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Abstract

With over 30 years of directly comparable Landsat satellite observations now

freely available, and new imagery being added to the Landsat archive every day,

Landsat time series analysis affords novel opportunities for ecosystem mapping,

environmental monitoring and comparative ecology. This study presents a ser-

ies of data-driven examples that illustrate the potential of using Landsat time

series to further the study of land cover characterization, vegetation phenology

and landscape dynamics. Our goal is to showcase how ecosystem properties

and dynamics manifest in the Landsat data record, laying the foundation for

better integration of remote sensing and ecology using Landsat time series. Our

results suggest that time series provide valuable information on ecosystem

cover, use and condition that could advance understanding of ecosystem func-

tion, resilience and dynamics. We have only just begun to understand how to

use the complete record of Landsat observations for the study of ecology, and

we hope this work will encourage future studies on quantifying and analyzing

relationships between time series data, ecosystems and ecological processes.

Introduction

Landsat imagery has been used to map and monitor Earth’s

ecosystems since the early 1970s (Cohen and Goward 2004;

Lauer et al. 1997; Wulder et al. 2008), yet we have only just

begun to utilize the complete Landsat record to study long-

term large-scale ecosystem dynamics (Wulder et al. 2012;

Hansen and Loveland 2012; Kennedy et al. 2014). Prior to

a 2008 change in data policy (Woodcock et al. 2008), image

costs and computing capacity limited Landsat-based analy-

ses to a relatively small number of carefully selected images

(Coppin et al. 2004; Kennedy et al. 2014). Today, all new

and archived Landsat images held by the United States

Geological Survey (USGS) are available for free download

in a variety of user-friendly formats, making Landsat data

more accessible than any time in the history of the Landsat

program (Loveland and Dwyer 2012; Wulder et al. 2015).

With free and open access to the Landsat archive, it is

finally possible to leverage the full temporal dimension of

the Landsat record to support the study of ecology and bio-

diversity (Kennedy et al. 2014; Turner et al. 2015).

Since the opening of the Landsat archive, many new

Landsat time series-based approaches have emerged.

Landsat time series data have been successfully used to

map both abrupt and gradual forest change (e.g. Huang

et al. 2010; Kennedy et al. 2010; Vogelmann et al. 2012;
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Hansen et al. 2013; Kim et al. 2014; Hermosilla et al.

2015) and detect changes in wetland ecosystems (Kayastha

et al. 2012; Fickas et al. 2015), yet many analyses still use

only snapshots from the Landsat record, relying on best-

available anniversary date imagery or annual composites

to monitor complex ecosystem dynamics. A handful of

pioneering studies have employed time series of all avail-

able observations for individual pixels to improve characteri-

zation of land cover types (Zhu and Woodcock 2014), map

abrupt change such as forest clearing and development

(Zhu et al. 2012b; Brooks et al. 2014; Zhu and Woodcock

2014; DeVries et al. 2015a), and monitor deciduous forest

phenology (Melaas et al. 2013). However, research utilizing

the extensive record of Landsat observations is still in its

infancy. As remote sensing analysis moves from a relatively

static, bi-temporal view of change toward a more continu-

ous view of ecosystem dynamics (Kennedy et al. 2014),

there is a critical need for data-driven examples that estab-

lish the utility of the full Landsat temporal domain.

In this study, we present examples that illustrate the

potential of using Landsat time series to map and moni-

tor a wide variety of ecosystem properties and processes.

Building on existing conceptual frameworks for using

remotely sensed imagery for ecosystem monitoring (Cop-

pin et al. 2004; Kennedy et al. 2014), these examples are

grouped into two broad categories: (1) seasonal profiles,

where time series of all available observations are used to

characterize intra-annual variability, i.e. phenology; and

(2) temporal trajectories, which characterize changes in

state or trends in ecosystem condition above and beyond

the range of normal seasonal variability. We do not

attempt to quantify the patterns observed; rather, our

goal is to showcase how ecosystem properties and dynam-

ics manifest in the Landsat data record, laying the foun-

dation for better integration of remote sensing and

ecology via Landsat time series applications.

Materials and Methods

Our approach for downloading, processing and visualizing

time series of all available Landsat imagery is generalizable

across Landsat sensors and scenes, making it possible to

assemble time series data for practically anywhere on Earth.

Here we briefly describe the images we select, the spectral

transformations we apply, and the basic approaches to time

series visualization and interpretation that we use through-

out the remainder of this paper.

Imagery

For each of our study sites, we acquired all available images

from Landsat 4 (1982–1993), Landsat 5 (1984–2011) and

Landsat 7 (1999–present) that were processed to a level-one

terrain corrected (L1T) product and have cloud cover of

less than 80%. L1T products are georeferenced, terrain-cor-

rected and radiometrically calibrated across Landsat sen-

sors, enabling direct comparison of individual pixels over

time (Loveland and Dwyer 2012; Markham and Helder

2012). We excluded L1T images with greater than 80%

cloud cover because these images may be less accurately

georeferenced and image registration is important for time

series analysis. The remaining L1T images were processed

to correct for atmospheric conditions and to identify and

mask clouds and cloud shadows by the USGS EROS

Science Processing Architecture (ESPA) (DeVries et al.

2015; DeVries et al. 2015a). This preprocessing to cloud-

masked surface reflectance Landsat data, once difficult to

accomplish as an individual, is now easily available from

the USGS as a Climate Data Record.

Tasseled Cap transformation

For each image, we applied the Tasseled Cap (TC) transfor-

mation to reduce the dimensionality of Landsat’s six optical

spectral bands into three orthogonal indices that are easier

to visualize and interpret. The design of the TC transforma-

tion specifically emphasizes inherent data structures that

capture key physical properties of vegetated systems that can

be compared both within and across scenes (Crist and

Kauth 1986). TC Brightness (TCB) generally captures varia-

tion in overall reflectance, or something akin to albedo; TC

Greenness (TCG) captures variability in green vegetation;

and TC Wetness (TCW) responds to a combination of

moisture conditions and vegetation structure (Crist and

Cicone 1984; Cohen and Spies 1992). We calculate TCB,

TCG and TCW for each pixel using the band weightings

provided by Crist (1985) (Fig. 1).

Figure 1. Tasseled Cap (TC) coefficients for Brightness (TCB),

Greenness (TCG) and Wetness (TCW) by band, *adapted from Crist

1985; Cohen and Spies 1992.

ª 2016 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London 153

V. J. Pasquarella et al. Using Landsat observations to monitor ecosystems



Time series visualization

Time series data may be visualized in a variety of ways to

achieve different analysis and interpretation goals (Fig. 2).

In terms of organization, time series can be ordered by

sequential date, e.g. chronologically ordered from August

1982 to September 2014 (Fig. 2A and C), or based on the

Day-Of-Year (DOY) of image acquisition, i.e. from DOY

1 (January 1) to DOY 365 (December 31) (Fig. 2B and

D). Sequential date plots tend to emphasize long-term

trends in ecosystem condition, whereas DOY plots

emphasize intra-annual variability and vegetation phenol-

ogy, and different colors or symbols can be applied to

emphasize underlying temporal patterns. Throughout the

remainder of this paper, we use various combinations of

the plots and symbology shown in Figure 2 to present

time series of TCB, TCG and TCW.

Time series interpretation

Field observations and other reference data are essential for

the interpretation of the complex temporal dynamics

observed in time series data (Kennedy et al. 2014). For this

study, we drew on reference data from many domains to

identify and interpret time series examples. In some cases,

existing local, regional and global land cover datasets were

used to provide general descriptions of land surface condi-

tions. Other examples were selected using site-specific

knowledge, ranging from monitoring plot data to previously

published research to narrative histories provided by local

land managers. In all cases, high-resolution Google Earth

(GE) imagery was used to corroborate reference informa-

tion, and selected GE images have been included for most

examples to aid in the interpretation of time series data while

also highlighting the limitations of using infrequent single-

date snapshots to assess complex temporal dynamics.

Results

The examples that follow illustrate how the Landsat

record can be used in characterizing and analyzing both

stable and changing ecosystems. We begin with time ser-

ies that highlight intra-annual variability in land surface

reflectance, exploring differences in phenology across for-

est types and land cover gradients. We then move to time

series that capture changes in land cover and ecosystem

state, including cyclic changes, abrupt changes, distur-

bance-recovery and gradual changes.

Seasonal profiles

The production of thematic land cover maps has long

been one of the most prevalent uses of remote sensing

imagery (e.g. Cihlar 2000; Cohen and Goward 2004). His-

torically, Landsat-based land cover classification has lar-

gely relied on the spectral properties of pixels or patches

at a single point in time (e.g. Walsh 1980; Lu and Weng

2005) or a limited set of multi-season observations (e.g.

Wolter et al. 1995; Zhu et al. 2012a). However, time ser-

ies data support leveraging the temporal domain for

improved land cover classification (G�omez et al. 2016).

The examples in this section highlight how temporal vari-

ability in reflectance can be used to better characterize

land cover types.

Forest phenology

Prior to the opening of the Landsat archive, efforts to

map forest communities relied on single-date images or

sets of images that maximized phenological differences

among forest types (e.g. Reese et al. 2002). We use 12

pixel-level examples drawn from study areas in Colombia,

Vietnam, Massachusetts (USA), and Finland to illustrate

seasonal variability in the full spectral-temporal signatures

of select forest types. Figure 3 shows seasonal variability

in TCG for these 12 sites. As would be expected, TCG

profiles for the humid tropical forests of Colombia, (A)

and (B), and tropical mangroves of Vietnam, (C), show

little intra-annual variability, whereas TCG profiles for

examples from Massachusetts and Finland, (D)–(L), exhi-
bit more pronounced phenological patterns. Deciduous

species such as oak, hickory, beech and birch, (D)–(F),
(L), have a high seasonal amplitude in TCG, with TCG

profiles capturing distinct leaf-on, leaf-off and transitional

periods. Needle-leaf forests such spruce, fir, pine and

hemlock, (G)–(K), also exhibit seasonal changes in TCG,

but variability is consistently lower.

TCW profiles for the same 12 examples are shown in

Figure 4. Again, profiles for the tropical forests are rela-

tively a-seasonal, but the TCW profile of the inundated

mangroves, (C), is consistently higher (‘wetter’) than the

profile of the upland humid tropical forest examples from

Colombia, (A) and (B). Similarly, the profiles of temperate

conifer and humid tropical forests are relatively flat by

comparison, with more limited intra-annual variability.

The seasonal variability in TCW is more apparent in the

profiles of deciduous forest communities, which exhibit a

distinct plateau during the leaf-on period, with lows during

the onset of spring and onset of autumn. While TCW has

been shown to correlate strongly with forest structural

attributes and improve classification of both broadleaf

deciduous and needle-leaf species (Cohen and Spies 1992;

Cohen et al. 2001; Dymond et al. 2002; Healey et al. 2005),

the distinct seasonal patterns in TCW shown here are, to

the best of our knowledge, reported for the first time in this

study.
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Figure 2. Visualizing and interpreting Landsat time series. Plots A–D show four visualizations of a Tasseled Cap Greenness time series that

includes all available high-quality Landsat TM/ETM+ observations for a single pixel located in a temperate deciduous forest (MA, USA). Sequential

date plots (A and C) order observations chronologically (with year ticks set to January 1 of each year), whereas Day of Year (DOY) plots (B and

D) show observations ordered by the DOY of image acquisition. Observations are color-coded in two different ways. Observations in plots (A)

and (B) are color-coded by year of acquisition, whereas observations in plots (C) and (D) are color-coded based on season of acquisition. Vertical

lines indicate the date/DOY of the high-resolution Google Earth image (F), which captures late summer leaf-on conditions. A Landsat image for

a comparable date (E) is included to highlight differences in resolution. This figure serves as a template for interpretation of all figures that

follow.
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B  Tropical rainforest (Colombia)
Path 6/Row 60

C  Mangrove (Vietnam)
Path 125/Row 53

D  Coastal oak (MA, USA)
Path 11/Row 31

F  Northern deciduous (MA, USA)
Path 13/Row 30

G  Spruce-fir (MA, USA)
Path 13/Row 30

H  Planted pine (MA, USA)
Path 12/Row 31

I   Hemlock (MA, USA)
Path 13/Row 30

J  Planted spruce  (Finland)
Path 189/Row 17

K  Pine (Finland)
Path 189/Row 17

L Planted birch (Finland)
Path 189/Row 17

Tropical rainforest (Colombia)
Path 7/Row 59

E Oak-dominated (MA, USA)
Path 12/Row 31

A

Figure 3. Seasonal Tasseled Cap Greenness (TCG) profiles for 12 forested sites. Profiles show all available high-quality Landsat observations for a

single pixel. Forest types have been labeled according to best-available reference data, and the World Reference System 2 (WRS2) path and row

of the corresponding Landsat scene is provided for reference. Note both seasonal differences in TCG, as well as differences in observation density

across sites, forest types and latitudes.
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Wetland gradients

Wetlands have been notoriously difficult to characterize

using moderate resolution optical instruments like Land-

sat due to high image-to-image variability and land sur-

face heterogeneity (€Ozesmi and Bauer 2002; Adam et al.

2009). To determine how the temporal dimension of

Landsat data might be used to better distinguish among

wetland states, we generated TCB, TCG and TCW profiles

for examples of three common wetland types: open water,

seasonal emergent wetland and shrub swamp (Cowardian

& Meyers 1974).

The seasonal profiles of these different wetland types,

which have been drawn from our Eastern Massachusetts

study area, capture distinct seasonal and structural char-

acteristics (Fig. 5). Persistent open water systems like

lakes and ponds have near-zero TCB, TCG and TCW val-

ues throughout the year, whereas both emergent (herba-

ceous-dominated) wetlands and woody shrub swamps show

greater seasonal variability in TCB and TCG, driven by sea-

sonal changes in vegetation. Furthermore, shrub swamps have

asymmetrical profiles subtly resembling those of deciduous

forests, whereas the profiles of the emergent wetland are

more symmetric. These results suggest that the shape of the

seasonal reflectance profile, particularly the intra-annual vari-

ability and skewness, will provide important clues as to the

vegetated and hydrologic conditions of complex wetland

ecosystems.

Urban gradients

Moderate resolution sensors like Landsat are unable to

resolve fine-scale urban characteristics such as building

type and transportation infrastructure (Jensen and Cowen

1999; Cadenasso et al. 2007), but spectral-temporal signa-

tures can still aid in charactering mixtures of built and

vegetated surfaces (e.g. Ridd 1995). To investigate the

spectral-temporal variability in urbanized areas, we gener-

ated TCB, TCG and TCW profiles for three representative

pixels from the greater Boston area with varying degrees

of impervious surface/building coverage (Fig. 6). Though

‘urban’ spectral-temporal signatures would be expected to

vary as a function of local landscape conditions and

heterogeneity of impervious surface cover, we consider

simple combinations of impervious and forest land cover

for the sake of illustration.

As these examples show, areas covered completely by

impervious materials have relatively flat seasonal profiles

for TCB, TCG and TCW, with any seasonal pattern

likely due to change in sun angle throughout the year.

When just a small fraction of vegetation is present, the

seasonal profiles exhibit a more pronounced seasonal

signal, and in a wooded suburban area, the seasonal

profiles appear to approach those of a deciduous forest,

with the effects of canopy phenology far outweighing

those of impervious surfaces. These spectral-temporal

profiles may provide insights into complex sub-pixel

mixtures and aid in improved mapping of human-domi-

nated landscapes.

Temporal trajectories

In the preceding examples, we focused on pixels where

land cover has remained relatively stable over the observa-

tion period so we could clearly visualize seasonal patterns

and use these to enhance discrimination. In this section,

we turn our attention to locations that have undergone

some form of land cover change or ecological transition

in the past 30 years. We have organized these examples

based on their underlying inter-annual functional forms

described by Kennedy et al. (2014): cyclic functions, abrupt

change, disturbance-recovery trajectories and trends. For

each example, we include both sequential date and DOY

plots in select TC components to emphasize how Landsat

time series data capture changes in both seasonal and

inter-annual patterns and dynamics. All the examples are

from our Eastern Massachusetts study area, where our

interpretations benefit from dense time series data, a rela-

tively large number of GE historical images, and a wealth

of local ecological knowledge.

Cyclic trajectories

Cyclic functions are usually thought of in relation to sea-

sonal dynamics, but they can also result from inter-

annual changes in ecosystem state related to sociological,

biophysical or climatological cycles. For example the TC

trajectories and profiles in Figure 7 capture cyclic dynam-

ics of a shifting tidal inlet at Mass Audubon’s Allens Pond

Sanctuary (Westport, MA). Tidal dynamics drive the

movement and sealing of tidal inlets (FitzGerald et al.

2002), but at Allens Pond, a local organization intervenes

and opens a new channel every 4–5 years to ensure con-

tinued exchange between the ocean and adjacent salt

marsh. At the pixel scale, this results in a cyclic change in

reflectance as the inlet moves along the beach producing

brief (1–3 month) shifts from sand to water. Interestingly,

though not surprisingly, the TCB and TCW trajectories

exhibit similar but opposite responses to the periodic

change in state, whereas TCG exhibits no response, as

there is no vegetation present at any time. Though this

inlet example is one of the first and only multi-year cyclic

trajectories we have investigated, we might expect to find

similar behavior in places that experience desert blooms

(e.g. Dall’Olmo and Karnieli 2002) and systematic crop

rotations.

ª 2016 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London 157

V. J. Pasquarella et al. Using Landsat observations to monitor ecosystems



B  Tropical rainforest (Colombia)
Path 6/Row 60

C  Mangrove (Vietnam)
Path 125/Row 53

D  Coastal oak (MA, USA)
Path 11/Row 31

F  Northern deciduous (MA, USA)
Path 13/Row 30

G  Spruce-fir (MA, USA)
Path 13/Row 30

H  Planted pine (MA, USA)
Path 12/Row 31

I   Hemlock (MA, USA)
Path 13/Row 30

J  Planted spruce  (Finland)
Path 189/Row 17

K  Pine (Finland)
Path 189/Row 17

L Planted birch (Finland)
Path 189/Row 17

Tropical rainforest (Colombia)
Path 7/Row 59

E Oak-dominated (MA, USA)
Path 12/Row 31

A
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Abrupt, persistent changes in state

Abrupt shifts occur in ecosystems of all kinds (Folke et al.

2004), and fit well with the long-standing remote sensing

paradigm of bi-temporal change detection. The temporal

trajectory of an abrupt change in state is characterized by

a step-function with a clear break point between meta-

stable ‘before’ and ‘after’ conditions (Kennedy et al.

2014), and persistent abrupt changes tend to exhibit dis-

tinct seasonal profiles with little blending/overlap.

Abrupt changes can be associated with severe weather

events, landslides, fire, flood, tsunami and volcanic or tec-

tonic activity, but sustained changes in land surface cover

and condition are most often linked to human activities.

Time series that capture obvious human-induced changes

in vegetation state and condition are relatively common.

For example Figure 8A shows a time series for a forested

area that was cleared to create a golf course. This abrupt

shift in state is visible in GE imagery, as well as in the

sequential date plot, which captures a rapid shift in the

seasonal amplitude of TCG following the transition from

forest to managed turf. Differences in the seasonal signals

of the forest and the golf course are observed in the DOY

plot, with the golf course exhibiting higher and less vari-

able TCG throughout the year.

Time series data also reveal interesting dynamics in

built environments. We have observed many urban sites

that exhibit abrupt breaks between highly stable reflec-

tance conditions. In some cases, GE imagery suggests

these breaks correspond to a change in roof color. In

other cases, such as the example shown in Figure 8B,

these changes indicate complete re-development of a site.

In this example from Boston, MA, a building with a dark

roof is knocked down and replaced by a new building

with a brighter roof. While there has essentially been no

change in land cover, we see a dramatic shift in TCB in

both the sequential date and DOY plots that is indicative

of the change in impervious surface condition.

Time series can also capture abrupt changes in surface

water conditions. For example Figure 8C shows a TCG

time series for a coastal sand plain pond at the Ashumet

Holly Wildlife Sanctuary (East Falmouth, MA) that would

previously ‘draw down’ each summer, resulting in sea-

sonal shifts between vegetated and non-vegetated states.

Over the last two decades, sanctuary staff have observed a

loss of this seasonal cycle, resulting in a persistent open

water condition that has threatened the survival of a tran-

sient biota that includes numerous rare, threatened and

endangered species. The TCG time series clearly captures

the shift between vegetated and open water states, provid-

ing key data on both the location and timing of this

abrupt change.

Disturbance and recovery

While regime shifts suggest a persistent change in ecosys-

tem state, ecosystems also have some capacity to recover

from disturbance (Holling 1973; Peterson et al. 1998).

Disturbance-recovery trajectories can be conceptualized as

the combination of two distinct functions: a step func-

tion, capturing an abrupt shift in state caused by a short-

term event, such as a fire, flood or storm, followed by a

period of recovery where the ecosystem asymptotically

approaches the original or a new metastable state (Ken-

nedy et al. 2014). Unlike sustained abrupt changes, which

exhibit two or more distinct seasonal profiles, seasonal

profiles of recovery trajectories show gradual mixing

between states.

Many Landsat time series studies have examined trajec-

tories of forest recovery (e.g. Viedma et al. 1997; Jin and

Sader 2005; Kennedy et al. 2007; Masek et al. 2008), yet

utilizing all high-quality observations can yield new

insights into the nature and rate of recovery processes.

For example Figure 9A shows TCG and TCW trajectories

and seasonal profiles for a site that was cleared in the

mid-1990s to presumably make way for a development

along a previously constructed road. The initial clearing

event, captured by GE imagery, causes a rapid decline in

the overall magnitude and seasonal variability in TCG. In

the following years, high-resolution images show the

patch transitioning through various stages of succession,

resulting in a gradual increase in the amplitude of TCG,

as well as increased variability in TCW. The observed pat-

terns in TCG and TCW can be used to monitor the rate

of recovery in support of studies of forest successional

and gap-phase dynamics.

Successional changes also occur in wetland ecosystems,

and there is growing interest in time series analysis of

wetland dynamics (e.g. Kayastha et al. 2012; Fickas et al.

2015). In temperate regions, rebounding beaver popula-

tions have a significant impact on wetland hydrology and

vegetation (e.g. Naiman et al. 1988). The TCG and TCW

time series shown in Figure 9B capture a typical sequence

of wetland transitions resulting from beaver activity at the

Wachusett Meadow Wildlife Sanctuary (Princeton, MA).

According to sanctuary records, a beaver dam raised the

Figure 4. Seasonal Tasseled Cap Wetness (TCW) profiles for 12 forested sites. Profiles show all available high-quality Landsat observations for a single

pixel. Forest types have been labeled according to best-available reference data, and the WRS2 path and row of the corresponding Landsat scene is

provided for reference. Note both seasonal differences in TCW, as well as differences in observation density across sites, forest types and latitudes.
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Figure 5. Tasseled Cap Brightness, Greenness and Wetness profiles for three examples along simple wetland gradient (WRS2 Path 12/Row 31).

Plots show all available high-quality observations for a single pixel. A high-resolution Google Earth image of each site is included for reference,

with the pixel footprint shown in red. Note variations in both overall magnitude and seasonal amplitude across the three TC components.
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Figure 6. Tasseled Cap Brightness, Greenness and Wetness profiles for three examples along simple urban gradient (WRS2 Path 12/Row 31).

Plots show all available high-quality observations for a single pixel. A high-resolution Google Earth image of each site is included for reference,

with the pixel footprint shown in red. Note variations in both overall magnitude and seasonal amplitude across the three TC components.
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Figure 7. Cyclic trajectory of Allens Pond tidal inlet (WRS2 Path 12/Row 31). To roughly distinguish between sand and water conditions in

sequential date plots, observations where Tasseled Cap Brightness (TCB) > 0.5 (50%) are shown in cyan, whereas observations where TCB < 0.5

are shown in blue. Vertical lines on sequential date plots correspond to dates of high-resolution Google Earth imagery (bottom). Note the

different patterns of cyclic change across different Tasseled Cap components, particularly the lack of change in Tasseled Cap Greenness, as well

as the short duration of the cyclic change events.
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water level in a large red maple swamp around 1993,

resulting in the mass die-off of woody vegetation, which

is captured in the time series as a notable decrease in the

amplitude of TCG. Following the flood event, marsh veg-

etation eventually re-colonized, as indicated by the grad-

ual return of seasonal vegetation cycles in TCG and

TCW. Interestingly, this particular wetland also experi-

enced a dam breach around 2008. This second distur-

bance event is more readily seen in the TCW trajectory,

confirming the different spectral bands are better suited

for capturing different change processes. This example

also illustrates the complexity of disturbance-recovery

Figure 8. Examples of abrupt changes in Tasseled Cap Greenness for three sites (WRS2 Path 12/Row 31). Time series (A) captures an abrupt shift

from forest cover to golf course. Time series (B) shows a change in impervious surface cover when a building is torn down and another re-built in

its place. Time series (C) shows changes in the seasonal cycle of a coastal sand plain pond that has ceased ‘drawing down’ each summer. Vertical

lines on sequential date plots correspond to dates of high-resolution Google Earth imagery (left). Note the clear step-like function in the

sequential observations, as well as the distinct seasonal profiles in the DOY plots.
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Figure 9. Examples of Tasseled Cap Greenness and Tasseled Cap Wetness disturbance-recovery trajectories for two sites (WRS2 Path 12/Row 31).

Time series (A) captures the clearing and recovery of a forested area that appears to have been previously slated for development, whereas time

series (B) captures the flooding and recovery of a wetland impacted by beavers. Vertical lines on sequential date plots correspond to dates of

high-resolution Google Earth imagery (left). Note the different trajectories observed in different seasons and in different TC components, as well

as the blending of seasonal profiles due to more gradual recovery processes after the initial abrupt change.
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trajectories, especially where multiple disturbance events

occur.

Gradual changes in state

Unlike abrupt changes and disturbance-recovery trajecto-

ries, which both rely on a step function to capture rapid

shifts in ecosystem condition, gradual changes imply a

trend function with no definitive break point–a slow shift

from one state to another (Kennedy et al. 2014).

When an abrupt change occurs before the first time

series observation, the temporal trajectory may only cap-

ture gradual recovery processes. For example Figure 10A

captures a gradual transition from a mowed area to an

Figure 10. Examples of Tasseled Cap Greenness gradual change trajectories for three sites. Time series (A) (WRS2 Path 12/Row 31) captures

recovery of a formerly managed grassy area to young forest. Time series (B) (WRS2 Path 12/Row 31) captures the recovery of herbaceous

vegetation following the removal of a building. Time series (C) (WRS2 Path 11/Row 31) captures the response of marsh vegetation to sea level

rise. Vertical lines on sequential date plots correspond to dates of high-resolution Google Earth imagery (left). Note the differences in

directionality of change (recovery versus stress), as well as differences in the rates of change across sites/change processes.
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early successional forest. An initial clearing event has

occurred sometime in the past, but at the start of the

time series, GE imagery suggests a managed herbaceous

state. Over time, this patch moves through stages of suc-

cession, indicated by a gradual increase in the seasonal

variability in TCG as woody vegetation re-established.

We have also observed a similar sort of gradual recov-

ery trajectory in cases where human infrastructure has

been removed and the site has been recolonized by vege-

tation. For example Figure 10B shows a TCG time series

capturing a transition from impervious surface to bare

ground to herbaceous vegetation after a building was

removed at the Boston Nature Center, which sits on the

grounds of the former Boston State Hospital. Here we see

increases in both growing season and non-growing season

TCG, as well as an overall trend toward increasing sea-

sonal variability as vegetation re-established.

In other examples of gradual change, long-term

changes in environmental conditions lead to a slow tran-

sition from one state to another with no history of abrupt

disturbance. Figure 10C shows the TCG trajectory for a

coastal salt marsh on Cape Cod affected by sea level rise.

While Smith (2015) documented areas of this marsh that

had and had not changed between 1984 and 2013, time

series data from this Middle Meadow site show a gradual

decrease in the seasonal variability in TCG over time,

providing greater insight into both the timing and rate of

change. By comparing rates of change across sites, it

becomes possible to quantify not only the overall impacts

of sea level rise across large areas, but also to test

hypotheses regarding the long-term dynamics and resili-

ence of impacted ecosystems.

Discussion

The Landsat legacy of single-date image classifications

and before-after change detection has historically limited

our ability to connect multi-spectral Earth observations to

complex ecosystem processes and landscape dynamics

(Kennedy et al. 2014). Now that we can look back across

the complete record of Landsat observations, we are able

to map and monitor the past and present conditions of

ecosystems around the world, to test ecological theories at

scales from local to global, and to model landscape

change as the conceptually simple, but mathematically

complex process that it really is. The examples presented

here showcase how the full temporal dimension of the

Landsat archive can be used to further the study of land

cover characterization, ecosystem phenology and land-

scape dynamics. These examples also emphasize the

importance of understanding not only the seasonal and

change signals, but also interacting processes driving vari-

ability in these signals over time and across sites.

Our exploratory work on seasonal profiles, which

builds on previous Landsat-based studies of phenology

(Fisher et al. 2006; Melaas et al. 2013), suggests there is

still much to learn about intra-annual patterns of reflec-

tance in relatively stable ecosystems. In our forest exam-

ples, we observed notable differences in mean annual

reflectance, seasonal variability and growing season length.

A more comprehensive and robust library of spectral-

temporal reference examples, akin to the libraries of spec-

tra created for hyperspectral analysis (e.g. Price 1994;

Zomer et al. 2009), would make it possible to conduct a

more thorough investigation of variability in spectral-

temporal properties across different forest types at local,

regional and global scales. Such work could also be

extended to include discrimination of non-forest cover

types. Dry season phenology metrics derived from Land-

sat time series have been used to improve separability of

grass-dominated and woody pastures (Rufin et al. 2015),

and based on the examples presented here, we expect that

spectral-temporal information will aid in improved map-

ping of other notoriously difficult classes such as wetland

types and gradients of urban development. Time series

data have also recently been used to map sub-pixel sur-

face water area (Halabisky et al. 2016), and our examples

of emergent wetland and low-density residential cover

types further support the potential utility of seasonal pro-

files for mixture modeling. Still, many questions remain

regarding the variability in spectral-temporal properties

across cover types as well as the drivers of seasonal

change, including sun and sensor geometry, vegetation

structure and moisture conditions.

In reviewing examples of inter-annual change, we

observed that time series of all available high-quality

Landsat data consistently reveal complex underlying pro-

cesses that would be difficult to assess using bi-temporal

or even annual change detection approaches. While

annual trajectories have proven useful for quantifying the

timing and magnitude of abrupt disturbances, particularly

in forested ecosystems (e.g. Huang et al. 2010; Kennedy

et al. 2010), more subtle change process, such as post-dis-

turbance recovery and changes in condition are better

captured using denser time series (e.g. DeVries et al.

2015b; Rufin et al. 2015). By increasing the frequency of

observations, we are able to discern a greater variety of

landscape processes, including cyclic and gradual change

processes that could easily be mischaracterized or missed

altogether if a more sparse set of observations were used.

Furthermore, our work highlights the importance of mul-

ti-spectral observations in detecting change processes.

Many time series studies to date have been univariate,

considering time series of a single spectral band or index

(e.g. Meigs et al. 2011; DeVries et al. 2015b), but we find

that that both seasonal patterns and change processes
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manifest differently in different spectral bands and

indices.

Our hand-picked examples clearly demonstrate that

with increased frequency of Landsat observations, it

becomes possible to characterize seasonal dynamics and

to detect major and minor disturbances in ecosystem

condition. Yet the ability to detect and interpret seasonal

cycles and land cover change depends on the availability

of both Landsat imagery and suitable reference informa-

tion. The number of available images, as well as the num-

ber of clear observations, can vary greatly across regions

and even from scene to scene (Hansen and Loveland

2012; Kovalskyy and Roy 2013). While the vast majority

of our examples were drawn from the US, where the

Landsat record is relatively complete, geographic and

temporal coverage of Landsat data can be far more

uneven in other parts of the world.

When entire years of imagery are missing from the

USGS archive, as observed in time series data from Fin-

land, Colombia and Vietnam, trajectory-based analysis

can be problematic, with large gaps between acquisitions

potentially obscuring the timing of change events. In

these places, time series analysis will likely benefit from

the Landsat Global Archive Consolidation effort (Wulder

et al. 2015), which continues to integrate previously

unavailable Landsat imagery into the USGS holdings from

many international receiving stations. From the perspec-

tive of seasonal signatures, a more difficult challenge is

the loss of data due to clouds and snow. Forest profiles

from Colombia exhibit data gaps during the April and

October rainy seasons, and examples from Finland show

that there are practically no clear snow-free observations

during the winter months (November through March)

(Figs. 3 and 4). In tropical regions, such seasonal gaps

may not have a dramatic impact on assessing intra-annual

signatures, as forest conditions are relatively consistent

throughout the year, but at more northern latitudes

where vegetation exhibits stronger seasonality, missing

observations can obscure the shape of the full spectral-

temporal profile. High latitude image overlap zones can

be used to increase the number of available observations

(e.g. Ju and Masek 2016; Sulla-Menashe et al. 2016), but

in many cases, seasonal and periodic gaps in time series

coverage will persist and analysis approaches will need to

be adapted accordingly.

Beyond limitations of data availability, the utility of time

series information is directly linked with our ability to

interpret the observed time series signals and the ecological

processes and interactions they capture. While GE provides

a ready source of historical high-resolution imagery, the

quantity, quality and timing of available images can vary

significantly. We find GE imagery useful for identifying the

condition of a pixel at a single point in time or validating

that an abrupt change has occurred, but interpreting more

complex seasonal signals and disturbance patterns often

requires more specialized expertise on site-specific ecosys-

tem conditions, long-term dynamics and drivers of change.

Thus, progress in the use of remotely sensed time series for

the study of ecological landscape dynamics will be highly

contingent upon the ability to interpret time series data

using existing ecological datasets and local ecological

knowledge, and to extrapolate lessons learned at data-rich

locations to the larger landscape using automated

approaches that capture spatial and temporal variability in

time series data (Kennedy et al. 2014; DeVries et al. 2016).

Landsat is currently one of the most cost-effective

sources of information on ecosystem extent, status, trends

and responses to stressors over large areas (Rose et al.

2014), and the opportunities for ecosystem mapping,

monitoring and comparative ecology using all available

Landsat observations extend far beyond what has been

presented here. Since the opening of the Landsat archive

in 2008, we have only just begun to understand the power

of using all available Landsat imagery for the study of

ecology. With increasing availability of moderate resolu-

tion optical imagery (Turner et al. 2015), time series-

based approaches to ecosystem mapping and monitoring

are becoming more common and more powerful. It is

our hope that the examples presented in this study will

serve to further facilitate the current shift toward an eco-

logical view of change (Kennedy et al. 2014), and will

encourage future work on quantifying and analyzing rela-

tionships between time series data, ecosystems and eco-

logical processes.
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Data Accessibility

All data and code used to produce the figures in this publica-

tion can be accessed at https://github.com/valpasq/

2016_ImageryEcology, doi:10.5281/zenodo.46265. This

repository also hosts KML files for each pixel to facilitate

review of high-resolution GE imagery for each example site.
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