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Abstract
An exact analysis of a 2-D lattice network consisting ofN×N sites with rectifier andAC source
elements with controllable phases reveals amethod for generating ripple-freeDCpowerwithout the
use of any filtering circuit elements. A phase cascade configuration is described inwhich the current
ripple in a load resistor goes to zero in the largeNlimit, enhancing the rectification efficiencywithout
requiring any additional capacitor or inductor basedfilters. The integratedmodular configuration is
qualitatively different from conventional rectenna arrays inwhich the source, rectifier andfilter
systems are physically disjoint. Nonlinear networks in the largeN limit of source-rectifier arrays are
potentially of interest to a fast evolving field of distributed power networks.

Introduction

The need forDC electrical power generation fromAC sources is arguably themost significant nonlinear
problemof central importance tomodern society. Solutions to the problem involve fundamental aspects of
nonlinear networks aswell as in extensions to higher frequency applications of interest to Physicists. It has long
been appreciated that rectifiers are nonlinear devices that break Lorentz reciprocity [1]. Interest in distributed
energy networks [2], the need for alternative energy technologies [3, 4], energy harvesting systems [5, 6] and
energy scavenging systems [7] have spurred renewed interest in the problemof scalability. New approaches to
hierarchical control of AC andDCmicrogrids have in turn sparked innovation [8]. A number of configurations
have been investigated for power generation fromAC source networks, extending towireless power generation
[5, 9], rectenna arrays andwireless power transfer systems [10–12] as well as smart grids [13]. A classic
configuration consists of rectenna arrays inwhich diode arrays are used to rectify the output of a receiving
antenna, followed by filters to provide the desiredDCpower. Such nonlinear networks have become very
interesting recently for devices in which diode elements are integrated into plasmonic structures, and in the
rapidly emerging new field of nonlinearmetamaterial devices [14–16], efficientmetamaterial based energy
harvesters [17] among others. The ability to design and engineer local phase shifts within each element of a
receiving array represents a new capability that has not been studied in detail, and the configuration space
remains unexplored. Lattice networks consisting of nonlinear elements like diodes and randomcircuit elements
have been extensively studied in Statistical Physics asmodels of directed networks and percolation problems
[18–21].More recently, networks of nonlinear circuit elements have been shown to exhibit symmetry-breaking
transitions associatedwith bifurcations [22]. The range of phenomena is vast even for deterministic systems.Up
to now, the inclusion of voltage sources within the lattice sites has not beenwidely considered. Itmay be
expected that integration of sources with randomor varying phases at each lattice site will lead to an even richer
range of phenomena.
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In this article, we investigate rectification phenomena in a particular 2-D lattice network consisting of
N2 sites , inwhich each lattice site consists of anAC source in a bridge-rectifier like configuration. As shown in
figure 1, each lattice site shares one diodewith each of its nearest neighbors. The configuration is inspired by
rectenna arrays, but nowwith the addition of AC sources at each lattice site. The system consists ofN2 AC
sources, and (N+1)2 diodes. It can be seen thatwhenN=1, the configuration is identical to a classic bridge-
rectifier combination. Each columnof unit cells harks back to the iconic Cockroft–Walton generator. Each row
of parallel cells is characteristic of amicrogrid. Both theCockroft–Walton generator and themicrogrid
configurations have disadvantages in terms of current carrying capacity and scalability of voltage.When
arranged in a 2-D lattice, we show that new features emerge that overcome the shortcomings. Common tomost
nolinear circuit networks the current through the load resistor hasmany frequency components, with the zero
frequencyDC component being themost important for rectification.

The advent of distributed generation of power fromboth conventional and alternative energy sources
providesmotivation to study networks inwhich voltage sources are also distributed throughout the lattice. Of
particular interest is the generation ofDCpower and ripple-free voltage sources, not only for their ubqiuitious
use but also for efficiency in transmission over long distances with asynchronous power generators derived from
awide range of sources for energy harvesting.

Latticemodel

Weconsider the challenge of how to arrange a lattice ofM≡N2 AC voltage sources, with suitably chosen
relative phases andwith diodes for rectification such that it can produce an almost dc source. For definiteness,
consider a 2-D lattice of elements arranged as shown in the figure 1. In this section, we present the analysis for
idealized diodes, which operate in just two states determined by the bias voltage across the diode: (i) an ‘off’ state,
at negative bias, where the current is Zero; (ii) an ‘on’ state, at positive bias, where the current is an arbitrary
positive value limited only by the load.

Wewill briefly consider in a later sectionmore realistic diodemodels later using numerical simulations on
commercially available Silicon diodes with a forward voltage of∼.8 V, andwith current set by a non-zero
forward resistance.

The lattice arrangement of interest is shown infigure 1withN2 voltage sources arranged in series with a load
resistorRL. The total number of diodes required is ºM N4 4 2, with 4 diodes per unit cell.Motivation for this
lattice network comes from shortcomings in simple series and parallel arrangements of rectifiers. In the simple
series arrangement, each diodemust then be rated to carry up to themaximum total currentflowing through the
load resistor, which limits the utility of the series configuration, as we shownext.With the rectified sources in
series, the total voltage at time t is

å w p= +
=

( ) ∣ ( )∣ ( )V t V t j Nsin 2 . 1
j

N

1
0

2

2

Figure 1. (a) Full-wave rectifiers arranged in series. The external resistive load is connected across the ends, withN2 voltage sources
between the ends, withN=6. (b)Amulti-stage Cockroft–Walton generatorwith capacitors.
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Clearly, this is a periodic function of time, with time periodT=2π/(ωN2) that also violates time-reversal
invariance. For the simple case whenN is an even number, we have

w p p
w p p

= =
= - =

( ) ( )
( ( ) ) ( ) ( )

V t k N V N

V t k N V N

2 2 cot

2 1 2 csc 2

2
0

2

2
0

2

are theminima andmaxima of ( )V t .
The ratio ofminimum tomaximumvoltage is p( )Ncos ,2 and the frequency of these ripples isN2ω. For

largeN, the ripples have height pV N ,0
2 and are superimposed on aDC voltage of pN V2 .2

0 Wenote that the
peak current carried through each diode is approximately p( )N V R2 L

2
0 , which it carries for half the cycle. For

largeN this current can exceed themaximum rating for the diode in the series configuration. This limitation is
inherent in any series configurations. The iconic Cockroft–Walton generator shown infigure 1(c) is constrained
in its utility by such a limitation on the current.

As an alternative to the simple series arrangement, the current load in each diode can be reduced by adopting
a parallel configuration shown on the left side offigure 1(a). ForM bridge rectifiers arranged in a parallel
configuration, the sources have to be in phase. The fraction of the ripple in the output voltage can be seen to be
just as large it would be for a single rectifier, and additional filteringwould be needed to get DC current through
the load resistor. In the simple parallel arrangement shown in thefigure, the current is distributed among the
unit cells, but the voltage across the resistors is now limited by the forward voltage drop across two diodes.

These elementary argumentsmotivate us to investigate a hybrid system that combines series and parallel
combinations into the 2-D lattice shown infigure 1, with each unit cell ismapped onto a conventional bridge-
rectifier. Remarkably, wefind that for a special choice of phases of the AC sources, the configuration provides the
advantage of reduced ripple in the rectifiedDC voltage of a series combination, with the advantage of reduction
in peak current that is the hallmark of the parallel combination. The lattice arrangement analyzed here solves
both problems and the system is inherently scalable for both high voltage and high currents while remaining
within the damage thresholds of the diodes.We now showhowhierarchical control of the phases results in
perfect conversion efficiency. In our configuration, the phases of the voltage sources are uniformly distributed
between zero and 2π.

Figure 1(a) shows the proposed alternative arrangement of voltage sources. Diodes are placed on the vertical
sides of the square, and voltage sources on the horizontal sides. Conducting strips at the top and the bottom are
linked to the external load. The voltage across the source in the i’th row and j’th column is

w p= - + +⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥( ) ( ) ( )v t V t

j

N

i

N
1 sin 2 , 3ij

i
0 2

where 0�i�N−1 and 1�j�N. The phase angle associatedwith the source at (i, j) is 2π( j/N+i/N2)
when the row index i is even or zero, and is=2π( j/N+i/N2)+πwhen the row index is oddwithin the index
range 0�i�N−1. The sign of the voltage across a source isfixed by defining it as the difference between the
voltage at the right end and at the left end of the source. Then one can verify that the voltage at the j’th junction
between voltage sources in the i’th row is

p
w p=

-
+

+
+ +

- ⎡
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1
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where 0�j�N and ci(t) is a j-independent function of time in the i’th row that has to be determined.
(Equation (4) can be verified by taking the difference in the voltages at successive nodes and comparing to
equation (3).)The voltagesVij are then the voltages at the ends of the various diodes. The functions ci(t) can be
determined by the condition that, at any time t and in the approximationwe areworkingwith, none of the
diodes can be forward biased, and at least one diode in each rowmust be at zero bias in order for current toflow
fromone row to the next. This ensures that

- =+[ ( ) ( )] ( )V t V tmin 0 5
j

i j ij1,

independent of t, forN−1>i�0. Thisfixes ci+1(t)−ci(t). Similar reasoning can determine the voltages at
the conducting strips at the top and bottomof the lattice.

To understand the results obtained, we first consider a continuumapproximation, where the number of
nodes in each row is very large. From equation (4), the voltage across any row is a sinusoidal curvewith
amplitudeNV0/(2π). The sinusoidal curve for each row is upside down compared to the adjacent rows. (The
curve in each row is also shifted horizontally by a phase of 2π/N2 with respect to the preceding row, but this shift
is neglegible in the  ¥N limit.) From equation (5), we immediately obtain
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where f w p p= + +( )t t N i N2 .i
2 Thus p- =+ ( ) ( )c t c t NV .i i1 0 By the same reasoning, the voltages of

the two conducting strips are p-( ) ( )c t NV 20 0 and p+- ( ) ( )c t NV 2 .N 1 0 Therefore the voltage difference
between the two conducting strips isN2V0/π, and aDC currentflows across the load resistor.

With an understanding of the behavior of the phase cascade shown in the  ¥N limit, we now consider
the case of a finite lattice. The displacement in the sinusoidal curves for successive rows, i.e. -+ ( ) ( )c t c t ,i i1 is
obtained by the condition

p
w p w p

-
+

+
+

+
+ +

+
+

+ - =+

⎧
⎨⎪
⎩⎪

⎡

⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤

⎦
⎥⎥

⎫
⎬⎪
⎭⎪

( )
( )

( ) ( ) ( )

V

N
t

j

N

i

N
t

j

N

i

N

c t c t

min
1

2 sin
cos 2

1
cos 2

0. 7

j

i

i i

0
1

2
2

1

2
2

1

BecauseN is even, replacing  +j j N 2 changes the sign of both cosine terms. Since theminimumover all j is
taken, the factor of (−1)i can be dropped.We can also replace theminimumwith themaximum,with a change
of sign:
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The voltage of the horizontal strip at the top of the array infigure 1(a) is

p
w p
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wherewe have replaced jwith j+1 to get the extra phase of 2π/N, and used the fact that  +j j N 2 reverses
the function. The voltage of the horizontal strip at the bottomof the array infigure 1(a) is
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The voltage difference between the two horizontal strips can be obtained by subtracting these two equations. It is
convenient towrite this as

dD = - +( ) ( ) ( ) ( ) ( )V t c t c t V t 11N 0

by formally extending equation (8) to i=N−1, where
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For thefirst part of equation (11), using equation (8),
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wherewe defineωτ=π/N+π/N2, andwe have used the periodicity of the summandwith respect to
 +i i N to change the limits of the sum. This is a periodic function of time, with a period of 2π/(ωN2). If

w p< <t N0 2 ,2 which covers one time period, every term in the sumon the right hand side of equation (13) is
maximized at j=0. Thus theminima andmaxima of cN(t−τ)−c0(t−τ) occur at
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The ratio of the two is p( )Ncos .2 Thus for largeN, -( ) ( )c t c tN 0 tends aDC voltage ofmagnitudeN2V0/π,
with ripples whose frequency is wN 2 and height isπV0/(2N

2).
We now turn to the function d ( )V t . In equation (12), it is easy to see that replacing w w p +t t N2 is

equivalent to  +j j 1, i.e. the function is periodic with a period 2π/(Nω). Furthermore, δV(t)=0 unless the
two cosine functions have theirmaxima at different values of j.Thefirst cosine has itsmaximumat j=0 for

p w p- < + - <( )N t N N2 2 1 1 0,2 while the second cosine has itsmaximumat j=0 for−2π/N<ω
t+2π/N<0. Thus δV(t) is non-zerowithin equally spaced narrow time intervals 0<ω t+2mπ/N<
2π/N2. Themaxima of δV(t) occurwhenω t+2mπ/N=π/N2. It is easy to evaluate equation (12) and verify
that

d
p

p p p p p= - + - + =
( )

{ ( ) ( )} ( ) ( )V
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N N N N V N

2 sin
cos cos sin . 16max

0 2 2
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2

Combiningwith the result of the previous paragraph,ΔV(t) has a ripple of heightπV0/(N
2) and frequencyNω

and a ripple of heightπV0/(2N
2) and frequencyN2ω, superimposed on theDC voltageN2V0/π.

We now compare the square lattice withN2 voltage sources toN2 full-wave rectifiers in series. For a
distributed voltage source, it is reasonable to choose the amplitude of the individual sources to scale as∼1/N, i.e.
V0=Vc/N. Then, theDC voltage for the square lattice isNVc/π, compared to pNV2 c for the rectifiers in
series. On the other hand, for largeN there is only one diode per source instead of four. Asmentioned earlier, for
a loadRL themaximumcurrentflowing through each diode is p( )NV R2 c L . Similarly, for the square lattice with
idealized diodes, themaximum current isNVc/(πRL) because at any instant the currentflows from top to
bottom along a unique set of diodes. However, with realistic diodes, the current is distributed over numerous
parallel ‘channels’, reducing themaximum current. (Without numerical simulations, it is not obviouswhether
the number of channels n isO(1) or ( )O N .)Thus for the same currentflowing through the load resistor, it is
easier to exceed themaximum rating of the diodes for rectifiers in series. Themaximumvoltage across a diode
when it is reverse biased isV0=Vc/N for the rectifiers in series. For the lattice, themaximum reverse biased
voltage can be approximately obtained from the continuumapproximation, as p p=NV V2 2 .c0 Both of these
arewell behaved for largeN. Finally, the power dissipated in the diodes is non-zero if they are not ideal. Since

= -
» >
»- <

( [ ] )
[ ]

( )

I I V V

I V V V

I V

exp 1

exp 0

0 17

s s

s s

s

then the power dissipated is

å å~ +
a

a a
b

b( ) ( )V I I I V Iln , 18s s s

where the sums run over the forward and reverse biased diodes, respectively. For the lattice, there areO(N2)
reverse biased diodes withO(1) voltages across them, and the power dissipated in them is ( )O N .2 For the
forward biased diodes, if the current flows along n channels, there areO(nN) forward biased diodes eachwith a
currentO(N/n)flowing through it. The power dissipated in the forward biased diodes is thus ( )O N Nln .2 By
comparison, for the rectifiers in series, there is anO(N) currentflowing inO(N2) forward biased diodes, so that
the power dissipated in them isO(N3 lnN).

Our results showprefect rectification and breaking of Lorentz reciprocity can be achieved using a nonlinear
network consisting of a lattice of AC sources. This work provides an interesting example of an exact result that
can be established for an infinite nonlinear network, consisting of ideal bridge rectifiers that are of interest for
distributed energy generation. Simulationswith realistic diodes confirm the exact results derived here.
Importantly, the phase cascade sequence described is independent of frequency, and perfect rectification can be
achieved for awide range of frequencies, whichmakes it attractive for energy harvesting and distributed energy
networks. A fabricated circuit constructed of light emitting diodes and phase cascadedAC sources confirms the
results in the paper.

Numerical simulations
Simulationswere performed inMATLAB Simulink, using Silicon diodes, withmodel parameters selected for a
General purpose Rectifier (Fairchild 1N4004). The forward voltagewas 0.8V, with an internal resistance of
0.001Ω, inductance 0. A snubber capacitance of 250 nF., and snubber resistance of 500Ωwere used to suppress
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voltage transients, but the values did not affect the steady state results discussed in the paper.More sophisticated
models with nonlinear behavior arising from the diode effective capacitancewere not considered. Parasitic
effects in nonlinear circuits can give rise to non-local behavior affecting time synchronization and generate
inhomogenieties in the periodic array. Inhomogeneities in in the electric fields and associated device
characteristics have been shown byXu andTeitsworth [23] to lead to bifurcations and the emergence ofmultiple
current branches. The current is now amultivalued function of the driving voltage and the response is history
dependent. Such effects are important in a variety of complex electronic systems [23] ranging from
semiconductor superlattices [24] to quantum cascade lasers [25], but were not considered in our steady state
analysis of a network circuit for power production. In our simulations, the amplitude of the AC sources was set
at 10V, and the frequencywas set to 10 Hz, driving a load a 1 kΩ load resistor. Current probes were used to
measure the load current, and the current and voltage difference across selected diodes andACpower sources.
The load current was used to derive the load power. The lattice sizes were varied from =N 12 to amaximumof
N2=64. Shown in figure 2 are the results of the simulation of the power for the 2-D square lattice with the Phase
cascade array.

The simulationswere used to calculate the representative duty cycle of the phase cascade array and compared
to the series configuration, as shown infigure 3. It is evident that in the phase cascade array, the peak current is
lower, and the duty cycle also lower than in the series configuration, reducing both thermal load and easing the
limits on the forward current. One figure ofmerit is the efficiency of the phase cascade array estimated by
considering the power delivered to the load compared to the power supplied to the sources. Fast Fourier
transforms of the time series were used to calculate the power spectrum in the load resistor. Figure 4(a) shows a
comparison of the power spectrum for the phase cascade array compared to the series configuration. Thefirst
consideration is the fraction of the power supplied to the load resistor compared to the total input power
supplied by all the sources. For an ideal diode array, the efficiency is 1, but for the circuit shown infigure 1(a)
with realistic diodes, the efficiencywas 0.945± 0.005. A second perhapsmore relevantfigure ofmerit is the

Figure 2. Load resistor power as a function of time for an array of 1N4004 diodes under the conditions indicated in detail in the text.
The load resistor value has been set at 1 kΩ. Inset shows an the same time series with an expanded load power scale.

Figure 3.Current through a single selected diode in the series configuration compared to the phase cascade array.
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noise-to-signal, or the relative standard deviation. Themean load power P̄ and standard deviation sP for the
6×6 phase cascade array was 11.79±0.05W, corresponding to a coefficient of variation of s sº ~P̄v P

0.4%, for the 6×6 array even in the absence of anyfilters. The question of how time synchronization affects the
performance of the proposed phase cascade array circuit was addressed by adding randomphase noise δf to the
cascaded phasefc of each source. Figure 4 (b) shows the time series of the load power for several realizations {δ
f} of randomphase noise configurations. In a lattice of randomphase angles distributed uniformly over (0, 2π)
significant power now appears at all harmonics at the expense ofDCpower, as expected. The load power for the
randomphase configurationwas 12.03±4.66W,withσv∼39% showing an enormous increase in the relative
standard deviation. For configurations inwhich the phase noise is distributed uniformly randomly over a
narrow range (0, 2π/N2) and then added to thefixed phase angle in Eq(3), the load powerwas found to be
11.93±0.16W,withσv∼1.3%. The results suggest that the phase cascade is robust against small local phase
angle variation. For ideal diodes in an infinite phase cascade array, the efficiencywill tend to 1 as expected from
the exact analytical results obtained in this paper.
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