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ABSTRACT: 

 

90% of the worldwide schistosomiasis burden falls on sub-Saharan Africa. Control efforts are often based on infrequent, small-scale 

health surveys, which are expensive and logistically difficult to conduct. Use of satellite imagery to predictively model infectious 

disease transmission has great potential for public health applications. Transmission of schistosomiasis requires specific 

environmental conditions to sustain freshwater snails, however has unknown seasonality, and is difficult to study due to a long lag 

between infection and clinical symptoms. To overcome this, we employed a comprehensive 8-year time-series built from remote 

sensing feeds. The purely environmental predictor variables: accumulated precipitation, land surface temperature, vegetative growth 

indices, and climate zones created from a novel climate regionalization technique, were regressed against 8 years of national 

surveillance data in Ghana. All data were aggregated temporally into monthly observations, and spatially at the level of 

administrative districts. The result of an initial mixed effects model had 41% explained variance overall. Stratification by climate 

zone brought the R2 as high as 50% for major zones and as high as 59% for minor zones. This can lead to a predictive risk model 

used to develop a decision support framework to design treatment schemes and direct scarce resources to areas with the highest risk 

of infection. This framework can be applied to diseases sensitive to climate or to locations where remote sensing would be better 

suited than health surveys.  

 

 

 

 

*  Corresponding authors 

 

1. INTRODUCTION 

Schistosomiasis is a debilitating infection acquired from contact 

with infested water bodies and caused by parasitic blood flukes 

of the genus Schistosoma. It infects over 200 million people 

worldwide, and around 779 million are at risk (Steinmann et al., 

2006; Utzinger et al., 2009; Gray et al., 2010). Schistosomiasis 

is endemic to parts of South America, the Middle East, Asia, 

and Africa. Sub-Saharan Africa contributes 90% of cases 

worldwide (Chitsulo et al., 2000; Gryseels et al., 2006; 

Hurlimann et al., 2011) and Ghana has one of the highest 

prevalence rates of infections (WHO, 2010). In Ghana 30-35% 

of the population require preventative chemotherapy, however 

only 2–8% of the population receives it annually (WHO, 2010). 

Due to limited disease surveillance, control efforts are often 

based on infrequent, small-scale health surveys, which are 

expensive and logistically difficult to conduct.  

Favorable snail habitat can serve as a proxy for potential 

schistosomiasis transmission, because snails must be present for  

the parasite to develop into a stage infective to humans 

(Sturrock et al., 2001). For disease to occur there must be  

 

 

interaction between the parasite, snail, and human. The parasite 

and snail factors are primarily environmental (see Table 1). 

Thus, environmental variables that dictate snail habitat can be 

used to predict disease transmission. Furthermore, these 

parameters can be accessed by remote sensing (RS) technology 

(Simoonga et al., 2009). Specific RS data are publically 

available at no or limited cost, and since this technology can 

cover a large spatial and temporal scale, it is ideal for use in 

low-income countries lacking the resources to perform 

expensive ground-based studies (Gryseels et al., 2006). Recent 

review papers show that the most commonly used 

environmental variables are temperature, vegetation, rainfall, 

water chemistry, distance to waterbodies, and elevation 

(Simonga et al., 2009; Walz et al., 2015a). Aggregation over 

ecological zones as opposed to administrative units has been 

recommended in the literature, and is shown to be valuable in 

predicting the occurrence of schistosomiasis (Simoonga et al., 

2008; Grosse, 1993; Walz et al., 2015b; Walz et al., 2015c). 
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Parasite Snail Human 

Temperature Water temperature Water contact 

Water flow Water flow/level/depth Health, Controls 

Sunlight Sunlight, Vegetation Age, Gender 

Species Species Class/Pay, Job 

Predators Predators Ethnicity,Religion 

Pathogenicity Rainfall Residence, Travel 

 

Table 1: Parasite, snail, and human factors affecting 

schistosomiasis transmission (adapted from Walz et al., 2015a). 

 

In order to determine predictive properties of RS-based 

environmental parameters, we examined monthly records of 

reported schistosomaisis during 2008-2015 and their 

associations, with time-series built from remote sensing feeds at 

the district level in Ghana.  

 

2. DATA 

The environmental variables used in this work came entirely 

from publically available remote sensing data (Table 2).  The 

environmental variables were selected based on their repeated 

use in the literature (Bavia et al., 2001; Simoonga et al 2009; 

Walz et. al 2015a), and for comparison to the predominant 

climate classification system for the past 100 years. The 

Köppen-Geiger (KG) climate classification system is based on 

the assumption that vegetation is the best proxy for climate, and 

that temperature and precipitation are the best proxies for 

vegetation (Kotteck et al., 2006). The variables were projected 

to WGS-84/UTM-30N datum prior to aggregation to mean 

values per district, using zonal statistics in the ArcGIS 10.3 

software. Where resampling was required, the cubic 

convolution technique was used because it more realistically 

reflected the smooth transitions of environmental data across 

terrain. 

 

Para-

meter 

Data 

 Source 
Product 

Temporal 

Resolution 

Spatial 

Resolution 

LST¹ MODIS⁵ 
MOD/ 

MYD- 

11A2 

calculated     

8-day 

composites 

1 km² 

NDVI² MODIS⁵ 
MOD/ 

MYD- 

13A2 

calculated     

8-day 

composites 

1 km² 

LKNr³ MODIS⁵ 
MYD-

13Q1 

15-year 

aggregates 
Regional 

AP⁴ TRMM⁶ 3B43 v7 Monthly 28 km² 

Rate GHS⁷ Counts Monthly District 

 

¹ Land surface temperature (LST) 

² Normalized Difference Vegetation Index (NDVI) 

³ LKN-regions (LKNr) 

⁴ Accumulated Precipitation (AP) 

⁵ Moderate Resolution Imaging Spectroradiometer (MODIS) 

⁶ Tropical Rainfall Monitoring Mission (TRMM) 

⁷ Ghana Health Service (GHS)  

 

Table 2: Data sources and resolution of environmental 

parameters and the health outcome.  

 

Ghana Health Service (GHS) provided monthly counts of 

schistosomiasis reported to the national surveillance system 

from January 2008 through December 2015. The records are 

likely to reflect the process of adult patients seeking medical 

treatment for schistosomiasis-related symptoms across 216 

districts. The case counts were converted into monthly 

prevalence rates, using district populations obtained from the 

2010 Census and with intra-censal population growth 

projections (GSS, 2016). Rates were calculated per 10,000 

people.  

 

The original case counts contained “blanks” (47% of all data 

points), which might be interpreted as a missing data points or 

as “true” lack of reporting for a given month in a given location.  

In the current study “blanks” were replaced with zeros. To 

correct for right-skewed distribution, the rates were transformed 

by natural logarithm and adjusted by the lowest observed 

disease rate for a non-zero count of 0.00506.  

 

3. METHODS 

3.1 LKN regionalization 

LKN (LKNr) regions were created following the methodology 

of our recently proposed automated climate regionalization 

method, LKN-regionalization, which are based on k-means 

clustering algorithm over time-space (Liss et al. 2015). The 

LKN method consists of the data limiting step (L-step) to 

reduce dimensionality by applying principal component 

analysis, a classification step (K-step) to produce hierarchical 

candidate regions using k-means unsupervised classification 

algorithm, and a nomination step (N-step) to determine the 

number of candidate climate regions using cluster validity 

indexes. Using a comprehensive set of multiple satellite data 

streams arranged as time series, the method is capable of 

defining climate regions over large spatial extents. This is 

essential for large-scale epidemiological studies to account for 

geographic heterogeneity.  

 

MODIS Normalized Difference Vegetation Index (NDVI) and 

Land Surface Temperature (LST) for 15 years (2000-2015) 

were downloaded from the online Data Pool at the NASA Land 

Processes Distributed Active Archive Center (LP DAAC), 

USGS/Earth Resources Observation and Science (EROS) 

Center, Sioux Falls, South Dakota (LPDAAC-NASA 2000-

2015). The data was mosaicked and re-projected so that it 

covered the entire extent of our study region (latitude and 

longitude of the upper left and lower right corners of the 

bounding box were: UL (11.625, -3.625), LR (4.375, 1.375)). 

Each of the two EOS satellites, Aqua and Terra, produced 

composites on overlapping 16 days schedules that we combined 

and constructed 8 day temporal resolution composites. The data 

was aggregated in a layered space-time series. Using a 

normalized vegetation index allowed us to reduce or eliminate 

the effects of annually changing lighting conditions, thin 

clouds, atmospheric and anisotropic distortions.  

 

Water bodies were masked to avoid misclassification, because 

the water reflectance pattern differs significantly from almost 

any other land surface material by absorbing most of the 

incoming radiation. The imagery for each of the 8 days period 

was pixel-averaged across multiple years resulting in 43 layers. 

The time series of 8-days vegetation and temperature rasters 

naturally exhibited a very high degree of spatial and temporal 

correlation. Following the original LKN-methodology we 

reduced dimensionality and orthogonalized this data by 

applying Principal Component (PC) decomposition to the 

original time series. We found that the first 4 and 8 principal 

components retained 90% and 95% of the original information 

respectively. A composite image created from the first four 

components showed a high spatial separation and a large signal 

to noise ratio (Figure 2B).  
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Figure 1: Climate classification workflow. A) flowchart of the 

LKN method. B) first four components of the PCA.C) 3 major 

zones and D) 9 minor zones determined by CVI analysis. 

 

The original methodology employs cluster analysis to define 

regions with similar climate. It aims to assign a finite set of  

labels (also known as categories or classes) to a very large 

number of multidimensional objects (pixels, representing a 

defined area on the ground in our case) based on their similarity 

followed by determination of the cluster validity. We perform 

classification using several parameter sets and algorithms with a 

varying number of principal components, regions, and applied 

distance measures resulting in approximately 200 

classifications. We assessed the quality of clustering using 

cluster validity index (CVI) analysis. K-Means using Euclidean 

distance produced the best clustering, with 3 major zones 

(Figure 2C) and 9 minor zones (Figure 2D). 

 

3.2 Associations between disease and RS-based parameters 

Spatiotemporal patterns of schistosomiasis disease rates were 

explored using descriptive statistics, Spearman’s correlation, 

and a multivariate generalized linear mixed effects regression 

model. The model was designed to control for temporal 

variations, such as trend and seasonality with two harmonic 

terms, and spatial variations by including district-level 

clustering effects. The model was repeated for major and minor 

climatic zones and formulated as follows: 

 

, (1) 

 

 
 

 
   

 

Figure 2: Spatial distribution of the 8 year averages of 

Loge(rate), LST, NDVI, and AP aggregated from 2008-2015 

and extracted by the 216 districts of Ghana. Districts with no 

counts for the entire time period are shown in white, and data 

values were stretched from high to low.  

 

where Ytj is the natural log transformed monthly rate per 10,000 

people at t-month and j-district; t is the time in months (96 

months from 2008 – 2015); βL and βM represent the regression 

coefficients for fixed effects of seasonality, S, and remotely 

sensed variables, RS, respectively:  

 

 
 
(2) 

 

  
(2) 

(3) 

 

bp represents the coefficients of the random effects for the 

remote sensing parameters for each district. Two harmonic 

terms account for potential multiple peaks, as the north of 

Ghana is characterized by one wet-dry season, while the south 

by two seasons. The models were fitted by the restricted 

maximum likelihood (REML) using the glmer function of the R 

package [lme4] (version 3.2.2). 
 

Models results were presented as relative risk (RR) estimates 

with their 95% confidence intervals (95%CI). Model fit was 

assessed by superimposing the fitted model on a needle plot 

representation of the outcome’s time series.  
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4. REULTS 

The general summaries of outcome and predictor variables 

indicate spatial heterogeneity by climate zone (see Table 3). As 

evident from the spatial distributions of the predictor variables 

(Figure 2) there are clear climatic divisions in the long term 

averages of RS parameters. These divisions were well captured 

by the LKN regions (Figure 1), which provide a more accurate 

spatial unit of analysis in assessing the relationship between 

climate and schistosomiasis than administrative boundaries.  

 

LKN regions affected the long term averages of the outcome 

and predictor variables. When stratified into the 9 minor 

regions, the rates ranged from 0.18 to 1.09 per 10,000 people 

(mean ± stdev. = 0.45 ± 1.61), LST ranged from 25.64 to 34.03 

degrees Celsius (28.18 ± 4.36), NDVI ranged from 0.39 to 0.68 

in health of vegetation between ± 1 (0.58 ± 0.17), and AP 

ranged from 0.10 to 0.14 in mm/month of rainfall (0.13 ± 0.09). 

The long term average of reporting rate was very low, and could 

reflect underreporting.  

 

All values of LST fall within the ideal range of temperature 

values suitable for the schistosoma parasite and snail species 

(Gryseels et al., 2006). Overall, NDVI shows healthy vegetation 

on average, as would be expected in a tropical environment. 

The range of rain values was small. The apparent albeit mild, 

differences in average values per LKN region suggest that 

studies of this nature require precision in order to flush out 

substantial spatiotemporal relationships in equatorial regions.  

 

Zone Rates LST NDVI AP 

All 0.45 ±1.61 28.18 ±4.36 0.58 ±0.17 0.13 ±0.09 

3:1 0.49 ±1.48 32.31 ±5.18 0.42 ±0.15 0.11 ±0.10 

3:2 0.50 ±2.00 28.49 ±3.27 0.57 ±0.14 0.12 ±0.09 

3:3 0.42 ±1.49 25.85 ±1.92 0.67 ±0.11 0.14 ±0.09 

9:1 0.26 ±0.71 29.47 ±3.17 0.41 ±0.11 0.10 ±0.07 

9:2 1.09 ±2.46 34.03 ±5.22 0.39 ±0.15 0.11 ±0.11 

9:3 0.38 ±1.03 33.53 ±5.53 0.44 ±0.16 0.11 ±0.11 

9:4 0.34 ±0.81 26.18 ±1.89 0.65 ±0.09 0.13 ±0.09 

9:5 0.18 ±2.13 25.64 ±2.24 0.67 ±0.12 0.13 ±0.09 

9:6 0.46 ±1.35 25.65 ±1.74 0.68 ±0.10 0.14 ±0.09 

9:7 0.65 ±1.87 27.93 ±2.69 0.60 ±0.12 0.12 ±0.08 

9:8 0.33 ±2.36 28.29 ±3.64 0.56 ±0.15 0.13 ±0.10 

9:9 0.27 ±0.71 30.36 ±4.79 0.50 ±0.16 0.13 ±0.11 

 

Table 3: Descriptive Statistics of outcome and predictors. 

 

Overall, the correlation between the monthly values of rates and 

the environmental variables was near zero (which is confirmed 

by a more detailed analysis). There was moderate correlation 

among the environmental variables (Figure 3), which did not 

warrant collinearity. 

 

 
 

Figure 3: Correlation matrix of outcome and predictors.  

The mixed effects models had 41% explained variance overall. 

Stratification by LKN region brought the R2 as high as 50% for 

major zones and as high as 59% for minor zones. Trend and 

seasonal oscillations contributes a major portion of the 

variability explained (see Figure 4; 37%). In terms of 

environmental predictor variables, LST and AP showed no 

significant risk association with disease rates. NDVI showed 

increased relative risk values in major zone 3 and minor zone 7 

(RR = 1.64; CI95%: 1.01,2.67 and RR = 6.76 CI95%: 

1.93,23.62, respectively). AP showed increased relative risk 

overall (RR = 1.47; CI95%: 1.01,2.15). 

 

 
 

Figure 4: Needle plot of loge(rate) superimposed with fitted 

models: All (black), Z3:1 (red), Z3:2 (green), and Z3:3 (blue). 

 
  LST RR NDVI RR AP RR Results 

  (LCI,UPC) (LCI,UPC) (LCI,UPC) R2 n 

All 
1.00 

(0.99,1.01) 

1.32 

(0.99,1.77) 

1.47 

(1.01,2.15) 
0.41 20442 

3:1 
1.00 

(0.98,1.02) 

0.57 

(0.27,1.19) 

0.56 

(0.26,1.20) 
0.50 5622 

3:2 
0.99 

(0.96,1.03) 

0.96 

(0.36,2.55) 

2.29 

(0.87,6.01) 
0.39 4275 

3:3 
1.00 

(0.97,1.03) 

1.64 

(1.01,2.67) 

1.09 

(0.63,1.87) 
0.37 10545 

9:1 
0.98 

(0.93,1.04) 

0.56 

(0.08,4.12) 

0.86 

(0.18,3.99) 
0.42 1567 

9:2 
1.01 

(0.97,1.06) 

1.46 

(0.10,20.50) 

0.47 

(0.06,3.48) 
0.59 1407 

9:3 
0.96 

(0.93,1.00) 

0.32 

(0.04,2.97) 

0.36 

(0.06,2.09) 
0.39 1985 

9:4 
0.97 

(0.90,1.04) 

0.65 

(0.15,2.93) 

0.79 

(0.20,3.12) 
0.29 1805 

9:5 
1.00 

(0.95,1.05) 

2.47 

(0.96,6.38) 

1.21 

(0.32,4.54) 
0.28 1805 

9:6 
1.00 

(0.97,1.05) 

1.61 

(0.79,3.28) 

1.42 

(0.69,2.94) 
0.32 5795 

9:7 
1.00 

(0.96,1.04) 

6.76 

(1.93,23.62) 

1.76 

(0.50,6.24) 
0.40 3418 

9:8 
0.98 

(0.93,1.04) 

0.35 

(0.07,1.63) 

0.67 

(0.13,3.51) 
0.28 1425 

9:9 
0.99 

(0.93,1.06) 

0.95 

(0.10,8.76) 

4.35 

(0.66,28.83) 
0.47 1235 

 

Table 4. Results of mixed effects models per LKN regions.  
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5. DISCUSSION    

The proposed mixed effects model explained ~ 41% of spatio-

temporal variability of the health outcome. When stratified by 

LKN region the R2 ranged from 37-50% for the 3 major regions, 

and 28-59% for the 9 minor regions. RR associated with the 

trend variable in the models reflects the decline in the reported 

rates of schistosomiasis over the study period 2008-2015. While 

the exact nature of this will require further investigation, it is 

likely that mass drug administration (MDA) campaigns with the 

deworming drug, praziquantel, are a potential cause. MDA 

campaigns began in 2008 and have continued through 2015 to 

present (WHO, 2010; Merck, 2016). Also important to note is 

that according to the World Bank, Africa currently has one of 

the highest population growth rates in the world, necessitating 

the use of accurate population adjustments and growth rates per 

individual years (Linard et al., 2012). No similar decreasing 

trends were noted in the predictor variables, which alternatively 

may show effects of climate change.  

Exploratory analyses showed noticeable seasonality in the 

environmental predictor variables. The documented single 

wet/dry cycle of northern Ghana was apparent in the major 

LKN region 1, while the double wet/dry cycles common to the 

south were seen in the major LKN regions 2 and 3. In addition 

to showing agreement with known hydrological cycles, the 

major LKN regions aligned well with the Köppen-Geiger 

climate classification regions. Thus, remote sensing feeds can 

effectively be used to capture the seasonal effects and climate 

divisions. Assessing the nature of schistosomiasis count 

seasonality needs further assessment; however model fit 

improved substantially with the incorporation of seasonal 

harmonics.  

 

A long lag between infection and clinical symptoms may 

contribute to underreporting (Danso-Appiah et al., 2004; de 

Vlas et al. 2014), and so obscure the documentation of 

seasonality. Ghana’s equatorial location makes variations in 

seasonal environmental variables subtle, and so makes the 

precision of the data in this type of analysis especially 

important. Of the 600 partitions run on 200 classifications, most 

agreed that there were only 3 major and 7-10 minor clusters. 

For these reasons it is difficult to link schistosomiasis rates with 

purely environmental variables. However the 41% explained 

variance is promising.  

 

To overcome these challenges, this study has utilized 8 years of 

overlapping remote sensing data feeds and national health data. 

Other studies approaching this length of temporal data have 

relied upon retrospective or prospective health surveys (Walz et 

al, 2015a). Studies that have taken place on similar or greater 

spatial scales have relied upon aggregated retrospective health 

surveys (Shur et al., 2011; Shur et al., 2013). While these data 

sources are highly accurate for the time and place in which they 

were collected, extrapolation of these results have increased 

uncertainty.  

 

Access to the national health data of schistosomiasis in Ghana 

was granted based on recent research on schistosomiasis and 

water in Ghana (Kosinski et al. 2011; Kosinaki et al., 2012; 

Kulinkina et al., 2016) The last systematic collection of health 

survey data in Ghana at the national scale and subsequently 

used to direct control efforts was in 2008 (Soares-Magalhaes et 

al., 2011). This study used detailed health data collected in 77 

schools to direct post study drug distribution by interpolating 

predicted risk for the rest of the country. A purely 

environmental approach paired with access to national health 

data for the reportable disease, schistosomiasis, has the benefit 

of being a more cost effective spatiotemporal tool. 

 

Increasing spatiotemporal resolutions of environmental and 

outcome variables would be of benefit to improving model fit 

(Utzinger et al., 2009). However the MODIS sensor has a 

spatial resolution limit of 250m unsharpened, and a temporal 

resolution limit of 4 day adapted composites before alternative 

satellite sensors would need consideration. ASTER or Landsat 

would be considered for future publically available satellite data 

as they provide continuous, high spatiotemporal resolution. 

However the computational price of this will need careful 

consideration.   

 

By running the LKN regionalization algorithm hierarchically on 

each of the major zones separately we can hone in on subtler 

climatic differences on scales closer to our district level rates. 

Alternatively the spatial resolution of the health outcome is 

available at the rural health unit, provided that the 

georeferencing of the clinics is undertaken. Bringing the 

environmental and health data to a comparable scale is one 

source of improved model fit. Additional improvements would 

come from increasing the overall spatiotemporal resolution of 

all variables; adding additional environmental variables, use of 

fourier transform analysis to guide seasonality analysis, and 

incorporating adjustments such as collinearity, autocorrelation, 

over dispersion, and lag. By exploring the potential of purely 

environmental data to predict schistosomiasis, we are seeing if 

there might be a more sustainable, cost effective and rapid 

method for disease surveillance.  
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