were generated:
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Vlasov V, Magnusdóttir S, Ng CY, Preciat G, Žagare A, Chan SHJ, Aurich MK, Clancy CM, Modamio J, Sauls JT,
Noronha A, et al. 2019. Creation and analysis of biochemical constraint-based models using the COBRA
toolbox v.3.0. Nature Protocols 14:639–702. DOI: https://doi.org/10.1038/s41596-018-0098-2, PMID: 307
87451

Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL. 2010. High-throughput generation,
optimization and analysis of genome-scale metabolic models. Nature Biotechnology 28:977–982. DOI: https://
doi.org/10.1038/nbt.1672, PMID: 20802497

Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, Butterfield CN, Hernsdorf AW, Amano Y,
Ise K, Suzuki Y, Dudek N, Relman DA, Finstad KM, Amundson R, Thomas BC, Banfield JF. 2016. A new view of
the tree of life. Nature Microbiology 1:16048. DOI: https://doi.org/10.1038/nmicrobiol.2016.48,
PMID: 27572647
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Mazumdar V, Amar S, Segrè D. 2013. Metabolic proximity in the order of colonization of a microbial community.
PLOS ONE 8:e77617. DOI: https://doi.org/10.1371/journal.pone.0077617, PMID: 24204896

McLean JS, Liu Q, Bor B, Bedree JK, Cen L, Watling M, To TT, Bumgarner RE, He X, Shi W. 2016. Draft genome
sequence of Actinomyces odontolyticus subsp. actinosynbacter strain XH001, the basibiont of an oral TM7
epibiont. Genome Announcements 4:e01685-15. DOI: https://doi.org/10.1128/genomeA.01685-15, PMID: 26
847892

Mee MT, Collins JJ, Church GM, Wang HH. 2014. Syntrophic exchange in synthetic microbial communities. PNAS
111:E2149–E2156. DOI: https://doi.org/10.1073/pnas.1405641111, PMID: 24778240

Mee MT, Wang HH. 2012. Engineering ecosystems and synthetic ecologies. Molecular BioSystems 8:2470.
DOI: https://doi.org/10.1039/c2mb25133g, PMID: 22722235
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