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Abstract 
 
Targeting ribosome biogenesis, a cellular process frequently upregulated in cancer, 

with the novel Pol I transcription inhibitor CX-5461 is highly efficacious in pre-clinical 

models of solid and haematological cancers, which lead to the commencement of 

clinical trials. However, as is common with single-agent therapies in the mouse models 

(similar to challenges with treating human patients), the mice eventually succumb to 

disease, highlighting the need for a combination therapy approach. Based on the 

strong link between altered ribosome biogenesis and metabolism in cancer it was 

hypothesised that targeting these two processes in combination would prove 

efficacious in cancer, and acute myeloid leukaemia (AML) was chosen to test this as it 

is an aggressive malignancy with poor therapeutic options. In order to address this 

hypothesis In vitro drug synergy testing in AML cell lines was performed to identify 

promising combinations (Chapter 3), these were then tested for efficacy in in vivo 

transplant models of AML (Chapter 4). Finally, in vitro mechanistic analysis of the most 

promising drug combination was performed in order to understand the mechanisms of 

synergy (Chapter 5). 

 

In vitro testing of CX-5461 in combination with 10 clinically-approved metabolism-

modifying drugs confirmed that orlistat, dichloroacetate (DCA), ritonavir, omeprazole 

and chloroquine act synergistically with CX-5461 to reduce cell viability in multiple 

AML cell lines. Three such combination therapies were evaluated in a syngeneic mouse 

AML model. Neither orlistat nor DCA improved survival in combination with CX-5461 

compared to CX-5461 alone, however, synergy was observed with the autophagy 

inhibitor chloroquine. Interestingly, the combination of CX-5461 and chloroquine had 

limited efficacy in human cell line xenograft mouse models, despite strong in vitro 

results. As the dosing of CX-5461 and chloroquine could not be increased due to 

toxicity, mechanistic analysis was performed in order to identify an alternative to 

chloroquine with reduced toxicity, and potentially improved efficacy. 

 

CX-5461 and chloroquine were found to synergise through cell cycle arrest and cell 

death in all four cell lines tested. Metabolic flux analysis revealed that the combination 

of drugs significantly affected mitochondrial activity, indicating that the combination of 



 v 

CX-5461 and chloroquine is placing the cells in mitochondrial stress. Therefore, direct 

targeting of the mitochondria was identified as a promising approach in combination 

with ribosome biogenesis inhibition with CX-5461, and various clinically-approved 

drugs that target mitochondria were identified for future combination testing. 
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Chapter 1 Introduction 
 

1.1  Acute myeloid leukaemia: an aggressive 
malignancy with poor therapeutic options 

 

1.1.1 Epidemiology and aetiology 

Acute myeloid leukaemia (AML) is a heterogeneous cancer resulting from the clonal 

expansion of myeloid progenitor cells, leading to an accumulation of myeloid blasts in 

the peripheral blood or bone marrow 8. It is the most common acute leukaemia in 

adults 9, and approximately 1000 Australians are diagnosed with AML each year (or 4 

new cases per 100,000 people) 10. The 5-year survival rate is poor, at approximately 

30%, compared to over 90% for more common cancers such as breast and prostate 

cancer 10. The risk of developing AML increases with age and the highest risk age group 

is those over 65 11. Other risk factors include pre-existing haematological disease, 

genetic conditions (e.g. Down syndrome, Li-Fraumeni syndrome), radiation exposure, 

chemical exposure (e.g. pesticides, cigarette smoke) or previous chemotherapy 12. 

Investigation of correlations between specific risk factors and AML genetics has 

revealed that cigarette smoke and occupational chemical exposure (e.g. pesticides) are 

associated with AML with increased incidence of complex chromosomal abnormalities 

and oncogene activation 13-15. However, specific risk factors account for only a 

relatively small fraction of total AML cases, the majority of which are considered de-

novo AML (~90%)16. Of the non-de-novo cases, most arise after cytotoxic and/or 

radiation therapy (treatment-related/t-AML) or myelodysplastic syndrome (MDS) 16, a 

heterogeneous group of disorders characterised by ineffective haematopoiesis that 

progresses to AML in approximately 15% of cases 17, through complex mechanisms 

that remain to be fully elucidated. 

 

1.1.2 Genetics of AML  

While AML has a comparatively low mutational burden compared to cancers such as 

melanoma and lung carcinoma 18, there are numerous recurrent mutations which are 

found at low frequency (Table 1-1) 2. These mutations can be broadly characterised 
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into groups associated with DNA methylation, tumour suppressors, activated 

signalling, myeloid transcription factors, chromatin modifiers, cohesion, spliceosome 

and transcription factor fusions. Certain mutations have been associated with either a 

favourable, intermediate or poor outcome for patients 19 (Table 1-1). Of the most 

common mutations, the presence of mutations in phosphoprotein nucleophosmin 

(NPM1) has been associated with a favourable outcome for patients 20,21, while those 

in the signal transduction protein FMS-like tyrosine kinase 3 (FLT3), including FLT3 

internal tandem duplication (ITD), are associated with a poor outcome 3,4. Cytogenetic 

analysis also provides a powerful prognostic tool for predicting outcomes in patients 

with this disease, with approximately 50-60% of AML patients having cytogenetic 

abnormalities at diagnosis 2,22, up to 75% in t-AML 16. For example, translocations of 

the mixed-lineage leukaemia (MLL) gene/11q23, which encodes a histone 

methyltransferase involved in haematopoiesis, results in specific fusion proteins which 

are associated with a poor patient outcome 6,23. The MLL fusion gene partners, of 

which there are over 70 24, further dictate the prognosis for these cancers. Of the more 

common rearrangements, MLL-AF6/t(6;11) is associated with a very poor prognosis, 

while MLL-AF9/ t(9;11) is more favourable 25. The translocation t(15;17) is 

characteristic of a subtype of leukaemia known as acute promyelocytic leukaemia 

(APL), fusing the promyelocytic leukaemia (PML) gene and retinoic acid receptor α 

(RARα), which blocks differentiation and promotes survival of promyelocytic cells 26. 
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Category Mutation Frequency 

(%) 
Favourable (F), 
Intermediate (I) or 
Unfavourable (U) 
prognosis 

Present in 
models in 
this thesis? 
In 
vitro 

In 
vivo 

NPM1 NPM1 27 F   

Activated 
signalling 

FLT3 28 U + + 

KRAS or NRAS 12 I + + 

KIT 4 I   

PTPN11 4 I   
DNA 
methylation 

DNMT3A 26 I   

IDH1 or IDH2 20 I   

TET2 8 I +  

Tumour 
suppressors 

TP53 8 U + + 

WT1 6 I   

Myeloid 
transcription 
factors 

RUNX1 10 I   

CEBPA 6 F   

Transcription 
factor fusions 

t(15;17)/PML-RARα 9 F   

inv(16)/MYH11-CBFB 6 F   

t(8;21)/RUNX1/RUNX1T1 
(AML1-ETO) 

4 F +  

Chromatin 
modifiers 

11q23/MLL fusions 4 U + + 

Other Loss of 7 or del (7q) 10 U   

Loss of 5 or del(5q) 8 U   

 
Table 1-1: Recurrent mutations in AML with functional categorisation and prognostic 

significance 

Mutation frequency and functional characterisation adapted from 2. Prognostic significance 

adapted from 3-6. Genetic information of individual cell lines used in this thesis is in Table 3-1. 
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With such a heterogeneous genetic profile, and the evidence that single mutations are 

not sufficient to cause AML 27, it is clear that the development of AML is a multistep 

process. A ‘two-hit’ model of AML development has been proposed where ‘Class I’ 

mutations, which activate signal transduction to confer a survival or proliferation 

advantage, cooperate with ‘Class II’ mutations, which affect transcription factors to 

block differentiation 27. Common Class I mutations include FLT3 and receptor tyrosine 

kinase c-KIT, while common Class II mutations include NPM1 and transcription factor 

CCAAT/enhancer-binding protein alpha (CEBPA). Mutations in epigenetic regulators 

have more recently emerged as a third class of mutations, including tet methylcytosine 

dioxygenase 2 (TET2) and DNA methyltransferase 3 α (DNMT3α) 2. Together these 

different classes of mutation cooperate to facilitate the survival and abnormal clonal 

proliferation of myeloid progenitor cells, resulting in AML. 

 

1.1.3 Classification of AML subtypes 

Classifying subtypes of AML has proved difficult due to its inherent heterogeneity. The 

older French-American-British (FAB) classification uses cell morphology and 

cytochemical characteristics to divide AML into 10 subtypes 28 but this did not provide 

a high reproducibility and prognostic value 29,30. The more recent World Health 

Organisation (WHO) classification incorporates the FAB classification, as well as 

cytogenetic abnormalities, specific gene mutations and distinct subtypes including 

t-AML, myeloid sarcoma (a solid myeloblast tumour) and myeloid proliferations 

related to Down syndrome 8 (Table 1-2). The sheer number of subtypes of AML 

highlights the heterogeneity of this disease and the challenges this creates for 

treatment. 
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WHO subtype 

AML with recurrent genetic abnormalities 

   AML with t(8;21)(q22;q22); RUNX1-RUNX1T1 

   AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11 

   Acute promyelocytic leukaemia with t(15;17)(q22;q12); PML-RARα 

   AML with t(9;11)(p22;q23); MLLT3-MLL 

   AML with t(6;9)(p23;q34); DEK-NUP214 

   AML with inv(3)(q21q26.2) or t(3;3)(q21;q26.2); RPN1-EVI1 

   AML (megakaryoblastic) with t(1;22)(p13;q13); RBM15-MKL1 

   AML with mutated NPM1 

   AML with mutated CEBPA 

AML with myelodysplasia-related changes 

Therapy-related myeloid neoplasms 

Acute myeloid leukaemia, not otherwise specified (NOS) 

   AML with minimal differentiation (FAB M0) 

   AML without maturation (FAB M1) 

   AML with maturation (FAB M2) 

   Acute myelomonocytic leukaemia (FAB M4) 

   Acute monoblastic and monocytic leukaemia (FAB M5) 

   Acute erythroid leukaemia (FAB M6) 

   Acute megakaryoblastic leukaemia (FAB M7) 

   Acute basophilic leukaemia 

   Acute panmyelosis with myelofibrosis 

Myeloid sarcoma 

Myeloid proliferations related to Down syndrome 

Blastic plasmacytoid dendritic cell neoplasm 

 
Table 1-2: The WHO Classification of AML  

Outlined in the WHO Classification of tumours of haematopoietic and lymphoid tissues (4th 

Edition, 2008) 8. 
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1.1.4 Models for studying AML 

 Cell lines 

AML cells of both human and mouse origin are readily culture-adaptable, with more 

than 200 such cell lines currently described 31. These cell lines vary in the mutations 

present, the disease subtype they are derived from and their previous exposure to 

chemotherapy, allowing these various parameters to be studied in vitro. The cell lines 

used in this thesis are outlined in Table 2-1 and Table 3-1. 

 

 Mouse models 

Many of these cell lines readily engraft in mice. Established in vivo models include 

mouse AML cell lines injected into genetically matched immune-competent hosts 

(syngeneic) 32, and human AML cells injected in to immune-compromised mice 

(xenograft) 33, with many disease features, such as bone marrow involvement, 

recapitulating human disease when the cells are injected intravenously (further 

discussed in Sections 4.1.2 and 4.3.3). Some fresh/non-culture-adapted AML patient 

samples can also be successfully engrafted in immune-compromised mice generating a 

patient-derived xenograft (PDX) model. While these can be difficult to establish, 

advances in immunodeficient mouse strains has improved the success of these models 

34. Both syngeneic and cell line xenograft mouse models are used in this thesis and are 

described in Section 4.1.2. 

 

1.1.5 Current treatment and treatment challenges 

The standard treatment for the majority of AML subtypes has changed little in the last 

few decades, relying heavily on standard chemotherapeutics and hematopoietic stem 

cell transplantation (HSCT). Treatment of AML usually begins with aggressive induction 

chemotherapy, the goal of which is to achieve remission, often in a standard 7+3 

combination; 7 days of cytarabine therapy combined with 3 days of anthracycline 

therapy 35,36. Cytarabine (cytosine arabinoside) is an antimetabolite that incorporates 

into newly synthesised DNA and inhibits further DNA synthesis, and is thus particularly 

effective against rapidly diving cells including leukaemia 37, but also affects 

non-cancerous dividing cells, such as intestinal cells 38 and embryonic cells 39. 

Anthracyclines, such as daunorubicin, are mainly thought to mediate anti-cancer 
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effects through intercalating with DNA 40. Bone marrow biopsies are performed 14-21 

days post-therapy initiation to measure the efficacy of the induction therapy, after 

which induction treatment is repeated, if required, or post-remission chemotherapy, 

HSCT or registration in a clinical trial are undertaken depending on patient age, 

cytogenetics, co-morbidities and other factors 41,42. These standard therapeutic 

regimes with cytotoxic therapeutic agents achieve approximately a 20% 5-year survival 

rate overall 43, which reduces to 5-10% in older patients, who account for the majority 

of diagnoses and have a high therapy-associated mortality and increased risk of 

unfavourable cytogenetics 44,45. As these therapies are non-specific for cancer cells 

there are significant side-effects associated with their use. Myelotoxicity/bone marrow 

suppression is a common and sometimes life-threatening side effect of standard AML 

chemotherapy, resulting in conditions such as neutropenia, thrombocytopenia, 

bacteraemia, pneumonia and sepsis 46,47. Heart failure is also a common complication 

of anthracycline treatment, occurring in approximately 20% of patients due to 

anthracycline-induced cardiotoxicity, sometimes decades after the treatment 48. HSCT 

is often the most effective method of achieving remission and preventing AML 

recurrence 49, but has a high risk of treatment-associated morbidity and mortality, 

particularly in older patients due to increased levels of pre-existing comorbidities, 

requiring serious risk-benefit analysis and adjustment of the intensity of the therapy 50-

52. 

 

In contrast to other AML subtypes, there have been dramatic improvements in the 

treatment of APL in the last few decades, particularly through targeting of the 

PML-RARα fusion protein that is characteristic of this subtype. The introduction of 

differentiation therapy all-trans retinoic acid (ATRA), which binds the fusion PML-RARα 

protein leading to its degradation, in combination with standard chemotherapies such 

as cytarabine significantly improved outcomes for APL patients, with complete 

remission of greater than 90% and cure rate exceeding 80% in some cases 53-56. 

Long-term remission was further improved with the introduction of arsenic trioxide 

(ATO), which also binds the fusion protein, and may be used in combination with ATRA 

57,58. While ATRA and ATO therapy have mild, reversible side effects 59, the side effects 

of conventional chemotherapies used in combination with them, as outlined 

previously, are often severe and can be life-threatening. 
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Despite current efforts to develop more targeted therapies for AML, such as therapies 

targeting FLT3-ITD mutated AML 60, the treatment landscape of AML is predominated 

by cytarabine in combination with anthracyclines. The lack of effective therapies and 

often severe treatment-related side effects for this aggressive malignancy makes it an 

ideal focus for new therapy development, however attempting to treat such a 

heterogeneous disease presents a significant challenge. A promising approach is to 

target the oncogenic processes in cancer cells that are common between many 

different cancer types and subtypes, with the aim of improving efficacy and reducing 

the development of drug resistance. 

 

1.2  Targeting ribosome biogenesis in cancer 

1.2.1 The nucleolus and ribosome biogenesis  

Ribosome biogenesis, or the synthesis of ribosomes, is a highly conserved, complex 

process that occurs within a sub-nuclear, non-membrane bound structure known as 

the nucleolus 61. Ribosomes are encoded by hundreds of copies of the ribosomal DNA 

(rDNA) gene in head-to-tail tandem repeats in nucleolar organiser regions (NORs), 

which cluster on the short arms of five human acrocentric chromosomes (13, 14, 15, 

21, 22) 62. In eukaryotes, the repeating units consists of the rDNA gene encoding the 

18S, 5.8S and 28S ribosomal RNA (rRNA), separated by internal intergenic spacers (ITS) 

and flanked by a 5’ and 3’ external transcribed spacer (ETS) 63,64 and these rDNA genes 

are transcribed exclusively by RNA polymerase I (Pol I) . At the core region (Core) and 

upstream control element (UCE) of the rDNA promoter, transcription requires the 

formation of a pre-initiation complex (PIC), the main components of which include Pol 

I, human selectivity factor 1 (SL-1) complex, upstream binding factor (UBF), Pol-I-

associated factor RRN3 and topoisomerase II α (TopIIα) 65 (Figure 1-1). SL-1, which is a 

complex of the TATA-box-binding protein (TBP) and multiple TBP-associated factors 

(TAFs) 66, plays a crucial role in recruiting Pol I through its interaction with RRN3 67 and 

TopIIα 68. Regulation of rDNA transcription by Pol I is dynamic, with cell cycle cues and 

growth factors able to modulate the rate of rRNA transcription 69. Transcription of the 

rDNA gene generates a single polycistronic 47S transcript, which is processed into the 

mature 18S, 5.8S and 28S rRNAs 70. Functional ribosomes also require 5S RNA, 
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transcribed by RNA polymerase III (Pol III) in the nucleus 71, and various ribosomal 

proteins (RPs), transcribed by RNA polymerase II (Pol II) also in the nucleus and 

translated in the cytoplasm 72, which are imported into the nucleolus. Together these 

elements are assembled into pre‐40S and pre‐60S ribosomal subunits, which are then 

exported to the cytoplasm to form mature 80S ribosomes, which can then translate 

mRNA into protein 73. 

 

1.2.2 Elevated ribosome biogenesis in cancer  

Elevated growth and proliferation of cells is accompanied by an increased abundance 

of ribosomes to support the high protein translation requirement of the cells during 

this time 74,75. Elevated transcription of the rDNA by Pol I and subsequent increases in 

ribosome biogenesis are features common to many human cancers, as enhanced 

translational capacity is required to facilitate the proliferation of cancerous cells 76. 

Indeed, changes in the morphology and number of nucleoli has long been recognised 

as a feature of cancerous cells and is used as a diagnostic tool by pathologists as a 

marker of aggressive disease 77. Elevated ribosome biogenesis has also been observed 

in the premalignant state. For example, in a mouse lymphoma model, pre-malignancy 

is accompanied by increases in Pol I transcription, including increased total RNA per 

cell, 18S and 28S RNA, pre-RNA and expression of Pol I transcription factors 78, 

highlighting the role of increased ribosome biogenesis in malignant transformation and 

progression. 

 

1.2.3 Targeting ribosome biogenesis with the novel Pol I inhibitor 
CX-5461 

The relationship between rDNA transcription rate and cellular proliferation makes 

rDNA transcription an attractive target for broad-spectrum cancer therapies. Indeed, 

some standard cancer chemotherapies have been shown to significantly perturb 

various stages of ribosome biogenesis including rRNA transcription (e.g. doxorubicin, 

oxaliplatin), early rRNA processing (e.g. camptothecin, flavopiridol) and late rRNA 

processing (e.g. 5-fluorouracil), which might contribute to their anti-cancer properties 

79. However, a more targeted approach to ribosome biogenesis inhibition is likely to 

prove even more efficacious against cancer cells.  
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Figure 1-1: Schematic representation of ribosome biogenesis  

Transcription of the ribosomal DNA (rDNA) gene occurs within the nucleolus. Transcription 

initiation requires the formation of a pre-initiation complex (PIC) at the core and upstream 

control elements (UCE) of the rDNA promoter. The PIC consists of upstream binding factor 

(UBF), the SL-1 complex (comprised of TATA‐box‐binding protein (TBP) and five TATA‐box‐

associated factors (TAFs)), RNA polymerase I (Pol I) and RRN3. The 47S rDNA repeats are 

then transcribed by Pol I, producing a 47S precursor RNA, which is processed into 18S, 5.8S 

and 28S RNA. Ribosomal proteins (RP) and 5S RNA are imported into the nucleolus, where 

pre-40S and pre-60S subunits are then assembled from the rRNA and RPs, and exported to 

the cytoplasm to produce mature ribosomes. 



 11 

In eukaryotes, gene transcription is performed by three different RNA polymerases: 

Pol I (which transcribes the rDNA gene), Pol II (which transcribes messenger RNA 

(mRNA), micro RNA (miRNA), small nuclear RNA (snRNA), and small nucleolar RNA 

(snoRNA) genes) and Pol III (which transcribes transfer RNA (tRNA) and 5S rRNA 

genes).80 As the only polymerase exclusively involved in the transcription of the rDNA, 

Pol I is an ideal target for inhibition of rDNA transcription without affecting global 

transcription. 

 
Identified in a screen for inhibitors of rRNA synthesis, the novel drug CX-5461 

selectively targets rDNA transcription by disrupting the interaction of SL-1 with the 

rDNA, preventing the recruitment of Pol I 81 (Figure 1-2). Importantly, CX-5461 is highly 

selective for Pol I, showing a 200-fold specificity for Pol I over Pol II, thus has limited 

effects on global transcription 81. CX-5461 inhibits rDNA transcription initiation in both 

non-malignant and malignant cells to a similar extent, however, non-malignant cells 

are approximately 30 times less sensitive to CX-5461 in terms of viability, highlighting 

the addiction of malignant cells to rDNA transcription and the therapeutic window this 

creates 81. CX-5461 has shown significant efficacy in various solid and haematological 

malignancies in vivo, for example, mediates p53-dependent apoptosis and prolonged 

survival in animal models of B-cell lymphoma and acute myeloid leukaemia 78. 

 

A Phase I dose-escalation study of CX-5461 in patients with haematological cancers, 

conducted at the Peter MacCallum Cancer Centre in Melbourne, revealed that 

administration of CX-5461 intravenously once every 3 weeks resulted in rapid, 

on-target inhibition of rDNA transcription in peripheral blood mononuclear cells 

(PBMCs) and cancer cells, and a prolonged partial response was achieved in one 

patient with anaplastic large cell lymphoma 82. In this study, the maximum tolerated 

dose was found to be 170 mg/m2, with a dose-limiting toxicity of palmar-plantar 

erythrodysesthesia, and manageable incidences of photosensitivity in 50% of patients, 

irrespective of dose. CX-5461 has also shown significant efficacy in solid tumour 

preclinical models including osteosarcoma 83, ovarian cancer 84 and breast cancer 81 

leading to the commencement of a Phase I/II clinical trial of CX-5461 in solid tumours 

in Canada (ClinicalTrials.gov Identifier: NCT02719977), with results so far indicating CX-

5461 is tolerable and has activity in patients 85. 
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Despite the remarkable potential of CX-5461 in animal models of malignancy, 

eventually the mice succumb to the disease. For example, in the aggressive syngeneic 

MLL/ENL (t[11;19][q23;p13.3]) p53 null mouse model, treatment with CX-5461 

significantly improved survival compared to the vehicle-treated mice, increasing the 

median survival from 11 days to 24 days post-transplant, however, the CX-5461-

treated mice still eventually succumb to disease 1 (Figure 1-3). This indicates that CX-

5461 as a single agent is not sufficient to completely halt cancer progression in this 

model. Thus, CX-5461 is likely to be more effective and have broader applications in 

cancer therapy if it is used in combination with other anti-cancer molecules, 

presumably that impact on different or complementary mechanisms of action to 

reduce cancer cell growth or induce cell death. 

 

 
Figure 1-2: Mechanism of action of the novel Pol I inhibitor CX-5461 

Novel cancer therapeutic CX-5461 inhibits ribosome biogenesis at the stage of rDNA 

transcription initiation by interfering with SL-1/rDNA binding, preventing the recruitment of 

Pol I to the pre-initiation complex (PIC). 
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1.3 Targeting cancer cell metabolism 

1.3.1 Metabolic rewiring in cancer  

Deregulated cellular energetics has formally been recognised as a hallmark of cancer 

since 2011, and thus is considered an important target for cancer therapies 86. Rapidly 

proliferating cells, including cancer cells, require maintenance of a higher metabolic 

rate in order to produce energy in the form of adenosine triphosphate (ATP), 

macromolecules to facilitate their growth and to maintain redox balance 87. There are 

many metabolic pathways that are dysregulated in cancer cells that could be potential 

targets for combination therapy (Figure 1-4). 

 

 
 
Figure 1-3: CX-5461 significantly improves the survival of AML-bearing mice, however 

they eventually succumb to disease 

Figure 3B from Hein et al 1. Mice were injected with mouse-derived MLL/ENL p53 null 

AML cells intravenously in the tail vein. Engraftment was confirmed through 

bioluminescent imaging (described in Section 2.6). At 7 days post-transplant treatment 

was commenced with either CX-5461 (35mg/kg every 3 days) or vehicle (NaH2PO4). 

Treatment continued until the mice reached an ethical endpoint and the survival time 

was calculated. Grey shading indicates the treatment period. ****P < 0001. N=20 

mice/group. 
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Figure 1-4: Metabolic pathways altered in cancer 

Various metabolic pathways are altered in cancer to facilitate the abnormal growth and 

proliferation of the cells, including glucose transport, glycolysis, nucleotide synthesis, fatty 

acid synthesis, cholesterol synthesis, autophagy, glutaminolysis and the electron transport 

chain (ETC). Alterations in these pathways provide the cancer cells with increased capacity 

for bioenergetics, biosynthesis and redox balance, conferring a survival and proliferation 

advantage over non-cancerous cells. FASN = fatty acid synthase, G6P= glucose 6-

phosphate, GLS = glutaminase, GLUT = glucose transporter, HMG-CoA = 3-hydroxy-3-

methyl-glutaryl-coenzyme A, NAPDH = reduced nicotinamide adenine dinucleotide 

phosphate, PDH = pyruvate dehydrogenase, PDK = pyruvate dehydrogenase kinase, PPAR = 

peroxisome proliferator-activated receptors, SLC1A5 = solute carrier family 1 member 5, 

TCA = tricarboxylic acid cycle. 
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Aerobic glycolysis (Warburg effect), the preference of some cells to metabolise 

pyruvate to lactic acid, even in the presence of oxygen, was a phenomenon first 

described by Otto Warburg almost 100 years ago 88,89, and has since been recognised 

as a feature of cancer 90. Glycolysis is a relatively inefficient means of generating ATP 

per unit of glucose when compared to mitochondrial respiration, however, 

metabolism through this pathway is thought to benefit cancer cells by providing them 

with more rapid ATP generation and increased macromolecule synthesis capacity 91. 

Targeting this pathway shifts the metabolism of pyruvate to mitochondrial oxidative 

phosphorylation which can reduce the growth of tumour cells that are dependent on 

glycolysis, while leaving normal cells unaffected 92. Mitochondrial metabolism is also 

an important process in tumour development. Functional mitochondria are present in 

many cancers, with the upregulation of one or more mitochondrial pathways providing 

the additional energy and macromolecules necessary for cancer cell growth and 

proliferation 93. Non-glucose metabolism also has an important role in tumours, 

including fatty acid 94,95 and glutamine metabolism 96,97 which are altered in 

haematological malignancies. Increased synthesis of cellular building blocks including 

nucleotides 98 and cholesterol 99,100, further fuels cell growth, including that of cancer 

cells. Autophagy, a process of intracellular recycling, provides the cells, including 

cancer cells, with nutrients in times of stress 101 and reduces oxidative stress by 

degrading dysfunctional organelles 102. Targeting these metabolic pathways could 

improve the efficacy of CX-5461, as well as reduce acquired resistance to this drug. 

 

 Metabolic rewiring in AML 

Metabolic rewiring has also been found to play a role in AML development and 

progression. Isocitrate dehydrogenase (IDH) mutations, commonly found in AML 

(Table 1-1), lead to the abnormal production of oncometabolite 2-hydroxyglutarate 

(HG), resulting in inhibition of cytochrome c oxidase (COX) activity in the mitochondrial 

electron transport chain (ETC) 103 and making cells more dependent on glutamine for 

survival 104. Indeed, glutamine dependency is a feature of AML cells with various 

genetic mutations, as knocking out solute carrier family 1 member 5 (Slc1a5), which 

transports neutral amino acids such as glutamine, has been found to decrease 

leukaemia initiation and progression in mouse models of AML, while having 

comparatively mild effects on bone marrow and blood cell development 105. 
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Mitochondria, which contribute to many core metabolic processes, are also altered in 

AML, with AML blasts having a higher mitochondrial (mt)DNA copy number and 

oxygen consumption rate, indicating an increased number of mitochondria and thus 

functional capacity, in comparison to normal hematopoietic cells 106. Dependency on 

glycolysis is another feature common to AML, as targeting glycolysis with inhibitor 

dichloroacetic acid ‘primed’ human AML cell lines with various genetic mutations for 

the cytotoxic effects of ATO treatment 107. In particular, AML cells with FLT3-ITD 

mutation, a common mutation (Table 1-1), have a significant increase in aerobic 

glycolysis compared to normal blood cells, a dependency which can be targeted 

therapeutically in vivo 108. Cholesterol pathways are also dysregulated in AML, with 

increased processing of low-density lipoprotein 109 and HMG-CoA reductase activity 110 

in AML patient cells compared to normal blood cells, in order meet the increased 

cholesterol demands of rapidly dividing tumour cells for membrane synthesis. 

Autophagy, a process of intracellular recycling, has been found to be both upregulated 

and downregulated in AML cells. A reduced rate of autophagy results in an increase in 

the number of damaged organelles 111, increasing reactive oxygen species (ROS) levels 

112, genome instability 102 and inflammation 113, creating a tumour permissive 

environment for AML cells 114. Conversely, increased levels of autophagy can have a 

cytoprotective role in response to cellular stress, including chemotherapy, and have 

been shown to play a role in the maintenance of leukemic stem cells 115. Both fatty 

acid synthesis and oxidation have been shown to play a key role in AML cell 

maintenance, including through bone marrow adipocytes providing AML cells with 

fatty acids which promote AML cell survival 116. 

 

1.3.2 Metabolic changes accompanying drug insensitivity 

Given the role metabolic pathways play in supporting cancer cell growth, stress 

responses and survival it is unsurprising that many have also been linked to both 

intrinsic and acquired insensitivity to chemotherapy. 

 

Chemotherapy-resistant prostate cancer cells have an increased expression of HMG-

CoA reductase (HMGCR), a critical enzyme in cholesterol synthesis, and knocking down 

or inhibiting the function of this enzyme with simvastatin re-sensitised the cells to 
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chemotherapy 99. In glioma cells resistant to standard chemotherapy temozolomide, 

upregulation of autophagy was found to be associated with poor prognosis in patients 

and chemoresistance, and genetic or chemical inhibition of autophagy re-sensitised 

the cells to temozolomide 117. 

 

Metabolic changes have also been implicated in chemotherapy-resistance in AML. In 

cytarabine-resistant cells from patient-derived xenograft mouse models, a high 

oxidative phosphorylation (OXPHOS) phenotype was observed including increased 

expression of genes involved in lipid metabolism, elevated ROS, and increased 

mitochondrial mass and activity 118. Targeting mitochondrial function re-sensitised the 

cells to the effects of cytarabine, indicating mitochondrial activity is playing an 

important role in AML cell resistance to cytarabine. Statins, which target cholesterol 

synthesis, are toxic to both AML cell lines and patient samples through preventing 

protective cholesterol responses to chemotherapeutics cytarabine and daunorubicin 

100. 

 

Together these findings highlight the important role metabolism plays in the response 

of cancer cells to chemotherapy and in acquired resistance, making targeting cancer 

metabolism an ideal angle for combination therapy, such as with ribosome biogenesis 

inhibition. 

 

1.4  Combination therapy rationale 

Targeting metabolism in combination with CX-5461 is a logical approach as ribosome 

biogenesis is intimately linked to energy production and thus metabolism. Indeed, the 

process of ribosome biogenesis can account for up to 80% of energy consumption in a 

rapidly dividing cell 74. In return, increased numbers of ribosomes provide more 

proteins in the cell which are involved in signalling and are building blocks in 

metabolism. As outlined in Section 1.3.2, adaptive metabolic responses play an 

important role in drug resistance, and targeting these pathways re-sensitises cancer 

cells to chemotherapy. Interestingly, RNA sequencing (RNAseq) analysis of mouse 

leukemic cells performed by our laboratory demonstrated that short-term CX-5461 

treatment induced multiple changes in metabolic gene expression including 
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upregulation of transcription of enzymes involved in fatty acid and cholesterol 

synthesis (Figure 1-5, Hein & Blackburn, unpublished), which confirms that ribosome 

biogenesis and metabolism are intimately linked and provides a clue as to how these 

cells might be overcoming their sensitivity to CX-5461. Thus, targeting these two 

aspects of cancer cells is a promising approach to improve efficacy. 

 

 

1.5  Hypothesis 

Combining the novel Pol I inhibitor CX-5461 with metabolism-modifying drugs will 

improve efficacy in acute myeloid leukaemia. 

 

To examine this hypothesis the following aims were addressed. 

1.6  Aims 

1. Identify established metabolism-modifying therapies that work synergistically 

with CX-5461 to target AML in vitro (Chapter 3) 

 
 
Figure 1-5: Changes in mRNA levels of metabolic genes in MLL/ENL NRAS AML cells 

after 10 hours of CX- 5461 treatment in vivo 

Fold change compared to untreated cells. False discovery rate (FDR) < 0.1. Hatched 

columns contribute to the pathway in the opposite direction to others in the same 

pathway. Hein & Blackburn, unpublished. Chol synth = cholesterol synthesis, FA = 

fatty acid, FC = fold change, TG = triglyceride.  
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A panel of human and mouse AML cells lines will be used to identify established 

metabolism-modifying drugs that enhance the effects of CX-5461 to reduce AML cell 

number in vitro. 

2. Test promising combination therapies in in vivo syngeneic and xenograft 

models of AML (Chapter 4). 

Metabolism-modifying drugs that are found to act synergistically with CX-5461 to 

reduce AML cell number in vitro (Chapter 3) will be tested for their efficacy in 

improving survival in vivo in transplant models of AML. 

3. Investigate the mechanism/s of synergy for promising drug combinations 

(Chapter 5). 

Promising drug combinations will be identified based on the studies in Chapters 3 and 

4. Given the published effects of the drugs as individual agents, mechanistic analysis 

will be performed to determine how the drugs act synergistically together. 
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Chapter 2 Methods 
2.1 Cell lines and tissue culture 

Human cell lines MV4-11 (ACC 102), THP-1 (ACC 16), MOLM-13 (ACC 554), KG-1 (ACC 

14), NB-4 (ACC 207) and SKM-1 (ACC 547) were purchased from the German Collection 

of Microorganisms and Cell Cultures (DSMZ; Braunschweig, Germany). Mouse 

MLL/AF9 NRAS cells were generated by others using fetal liver transduction to 

introduce the MLL/AF9 fusion protein with green fluorescent protein (GFP) tag and 

NrasG12D mutation with luciferase tag 32. Cells were maintained in RPMI-1640 media 

(Gibco, via ThermoFisher Scientific, Cat no. 11875093) supplemented with 20% heat-

inactivated fetal bovine serum (HI-FBS, Sigma-Aldrich, Cat no. F9423-500mL) and 

GlutaMAX (Gibco, Cat no. 35050061) at 37°C in 5% (human cells) or 10% CO2 (mouse 

cells). Cell lines were certified to be free of mycoplasma contamination through 

polymerase chain reaction (PCR) testing. Cells were sub-cultured every 3-4 days, at a 1 

in 2 (human) or 1 in 3-4 (mouse) split, by adding the existing cell mixture to fresh 

media. When media removal was required, cells were centrifuged at 450 x g for 5 

minutes, unless specified otherwise. 

 

Cell line name Origin Culture conditions Doubling time 
(approximate hours 
[h]) 

MV4-11 DSMZ: ACC 102 RPMI 1640 + 20% HI-FBS + 
Glutamax, 37°C with 5% CO2 

50 

THP-1 DSMZ: ACC 16 RPMI 1640 + 20% HI-FBS + 
Glutamax, 37°C with 5% CO2 

72 

MOLM-13 DSMZ: ACC 544 RPMI 1640 + 20% HI-FBS + 
Glutamax, 37°C with 5% CO2 

50 

KG-1 DSMZ: ACC 14 RPMI 1640 + 20% HI-FBS + 
Glutamax, 37°C with 5% CO2 

38 

SKM-1 DSMZ: ACC 547 RPMI 1640 + 20% HI-FBS + 
Glutamax, 37°C with 5% CO2 

48 

MLL/AF9 NRAS 32 RPMI 1640 + 20% HI-FBS + 
Glutamax, 37°C with 10% CO2 

24 

Table 2-1: Cell line origin and growth conditions 

*Doubling times based on DSMZ information and personal observation. See Table 3-1 

for genetic information. 
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2.2 Buffers 

Buffer  Composition 

Western solubilisation 
buffer 

0.5mM EDTA, 20mM HEPES, 2% (w/v) SDS pH 7.9 

Western sample loading 
buffer (6X) 

2% (w/v) SDS, 0.4M tris-HCl pH 6.8, 48% (v/v) glycerol, 58mM 2-
mercaptoethanol, 0.25% (w/v) bromophenol blue 

SDS-PAGE buffer  25mM tris, 190mM glycine, 0.1% (w/v) SDS 

Semidry transfer buffer 
(Bjerrum Schafer-Nielson 
Buffer with SDS) 

48mM tris, 39mM glycine, 0.00375% (w/v) SDS, 20% (v/v) 
methanol 

Tris-buffered saline (TBS) 50mM tris, 150mM NaCl 

Tris-buffered saline with 
tween (TBST) 

0.1% (v/v) tween-20 in TBS 

Skim milk blocking buffer 
(SMBB) 

5% (w/v) skim milk in TBST 

Bovine serum albumin 
(BSA) blocking buffer 
(BSABB) 

1% (w/v) BSA in TBST 

Flow cytometry staining 
buffer (FCSB) 

2% FBS and 0.5% Tween-20 in PBS 

Red cell lysis buffer 144mM NH4Cl,17mM tris-HCl pH 7.65 

Table 2-2: Buffer composition 

EDTA = ethylenediaminetetraacetic acid, FBS = fetal bovine serum, HEPES = 4-(2-

hydroxyethyl)-1 piperazineethanesulfonic acid, SDS = Sodium dodecyl sulphate, HCl = 

hydrochloric acid, SDS-PAGE = sodium dodecyl sulphate polyacrylamide gel 

electrophoresis, NaCl = sodium chloride, PBS = phosphate-buffered saline, NH4Cl = 

ammonium chloride. 
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2.3 Antibodies and dyes 

Antibody Species Supplier Assay Concentration 
used 

Buffer 

LC3B Rabbit Cell signalling #2775S WB 1:3000  BSABB 

P62/Sequestome Mouse Abnova #H00008878-
M01 

WB 1:4000 SMBB 

Beclin 1 Rabbit Cell signalling #3495S WB 1:1000  SMBB 

ATG7 Rabbit Cell signalling #8558S WB 1:750-1:1000 SMBB 

BrdU (B44 clone) Mouse BD Pharmingen 
#347580  

FC 1:50 FCSB 

Anti rabbit-HRP Goat Bio-Rad #170-6515 WB 1:3000 SMBB or 
BSABB 

Anti mouse-HRP Goat Bio-Rad #170-6516 WB 1:3000 SMBB or 
BSABB 

Beta Actin-HRP 
(C4) 

Mouse Santa Cruz # sc-
47778 HRP 

WB 1:10 000 SMBB or 
BSABB 

Anti mouse 
Alexafluor 488 

Goat Invitrogen #A11001 FC 1:500 FCSB 

DAPI N/A Sigma #10236276001 FC 1g/mL FCSB 

Table 2-3: Antibodies and dyes 

HRP = horseradish peroxidase, WB = western blot, FC = flow cytometry, DAPI = 

4′,6-diamidino-2-phenylindole, SMBB = skim milk blocking buffer, BSABB = bovine 

serum albumin (BSA) blocking buffer. See Table 2-2 for buffer composition. 

 

2.4 Chemicals and drugs 

MTT (Thiazolyl blue tetrazolium bromide, Sigma, Cat no. M2128) was dissolved in PBS 

to make a 5mg/mL solution, filter sterilised, aliquoted and stored at -20°C. 

Neutral red (Sigma, Cat no. N4638) was dissolved in ddH2O at 3.3mg/mL, filter 

sterilised and stored at 4°C for up to 2 months. 

Luciferin (Xenolight D-luciferin K+ Salt, Perkin Elmer, Cat no. 122799) was dissolved in 

PBS to make a 5mg/mL solution, filter sterilised, aliquoted and stored at -20°C in the 

dark. 

BrdU (5-bromo-2’-deoxyuridine; Sigma, Cat no. 10280879001) was dissolved in double-

distilled water (ddH2O) to make a 10mM solution, filter sterilised, aliquoted and stored 

at --20°C. 
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CX-5461: For in vitro work, CX-5461 (Cylene) was dissolved in 50mM NaH2PO4 pH4.5 to 

make a 10mM stock solution, aliquoted and stored at -20°C in the dark. For in vivo 

work, CX-5461 solution was prepared fresh from powder before dosing using the same 

vehicle as in vitro. 

Orlistat: For in vitro work, orlistat (Sigma-Aldrich, Cat no. O4139) was dissolved in 

dimethyl sulfoxide (DMSO) to make a 15mM stock solution, aliquoted and stored at -

20°C. For in vivo work, orlistat was extracted from Xenical capsules (Roche), adapted 

from the methods of Kridel et al 119. The contents of a Xenical capsule were placed in 

250µL absolute ethanol for 20 minutes (min), vortexed every 10 min, then 500µL PEG-

400 (BioUltra, Sigma, Cat no. 91893) was added, vortexed and left for 10 min, then 

vortexed again. The tube was spun at 14 000 x g for 5 min to pellet the filler material, 

then the resulting supernatant was removed, and stored at -20°C. 

Chloroquine: For in vitro work, chloroquine diphosphate salt (Sigma, Cat no. C6628) 

was dissolved in PBS to make a 50mM stock solution, filtered sterilised and stored at 

4°C in the dark for up to 3 months. For in vivo work, chloroquine solution was prepared 

using 50mM NaH2PO4 pH4.5. 

Dichloroacetate (DCA): For in vitro work, DCA liquid (Sigma, Cat no. D54702) was 

diluted in PBS to make a 100mM solution, the pH adjusted to 6.9-7.5, then filter 

sterilised and stored at 4°C. For in vivo work, DCA solution was prepared in 50mM 

NaH2PO4 pH4.5. 

Ritonavir: For in vitro work, ritonavir powder (Sigma, Cat no. SML0491) was dissolved 

in DMSO to make a 15mM stock solution, aliquoted and stored at -20°C. For in vivo 

work, ritonavir powder (Selleckchem, Cat no. S1185) was dissolved in 7.5% ethanol in 

PBS and used immediately. 

Omeprazole: For in vitro work, omeprazole powder (Sigma, Cat no. O104) was 

dissolved in DMSO to make a 150mM stock solution, aliquoted and stored at -20°C in 

the dark. For in vivo work, omeprazole powder (Selleckchem, Cat no. S1389) was 

dissolved in 7.5% ethanol in PBS and used immediately. 

Metformin: Metformin/1,1-dimethylbiguanide hydrochloride powder (Sigma, Cat no. 

D150959) was dissolved in PBS to make a 50mM stock solution, then filter sterilised 

and stored at 4°C. 
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Simvastatin: Simvastatin powder (Sigma, Cat no. S6196) was dissolved in DMSO to 

make a 10mM solution, aliquoted and stored at -20°C. 

Fenofibrate: Fenofibrate powder (Sigma, Cat no. F6020) was dissolved in DMSO to 

make a 100mM stock solution, aliquoted and stored at -20°C. 

Bezafibrate: Bezafibrate powder (Sigma, Cat no. B7273) was dissolved in DMSO to 

make a 100mM stock solution, aliquoted and stored at -20°C. 

Rosiglitazone: Rosiglitazone powder (Sigma, Cat no. R2408) was dissolved in DMSO to 

make a 50mM solution, aliquoted and stored at -20°C. 

Bafilomycin A1: Bafilomycin A1 powder (Selleckchem, Cat no. S1413) was dissolved in 

DMSO to make a 150µM solution, aliquoted and stored at -20°C. 

 

2.5 Viability assays and synergy analysis 

In Chapter 3, three different methods of measuring total viable cell number were 

utilised in order to determine if any of the drugs were impacting on the mechanism of 

action of the viability assay; the neutral red assay, the MTT assay and Coulter counts. 

 

2.5.1 Neutral red 

The neutral red assay estimates viable cell number based on the uptake and binding of 

the neutral red dye in the lysosomes of the cells 120. Uptake and retention of the dye 

will only occur if a pH gradient is present in the lysosomes, as the dye then becomes 

charged when it enters the lysosome and accumulates. Maintenance of active pH 

gradients through ATP production is a characteristic of a viable cell, therefore, the 

amount of retained dye is proportional to the number of viable cells. However, if a 

drug interferes with the accumulation of neutral red without affecting the viability of 

the cell this assay will not be an accurate measure of cell viability. 

 

2.5.2 MTT 

The MTT assay is based on the conversion of the water-soluble MTT tetrazolium salt 

(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) to coloured formazin 

crystals via succinate dehydrogenase in the mitochondria 121. This process requires 

functional mitochondrial enzymes, which is a characteristic of viable cells. Therefore, 
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the amount of converted MTT is proportional to the number of viable cells. However, 

if a drug interferes with normal mitochondrial enzyme function without affecting the 

overall viability of the cell the MTT assay will not be an accurate measure of cell 

viability. 

 

2.5.3 Coulter count 

A physical particle counting method is a ‘gold-standard’ measure of cell viability. The 

Z2 Coulter Counter (Beckman Coulter) counts and determines the size of cells by 

utilising changes in electrical resistance when a cell suspended in a conductive liquid 

passes through an aperture. Viable and dead cells can then be distinguished by their 

size. 

 

2.5.4 Measuring total viable cell number 

Cells were seeded in 96-well round-bottom plates at a pre-determined density so that 

the cells were still in the exponential growth phase at the end of the assay. At the time 

of plating, drug dilutions (with equal final concentration of vehicle) were added to the 

plate in quadruplicate wells and the cells cultured for 96 h. 

• Coulter count: Following treatment, a 1:100 dilution was made of the cells in 

Isoflow Sheath Fluid (Beckman Coulter, Cat no. A48466) and counting 

performed using the Z2 Coulter counter (Beckman Coulter). Gating was 

performed on events with volume 200fL+. 

• MTT: Following treatment 20μL of 2.5mg/mL MTT solution was added to each 

well and the plates incubated at 37°C for 1-2 h. The media was removed and 

replaced with DMSO. The resulting solutions were transferred to a flat-bottom 

96 well plate and the absorbance read at 570nm using an Epoch Microplate 

Spectrophotometer (BioTek). 

• Neutral red: Following treatment the media was removed and replaced with 

200μL /well pre-warmed media containing neutral red (200μL of 3.3mg/mL 

neutral red stock solution/20mL media) and the plates incubated at 37°C for 3 

h. The plates were washed 3 times with PBS then the contents solubilised in 3:1 

methanol:acetic acid de-stain solution. The resulting solutions were transferred 

to a flat-bottom 96 well plate and the absorbance read at 540nm using an 

Epoch Microplate Spectrophotometer (BioTek). 
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N=1 for testing suitability of MTT or neutral red as viability assays with the different 

metabolism-modifying drugs. 

 

2.5.5 GI50 and synergy analysis 

The cell lines were treated with the drugs as single agents at a range of concentrations 

in order to determine the dose-response curves for viability. Viability (as a % of the 

vehicle-treated cells) was calculated as an average of n=3 experiments. The 

concentration resulting in 50% growth inhibition (GI50) values were calculated using 

sigmoidal dose-response curve analysis in Prism (GraphPad Software, San Diego, USA). 

A non-linear curve (sigmoidal) was fitted to the data points. Where a sigmoidal dose 

curve could not be fitted, an estimate only of the GI50 was shown. 

 

Synergy analysis of n=3 experiments was performed using the Chou-Talalay 

Combination Index method 122. This method is based on the median-effect equation, 

which incorporates various well-established equations in biochemistry and biophysics, 

including the Michaelis-Menten model of enzyme kinetics and the Scatchard equation 

which describes the affinity of a ligand with a binding site. Dose response curves are 

fitted, or predicted, to the data points of the effects of the single drugs and used to 

determine if a drug combination effect is synergistic. Non-constant ratio synergy 

analysis was performed using CompuSyn software (ComboSyn Inc.) using the viability 

results to determine the ‘effect’ (as 1 – [%viability/100]) and synergy defined as a 

combination index of 0.75 or lower, based on recommended guidelines for 

categorising synergism 123. Where the viability was 100% the effect was entered as 

0.001 as an effect of 0 cannot be entered. 

 

2.6 Tumour models and in vivo drug studies 

In Chapter 4, metabolism-modifying drugs that were found to act synergistically with 

CX-5461 in vitro (Chapter 3) were tested for their tolerability in non-tumour-bearing 

mice, followed by efficacy testing (improving survival in vivo in transplant models of 

AML). Animal experimentation was approved by the Animal Experimentation Ethics 

Committee at ANU (under protocol A2015/12). 
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2.6.1 Tolerability studies 

Tolerability of the drugs as single agents and in combination were tested in non-

tumour-bearing mice. 8-12 week old female C57Bl/6 Jax mice (provided by Australian 

Phenomics Facility, Canberra, Australia), were administered drugs as below in groups 

of approximately 3/dosing schedule. Dosing of the single agents was performed over a 

2-3 week period with daily weighing, followed by a week of monitoring only. In some 

cases, if the mice were tolerating the drug well (no weight loss) after 1-2 weeks of 

dosing, an additional cohort of mice was started at a higher drug dose. In cases where 

the tolerability of the vehicle was unknown, a vehicle only treated group was also 

tested. Once the MTD or tolerable range of the metabolism drug was established, 

combination tolerability testing with CX-5461 was commenced. The dosing schedules 

were as follows: 

• Orlistat: 240mg/kg/day orlistat or vehicle (33% ethanol, 67% polyethylene 

glycol-400 [PEG-400]) by intraperitoneal injection at 15L/10g mouse body 

weight using 50µL Hamilton syringes (Hamilton Company, Nevada, United 

States, Cat no. 20701). 

• Chloroquine: 50-400mg/kg/day chloroquine dissolved in PBS, dosed by oral 

gavage (using 20ga plastic feeding tubes, Instech, Cat no. FTP-20-38) at 

100L/10g body weight. 

• CX-5461 and chloroquine: 50-100mg/kg/day chloroquine with 30-35mg/kg CX-

5461 dissolved in 50mM NaH2PO4, dosed by oral gavage at 100L/10g body 

weight. 

• CX-5461 and DCA: 200mg/kg/day DCA with 35mg/kg CX-5461 dissolved in 

50mM NaH2PO4, dosed by oral gavage at 100L/10g body weight. 

• Omeprazole: 100-400 mg/kg/day omeprazole dissolved in 7.5% ethanol in PBS, 

dosed by oral gavage at 100L/10g body weight. 

• Ritonavir: 50-400 mg/kg/day ritonavir dissolved in 7.5% ethanol in PBS, dosed 

by oral gavage at 100L/10g body weight. 

Weight was monitored daily as a sign of drug toxicity, and the percentage weight 

change from the initial weight calculated. Mice were euthanised if they lost more than 

20% body weight from their initial weight. The maximum tolerated dose was defined 
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as a maximum weight loss of 10% of initial, from which the mice recovered over the 

next couple of days. 

 

2.6.2 Efficacy studies 

 Syngeneic model 

5 x 105 MLL/AF9 NRAS cells were injected intravenously (tail vein) in 8-10 week old 

female C57Bl/6 Jax mice (provided by Australian Phenomics Facility, Canberra, 

Australia). Engraftment was confirmed 7 days post-transplant through the following 

procedure: intraperitoneal injection of 200L/mouse 5mg/mL XenoLight D-Luciferin K 

Salt Substrate (Perkin Elmer) in PBS, 5 min wait, induction of anaesthesia using 

Isofluorane gas (Cat # ISOF 03, Provet), followed by bioluminescent imaging using an 

IVIS Spectrum machine (Perkin Elmer) on automatic acquire settings. Living Image 

software (Perkin Elmer) was used for visualisation and quantification of the 

bioluminescence. Mice were randomised into groups of 5-8 based on tumour burden 

and dosing commenced. 

 

 Human cell line xenograft models 

8-12 week old female NOD-scid-gamma (NSG) mice (provided by the Australian 

Phenomics Facility) were injected intravenously (tail vein) with 2 x 106 human AML cell 

lines (MV4-11 GFP luc or MOLM-13 GFP luc cells), or irradiated with 1 Gray (Gy) single 

dose, whole-body irradiation, then injected with cells the next day (THP-1 GFP luc 

cells). See Section 2.6.3 for generation of the GFP luc human cell lines. Mice were 

placed on Baytril (Enrofloxacin 25mg/mL oral solution, ProVet, Cat no. BAYT O) in 

drinking water immediately following irradiation, or for the non-irradiated mice at 

least 3 days before the first bioluminescent image, and antibiotic treatment continued 

for the duration of the experiment. Engraftment was confirmed 3-7 days post-

transplant through bioluminescent imaging as above, mice randomised into groups of 

8 based on tumour burden and dosing commenced. Groups of 3-6 mice were used for 

characterising the disease model. 

 

 Dosing schedules 

Mice were dosed as follows in groups of 5-8/treatment, at 100L/10g body weight 

unless indicated otherwise: 
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• CX-5461 and orlistat: treatment groups received dosing by oral gavage of CX-

5461 vehicle (50mM NaH2PO4 buffer) or CX-5461 at 35mg/kg Monday, 

Wednesday and Friday, intraperitoneal injection of orlistat vehicle (33% 

ethanol, 67% PEG-400) at 15L/10g mouse body weight using 50µL Hamilton 

syringes (Cat no. 20701) or orlistat solution daily Monday-Friday, or the 

combination of the two drugs. 

• CX-5461 and chloroquine: treatment groups received dosing by oral gavage of 

either vehicle (50mM NaH2PO4 buffer), CX-5461 at 30mg/kg Monday, 

Wednesday and Friday, chloroquine at 50-80mg/kg daily Monday-Friday or the 

combination of the two drugs. 

• CX-5461 and DCA: treatment groups received dosing by oral gavage of either 

vehicle (50mM NaH2PO4 buffer), CX-5461 at 30mg/kg Monday, Wednesday and 

Friday, DCA at 200mg/kg daily Monday-Friday or the combination of the two 

drugs. 

Ensure (Abbott Nutrition, Cat no. S619.185) was mixed with powder from the food 

pellet bags and water to form a paste, which was provided daily for the duration of 

dosing to help the mice maintain weight. Dosing was continued until an ethical 

endpoint was reached (e.g. hunching, difficulty breathing, reluctance to move, >20% 

weight loss), at which point the mice were euthanised. The treatment groups were not 

blinded to the researcher who was determining the ethical endpoint. 

 

 Weight changes 

Weight was monitored 5-7 days/week as an indicator of general health, and the 

percentage weight change from the initial weight calculated. Mice were euthanised if 

they lost more than 20% body weight from their initial weight. 

 

 Survival analysis 

Differences in survival times were determined using Kaplan-Meier survival curves in 

Prism (GraphPad Software), followed by a Log-rank test. The Bonferroni corrected 

threshold was applied for comparison of multiple survival curves, such that a P value of 

<0.0083 was considered significant for these analyses. 
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 Bioluminescent imaging analysis 

Quantification of total bioluminescence was performed using the Living Image 

software (Perkin Elmer). Rectangular regions of interest (ROI) of the same size was 

placed over each mouse in the image and the total flux (photons/second) calculated. 

For image visualisation the colour scale on the images was adjusted until the areas of 

disease burden could be easily visualised. Images from the same day are all on the 

same scale, however, images from different days of the same experiment are on 

different scales due to the differences in disease burden. 

 

 Spleen weight 

When the mice reached an ethical endpoint, the mice were euthanised and the spleen 

was removed and weighed. 

 

 Full blood counts 

When the mice reached an ethical endpoint, blood was collected through terminal 

cardiac puncture under anaesthesia with isofluorane and transferred to a tube 

containing 0.5M EDTA. Samples were diluted 1:4 in 2% fetal bovine serum in PBS and 

full blood count (FBC) analysis run on the ADVIA hematology system (Siemans) for FBC 

+ differential. 

 

2.6.3 Generation of GFP-luc tagged human AML cell lines 

Green fluorescent protein (GFP)-luciferase (luc) tagged human AML cell lines were 

generated to inject into mice for the drug efficacy studies, as outlined in Section 

2.6.2.2. Retroviral gene delivery was performed using MSCV-GFP-luc2 constructs (a gift 

from Ricky Johnstone at the Peter MacCallum Cancer Centre in Melbourne). This 

construct was transfected into 293T cells using polyethylenimine (PEI) transfection, 

and the resulting retroviral particles collected and concentrated using the Retro-X 

concentrator (Clontech, Cat no. 631455) according to the manufacturer’s instructions. 

The concentrated retrovirus was then used to transduce the MV4-11, THP-1 and 

MOLM-13 human AML cell lines through retroviral spin infection with retronectin-

coated plates (Takara Cat no T202), according to the manufacturer’s instruction. 

Transduced cells were identified by GFP positivity and cell sorted using flow cytometry. 

The resulting cell lines were named ‘(cell line) GFP luc’. Luciferase activity was 
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confirmed in vitro, and in vitro sensitivity to CX-5461 was compared between the 

parental and tagged cell lines. The tagged cells were all found to express luciferase and 

to have the same sensitivity to CX-5461 as the parental lines (results not shown). 

 

2.7 Cell cycle and cell death analysis by flow 
cytometry 

In Chapter 5, flow cytometry was used to perform cell cycle and cell death analysis. 

Cells were seeded in 96-well round-bottom plates at a pre-determined density so that 

the cells were still in the exponential growth phase at the end of the assay. Drugs were 

added at the indicated timepoints. 30 min before harvesting BrdU was added to a final 

concentration of 10M. Cells were washed once with PBS then fixed in 150µL/well 

80% ethanol for at least 3 h at 4C. The ethanol was removed and DNA was denatured 

for 30 min by adding 100µL/well 2N HCl with 0.5% (v/v) Triton X-100, then neutralised 

with 100µL/well 0.1M Na2B4O7.10H2O (pH 8.5). Cells were stained with 20L of 1:50 

anti-BrdU antibody in PBS containing 2% FBS and 0.5% Tween-20 at room temperature 

for 30 min, washed once with PBS containing 2% FBS, then stained with 20L 1:500 

Alexa Fluor 488 secondary antibody in PBS containing 2% FBS and 0.5% Tween-20 at 

room temperature in the dark for 30 min and washed once with PBS containing 2% 

FBS. Samples were resuspended in PBS containing 2% FBS and 1g/mL DAPI (Table 

2-3), incubated for 15 min in the dark at room temperature and analysed using an LSR-

II flow cytometer (BD) or iQue Screener PLUS (Intellicyt). The gating strategy is shown 

in Figure 2-1. Results are presented as the percent of cells in each cell cycle phase. N=3 

experiments were performed and the mean results shown. 
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Figure 2-1: Gating strategy used for cell cycle analysis 

First, cells were gated based on their forward scatter (FSC, size) and side scatter (SSC; 

granularity) area (A) parameters. Next, doublets were excluded based on FSC-A versus 

FSC-height (H). Cells that were stained DAPI positive (+ve), indicating DNA content, 

were then selected, then the different cell cycle phases were gated based on Alexa 

Fluor (AF) 488 positivity, as a marker of BrdU incorporation/DNA synthesis, and DAPI, 

as a marker of DNA content. Cells with sub G1 DNA content (DAPI fluorescence) were 

considered “dead” cells (including dying/apoptotic cells 124). 

 

2.8 Western blot 

In Chapter 5, western blotting was used to analyse the expression levels of autophagy-

related proteins. 

 

1 x 106 cells were treated with the indicated conditions overnight. Cells were then 

harvested and lysed in western solubilisation buffer (Table 2-2). Protein lysates were 



 33 

quantified using the DC protein assay (Bio-Rad, Cat no. 5000111) according to the 

manufacturer’s instructions, then equal protein amounts of protein were separated by 

SDS-PAGE, transferred to Immobilon-P polyvinylidene difluoride (PVDF) membrane 

(Millipore) through 30 min semi-dry transfer using the Biorad system, blocked with 5% 

skim milk or 1% BSA in Tris-buffered saline/0.1% Tween-20 (Table 2-2) for 1 h at room 

temperature, then incubated with primary antibody overnight at 4°C, followed by HRP 

conjugated secondary antibody (Table 2-3). Membranes were imaged with Clarity 

Western ECL Substrate (Bio-Rad, Cat no. 1705061) on a ChemiDoc Touch Imaging 

System (Bio-Rad). Image analysis and quantification was performed using Image Lab 

(Bio-Rad). Loading was normalised using beta-actin levels on the same blot. N=3 

experiments were performed and the mean quantification shown. 

 

2.9  Transmission electron microscopy 

In Chapter 5, electron microscopy was performed with assistance from the Centre for 

Advanced Microscopy at the Australian National University, for the purpose of 

examining autophagy structures. 

 

1 x 106 cells were treated for 24 h with the indicated conditions. Cells were then 

harvested (450 x g spin speed) and fixed overnight in 2.5% glutaraldehyde and 4% 

paraformaldehyde in PBS at 4°C, then secondary fixation was performed with 1% 

osmium tetroxide for 1 h at room temperature. Cells were embedded in agarose than 

stained overnight with 2% aqueous uranyl acetate at 4°C. Graduated dehydration was 

performed in increasing concentrations of ethanol for at least 30 min each (30%, 50%, 

70%, 90%, 100%, 100%, 100%), then the sample was infiltrated with increasing 

concentrations of LR white resin for at least 1 h each (25%, 50%, 75%, 100%, 100%, 

100%). Samples were polymerised overnight at 60°C. Ultrathin sections (approximately 

60-70nm) were prepared and stained with 2% uranyl acetate for 15 min and lead 

citrate for 10 min and imaged on the Hitachi HA7100 Transmission Electron 

Microscope. At least 10 cells/treatment were imaged. Samples were de-identified 

before imaging, and re-identified once counting of the autophagy structures was 

complete. 
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2.10  Creation of inducible shRNA human AML cell 
lines 

Glycerol stocks of the SMART vector human inducible lentiviral shRNA (murine 

cytomegalovirus (mCMV) promoter, with turbo red fluorescent protein (RFP) reporter) 

were purchased from Dharmacon. The following targeting sequences were selected: 

• Beclin 1 (BECN1) #1: Cat no. V3SH11252-227864843: 

GAGAGCTTTTGTCCACTGC (targets 3 prime untranslated region (3'UTR) and 

open reading frame (ORF)). 

• BECN1 #2: Cat no. V3SH11252-230157716: TATTGATTGTGCCAAACTG 

(targets ORF). 

• ATG7 #1: Cat no. V3SH11252-226351133: CAACACATCAGTTTGAGAT 

(targets Non-Coding and ORF). 

• ATG7 #2: Cat no. V3SH11252-229968263: CAAGGAAACCAGCACCATG 

(targets 5'UTR, Non-Coding and ORF). 

The SMARTvector inducible non-targeting shRNA vector (Cat no. VSC11655) was used 

as a control. 

 

Bacteria were expanded in Luria broth overnight, then plasmid DNA extracted using 

the NucleoBond Xtra Maxiprep kit (Macherey Nagel Cat no. 740414.50), according to 

the manufacturer’s instructions. DNA concentration was quantified via Nanodrop. The 

Trans-lentiviral shRNA packaging kit (Dharmacon, Cat no. DHA-TLP5912) was used to 

transfect the plasma DNA into 293T cells, according to the manufacturer’s instructions. 

After 72 h, the resulting virus was collected, concentrated using the Retro-X 

concentrator (Clontech, Cat no. 631455) according to the manufacturer’s instructions 

and frozen at -80°C. Lentiviral spin infection was then performed on MV4-11, THP-1 

and MOLM-13 cells in the same manner as the retroviral spin infection in Section 2.6.3. 

Puromycin selection at 1µg/mL was performed for 1 week to select the transduced 

cells. shRNA cell lines were maintained in RPMI with GlutaMAX (Gibco, Cat no. 

35050061) and 20% tetracycline (TET) system approved/tetracycline-free HI-FBS 

(Clontech #631367), which was also used for shRNA induction experiments. 
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Cells were treated with 1µg/mL doxycycline and knockdown of the target proteins was 

confirmed at 72 h and 96 h post-induction (N=1, results not shown), as such 72 h was 

selected as the timepoint for combining shRNA knockdown and CX-5461 treatment. 

 

2.10.1 Combining shRNA knockdown with CX-5461 treatment 

Induction of the shRNA was performed by treating the shRNA cell lines with 1µg/mL 

doxycycline for 72 h, the cells were then counted, media removed and plated at 

10,000 cells/well in a 96 well plate with fresh doxycycline and CX-5461 at a range of 

concentrations. After 96 h of CX-5461 treatment cell viability was assessed using the 

MTT assay (as in Section 2.5.4). Protein extraction of cells +/- doxycycline treatment 

was performed at 3 and 7 days post doxycycline induction and western blot analysis 

for BECN1, ATG7 and LC3B expression was performed as in Section 2.8. 

 

2.11  Extracellular flux analysis 

The oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) of AML 

cell lines were measured using a Seahorse XFe96 extracellular flux analyser (Seahorse 

Bioscience). A mitochondrial stress test was performed, which uses various inhibitors 

to measure the respiratory capabilities of the mitochondria, including the maximum 

respiration. Cells were pre-treated with indicated compounds for 24 h, or injection of 

drugs performed at the time of the assay (acute treatment), washed and resuspended 

in unbuffered DMEM (Seahorse, Cat no. 102353-100) containing 10mM D-glucose, 

4mM L-glutamine and 1mM pyruvate, pH 7.4 +/- 0.05. The Seahorse culture plate was 

coated with 25μL/well of 22.4 μg/mL Cell-Tak (Corning Cell-Tak Cell and Tissue 

Adhesive, 1 mg Cat. # 354240), in 0.1M NaHCO3 (pH=8) for 20 min. The plate was then 

washed twice with sterile water. Cells were plated at 100,000 cells/well in the coated 

Seahorse culture plate and spun at 200 x g with zero braking for 1 min to ensure cell 

attachment, then incubated at 37°C for 40 min in a non-CO2 incubator. Using the 

Seahorse XFe96 extracellular flux analyser, OCR and ECAR were then measured at 37°C 

following a mitochondrial stress test using sequential injections of ± drugs (for acute 

treatment), ATP synthase inhibitor oligomycin (1M), proton ionophore 

carbonylcyanide p-trifluoromethoxy-phenylhydrazone (FCCP, 0.4M for THP-1, 

0.75M for MOLM-13), and a mixture of the mitochondrial complex III inhibitor 
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antimycin A and the complex I inhibitor rotenone (1M of each). Three readings were 

conducted for the basal levels and after each of the injections. N=3 experiments were 

performed and the mean results shown. One-way ANOVA was performed with a 

Tukey’s multiple comparison test, the adjusted p-value is shown. Parameters were 

defined as follows: energy map/profile = basal levels of OCR versus ECAR, basal 

respiration rates = OCR in the absence of inhibitors, maximal respiration rate = OCR 

following mitochondrial uncoupling with FCCP, spare respiratory capacity = difference 

in the OCR between the maximum respiration rate and basal rate, acute response = 

difference in the OCR following drug injection and basal respiration. 
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Chapter 3 Identifying metabolism-
modifying drugs that synergise with 
CX-5461 in vitro 
 

3.1  Introduction 

The novel Pol I inhibitor CX-5461 has been shown to be effective in mouse models of 

AML, however, resistance to the drug eventually develops 1 (Section 1.2.3). Rational 

combination therapies with CX-5461 are required to enhance its efficacy and reduce 

the development of drug resistance. Metabolic reprogramming, a hallmark of cancer 

86, is a well-described process by which cancer cells become resistant to 

chemotherapy. In addition, changes in metabolic gene expression in cancer cells 

following CX-5461 treatment (Hein et al, unpublished) suggests that targeting 

metabolic pathways may be a promising approach in combination therapies with CX-

5461. 

 

In order to address this hypothesis 6 AML cell lines were selected to evaluate 

established metabolism-modifying drugs in combination with CX-5461 in vitro, 

addressing Aim 1: ‘Identify established metabolism-modifying therapies that work 

synergistically with CX-5461 to target acute myeloid leukaemia in vitro’. 

 

3.1.1 Selection of AML cell lines 

AML cell lines covering the various genetic abnormalities commonly observed in AML 

patients (Table 1-1) were chosen to evaluate these drug combinations (Table 3-1). Four 

cell lines that express an MLL fusion protein, a particularly aggressive subtype of AML 

with a poor prognosis for patients 6,23, were selected for the initial testing of all drug 

combinations. Three of these four cell lines are of human origin; MV4-11, MOLM-13 

and THP-1. The fourth is a mouse-derived MLL/AF9 NRAS cell line, generated by fetal 

liver transduction with a construct expressing the MLL/AF9 fusion protein tagged with 

green fluorescent protein (GFP) and mouse NrasG12D mutation tagged with luciferase 

32. These four cell lines were used to evaluate a panel of metabolism-modifying drugs 

in combination with CX-5461. The most promising combinations were then tested in a 
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further two cell lines selected based on the absence of MLL translocations and the 

presence of p53 mutations to cover more of the genetic diversity of AML (Table 1-1). 

These cell lines were the KG-1 and SKM-1 cell lines. 

 

3.1.2 Selection of metabolism-modifying drugs to test in 
combination with CX-5461 

Metabolism-modifying drugs were selected based on the literature reported to target 

the main metabolic pathways altered in AML (Section 1.3.1.1) and those implicated in 

chemotherapy insensitivity (Section 1.3.2). While there is still the need for 

development of new compounds targeting metabolism in cancer, there are also many 

established metabolism-modifying drugs that could be repurposed as cancer therapies. 

Cell line Origin 
of cells 

Patient information P53 
status 

Other 
mutations 

Fusion 
protein 

MV4-11 Human 10-year-old with acute 
monocytic leukaemia 
(AML FAB M5), at 
diagnosis 

WT FLT3-ITD, 
KRAS 

MLL/AF4 

MOLM-
13 

Human 20-year-old with AML FAB 
M5a, at relapse after 
initial myelodysplastic 
syndromes, relapse 

WT FLT3-ITD MLL/AF9 

THP-1 Human 1-year-old with acute 
monocytic leukaemia 
(AML), relapse 

Null NRAS MLL/AF9 

MLL/AF9 Mouse - WT NRAS MLL/AF9 

KG-1 Human 59-year-old with 
erythroleukaemia that 
developed into acute 
myeloid leukaemia (AML), 
relapse 

Null NRAS, 
TET2 

AML1-ETO 

SKM-1 Human 76-year-old with acute 
monoblastic leukaemia 
(AML M5) following 
myelodysplastic 
syndromes 

Mt KRAS  -  

Table 3-1: Genetic characteristics of AML cell lines used for in vitro evaluation. 

Patient and genetic information according to the DSMZ German Collection of 

Microorganisms and Cell Cultures. Common AML mutations with functional 

characterisation are shown in Table 1-1. Cell line growing conditions are shown in 

Table 2-1. 
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Since it can take in excess of $2.6 billion and over a decade to take a new 

pharmaceutical drug from development to the clinic 125 the utility of established 

metabolism-modifying drugs is clear as typically they are readily available, low cost and 

have relatively low toxicity compared to standard chemotherapeutics. Also, their safe 

dose in humans has already been established making them ready for clinical trials, 

which would facilitate the translation of any novel combination cancer therapies with 

these drugs to the clinic. Based on this, the therapies selected include dichloroacetate, 

metformin, chloroquine, orlistat, omeprazole, ritonavir, simvastatin, fenofibrate, 

bezafibrate and rosiglitazone (Table 3-2), which were selected for testing. These drugs 

were selected based on their known inhibition of key metabolic pathways altered in 

cancer (Figure 3-1), which could potentially be upregulated by AML cells to subvert the 

effects of CX-5461. 

 
Drug Traditional Use Proposed mechanism of action in cancer 

Dichloroacetate Treatment for lactic 
acidosis 

Activation of PDH through inhibition of 
PDK, reversal of glycolytic phenotype 

Metformin* Anti-diabetic Activates AMPK, inhibits the electron 
transport chain complex I 

Chloroquine * Anti-malarial Inhibits autophagy through interfering 
with lysosomal function 

Orlistat Weight loss Inhibits fatty acid synthase 

Omeprazole* Proton pump 
inhibitor/heartburn 

Inhibits fatty acid synthase 

Ritonavir* Anti-retroviral Inhibits glucose transporter GLUT 4 

Simvastatin* Treatment for 
hypercholesterolemia 

Inhibits HMG-CoA reductase and 
cholesterol synthesis 

Fenofibrate Treatment for 
hypercholesterolemia 

PPARα agonist, lowers cholesterol 

Bezafibrate Treatment for 
hypercholesterolemia 

PPARα agonist, lowers cholesterol 

Rosiglitazone Anti-diabetic PPAR agonist, lowers cholesterol 

Table 3-2: Candidate metabolism-modifying drugs for evaluation with CX-5461 and their 
proposed mechanism of action in cancer. 

*On the World Health Organisation’s Model List of Essential Medicines 7, a list of safe and cost-

effective medicines for common medical conditions and diseases globally. 
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Figure 3-1: Metabolic pathways targeted by the drugs selected for evaluation with CX-5461 

Various metabolic pathways are altered in cancer cells, facilitating their growth and 

proliferation, and even chemotherapy resistance. There are many established metabolism-

modifying therapies which target these pathways. Ritonavir, a HIV medication, reduces 

glucose uptake by inhibiting the GLUT 4 glucose transporter. Dichloroacetate (DCA) shuttles 

pyruvate from glycolysis to mitochondrial respiration by inhibiting pyruvate dehydrogenase 

kinase (PDK), an inhibitor of pyruvate dehydrogenase (PDH). Metformin, a diabetes 

medication, inhibits complex I of the mitochondrial electron transport chain (ETC). 

Anti-malarial chloroquine inhibits autophagy by interfering with lysosomal function 

preventing the fusion of lysosomes with autophagosomes. Weight loss medication orlistat 

and proton pump inhibitor omeprazole both disrupt fatty acid synthesis by inhibiting the 

fatty acid synthase (FASN) enzyme. Cholesterol medications fenofibrate and bezafibrate, and 

anti-diabetic rosiglitazone interfere with cholesterol synthesis by acting as peroxisome 

proliferator-activated receptor (PPAR) agonists, therefore interfering with gene regulation of 

cholesterol synthesis. Cholesterol medication simvastatin inhibits cholesterol synthesis by 

inhibiting 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase. 
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 Targeting the glycolytic phenotype 

Dichloroacetate (DCA) is a drug that has historically been used as a treatment for lactic 

acidosis as it reduces lactate production. It does this by directing the metabolism of 

pyruvate to mitochondrial oxidation and away from glycolysis through inhibition of 

pyruvate dehydrogenase kinases (PDKs), therefore activating pyruvate dehydrogenase 

(PDH) 126. DCA has more recently been investigated as an anti-cancer agent due to its 

ability to reverse the Warburg effect/glycolytic phenotype, a characteristic of cancer 

cells, through this same process 127. DCA has been tested in many solid cancers, 

including breast cancer where it has been shown to be cytostatic as a single agent 92, 

and enhanced apoptosis in combination with mitochondrial-targeting agents arsenic 

trioxide 128 and phenylarsonous acid (PENAO) 129. DCA has also shown efficacy in blood 

cancers; promising pre-clinical testing of DCA in multiple myeloma has led to the 

commencement of a Phase II clinical trial of DCA in plateau phase multiple myeloma in 

Australia (DiCAM trial; ANZCTR #ACTRN12615000226505). In pre-clinical models of 

B-chronic lymphocytic leukaemia (B-CLL) DCA was shown to have anti-leukemic effects 

in patient samples and cell lines and to synergise with p53 activator Nutlin-3 130, as 

well as to reduce viability of AML cells in combination with arsenic trioxide 107. Given 

the literature which shows that targeting glycolysis with DCA can ‘prime’ AML cells for 

death by other agents 107, combination therapy with DCA could be a promising 

approach. 

 

 Targeting mitochondrial function 

Metformin is an anti-diabetic medication which lowers blood glucose concentrations in 

part through targeting the key energy sensor 5' adenosine monophosphate-activated 

protein kinase (AMPK), thereby decreasing hepatic glucose production and increasing 

glucose uptake 131, although the exact mechanisms were previously not well 

understood. Further investigation of the actions of metformin led to the discovery that 

it inhibited complex I of the mitochondrial electron transport chain 132, and thus was 

able to modulate the function of the mitochondria. The investigation of metformin as a 

cancer therapeutic began when retrospective analysis of cancer incidence in diabetic 

patients revealed that metformin-treated patients had a significantly lower risk of 

developing cancer, compared to those on insulin or other therapies 133. Given the 

previous findings that metformin could modulate mitochondrial function, this was 
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investigated in various cancer cells and in vivo cancer models. Metformin induced 

apoptosis and reduced tumour growth in preclinical models of acute myeloid 

leukaemia through inhibition of electron transport chain complex I 134. Metformin 

treatment also induced apoptosis and cell cycle arrest alone and in combination with 

dexamethasone in multiple myeloma through inhibiting the expression of insulin 

growth factor-I receptor (IGF-IR) 135, indicating more than one potential mode of action 

in cancer. It has also been found to be effective in solid tumours such as ovarian cancer 

136 and neuroblastoma 137. Such promising preclinical results in a wide range of tumour 

models has led to the initiation of hundreds of clinical trials with cancer patients 

utilising metformin based on its metabolism-modifying properties, including trials for 

breast cancer (ClinicalTrials.gov Identifiers: NCT01266486 and NCT01310231), lung 

cancer (ClinicalTrials.gov Identifier: NCT02115464), prostate cancer (ClinicalTrials.gov 

Identifier: NCT01243385), multiple myeloma and chronic lymphocytic leukaemia 

(ClinicalTrials.gov Identifier: NCT02948283) and AML (ClinicalTrials.gov Identifier: 

NCT01849276). In a clinical trial of patients with advanced prostate cancer, metformin 

+ castration was found to reduce the disease marker prostate-specific antigen (PSA) 

levels by 7 fold compared to the placebo + castration group (ClinicalTrials.gov 

Identifier: NCT01620593). This supports that metformin can modulate metabolic 

responses in cancer patients. Given the role that mitochondria play in AML cells 106, 

combination therapy with metformin could be a promising approach, particularly as its 

efficacy as a metabolism-modifying therapy is already well-established in humans. 

 

 Targeting autophagy 

Chloroquine has a long history of use in humans including as an antimalarial drug, with 

its efficacy thought to be due to its inhibition of heme polymerase through an 

unknown mechanism, leading to the accumulation of free heme which is toxic to the 

parasite 138. Chloroquine and its derivate hydroxychloroquine have also been used to 

treat some immune disorders like rheumatoid arthritis based on its immune 

suppressive effects 139, in part through inhibition of inflammatory cytokine signalling 

140 and toll-like receptor signalling through raising endosomal and lysosomal pH 141. 

Chloroquine has also been recognised to have anti-cancer properties for many decades 

142, and was subsequently found to inhibit autophagy through interfering with 

lysosomal function, thus preventing the fusion of lysosomes with autophagosomes 143. 
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Inhibition of autophagy through chloroquine has since been studied as a therapeutic 

target in various cancer models, with chloroquine acting to reduce the growth of 

hepatocellular carcinoma in vitro and in vivo 144, reducing the growth and metastasis of 

breast cancer 145, including through inducing mitochondrial damage and impairing DNA 

break repair 146, and inhibiting proliferation, inducing apoptosis and cell cycle arrest in 

vitro in acute promyelocytic leukaemia 147. Clinical trials of chloroquine or 

hydroxychloroquine have commenced in various malignancies including breast cancer 

as a single agent (ClinicalTrials.gov Identifier: NCT02333890) or in combination with 

standard chemotherapy (ClinicalTrials.gov Identifier: NCT01446016) and in relapsed 

and refractory multiple myeloma where a 30% response rate was achieved after 2 

cycles with a combination of bortezomib, cyclophosphamide and chloroquine 

(ClinicalTrials.gov Identifier: NCT01438177). Given the role autophagy has been 

demonstrated to play in AML cell survival 115, combination treatment with chloroquine 

could be a promising approach. 

 

 Targeting fatty acid synthesis 

Orlistat is a weight-loss medication that reduces fat absorption by inhibiting pancreatic 

and gastric lipases through binding to the active site of the enzymes and preventing 

enzyme activity 148. In the search for novel agents targeting fatty acid synthesis, a 

process upregulated in cancer, an activity-based proteomics screen revealed that 

orlistat was also a novel inhibitor of the thioesterase domain, key for the function of 

the enzyme, of fatty acid synthase (FASN) and was efficacious in an in vivo mouse 

model of prostate cancer 119. Orlistat has since been tested in vitro and in vivo in 

various cancer models including leukaemia 149 and multiple myeloma 150. Despite these 

promising results, clinical development of orlistat as a cancer therapy has been 

hindered by its poor oral bioavailability 151, as such there are currently no clinical trials 

in cancer with this drug. The search for novel inhibitors of FASN with improved 

bioavailability revealed that certain proton pump inhibitors, including omeprazole, also 

inhibit the thioesterase domain of FASN 152. Omeprazole is traditionally a medication 

to treat reflux and has proton pump inhibitor activity by inhibiting the gastric H+,K+-

ATPase 153. Before omeprazole was identified as a FASN inhibitor, it had been shown to 

inhibit proliferation and modulate autophagy in vitro in pancreatic cancer cells, 

hypothesised to be due to its effects on the lysosomal transport pathway 154. It has 
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also been shown to reduce invasion and metastasis in models of triple negative breast 

cancer in vitro and in vivo, hypothesised to be due to its action as an aryl hydrocarbon 

receptor (AHR) ligand 155. This more recently discovered mechanism of action of 

omeprazole as a FASN inhibitor has led to the commencement of a Phase II clinical trial 

to improve the efficacy of neoadjuvant chemotherapy in breast cancer 

(ClinicalTrials.gov Identifier: NCT02595372) with results yet to be published. Given that 

fatty acids have been shown to promote AML cell survival 116, combination therapy 

with orlistat or omeprazole and CX-5461 could be a promising approach. 

 

 Targeting glucose uptake 

Ritonavir is an anti-retroviral human immunodeficiency virus (HIV) medication that 

prevents the formation of mature, infectious HIV particles by inhibiting the action of 

the HIV protease enzyme to cleave the gag-pol polyproteins, an essential step in the 

HIV lifecycle 156. First approved for clinical use in the 1990’s, ritonavir is now more 

commonly used to boost the effects of other protease inhibitors due to its inhibition of 

liver cytochrome P450 3A-mediated metabolism, increasing the concentration of other 

protease inhibitors and improving their efficacy 157. Metabolic side effects, including 

insulin resistance and type II diabetes, have long been associated with the use of 

retroviral protease inhibitors in the treatment of HIV, leading to the discovery that 

these drugs inhibit glucose uptake 158. Given the association of increased glucose 

uptake with cancer cells, this is of great interest as a potential cancer therapy. 

Ritonavir is an inhibitor of glucose transporter type 4 (GLUT4) and has been shown to 

be effective in models of multiple myeloma 159 and chronic lymphocytic leukaemia 

(CLL) 160 in combination with metformin. Current clinical trials with ritonavir in cancer 

include in combination with external beam radiation in patients with brain metastasis 

(ClinicalTrials.gov Identifier: NCT00637637) and in patients with relapsed and 

refractory multiple myeloma and CLL in combination with metformin (ClinicalTrials.gov 

Identifier: NCT02948283) with results yet to be published. Given the role that glucose 

plays in both glycolysis and mitochondrial metabolism, which have both been shown 

to be dysregulated in AML 106,107, combination treatment with ritonavir could be a 

promising approach. 
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 Targeting cholesterol metabolism 

The cholesterol-lowering medication simvastatin inhibits the action of the enzyme 

HMG-CoA reductase to convert HMG-CoA to mevalonate, which is a rate-limiting step 

in cholesterol synthesis 161. Given that cholesterol synthesis is upregulated in cancer, 

simvastatin was tested as a single agent and found to reduce proliferation and colony-

forming potential of AML cell lines in vitro, and to sensitise the cells to the effects of 

cytarabine 162. In multiple myeloma cell lines, simvastatin was found to induce cell 

cycle arrest and death 163. In a clinical trial of simvastatin in breast cancer, 

immunohistochemistry analysis revealed that several weeks of treatment resulted in 

increased apoptosis and reduced the levels of proliferative markers in the primary 

tumours 164. Fibrates and glitazones are other classes of cholesterol-modifying agents 

that activate specific transcription factors of the superfamily of nuclear hormone 

receptors, known as peroxisome proliferator-activated receptors (PPARs). Fibrates are 

agonists of PPARα and glitazones are agonists of PPAR, and the downstream 

consequences of the activation of these factors is the lowering of blood triglycerides 

and cholesterol 165. Fenofibrate has been shown to induce apoptosis in triple-negative 

breast cancer 166 and mantle cell lymphoma 167. In a clinical trial of patients with 

various relapsed and progressive cancers when given fenofibrate in a 5-drug 

metronomic regimen with thalidomide, celecoxib, etoposide and cyclophoshamide, 

31% of patients achieved progression-free survival after 27 weeks treatment 

(ClinicalTrials.gov Identifier: NCT00357500). Bezafibrate was found to inhibit 

proliferation and induce cell cycle arrest in an in vitro model of lung adenocarcinoma 

168. In chronic myeloid leukaemia (CML), glitazones were shown to target the 

leukaemia stem cell pool 169 and rosiglitazone synergised with carboplatin to induce 

apoptosis and reduce cell growth in a mouse model of lung cancer 170. Given the 

dysregulation of cholesterol metabolism in AML cells 110, combination treatment with 

simvastatin, fenofibrate, bezafibrate or rosiglitazone could be a promising approach. 

 

Together this literature indicates that metabolism-modifying agents can both have 

efficacy against cancer cells as single agents and/or sensitise cancer cells to the effects 

of other anti-neoplastic drugs, and thus potentially be effective as cancer therapeutics. 
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 Metabolism-modifying drugs that potentially modulate ribosome biogenesis 

In addition to their metabolism-modifying mechanism of action, some of the drugs 

that were selected for testing in combination with CX-5461 also have reported effects 

on ribosome biogenesis. The key considerations when evaluating these studies include 

the concentration of drug used, the cell type and the duration of treatment. 

 

Metformin activates AMPK 131, which has been shown to downregulate rRNA synthesis 

through impairing the interaction between TIF-1A and SL-1 171. Treatment of MCF7 

breast cancer cells with 2.5mM metformin for 4 hours resulted in a significant 

reduction in rRNA transcription, following AMPK activation and subsequent activation 

of histone demethylase KDM2A at the rDNA promoter 172. Gene expression analysis of 

human peripheral blood mononuclear cells from patients treated with 100 mg 

ritonavir once or twice daily for 14 days, has shown significant modulation of 13 genes 

involved in ribosome biogenesis and assembly 173, although it is not clear whether 

these are upregulated or downregulated. Omeprazole treatment has been shown to 

decrease expression of the transcription factor c-myc, a key regulator of ribosome 

biogenesis 174, in human peripheral blood mononuclear cells cultured for 21 days in 

vitro with 1µM omeprazole175. However, it was not confirmed in this study if the rate 

of rDNA transcription was decreased. Chloroquine is known to intercalate with DNA 

176, which could reduce the rate of rDNA transcription. 

 

While none of the metabolism modifying agents selected for testing in these studies is 

a selective inhibitor of ribosome biogenesis, as evidenced above, some of these agents 

may dysregulate factors involved in ribosome biogenesis. This must also be taken into 

consideration when examining promising combination therapies with CX-5461. 

 

3.1.3 Determination of drug concentrations to be used for testing 

In order to evaluate the drugs at biologically relevant concentrations, a maximum 

concentration for testing was selected for each drug based on the literature, taking 

into consideration, if reported, achievable plasma concentrations in patients and/or 

mice, concentrations reported in in vitro studies and concentrations known to achieve 

on-target effects for the mechanisms being investigated in cancer. 
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CX-5461. A maximum concentration of 1M was used for CX-5461 in order for the 

drug to remain an on-target inhibitor of Pol I and not Pol II or Pol III 81. 

DCA. With repeated dosing of DCA, plasma concentrations of around 1-2mM are 

achievable 177, as such 5mM was chosen as the maximum concentration for testing. 

Metformin. When used as an antidiabetic medication, metformin serum levels average 

around 700M 178, however, 10mM was selected as a maximum concentration as 

metformin has been shown to inhibit mitochondrial complex I activity in the millimolar 

range in leukaemia cells 134. 

Chloroquine. In studies of malaria-infected patients, chloroquine plasma 

concentrations peak at around 1-2M during a 3 day course of chloroquine treatment 

179 and similar levels were observed in malaria-infected mice 180, however for the 

purpose of studying autophagy inhibition a maximum concentration of 40M was 

selected as chloroquine is well established to inhibit autophagy at this concentration 

111,181. 

Orlistat. There is minimal absorption of orlistat when taken through the traditional 

oral route in humans 151 and testing of injectable orlistat has not been performed in 

humans thus far. However, in mice that have been injected with orlistat solution by 

intraperitoneal injection, plasma concentrations have been measured to reach 10M 

and been predicted to reach approximately 16M with a higher dosing schedule 119. As 

such, a maximum concentration of 30M was selected for in vitro testing. 

Omeprazole. Omeprazole inhibits the thioesterase domain of FASN at a micromolar 

range, with a concentration that inhibits the activity of the enzyme by 50% (IC50) of 

approximately 30M 152. As such, 200M was the highest concentration utilised for 

testing to ensure maximum inhibition of FASN. 

Ritonavir. Ritonavir plasma levels in patients peak at approximately 25-30M 182 and 

glucose uptake has been shown to be significantly inhibited by 50M of ritonavir158. As 

such, ritonavir was tested up to a maximum concentration of 50M. 

Simvastatin. In healthy human volunteers, plasma levels of approximately 20M 

simvastatin were readily achieved 183, therefore a maximum concentration of 40M 

was utilised for testing. 
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Fenofibrate and bezafibrate. Plasma levels of approximately 30M fenofibrate and 

bezafibrate are achievable in healthy volunteers 184, therefore a maximum 

concentration of 100M was used for testing. 

Rosiglitazone. Rosiglitazone levels reach approximately 2M in the plasma of patients 

185, as such 30M maximum was used for testing. 

 

3.1.4 Analysis of drug synergy 

Determining synergistic drug combinations is of great interest in the medical field as, in 

general, lower concentrations of the individual drugs are used, resulting in less severe 

side effects and reduces the occurrence of drug resistance 186. To be defined as 

synergistic (also known as super-additive), the combination effects of the drugs must 

be in excess of what would be predicted given the individual effects of the drugs. If the 

combination effect matches what is expected given the individual drug potencies the 

combination is considered additive, while if the effect is less than predicted the 

combination is considered antagonistic. Various methods of analysis exist for 

determining drug synergy; one such well-established method is the Chou-Talalay 

Combination Index method 122. The Combination Index (CI) method provides a 

quantitative measure of synergy between two or more drugs; an additive effect has a 

CI = 1, a synergistic effect has a CI<1 and an antagonistic effect has a CI>1. This method 

has been incorporated into a freely-available program called CompuSyn. Further 

details of this method are included in Section 2.5.5. 

 

3.1.5 Assays for measuring cell viability 

Total viable cell number was chosen as the read-out for the analysis, rather than a 

more narrow effect such as cell death, as this read-out can evaluate multiple 

consequences of drug treatment over time (e.g. cell cycle arrest, apoptosis, 

senescence, cell death). The mechanism of action mediating altered cell viability would 

be determined once promising combinations had been identified, to help identify the 

mechanisms of synergy (see Chapter 5). In order to evaluate the effects of the 

metabolism drugs with CX-5461, colourimetric viability plate-based assays were 

utilised (Section 2.5). There are a number of such assays including the neutral red 

assay and the thiazolyl blue tetrazolium bromide (MTT) assay. The neutral red assay 



 49 

estimates viable cell number based on the uptake and binding of the neutral red dye in 

the lysosomes of the cells, which can only occur in viable cells (Section 2.5.1) 120. The 

MTT assay is based on the conversion of the water-soluble MTT tetrazolium salt (3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) to coloured formazin 

crystals via succinate dehydrogenase in the mitochondria (Section 2.5.2)121. 

Alternatively, cell counting using the Coulter counter, which measures particle number 

and size, was used as a control to determine the suitability of the assays with the 

different drugs (Section 2.5.3). 
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3.2  Results 

3.2.1 Optimising conditions for viability testing 

In order to ensure that the cells are in an exponential growth phase at the time that 

viability is assessed, various plating densities were evaluated with viable cell number 

determined using the neutral red assay after 96 h culturing in untreated conditions 

(Figure 3-2). Importantly, a 96 h timepoint was chosen as this provided the cells time 

to divide at least 1-2 times in untreated conditions (refer to Table 2-1 for doubling 

times of each cell line). This is important as cells often display a lag phase on replating, 

and if the cells become confluent they may be contact inhibited and run out of 

nutrients which reduces the proliferation rate. Human AML cell lines were plated at a 

range of 0.5-10 x 104 cells/well and the mouse AML cell lines at 0.25-5 x 104 cells/well. 

 

Figure 3-2 shows that after 96 h culturing in untreated conditions the MV4-11, THP-1 

and SKM-1 cells were in the exponential growth phase from 0.5-5 x 104 cells/well 

plated then plateau in number at higher plating densities, indicating they were 

confluent. The MOLM-13 and MLL/AF9 NRAS cells were in exponential growth phase 

from 0.5-2 x 104 cells/well plated then become confluent at higher plating densities. 

The KG-1 cells were in exponential growth phase from 0.5-3 x 104 cells/well plated 

then become confluent at higher plating densities. Thus, for the MV4-11, THP-1 and 

SKM-1 cell lines 4 x 104 cells/well, KG-1 2 x 104 cells/well, MOLM-13 1.5 x 104 cells/well 

and MLL/AF9 NRAS 1 x 104 cells/well were chosen as optimal plating densities for the 

96 h drug treatment viability assays. 
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Figure 3-2: Determining cell plating density for viability assays 

AML cell lines MV4-11, THP-1, MOLM-13, MLL/AF9 NRAS, KG-1 and SKM-1 were plated 

at a range of cell numbers per well in a 96 well plate and cultured in untreated 

conditions for 96 h. Total viable cell number was determined using the neutral red 

assay (Methods section 2.5.1). Graphs show the meanSD of n=2-3 experiments. 
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The accuracy of the viability assay used (neutral red or MTT) was confirmed using a 

physical counting method (Coulter count), using the MV4-11 cell line. When comparing 

the effect of these drugs between the neutral red assay and Coulter counting (Figure 

3-3), the results were consistent for CX-5461, orlistat, ritonavir, DCA, omeprazole, 

fenofibrate, bezafibrate and rosiglitazone. Interestingly, treatment with metformin 

and simvastatin resulted in an underestimate of viability, while chloroquine treatment 

resulted in an overestimation of viability with the neutral red assay. As the neutral red 

assay measures the uptake and retention of the neutral red dye in the lysosomes 120 

this suggests that the drugs are affecting the number and/or function of the lysosomes 

in the MV4-11 cells. Simvastatin has been reported to induce autophagy (which, at 

least in the short term, would result in a decrease in lysosomes) as a cytoprotective 

effect in leukaemia cells 187 and metformin is a well-known autophagy inducer in 

cancer cells due to activation of AMPK and downstream reduction in mTOR 188,189, so 

this underestimation of cell viability with neutral red is consistent with the literature. 

The overestimation of cell viability with neutral red following chloroquine treatment is 

also unsurprising given the inhibitory effect chloroquine has on autophagy 143, 

resulting in the accumulation of lysosomes and thus artificially inflating the neutral red 

readings. 
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Figure 3-3: Comparison of neutral red and Coulter count results for cell viability. 

MV4-11 cells were treated with the indicated drugs for 96 h then cell viability was 

simultaneously assayed using neutral red staining and Coulter counting in order to 

determine if any of the drugs were inferring with the mechanism of action of the neutral 

red assay. Graphs show the meanSD of 2-4 technical replicates per data point, n=1. 
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In light of these results, metformin, simvastatin and chloroquine were further tested 

using the MTT assay and compared to Coulter counting to measure cell viability (Figure 

3-4). The results of the MTT and Coulter counts correlate for chloroquine treatment, 

but again this did not correlate for metformin and simvastatin. As the MTT assay 

measures the activity of mitochondrial reductases 121, these results suggest that 

metformin and simvastatin are affecting the function of the mitochondria. Metformin 

has previously been reported to have various effects on mitochondrial function 

including complex I inhibition 134, limiting respiration and citric acid cycle activity 190 

and inhibiting ATP synthase 191 which could affect the results of the MTT assay. Statins, 

 
 
Figure 3-4: Comparison of MTT assay and Coulter count results for cell viability. 

MV4-11 cells were treated with the indicated drugs for 96 h then cell viability was 

simultaneously assayed using MTT staining and Coulter counting in order to determine if 

any of the drugs were inferring with the mechanism of action of the MTT assay. Graphs 

show the meanSD of 2-4 technical replicates per data point, n=1. 
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including simvastatin, have been reported to induce mitochondrial dysfunction by 

inhibiting complex III in muscle cells 192 and could potentially also affect the 

mitochondria in leukaemia cells. Any future viability evaluation with these drugs 

should not be metabolism-based, instead a method such as cell counting through 

high-throughput flow cytometry would be preferable as this technique would not be 

affected by the mechanism of action of the drugs. This technique was not available in 

house at the commencement of testing, but has since been set up and could be used 

for future evaluation of cell viability with suspension cells such as AML. Since a suitable 

assay for measuring cell viability was not identified for metformin and simvastatin at 

the time the experiments were conducted, these drugs were not evaluated further. As 

the aim of the study is to evaluate combination therapies with CX-5461 this was also 

tested with the MTT assay and found to correlate with the Coulter counts, and thus 

the MTT assay was deemed accurate to determine cell viability following CX-5461 

treatment. The results of the viability assay comparison testing are summarised in 

Table 3-3. 

 

3.2.2 Dose-response curves and GI50s of drugs as single agents 

Each drug was tested as a single agent across a range of concentrations (Section 3.1.3) 

in 4 cell lines (MV4-11, THP-1, MOLM-13 and MLL/AF9 NRAS). Total viable cell number 

 
Drug Suitability with 

neutral red? 
Suitability with 
MTT? 

CX-5461 Yes Yes 

Orlistat Yes Not tested 

Ritonavir Yes Not tested 

Metformin * No No 
DCA Yes Not tested 

Simvastatin * No No 

Omeprazole Yes Not tested 

Fenofibrate Yes Not tested 

Bezafibrate Yes Not tested 
Chloroquine No Yes 

Rosiglitazone Yes Not tested 

Table 3-3: Summary of suitability testing of viability assays for each drug as a single 
agent. 

*These drugs were not carried forward for further evaluation. 
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after 96 h of treatment was determined using the assay appropriate for each drug 

(Table 3-3). For each drug and cell line the concentration versus the cell viability was 

graphed (Figure 3-5-Figure 3-8). The dose resulting in a 50% growth inhibition (GI50) 

was then calculated for each cell line after fitting a non-linear dose curve to the data 

points (Methods Section 2.5.5). GI50 values are summarised in Table 3-4. 

 Ribosome biogenesis 

In response to treatment with ribosome biogenesis inhibitor CX-5461 (up to a 

maximum concentration of 1µM, as justified in Section 3.1.3), dose-response curves 

from 100% viability to close to 0% viability were achieved in the MLL/AF9 NRAS (Figure 

3-8) and MV4-11 (Figure 3-5) cell lines, with the MLL/AF9 NRAS cells being the most 

sensitive by about 10-fold. In the MOLM-13 cell line (Figure 3-6) viability plateaued at 

approximately 200nM, thus a true GI50 could not be determined. Given the effects CX-

5461 is known to have on cell cycle in this cell line 1 it is possible that this plateau is 

due to CX-5461 inducing cell cycle arrest in the cells, particularly at 200nM or higher. 

The THP-1 cell line (Figure 3-7) showed no sensitivity to CX-5461 treatment. 

 

 Glucose uptake and glycolysis 

In response to treatment with glucose uptake inhibitor ritonavir (up to a maximum 

concentration of 50µM, as justified in Section 3.1.3) dose-response curves from 100% 

viability to close to 0% viability were achieved in the MLL/AF9 NRAS cells, MOLM-13 

and MV4-11, in ascending order of GI50. The THP-1 cell line showed some limited 

sensitivity at the higher concentrations of ritonavir only. 

 

In response to treatment with glycolysis inhibitor DCA, no dose-response curves were 

achieved in any of the cells lines, however, at the maximum concentration of 5mM (as 

justified in Section 3.1.3) viability of the MLL/AF9 NRAS cells dropped to approximately 

30%. The MV4-11 and THP-1 cell lines showed a small drop in viability at 5mM, while 

there was no change in the MOLM-13 cell line. 
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 Fatty acid synthesis 

In response to treatment with fatty acid synthesis inhibitor orlistat (up to a maximum 

concentration of 30µM, as justified in Section 3.1.3) dose-response curves from 100% 

viability to close to 0% viability were achieved in the MV4-11 and MOLM-13 cell lines. 

Drugs 
Maximum 

concentration 
tested* 

GI50±SD 

Human  Mouse 

MV4-11 
(MLL/AF4, 
p53 WT) 

MOLM-13 
(MLL/AF9, 
p53 WT) 

THP-1 
(MLL/AF9, 
p53 null) 

MLL/AF9 
NRAS 

(p53 WT) 

Ribosome biogenesis  

CX-5461 (nM) 1000 115.6±27 ~200 >1000 10.3±2 

Glucose uptake and glycolysis  

Ritonavir(μM) 50 41.0±0.2 40.4±11 >50 13.3±3 

DCA (mM) 5 >5 >5 >5 ~4 

Fatty acid synthesis  

Orlistat (μM) 30 19.2±3 23.4±2 >30 ~30 

Omeprazole (μM) 200 ~180 >200 >200 125.6±2 

Autophagy  

Chloroquine (μM) 40 >40 >40 >40 25.9±5 

Cholesterol synthesis  

Fenofibrate (μM) 100 >100 >100 >100 25.5±4 

Bezafibrate (μM) 100 >100 >100 >100 >100 

Rosiglitazone (μM) 30 >30 >30 >30 >30 

 
Table 3-4: GI50 values of drugs as single agents 

Data from Figure 3-5 - Figure 3-8. Colour code: No colour = Sensitive (>25% drop in cell 

viability at maximum concentration Light grey = Some sensitivity (10-25% drop in cell viability 

at maximum concentration) Dark grey = Not sensitive (<10% drop in cell viability at maximum 

concentration). * Justified in Section 3.1.3. 

 



 58 

At 30µM orlistat the viability of the MLL/AF9 NRAS cells dropped to approximately 

60%, while the THP-1 cells showed no sensitivity. 

 

In response to treatment with fatty acid synthesis inhibitor omeprazole (up to a 

maximum concentration of 200µM, as justified in Section 3.1.3) a dose-response curve 

from 100% viability to close to 0% viability was achieved in the MLL/AF9 NRAS cell line. 

At 200µM treatment, viability of the MV4-11 and MOLM-13 cells had dropped to 30% 

and 80%, respectively, while the THP-1 cells showed no sensitivity. 

 

 Autophagy 

In response to treatment with autophagy inhibitor chloroquine (up to a maximum 

concentration of 40µM, as justified in Section 3.1.3) a dose-response curve from 100% 

viability to close to 0% viability was achieved in the MLL/AF9 NRAS cell line. The 

MV4-11, MOLM-13 and THP-1 cell lines showed limited or no sensitivity to 

chloroquine, up to 40µM. 

 

 Cholesterol synthesis 

In response to treatment with cholesterol synthesis inhibitors fenofibrate, bezafibrate 

and rosiglitazone (up to a maximum concentration of 100µM, 100µM,and 30µM, 

respectively, as justified in Section 3.1.3) dose-response curves from 100% viability to 

close to 0% viability were achieved in the MLL/AF9 NRAS cell line, with the exception 

of bezafibrate where viability went down to approximately 80% with 100µM 

treatment. The MV4-11, MOLM-13 and THP-1 cell lines showed no sensitivity to any of 

the three cholesterol synthesis inhibitors, even at the maximum concentrations tested. 

 

 Summary of dose-response curve testing 

In summary, the mouse-derived MLL/AF9 NRAS cells showed some sensitivity (defined 

as >10% drop in cell viability at the highest concentration tested) to all of the 

metabolism modifying drugs tested and was the most sensitive of the four cell lines to 

CX-5461 treatment. Of the human AML cell lines tested, MV4-11 cells were the most 

sensitive to the metabolism modifying drugs overall and to CX-5461, followed by 

MOLM-13, then THP-1 which showed no, or limited, sensitivity to any of the 

metabolism drugs, or to CX-5461, up to the maximum concentrations used for testing. 
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ritonavir) and fatty acid synthesis (targeted by orlistat and omeprazole) for survival. 

 
 
Figure 3-5: Dose response curves and GI50s of drugs as single agents in MV4-11 cells. 

MV4-11 cells were cultured for 96 h in the presence of the indicated drugs at a range of 

concentrations, up to a maximum rational concentration for testing (Section 3.1.3). 

Total viable cell number was determined using MTT (for chloroquine) or neutral red 

assays (for all other drugs). The dose resulting in a 50% growth inhibition (GI50) values 

were calculated after fitting a non-linear curve to the data points (Methods Section 

2.5.5). Graphs show the meanSD of n=3 experiments. 
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The cells had limited or no sensitivity to chloroquine, DCA, fenofibrate, bezafibrate and 

 
 
 
Figure 3-6: Dose response curves and GI50s of drugs as single agents in MOLM-13 cells. 

MOLM-13 cells were cultured for 96 h in the presence of the indicated drugs at a range 

of concentrations, up to a maximum rational concentration for testing (Section 3.1.3). 

Total viable cell number was determined using MTT (for chloroquine) or neutral red 

assays (for all other drugs). The dose resulting in a 50% growth inhibition (GI50) values 

were calculated after fitting a non-linear curve to the data points (Methods Section 

2.5.5). Graphs show the meanSD of n=3 experiments. 
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rosiglitazone, suggesting that when autophagy (targeting by chloroquine), glycolysis 

 
 
 
Figure 3-7: Dose response curves and GI50s of drugs as single agents in THP-1 cells. 

THP-1 cells were cultured for 96 h in the presence of the indicated drugs at a range of 

concentrations, up to a maximum rational concentration for testing (Section 3.1.3). Total 

viable cell number was determined using MTT (for chloroquine) or neutral red assays 

(for all other drugs). The dose resulting in a 50% growth inhibition (GI50) values were 

calculated after fitting a non-linear curve to the data points (Methods Section 2.5.5). 

Graphs show the meanSD of n=3 experiments. 
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(targeted by DCA) and cholesterol synthesis (targeted by fenofibrate, bezafibrate and  

 
 
 
Figure 3-8: Dose response curves and GI50s of drugs as single agents in MLL/AF9 NRAS 
cells. 

MLL/AF9 NRAS cells were cultured for 96 h in the presence of the indicated drugs at a 

range of concentrations, up to a maximum rational concentration for testing (Section 

3.1.3). Total viable cell number was determined using MTT (for chloroquine) or neutral 

red assays (for all other drugs). The dose resulting in a 50% growth inhibition (GI50) 

values were calculated after fitting a non-linear curve to the data points (Methods 

Section 2.5.5). Graphs show the meanSD of n=3 experiments. 
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3.2.3 Combination testing of metabolism drugs with CX-5461 (4 
main cell lines) 

Based on the results from the viability assays with the drugs as single agents (Table 

3-4), non-constant ratio combination testing was performed with five concentrations 

of CX-5461 and three concentrations of the metabolism drugs, up to the GI50s 

previously determined or the maximum concentration tested, whichever was lower. 

Total viable cell number was determined after 96 h of treatment and the combination 

index calculated using CompuSyn (Methods section 2.5.5). Synergy was defined as a 

combination index below 0.75 (based on recommended guidelines for categorising 

synergism 123)and drug combinations were considered promising if synergy was 

observed in 2 or more cell lines. Figure 3-9 to Figure 3-16 show the viability results and 

CI values, which are summarised in Table 3-6. 

 

 CX-5461 + ritonavir 

The best combination effect of CX-5461 and ritonavir was observed in the MLL/AF9 

NRAS cell line (Figure 3-9d), where 14/15 of the drug combinations tested were 

synergistic, particularly at the highest concentration of ritonavir used (12µM). In the 

MOLM-13 cell line (Figure 3-9b) 9/15 of the drug combinations were synergistic, 

particularly with the lowest dose of ritonavir used (25µM). In the MV4-11 cell line 

(Figure 3-9a) none of the combinations had a synergistic effect on cell viability. The 

THP-1 cell line (Figure 3-9c), combination testing resulted in no obvious change in 

viability from the single agents, however, the CIs indicated the combinations were 

synergistic (with 50 µM ritonavir) or highly antagonistic (>1000; with 15 or 30µM 

ritonavir). These CI appear to result from calculation artefacts, the cause of such 

calculation artefacts is discussed in Section 3.1.3.  
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Figure 3-9: Combination testing of CX-5461 with ritonavir in AML cell lines. 

AML cell lines a) MV4-11, b) MOLM-13, c) THP-1 and d) MLL/AF9 NRAS were cultured for 

96 h in the presence of CX-5461 or ritonavir (rit), as single agents or in combination. Total 

viable cell number was determined using the neutral red assay. Graphs show the 

meanSD of n=3 experiments. To determine if a combination was synergistic, the 

combination index (CI) of each data point was calculated using CompuSyn and displayed in 

the inlayed table (CI <0.75 considered synergistic, shaded green). Where CI values were 

greater than 1000, ‘>1000’ only was displayed. 
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 CX-5461 + orlistat 

In the MV4-11 cell line (Figure 3-10a) 10/15 of the combinations of CX-5461 and 

orlistat were synergistic, particularly with concentrations of >50nM CX-5461 and 8µM 

or 11µM orlistat. In the MOLM-13 cell line (Figure 3-10b) 11/15 of the combinations 

were synergistic. In contrast, none of the combinations of CX-5461 and orlistat in the 

MLL/AF9 NRAS cell line (Figure 3-10d) were synergistic. The THP-1 cell line (Figure 

3-10c) did not provide useful CI readouts due to calculation artefacts, as for the CX-

5461 and ritonavir combination (see Section 3.2.3.9). 

Figure 3-10: Combination testing of CX-5461 with orlistat in AML cell lines. 

 
AML cell lines a) MV4-11, b) MOLM-13, c) THP-1 and d) MLL/AF9 NRAS were cultured for 

96 h in the presence of CX-5461 or orlistat (orl), as single agents or in combination. Total 

viable cell number was determined using the neutral red assay. Graphs show the 

meanSD of n=3 experiments. To determine if a combination was synergistic, the 

combination index (CI) of each data point was calculated using CompuSyn and displayed in 

the inlayed table (CI <0.75 considered synergistic, shaded green). Where CI values were 

greater than 1000, ‘>1000’ only was displayed. 
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 CX-5461 + omeprazole 

The best combination effect of CX-5461 and omeprazole was observed in the MOLM-

13 cell line (Figure 3-11b), where all 15 combinations were synergistic. In the MLL/AF9 

NRAS (Figure 3-11d) one combination was synergistic, the lowest of each of the drugs 

used (2nM CX-5461 with 30µM omeprazole). In contrast, none of the combinations of 

CX-5461 and omeprazole were synergistic in the MV4-11 cell lines (Figure 3-11a). The 

THP-1 cell line (Figure 3-11c) did not provide useful CI readouts due to calculation 

artefacts (see Section 3.2.3.9). 

Figure 3-11: Combination testing of CX-5461 with omeprazole in AML cell lines. 

AML cell lines a) MV4-11, b) MOLM-13, c) THP-1 and d) MLL/AF9 NRAS were cultured for 

96 h in the presence of CX-5461 or omeprazole (ome), as single agents or in 

combination. Total viable cell number was determined using the neutral red assay. 

Graphs show the meanSD of n=3 experiments. To determine if a combination was 

synergistic, the combination index (CI) of each data point was calculated using 

CompuSyn and displayed in the inlayed table (CI <0.75 considered synergistic, shaded 

green). Where CI values were greater than 1000, ‘>1000’ only was displayed. 
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 CX-5461 + chloroquine 

There was a strong combination effect of CX-5461 + chloroquine in the MOLM-13 cell 

line (Figure 3-12b), with doses of chloroquine as low as 5M resulting in a synergistic 

effect on cell viability when combined with CX-5461, and a total of 12/15 synergistic 

combinations. In the MV4-11 cell line (Figure 3-12a) 9/15 of the combinations were 

synergistic, particularly with CX-5461 and 40M chloroquine. In the MLL/AF9 cell line 

(Figure 3-12d) 5/15 of the combinations are synergistic, particularly with combinations 

of 10nM or 12nM CX-5461 with 20M or 25M chloroquine. Interestingly, in the THP-

1 cell line (Figure 3-12c) there is a decrease in viability with increasing concentrations 

of CX-5461 and 40M chloroquine, dropping to approximately 50% viability with the 

1000nM CX-5461 combination and 3/15 of the combinations are synergistic. In 

contrast to the combinations with other metabolism-modifying drugs were the CIs 

result from calculation artefacts, this appears to be the only true combination effect in 

the THP-1 cell line. 

Figure 3-12: Combination testing of CX-5461 with chloroquine in AML cell lines. 

 
AML cell lines a) MV4-11, b) MOLM-13, c) THP-1 and d) MLL/AF9 NRAS were cultured for 

96 h in the presence of CX-5461 or chloroquine (CQ), as single agents or in combination. 

Total viable cell number was determined using the MTT assay. Graphs show the 

meanSD of n=3 experiments. To determine if a combination was synergistic, the 

combination index (CI) of each data point was calculated using CompuSyn and displayed 

in the inlayed table (CI <0.75 considered synergistic, shaded green). Where CI values 

were greater than 1000, ‘>1000’ only was displayed. 
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 CX-5461 + DCA 

Of the four cell lines, the MLL/AF9 cell line (Figure 3-13d) had the most robust 

combination effect with CX-5461 + DCA treatment, with all combinations testing being 

synergistic. In the MOLM-13 cell line (Figure 3-13b) 6/15 of the combinations were 

synergistic, particularly in combination with 5mM DCA. In the MV4-11 cell line (Figure 

3-13a) 3/15 of the combinations were synergistic. Again, the THP-1 cell line (Figure 

3-13c) did not provide useful CI readouts due to calculation artefacts, see Section 

3.2.3.9. 

Figure 3-13: Combination testing of CX-5461 with DCA in AML cell lines. 

AML cell lines a) MV4-11, b) MOLM-13, c) THP-1 and d) MLL/AF9 NRAS were cultured 

for 96 h in the presence of CX-5461 or DCA, as single agents or in combination. Total 

viable cell number was determined using the neutral red assay. Graphs show the 

meanSD of n=3 experiments. To determine if a combination was synergistic, the 

combination index (CI) of each data point was calculated using CompuSyn and displayed 

in the inlayed table (CI <0.75 considered synergistic, shaded green). Where CI values 

were greater than 1000, ‘>1000’ only was displayed. 
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Co mb in ation  in d ex (CI)
CX-5461 (n M)

DCA (mM)

100 300 500 700 1000

1 396.850 5.190 6.280 7.512 396.850

3 >1000 >1000 224.11 >1000 >1000

5 >1000 >1000 >1000 >1000 >1000

Co mbin ation  in dex (CI)
CX-5461 (n M)
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25 50 75 100 125

1 0.786 0.993 1.042 1.037 1.039
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 CX-5461 + fenofibrate 

In the MLL/AF9 NRAS cell lines (Figure 3-14d) 1/15 of the combinations of CX-5461 and 

fenofibrate are synergistic (12nM CX-5461 with 5M fenofibrate). While in the MV4-11 

cell line (Figure 3-14a) none of the combinations of CX-5461 and fenofibrate were 

synergistic. The combination data in the MOLM-13 (Figure 3-14b) and THP-1 (Figure 

3-14c) cell lines did not provide useful CI readouts due to calculation artefacts, see 

Section 3.2.3.9. 

Figure 3-14: Combination testing of CX-5461 with fenofibrate in AML cell lines. 

AML cell lines a) MV4-11, b) MOLM-13, c) THP-1 and d) MLL/AF9 NRAS were cultured for 

96 h in the presence of CX-5461 or fenofibrate (fen), as single agents or in combination. 

Total viable cell number was determined using the neutral red assay. Graphs show the 

meanSD of n=3 experiments. To determine if a combination was synergistic, the 

combination index (CI) of each data point was calculated using CompuSyn and displayed 

in the inlayed table (CI <0.75 considered synergistic, shaded green). Where CI values 

were greater than 1000, ‘>1000’ only was displayed. 
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Combination  index (CI)
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100 0.886 1.152 1.132 0.900 0.869
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 CX-5461 + bezafibrate 

In the MV4-11 (Figure 3-15a), MOLM-13 (Figure 3-15b) and MLL/AF9 NRAS (Figure 

3-15d) cell lines none of the combinations of CX-5461 and bezafibrate were synergistic. 

The THP-1 cell line (Figure 3-15c) did not provide useful CI readouts due to calculation 

artefacts, see Section 3.2.3.9. 

Figure 3-15: Combination testing of CX-5461 with bezafibrate in AML cell lines. 

AML cell lines a) MV4-11, b) MOLM-13, c) THP-1 and d) MLL/AF9 NRAS were cultured for 

96 h in the presence of CX-5461 or bezafibrate (bez), as single agents or in combination. 

Total viable cell number was determined using the neutral red assay. Graphs show the 

meanSD of n=3 experiments. To determine if a combination was synergistic, the 

combination index (CI) of each data point was calculated using CompuSyn and displayed 

in the inlayed table (CI <0.75 considered synergistic, shaded green). Where CI values were 

greater than 1000, ‘>1000’ only was displayed. 



 77 

 

 

0 25 50 75 100 125 150
0

20

40

60

80

100

CX-5461 (nM)

T
o

ta
l 
v
ia

b
le

 c
e
ll
 n

u
m

b
e
r 

(%
 o

f 
c
o

n
tr

o
l)

CX-5461 only

CX-5461 + 30µM bez

CX-5461 + 60µM bez

CX-5461 + 100µM bez

0 200 400 600 800 1000
0

20

40

60

80

100

CX-5461 (nM)

T
o

ta
l 
v
ia

b
le

 c
e
ll
 n

u
m

b
e
r 

(%
 o

f 
c
o

n
tr

o
l)

CX-5461 only

CX-5461 + 30µM bez

CX-5461 + 60µM bez

CX-5461 + 100µM bez

0 200 400 600 800 1000
0

20

40

60

80

100

CX-5461 (nM)

T
o

ta
l 
v
ia

b
le

 c
e
ll
 n

u
m

b
e
r 

(%
 o

f 
c
o

n
tr

o
l)

CX-5461 only

CX-5461 + 30µM bez

CX-5461 + 60µM bez

CX-5461 + 100µM bez

0 2 4 6 8 10 12 14
0

20

40

60

80

100

120

140

CX-5461 (nM)

T
o

ta
l 
v
ia

b
le

 c
e
ll
 n

u
m

b
e
r 

(%
 o

f 
c
o

n
tr

o
l)

CX-5461 only

CX-5461 + 30µM bez

CX-5461 + 60µM bez

CX-5461 + 100µM bez

0 30 60 90 120
0

20

40

60

80

100

120

Bezafibrate (µM)

T
o

ta
l 
v
ia

b
le

 c
e
ll
 n

u
m

b
e
r 

(%
 o

f 
c
o

n
tr

o
l)

0 30 60 90 120
0

20

40

60

80

100

120

Bezafibrate (µM)

T
o

ta
l 
v
ia

b
le

 c
e
ll
 n

u
m

b
e
r 

(%
 o

f 
c
o

n
tr

o
l)

0 30 60 90 120
0

20

40

60

80

100

Bezafibrate (µM)

T
o

ta
l 
v
ia

b
le

 c
e

ll
 n

u
m

b
e
r 

(%
 o

f 
c
o

n
tr

o
l)

0 30 60 90 120
0

20

40

60

80

100

120

140

Bezafibrate (µM)

T
o

ta
l 
v
ia

b
le

 c
e
ll
 n

u
m

b
e
r 

(%
 o

f 
c
o

n
tr

o
l)

a) MV4-11

c) THP-1

b) MOLM-13

d) MLL/AF9 NRAS

CX-5461 + Bezafibrate

100 300 500 700 1000

30 0.113 0.260 0.348 0.548 0.881
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 CX-5461 + rosiglitazone 

In the MV4-11 (Figure 3-16a), MOLM-13 (Figure 3-16b) and MLL/AF9 NRAS (Figure 

3-16d) cell lines none of the combinations of CX-5461 and rosiglitazone were 

synergistic. The THP-1 cell line (Figure 3-16c) did not provide useful CI readouts due to 

calculation artefacts, see Section 3.2.3.9. 

Figure 3-16: Combination testing of CX-5461 with rosiglitazone in AML cell lines. 

AML cell lines a) MV4-11, b) MOLM-13, c) THP-1 and d) MLL/AF9 NRAS were cultured for 

96 h in the presence of CX-5461 or rosiglitazone (rosi), as single agents or in combination. 

Total viable cell number was determined using the neutral red assay. Graphs show the 

meanSD of n=3 experiments. To determine if a combination was synergistic, the 

combination index (CI) of each data point was calculated using CompuSyn and displayed 

in the inlayed table (CI <0.75 considered synergistic, shaded green). Where CI values were 

greater than 1000, ‘>1000’ only was displayed. 
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 Apparent CI calculation artefacts 

In many cases in the THP-1 cell line, and in some cases in the MOLM-13 cell line, 

combination testing resulted in no change in viability from the single agents, however 

this resulted in a CI being calculated that indicated the combination was either highly 

synergistic or highly antagonistic. For example, in the THP-1 cell line with ritonavir 

treatment (Figure 3-9c). These CI appear to result from calculation artefacts, the cause 

of such calculation artefacts is discussed in Section 3.3.2. 

 

 Summary of combination testing 

The combination testing results are summarised in Table 3-6. In summary, evaluation 

of CX-5461 with various metabolism-modifying drugs identified that CX-5461 and 

chloroquine was the most promising combination, with synergy observed in all four 

cell lines tested. Other promising combinations with CX-5461 were orlistat, ritonavir, 

omeprazole and DCA. Calculation artefacts were pronounced in the THP-1 cell line, and 

in some cases the MOLM-13 cell line, highlighting some of the limitations of the 

synergy testing which are further discussed in Section 3.3.2. A schematic summary of 

the results of the in vitro combination testing are shown in Figure 3-19. 

 

3.2.4 Dose-response curves, GI50s and combination testing of 
chloroquine with CX-5461 (additional cell lines) 

The most promising of the drug combinations, CX-5461 and chloroquine, was tested in 

additional human AML cell lines KG-1 and SKM-1, which were selected based on 

increasing the range of genetic characteristics being tested to include non-MLL 

mutants and p53 mutants (Table 3-1). These additional cell lines were tested as above, 

firstly with the drugs as a single agent over a range of concentrations, the total viable 

cell number determined using the MTT assay and the GI50 calculated (Figure 3-17). The 

cell viability of SKM-1 cells was not affected by CX-5461 or chloroquine up to the 

maximum concentration used (as justified in Section 3.1.3). KG-1 cells exhibited 

approximately a 40% decrease in total viable cell number at the maximum chloroquine 

concentration (40M) tested and a GI50 of approximately 600nM with CX-5461. In 

response to CX-5461 treatment, they exhibit a similar dose-response curve to the 

MOLM-13 cells (Figure 3-6), where the viability plateaus out. 
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Non-constant ratio combination testing was then performed, as above, and shown in 

Figure 3-18. In the KG-1 cell line (Figure 3-18a), 3/15 of the combinations of CX-5641 

and chloroquine were synergistic, with the greatest combination effect observed with 

combinations of 500nM and 700nM CX-5461. In the SKM-1 cell line (Figure 3-18b), all 

15 combinations of CX-5461 and chloroquine were synergistic, particularly in 

combination with 40µM chloroquine. These results show that the combination of CX-

5461 and chloroquine is effective in non-MLL mutant and p53 mutant AML cell lines. 

 
Figure 3-17: Dose response curves and GI50s of CX-5461 and chloroquine in additional 
AML cell lines 

AML cell lines a) KG-1 and b) SKM-1 were cultured for 96 h in the presence of the indicated 

drugs at a range of concentrations, up to a maximum concentration for testing. Total 

viable cell number was determined using the MTT assay (Methods Section 2.5.2). The dose 

resulting in a 50% growth inhibition (GI50) values were calculated after fitting a non-linear 

curve to the data points (Methods Section 2.5.5). Graphs show the mean SD of n=3 

experiments. 

 

0 200 400 600 800 1000
0

20

40

60

80

100

120

CX-5461

Concentration (nM)

T
o

ta
l 
v
ia

b
le

 c
e
ll
 n

u
m

b
e
r 

(%
 o

f 
c
o

n
tr

o
l)

0 200 400 600 800 1000
0

20

40

60

80

100

120

Concentration (nM)

T
o

ta
l 
v
ia

b
le

 c
e
ll
 n

u
m

b
e
r 

(%
 o

f 
c
o

n
tr

o
l)

CX-5461

0 10 20 30 40 50
0

20

40

60

80

100

120

Chloroquine

Concentration (µM)

T
o

ta
l 
v
ia

b
le

 c
e
ll
 n

u
m

b
e
r 

(%
 o

f 
c
o

n
tr

o
l)

0 10 20 30 40 50
0

20

40

60

80

100

120

Chloroquine

Concentration (µM)

T
o

ta
l 
v
ia

b
le

 c
e
ll
 n

u
m

b
e
r 

(%
 o

f 
c
o

n
tr

o
l)

b) SKM-1

a) KG-1

GI50>1mM

GI50>1mM

GI50>40mM

GI50>40mM



 82 

 
  

Drugs 
Maximum 
concentration 
tested* 

GI50±SD 

Human 

SKM-1 (No fusion, 
p53 mutant) 

KG-1 (AML1-ETO, 
p53 null) 

CX-5461 (nM) 1000 >1000 ~600 
Chloroquine (μM) 40 >40 >40 

 
Table 3-5: GI50s of CX-5461 and chloroquine in additional AML cell lines 

Data from Figure 3-18. Colour code: No colour = Sensitive (>25% drop in cell viability at 

maximum concentration Light grey = Some sensitivity (10-25% drop in cell viability at 

maximum concentration) Dark grey = Not sensitive (<10% drop in cell viability at 

maximum concentration).* Justified in Section 3.1.3. 
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Figure 3-18: Combination testing of CX-5461 and chloroquine in additional AML cell 
lines. 

AML cell lines a) KG-1 and b) SKM-1 cell lines were cultured for 96 h in the presence of 

CX-5461 or chloroquine (CQ), alone or in combination. Total viable cell number was 

determined using the MTT assay. Graphs show the meanSD of n=3 experiments. In order 

to determine if a combination was synergistic the combination index of each data point 

was calculated using CompuSyn and displayed in the inlayed table (synergism was 

designated as a combination index (CI) value <0.75, shown in green). 
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CX-5461 in 
combination 
with: 

Synergistic combinations (out of 15) 

Cell line 

Human Human Human Mouse Human Human 

MV4-11 
(MLL/AF4, 
p53 WT) 

MOLM-13 
(MLL/AF9, 
p53 WT) 

THP-1 
(MLL/AF9, 
p53 null) 

MLL/AF9 
NRAS 

(p53 WT) 

KG-1 
(AML1-ETO, 

p53 null) 

SKM-1 
(No fusion, 

p53 
mutant) 

Ritonavir 0 9 5* 14 NT NT 

Orlistat 10 11 3* 0 NT NT 
Omeprazole 0 15 5 1 NT NT 

Chloroquine 9 12 3 5 3 15 
DCA 3 6 0 15 NT NT 

Fenofibrate 0 11* 13* 1 NT NT 

Bezafibrate 0 0 14* 0 NT NT 
Rosiglitazone 0 0 3* 0 NT NT 

Table 3-6: Summary of combination testing results 

Data summarised from Figure 3-9 to Figure 3-16 and Figure 3-18. Synergism was defined as a CI 

below 0.75. NT = not tested. * indicates results which are likely calculation artefacts from CI 

analysis. 
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Figure 3-19: Schematic summary of evaluating combinations of metabolism-modifying 
drugs with CX-5461. 

For combination testing, 4 cell lines were used for evaluation, with the exception of CX-

5461 + chloroquine where 6 cell lines were used. 
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3.3 Discussion 

This chapter aimed to test CX-5461 for synergy in combination with 

metabolism-modifying drugs in a panel of AML cell lines. 

 

3.3.1 Dose-response curve analysis 

Dose-response analysis of the drugs as single agents (Table 3-4 and Table 3-5) revealed 

the cell lines varied widely in their sensitivity, however, some patterns emerged. 

 

The mouse-derived MLL/AF9 NRAS showed at least some sensitivity to all the drugs 

tested, and was more sensitive than the human cell lines, suggesting a greater reliance 

on ribosome biogenesis and a range of metabolic pathways compared to the human 

AML cell lines. 

 

In terms of specific biological pathways, targeting ribosome biogenesis with CX-5461 

was the most effective single-agent approach, with 5/6 cell lines showing at least some 

sensitivity up to the maximum concentration of 1µM (as justified in Section 3.1.3), 

which is consistent with the well-established role of ribosome biogenesis in malignant 

transformation and progression 78. Ritonavir was highly effective in reducing cell 

viability, with 4/4 cell lines tested showing at least some sensitivity to the drug as a 

single agent. Confirming ritonavir’s on-target activity as a glucose uptake inhibitor, at 

the concentrations used in these experiments, would be important to support this 

process as a promising therapeutic target. In the MLL/AF9 NRAS and THP-1 cells, this 

may correlate with a dependence on glycolysis as these cells show at least some 

sensitivity to DCA as a single agent. As single agents, orlistat, omeprazole and 

chloroquine were effective in reducing cell viability, as 3/4, 3/4 and 4/6 of the cell lines 

tested, respectively, showed at least some sensitivity to the drugs. Confirming orlistat 

and omeprazole’s on target activity as fatty acid synthesis inhibitors and chloroquine’s 

as an autophagy inhibitor, at concentrations used in these experiments, would be 

important to support these processes as promising therapeutic approaches. MLL/AF9 

NRAS was the only cell line of the four tested to show a reduction in cell viability in 

response to fenofibrate, bezafibrate and rosiglitazone treatment as single agents. 

Confirmation on-target activity of these drugs as cholesterol synthesis inhibitors, at the 
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concentrations used in these experiments, would be important to determine if this 

process is a promising therapeutic approach, as it is possible that full inhibition of this 

pathway was not achieved with the concentrations used. 

 

The mutation status of the cell lines also appears to play a role in the sensitivity of the 

cell lines to the drugs as single agents. In particular, cell lines with wild type p53 status 

were more sensitive to CX-5461 than those with mutant or null p53 status. In order of 

most to least sensitive; MLL/AF9 NRAS (p53 WT), MV4-11 (p53 WT), MOLM-13 (p53 

WT), KG-1 (p53 null), SKM-1 (p53 mutant) and THP-1 (p53 null). This is consistent with 

the reported p53-dependent effects of CX-5461 in AML in Hein et al. 1, (further 

discussed in Section 5.1.1), however, this same study found no correlation between 

p53 status and cell viability (in terms of cell death). The discrepancy between the 

literature and the results in this thesis could be due to the smaller panel of cell lines 

used in this thesis, or to the different methods used to measure viability (i.e. neutral 

red or MTT vs. cell death by propidium iodide exclusion). No other pattern between 

mutation status and drug sensitivity was apparent, given the small panel of cell lines 

utilised. 

 

3.3.2 Combination testing and synergy analysis 

The combination testing was successful in identifying several metabolism-modifying 

therapies that work synergistically with CX-5461 to reduce cell viability of AML cells in 

vitro (Table 3-6), with CX-5461 and chloroquine being the most promising combination 

as synergy was observed for all 6 cell lines tested. This suggests a potential role for 

autophagy in sensitising AML cells to CX-5461 treatment, across a broad range of 

mutations, including p53, MLL fusion and NRAS status (Table 3-1). Targeting fatty acid 

synthesis was also promising as a means to sensitise AML cells to CX-5461, as synergy 

was seen with CX-5461 + orlistat and CX-5461 + omeprazole in multiple cell lines. This 

is consistent with the sensitivity of the cell lines to the fatty acid synthesis inhibitors as 

single agents (Table 3-4). Combination testing results also suggest that reversing the 

glycolytic phenotype with DCA and inhibiting glucose uptake with ritonavir are 

promising strategies when combined with CX-5461 treatment, in addition to being 

promising single-agent approaches (Table 3-4). None of the cholesterol-modifying 

drugs synergised with CX-5461 treatment in any of the cell lines, suggesting that 
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cholesterol metabolism might not play a pro-survival role in the response of AML cells 

to ribosome biogenesis inhibition with CX-5461. 

 

However, several caveats must be considered when interpreting the results of the 

synergy testing. First, the results of the combination testing must be interpreted with 

caution in the context of the targets of the drugs as many established metabolism-

modifying therapies have multiple known targets in healthy tissues as well as cancer. 

For example, omeprazole is known to inhibit fatty acid synthase 152, modulate the 

lysosomal transport pathway 154 and act as an AHR ligand 155. As outlined in Section 

3.1.2.7, some of the metabolism-modifying agents have the potential to modulate 

ribosome biogenesis under certain conditions. This can make biological interpretation 

of the synergy results difficult, unless further mechanistic analysis, including genetic 

approaches and alternative inhibitors, is conducted. For this reason, promising 

combinations from the in vitro testing, that also act synergistically to improve survival 

in vivo (Chapter 4), were subjected to mechanistic analysis to determine how they act 

synergistically together (Chapter 5). A limitation of the studies is that mechanistic 

analysis was not performed to confirm the action of all the drugs utilised in these 

studies as metabolism-modifying agents, nor for their effects on ribosome biogenesis. 

 

In addition, a limited range of drug concentrations can be tested: if the concentration 

of either drug is too high it is difficult to determine if the combination is synergistic as 

the ‘effect’ of the single agents is already close to 1. For this reason, the maximum 

concentrations of the single agents was capped at approximately the GI50. This gives 

the assay a limited dynamic range and some drug combinations of interest might be 

missed if synergism is only observed at higher concentrations. Further in vivo testing of 

any promising drug combinations does not suffer from this same limitation, but has 

different limitations, such as that the maximum drug dosage is dependent on 

tolerability. 

 

Another limitation of the synergy testing is that the algorithms underlying the 

CompuSyn program were unable to calculate a reliable CI where there was not a 

complete dose-response curve of the single drug. There were many instances where a 

dose-response curve was not achieved with the drugs as single agents, particularly in 
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the THP-1 cell line (Figure 3-7), and to a lesser extent in the MOLM-13 cell line (Figure 

3-6). In order to calculate the CI values, the CompuSyn program requires a dose-

response curve of the effects of the drugs as single agents. In the case where a curve 

cannot be fitted across the data points, the curve is predicted, thus likely to be 

inaccurate and will affect the results of the synergy testing. This issue is particularly 

pronounced for the THP-1 cell line, which has no or limited sensitivity to all the drugs 

tested, where many combinations, according to the CI, appear highly antagonistic (e.g. 

CX-5461 + DCA, Figure 3-13c) or synergistic (e.g. CX-5461 + fenofibrate, Figure 3-14c), 

despite the viability curves indicating the combinations have a similar effect on cell 

viability to the single drugs alone. Thus, CI values must be interpreted with caution in 

the case where one or both of the drugs do not produce a dose-dependent curve as a 

single agent. The only drug combination which does appear to have CI values that 

were not affected by calculation artefacts in the THP-1 cell line is CX-5461 + 

chloroquine (Figure 3-12c). 

 

3.3.3 Summary of synergy testing 

In summary, metabolism-modifying drugs ritonavir, orlistat, omeprazole, chloroquine 

and DCA were found to act synergistically with ribosome biogenesis inhibitor CX-5461 

in vitro in multiple AML cell lines. These promising combinations were then taken 

forward for in vivo testing to determine if they synergise to improve the survival of 

tumour bearing mice (Chapter 4). 

  



 90 

Chapter 4 Testing promising 
combination therapies in vivo in 
transplant models of AML 
 

4.1  Introduction 

Testing potential cancer therapeutics in applicable mouse models is important for 

determining the efficacy of compounds in a more complex whole organism setting and 

prioritising the transition of only the most effective compounds to human clinical 

trials. This chapter addresses Aim 2: ‘Test promising combination therapies in in vivo 

syngeneic and xenograft models of AML’.  

 

Metabolism-modifying drugs that were found to act synergistically with CX-5461 to 

reduce AML viability in vitro (Chapter 3) were tested for their efficacy in improving 

survival in vivo in transplant models of AML. Compared to in vitro assays, several 

factors can play important roles in these in vivo pre-clinical mouse models including 

the microenvironment, the type of transplant model and the method of tracking 

disease. Testing potential drug combinations in the context of the tumour 

microenvironment is important, as it modulates cancer cell growth and drug 

resistance. 

 

4.1.1 The leukaemia microenvironment 

The primary tumour microenvironment of leukaemia cells is the bone marrow, and to 

a lesser extent secondary lymphoid organs such as the spleen and lymph nodes. The 

bone marrow niche consists of osteoblasts, osteoclasts, the sympathetic nerve system, 

blood vessels, immune cells such as macrophages, endothelial cells, mesenchymal 

stem cells (MSCs) and haematopoietic stem cells (HSCs) 193. As the location of the 

HSCs, the bone marrow niche regulates the survival, proliferation and differentiation 

of these cells, and is the site of production of all blood cells including erythrocytes, 

monocytes and lymphocytes 194. The bone marrow niche is also thought to be the 

primary reservoir of leukemic stem cells, which possess self-renewing properties like 

HSCs and differentiate into leukemic blasts, such that the bone marrow niche dictates 
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disease progression, drug resistance and relapse through interactions with the 

leukaemia cells 195. 

 

Leukemic blasts hijack this supportive environment to support their own survival and 

proliferation (Figure 4-1). These AML cells reprogram the surrounding cells to their 

advantage, such as reprogramming bone marrow adipocytes to increase lipolysis, 

resulting in the increased transfer of fatty acids from adipocytes to leukemic cells to 

support their metabolic processes 196. One mechanism via which AML cells can signal 

to surrounding cells is through excreted vesicles called exosomes. The plasma of AML 

patients has been reported to be rich in exosomes containing immunosuppressive 

components which interfere with the anti-tumour immune response 197. AML-derived 

 
Figure 4-1: The leukaemia microenvironment 

The bone marrow environment is the main niche of AML cells and includes osteoblasts 

(blue), stromal cells (orange) and immune cells such as T cells (yellow). The AML cell signals 

to the surrounding cells through soluble factors (triangles), vesicles known as exosomes 

(which contain factors such as signalling molecules) and through direct cell-to-cell 

interactions. In response, the stromal cells provide the AML cells with nutrients and growth 

factors, supporting their survival and proliferation. Normal osteoblast function, immune cell 

function and haematopoiesis is also inhibited. In this manner the bone marrow niche 

becomes more favourable to the tumour cells and can also increase their chemotherapy 

resistance. 
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exosomes are able to remodel the bone architecture and stromal cell compartment, 

reducing the activity of osteoblasts and also the ability of the stromal cells to support 

normal haematopoiesis, thus providing a competitive advantage to AML cells 198. 

Soluble factors are also utilised by AML cells to signal to surrounding cells. 

Cytokine-mediated crosstalk between MSCs and AML cells was shown to reduce 

apoptosis and increase the proliferation of primary AML patient cells in an in vitro 

co-culture model 199, which is in agreement with evidence that AML cells increase the 

numbers of fibroblasts, which produce pro-survival cytokines and result in reduced 

chemotherapy sensitivity 200. AML cells have also been found to communicate to 

surrounding cells through direct cell-to-cell contact including through gap-junction 

mediated mechanisms 201 and also via vascular cell adhesion molecule 1 (VCAM-1) and 

very late antigen-4 (VLA-4) signalling, activating nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-κB) pro-survival signalling and leading to 

chemoresistance 202. 

 

While this is a simplistic view of the bone marrow niche that does not take into 

account the vast complexities of such a system 203, it is clear that the bone marrow 

niche plays a significant role in the survival of AML cells and their response to 

chemotherapy, highlighting the importance of evaluating promising combination 

therapies in this context, as it will influence the effects of the drugs on the tumour 

cells. 

 

4.1.2 Types of in vivo transplant models utilised 

Various types of in vivo mouse transplant models have been developed which differ in 

the type of cells which are injected (donor cells) and the location within the recipient 

where the cancer develops. For the studies in this thesis, an established MLL/AF9 NRAS 

mouse AML cell line 32 was injected intravenously (IV) into C57Bl/6 mice, an 

immunocompetent strain. This is a syngeneic (strain and species matched), orthotopic 

(tumours develop in the organ of origin) model. Cell line xenograft models (human cell 

lines injected into immunocompromised mice) were also utilised. For these studies, 

established human AML cell lines were injected into NOD/SCID/gammanull (NSG) mice, 

which lack functional B lymphocytes, T lymphocytes and natural killer cells, thus would 

mount a limited immune response against the human AML cells 204. This method of 
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transplant is well characterised for the human AML cell lines selected for these 

experiments (MV4-11, THP-1 and MOLM-13) 33 205 206 207 208 209. 

A comparison of the observed features of these two types of models is outlined in 

Table 4-2 and the subsequent benefits or limitations of these models discussed in the 

Sections 4.3.3 and 4.3.6. 

Heterotopic tumour models involve the transplant of tumour cells in an organ that is 

not the organ of origin, typically tumour cells are injected subcutaneously into the 

flank of the mouse where the resulting solid tumour can be easily detected and 

measured with calipers. Indeed, such models have been used for in vivo evaluation of 

AML cell lines including MV4-11 210-212, MOLM-13 206,213,214 and THP-1 215,216. However, 

the flank of the mouse is far removed from the natural microenvironment for 

leukaemia, thus only orthotopic AML models were chosen to test the efficacy of the 

promising combinations identified in Chapter 3. To facilitate the monitoring of the 

engraftment and development of leukaemia, live animal imaging with luciferase-

tagged cells was employed. 

 

4.1.3 Live animal imaging with luciferase tagged tumours 

As orthotopic models of AML do not provide simple visualisation of the tumours, an 

alternative method of measuring disease progression was required. Orthotopic AML 

models do not normally feature high numbers of circulating leukaemia cells until close 

to the ethical endpoint, in the case of the THP-1 xenograft model there is very little 

circulating disease even at ethical endpoint 207, thus the number of leukaemia cells in 

the blood is not a robust early measure of tumour burden in these particular models. 

Live animal imaging of luciferase tagged leukaemia cell lines was used as the measure 

of tumour burden to overcome this issue (Methods section 2.6). Specifically, the 

leukaemia cell lines must be tagged with the luciferase enzyme. A few days following 

IV injection of the leukaemia cells, the mice are injected with the luciferin substrate, 

anaesthetised and imaged with IVIS Spectrum, a specialised imaging machine for 

measuring bioluminescence and fluorescence in live rodents. The luciferase enzyme in 

the AML cells converts luciferin to oxyluciferin and energy is released in the form of 

bioluminescence 217 which is detected by the camera in the IVIS Spectrum. This 

technique provides a non-invasive method of confirming engraftment and tracking 
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disease progression in the same mice over time, and also allows the tumour burden in 

different areas of the mouse to be visualised 217. The MLL/AF9 NRAS cell line is a 

well-established mouse AML cell line which expresses the luciferase enzyme 32, 

whereas the human AML cell lines used in the in vitro screening in the previous 

chapter were transduced to express the luciferase enzyme, as part of this thesis 

project (Methods Section 2.9). 
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4.2  Results 

 

4.2.1 Tolerability testing of metabolism drugs +/- CX-5461 in 
non-tumour bearing mice 

In order to determine a tolerable dose of the metabolism drugs for in vivo experiments 

testing was performed in healthy, non-cancer bearing mice of the relevant background 

strain (C57BL/6). The tolerability of CX-5461 had already been established by our lab, 

being a standard dosing schedule of 30-35mg/kg dosed 3 times per week by oral 

gavage, with a vehicle of 50mM NaH2PO4 1. In these studies, weight is measured 

regularly as weight loss is used as a sign of drug toxicity, and general health is also 

monitored (Methods Section 2.6.1). The maximum tolerated dose (MTD) is defined as 

the dose which causes a maximum weight loss of 10% from which the mice recover 

within a week. Once the MTD or tolerable range of the metabolism drug was 

established, combination tolerability testing with CX-5461 was commenced. 

 

 Tolerability of orlistat 

The published method of orlistat administration in vivo is through extraction from 

commercially-available Xenical capsules, then dosing at 240mg/kg/day injected IP, as 

15µL/10g body weight 160. Orlistat solubility required a high percentage of ethanol 

(33%), thus the vehicle was also tested. Mice were treated with orlistat at the 

published dosing schedule for 3 weeks, weighed daily, and a vehicle only group 

included. Figure 4-2 shows that all mice in the vehicle only group maintained their 

weight over a 3 week period of dosing, and at the final weigh-in 1 week after dosing 

was completed, indicating the vehicle was tolerated. In the orlistat treated group two 

of the mice tracked with the vehicle only mice, however one mouse lost approximately 

5% body weight during dosing which then stabilised at this level for the remainder of 

the dosing period. It was determined that 240mg/kg was a tolerable dose, which is 

consistent with the literature 119. Combination tolerability testing with CX-5461 was 

not performed with orlistat due to the favourable toxicity results of orlistat as a single 

agent. 
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Figure 4-2: Tolerability of metabolism-modifying drugs as single agents in non-tumour 
bearing mice 

Non-tumour bearing C57Bl/6 mice were weighed and dosed with the indicated drug 

regimes daily for 21 days, followed by monitoring only for 1 week. If no weight change 

was observed after 2 weeks of dosing, the dose was increased and continued for a 

further 1-2 weeks. Weight change is shown, as a percentage of the initial 

weight. -10%, -15% and -20% weight changes are indicated by dotted lines, as >10% 

weight loss is a sign of drug toxicity and >20% weight loss requires euthanasia, according 

to ethical requirements. N=3 mice/dosing regime. 
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 Tolerability of chloroquine +/- CX-5461 

Tolerability testing of chloroquine was commenced at 50mg/kg dosed daily by oral 

gavage. As the vehicle was phosphate-buffered saline (PBS), a vehicle only group was 

not included. Figure 4-2 shows that the mice maintained their weight after 1 week of 

treatment with 50mg/kg chloroquine, thus a separate group with 100mg/kg was 

started. After 2 weeks of dosing the 50mg/kg treated group were still maintaining 

 
 
Figure 4-3: Tolerability of CX-5461 + DCA or chloroquine in non-tumour bearing mice 

Non-tumour bearing C57Bl/6 mice were weighed and dosed with the indicated drug 

regimes daily for 14-21 days, followed by monitoring only for 1 week. Grey areas indicate 

dosing days. Weights are graphed for each individual mouse as weight change, a 

percentage of the initial weight. -10%, -15% and -20% weight changes are indicated by 

dotted lines, as >10% weight loss is a sign of drug toxicity and >20% weight loss requires 

euthanasia, according to ethical requirements. N=2-3 mice/dosing regime. 
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weight so their dosing was increased to 200mg/kg for a further 2 weeks during which 

no toxicity was observed. The 100mg/kg treated group were still maintaining weight 

after 2 weeks of dosing and as such, dosing was increased to 400mg/kg daily. After 3 

doses the mice rapidly lost weight and the experiment was terminated. Autopsies 

revealed the mice had bloated stomachs and intestines, and pale organs suggesting 

anaemia. From these single-agent studies, it was determined that 50, 100 and 

200mg/kg of chloroquine were tolerable daily dosing schedules in healthy C57Bl/6 

mice, while 400mg/kg was not. These results are consistent with the published 

literature, where daily doses of 50-100mg/kg/day chloroquine have been used as a 

single agent in various cancer models without significant toxicity 218-220, and the oral 

50% lethal dose (LD50) of chloroquine in mice is reported to be 500mg/kg 221. 

 

Based on these studies combination tolerability testing of CX-5461 with chloroquine 

was performed. Typically when testing combination therapies, a lower dose than the 

MTD is trialled. Thus, dosing of 80 or 100mg/kg chloroquine was performed daily 

Monday to Friday (reduced from 7 days a week) with 35mg/kg CX-5461 (Monday, 

Wednesday and Friday). As chloroquine is soluble in water-based vehicles, for these 

experiments it was dissolved in 50mM NaH2PO4, as is CX-5461. Figure 4-3 shows that 

35mg/kg CX-5461 in combination with 80 or 100mg/kg chloroquine was not tolerated, 

as the mice rapidly lost weight from day 8 of dosing onwards. A lower dose of CX-5461 

(30mg/kg) with 80mg/kg chloroquine was potentially intolerable as one mouse 

maintained weight, while the other lost almost 20% of its weight and required 

euthanasia after 2 weeks of dosing, whereas 30mg/kg CX-5461 and 50mg/kg 

chloroquine was found to be tolerable, with weight loss of less than 5% throughout the 

experiment. 

 

 Tolerability of DCA + CX-5461 

Previous work in our laboratory established the in vivo toxicity of DCA as a single agent 

based on dosing through drinking water, estimated to be equivalent to 200mg/kg/day. 

As DCA is soluble in water-based vehicles, for these experiments it was dissolved in 

50mM NaH2PO4, as is CX-5461. Dosing was commenced at 200mg/kg/day DCA with 

35mg/kg CX-5461 (Monday, Wednesday and Friday) by oral gavage. Figure 4-3 shows 

that the mice maintained weight over the two-week schedule (with a maximum weight 
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loss of 5% after 13 days) and over the following 2 weeks after dosing, thus this dosing 

schedule was determined to be tolerable. The MTD was not reached, thus higher 

doses of both drugs could potentially be used. 

 

 Tolerability of omeprazole 

Omeprazole dosing was tested at 100 or 125 mg/kg/day by oral gavage, dissolved in 

7.5% ethanol in PBS 155,222 (Figure 4-2). After 2 weeks toxicity was not observed thus 

the dose was increased to 200 or 400 mg/kg/day respectively for a further 2 weeks, 

with no observable toxicity. Thus omeprazole at 400mg/kg/day is a tolerable dosing 

schedule in healthy C57BL/6 mice. This is consistent with the published literature, 

where doses of 75-100mg/kg/day of omeprazole have been used in various cancer 

models as a single agent without significant toxicity 155,222 and the oral LD50 in mice has 

been reported to be in excess of 4g/kg 223. Combination tolerability testing of CX-5461 

and omeprazole was not completed due to time constraints, and thus not followed up 

for testing in tumour models. 

 

 Tolerability of ritonavir 

Ritonavir dosing was tested at 50 or 60 mg/kg/day by oral gavage, dissolved in 7.5% 

ethanol in PBS 159,224,225 (Figure 4-2). After 2 weeks toxicity was not observed thus the 

dose was increased to 200 or 400 mg/kg/day respectively for a further 2 weeks, with 

no observable toxicity. Thus ritonavir at 400mg/kg/day is a tolerable dosing schedule 

in healthy C57BL/6 mice. This is consistent with the published literature, where doses 

of 30-50mg/kg/day of ritonavir have been used in various cancer models as a single or 

combination agent without significant toxicity 159,224,225, and the oral LD50 in mice is 

reported to be in excess of 2.5g/kg 226. Combination tolerability testing of CX-5461 and 

ritonavir was not completed due to time constraints, and thus not followed up for 

testing in tumour models. 

 

 Summary 

In summary, tolerable doses of orlistat, chloroquine, omeprazole and ritonavir as 

single agents in healthy C57BL/6 mice were determined, in addition to tolerable 

combination dosing with CX-5461 and DCA, and CX-5461 and chloroquine. Results of 

the MTD testing are summarised in Table 4-1. 
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4.2.2 Treatment of MLL/AF9 NRAS in vivo 

The MLL/AF9 NRAS syngeneic mouse model is a well-established model in our 

laboratory 1. Specifically, 5 x 105 MLL/AF9 NRAS cells were injected into recipient 

C57Bl/6 mice and engraftment confirmed 7 days post-transplant by bioluminescent 

imaging, as previously established. The mice were then randomised into groups and 

treatment commenced, at a regime informed by the previous tolerability testing 

(Figure 4-2 and Figure 4-3). ‘Survival’ was defined as the time taken post-transplant 

until the mice reached an ethical endpoint and required euthanasia due to symptoms 

Drug/s Vehicle Method of 
administration 

Tolerable 
doses 

Intolerable 
doses 

Maximum 
tolerated 
dose (if 
achieved) 

Orlistat 33% 
ethanol, 
66% PEG 
400 

15µL/10g 
injected IP, 
daily 

240mg/kg - - 

Omeprazole 7.5% 
ethanol in 
PBS 

100µL/10g by 
oral gavage, 
daily 

100, 125, 
200, 
400mg/kg 

- - 

Ritonavir 7.5% 
ethanol in 
PBS 

100µL/10g by 
oral gavage, 
daily 

50, 60, 200, 
400mg/kg 

- - 

Chloroquine PBS 100µL/10g by 
oral gavage, 
daily 

80, 100, 
200mg/kg 

400mg/kg >200mg/kg, 
<400mg/kg 

CX-5461 + 
DCA 

50mM 
NaH2PO4 

100µL/10g by 
oral gavage, 
daily (DCA), 
M,W,F (CX-
5461) 

35mg/kg 
CX-5461 + 
200mg/kg 
DCA 

- - 

CX-5461 + 
chloroquine 

50mM 
NaH2PO4 

100µL/10g by 
oral gavage, 
daily M-F 
(chloroquine), 
M,W,F (CX-
5461) 

30mg/kg 
CX-5461 + 
50mg/kg 
chloroquine  

35mg/kg 
CX-5461 + 
100mg/kg 
chloroquine, 
35mg/kg 
CX-5461 + 
80mg/kg 
chloroquine 

~30mg/kg 
CX-5461 + 
80mg/kg 
chloroquine 

 
Table 4-1: Summary of drug tolerability studies in non-tumour bearing mice 

Data from Figure 4-2 and Figure 4-3. 
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such as weight loss, reluctance to move and hunching. Median survival times and 

subsequent statistical analysis of survival times are shown in Appendix Tables 4-1 and 

4-2. 

 

 CX-5461 + orlistat 

Orlistat treatment did not alter survival compared to the vehicle-treated mice (median 

survival of 17 days post-transplant for both groups) (Figure 4-4a), whereas CX-5461 

treatment alone significantly improved survival compared to the vehicle and orlistat 

groups, (median survival of 29 days). The combination of CX-5461 and orlistat had a 

significantly worse outcome on survival than CX-5461 alone (median survival of 25 

days). 

 

This antagonistic effect was also reflected in the spleen weights (Figure 4-4b. Disease-

induced splenomegaly was not altered with orlistat treatment, whereas CX-5461 

treatment prevented spleen enlargement and the drug combination resulted in an 

intermediate spleen weight. 

 

Figure 4-4c illustrates a difference in patterning of the bioluminescence between the 

groups. For example, at 14 days post-transplant the bioluminescent signal in the 

vehicle and orlistat treated groups had spread throughout the body, with a higher 

concentration in the midsection. In comparison, the CX-5461 and combination-treated 

mice had no visible bioluminescent signal in the midsection and reduced levels in the 

head and pelvic regions. At day 21 post-transplant, the CX-5461 and combination-

treated groups still had minimal bioluminescent signal in the mid-section, whereas the 

disease had progressed in the head and pelvic areas, more in the combination-treated 

group. At day 28 post-transplant the bioluminescent signal in the head and pelvic areas 

had increased the remaining three mice of the CX-5461 only group, which were the 

only mice remaining of all four treatment regimes. Quantification of the 

bioluminescent imaging revealed that the orlistat-treated mice had significantly 

elevated total body bioluminescence (BLI) at 14 days post-transplant compared to the 

vehicle-treated groups, while the CX-5461 and combination-treated groups had a 

significantly lower BLI (Figure 4-4d). 
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The weights of the mice remained stable in all the treatment groups for the duration 

of the experiment, indicating the dosing regime was tolerable in tumour-bearing mice 

(Appendix Figure 4-1). 

 

 

Figure 4-4: Combination therapy of CX-5461 and orlistat does not improve survival in 

vivo in a syngeneic transplant model of MLL/AF9 NRAS AML 

Mice were transplanted with MLL/AF9 NRAS cells via the tail vein, imaged by 

bioluminescence to confirm engraftment at day 7 and therapy initiated. Mice were 

dosed with vehicle (50mM NaH2PO4), 240mg/kg orlistat daily, 35mg/kg CX-5461 

Monday, Wednesday, Friday, or the combination, until they reached an ethical 

endpoint. N= 5 mice/treatment group. A) Kaplan-Meier survival curves. Log-rank test 

with Bonferroni corrected threshold was applied for comparison of multiple survival 

curves, such that a P value of <0.0083 was considered significant. Key comparisons: * = 

significant compared to vehicle, # = significant compared to CX-5461. The grey area 

indicates the dosing period. B) Spleen weight at ethical endpoint. Mean weight ± SD 

shown. One-way ANOVA was performed with a Tukey’s multiple comparison test, the 

adjusted p-value is shown. NS P > 0.05, *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, **** P ≤ 

0.0001. Compared to vehicle, unless indicated by a bar. C) Bioluminescent images. 

Imaging was performed weekly from 7 days post-transplant. The day 7 images are 

shown on a lower image colour scale to the subsequent weeks images, in order to 

show that engraftment has occurred. D) The total bioluminescence (BLI) of each 

mouse was quantified from the images. Mean BLI ± SD shown One-way ANOVA was 

performed with a Tukey’s multiple comparison test, the adjusted p-value is shown. 

Compared to vehicle, unless indicated by a bar. 
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MLL/AF9 NRAS: CX-5461 + orlistat 
C) 
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 CX-5461 + DCA 

Similarly to orlistat, DCA treatment alone did not alter survival compared to vehicle 

treatment (Figure 4-5a). Furthermore, DCA did not confer a survival advantage over 

30mg/kg CX-5461 treatment alone (20 days) or combination treatment (19.5 days). 

Note that as CX-5461 was administered at a lower dose in this experiment (30mg/kg, 

down from 35mg/kg) compared to the CX-5461 + orlistat experiment, (Figure 4-4) the 

survival advantage with CX-5461 treatment reduced from 12 to 5 extra days compared 

to the vehicle. This lower dose of CX-5461 was used to allow any effective 

combinations to be more apparent and reduce potential dosing side effects 

considering the extra burden that the tumour cells place on the mice, compared to the 

healthy mice used in the tolerability studies. 

 

The DCA treated mice had significantly smaller spleens at endpoint than the vehicle-

treated mice, (approximately 20% reduction, Figure 4-5b), and while there was no 

survival advantage, this indicates that DCA as a single agent was able to impact tumour 

burden in vivo, consistent with in vitro results (Figure 3-8). Both CX-5461 and the 

combination-treated mice had spleens that were the same weight as those of a non-

tumour bearing mouse. 

 

As with the previous experiment, the bioluminescent imaging shows that by day 14 

post-transplant the disease in the vehicle and the DCA treated mice had spread 

throughout the body, concentrating particularly in the mid-section (Appendix Figure 4-

2). However, in line with the spleen weights being significantly lower in the DCA 

treated mice, the disease levels in the mid-section were marginally lower compared to 

the vehicle. Figure 4-5c shows that at day 14 post-transplant the BLI of the vehicle and 

DCA treated mice did not differ, whereas the CX-5461 and combination-treated mice 

had significantly lower BLI than the vehicle and DCA treated mice. There was no 

significant difference between the BLI of the CX-5461 and combination-treated groups. 

There were not enough mice remaining at day 21 to perform robust statistical analysis 

comparing the BLI of the CX-5461 and combination-treated groups at this timepoint. 
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The majority of the mice maintained their weight for the duration of the experiment, 

with the exception of one mouse in the combination-treated group, indicating the 

dosing regimes were tolerable in tumour-bearing mice (Appendix Figure 4-3). 

 

Figure 4-5: Combination therapy with CX-5461 and DCA does not improve survival in 

vivo in a syngeneic transplant model of MLL/AF9 NRAS AML 

Mice were transplanted with MLL/AF9 NRAS cells via the tail vein, imaged by 

bioluminescence to confirm engraftment at day 7 and therapy initiated. Mice were 

dosed with vehicle (50mM NaH2PO4), 200mg/kg DCA daily Monday-Friday, 30mg/kg CX-

5461 Monday, Wednesday, Friday, or the combination, until reaching an ethical 

endpoint. N=8 mice/ treatment group. A) Kaplan-Meier survival curves. Log-rank test 

with Bonferroni corrected threshold was applied for comparison of multiple survival 

curves, such that a P value of <0.0083 was considered significant. Key comparisons: * = 

significant compared to vehicle. The grey area indicates the dosing period. B) Spleen 

weight at ethical endpoint. Mean weight ± SD shown. One-way ANOVA was performed 

with a Tukey’s multiple comparison test, the adjusted p-value is shown. NS P > 0.05, *P ≤ 

0.05, **P ≤ 0.01, ***P ≤ 0.001, **** P ≤ 0.0001. Compared to vehicle, unless indicated by 

a bar. C) The total bioluminescence (BLI) of each mouse was quantified from the 

bioluminescent images (Appendix Figure 4-2). Mean BLI ± SD shown One-way ANOVA 

was performed with a Tukey’s multiple comparison test, the adjusted p-value is shown. 

Compared to vehicle, unless indicated by a bar. 
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 CX-5461 + chloroquine 

A dosing regime of 30mg/kg CX-5461 and 80mg/kg chloroquine was chosen in order to 

use the maximal concentrations of the drugs in the mice, however this was lowered to 

50mg/kg chloroquine when slight weight loss was observed by day 19. Figure 4-6a 

shows that chloroquine treatment alone did not alter survival compared to the vehicle-

treated mice (15 days compared to 14 days respectively). CX-5461 only treatment 

resulted in a 5 day survival advantage compared to the vehicle-treated mice (20 days) 

and the combination-treated mice extended this to 23 days post-transplant, a 

statistically significant 3 day survival advantage compared to the CX-5461 only group. 

 

The spleen weights of the vehicle and chloroquine treated groups were not 

significantly different at endpoint, neither were the CX-5461 and combination-treated 

groups (Figure 4-6b). Both the CX-5461 and combination-treated groups had spleens 

that were the same weight as a non-tumour bearing mouse and significantly smaller 

than both the vehicle and chloroquine groups. 

 

The bioluminescent imaging was comparable to the previous experiments, specifically 

by day 14 post-transplant the vehicle-treated mice had disease spread throughout the 

body but concentrated in the particularly in the mid-section, while the CX-5461 treated 

mice show no disease in the mid-section and minimal disease in the head (Appendix 

Figure 4-4). The bioluminescent patterning of the chloroquine treated group was 

similar to the vehicle group, whereas the combination-treated group was comparable 

to the CX-5461 group. This is consistent with the total BLI quantification (Figure 4-6c) 

with high BLI in the vehicle and chloroquine groups, and significantly lower BLI in the 

CX-5461 and combination-treated groups. 

 

The weight changes (Figure 4-6d) demonstrate that the vehicle, chloroquine and CX-

5461 as single-agent dosing regimes were tolerable, with the exception of one mouse 

in the CX-5461-treated group which lost more than 10% body weight at day 20. 

However, more than half of the combination-treated mice had lost 10% of their body 

weight by day 20 post-transplant. In response to this, the dose of chloroquine was 

dropped from 80 to 50mg/kg in an attempt to avoid further weight loss, however five 

of the mice continued to decline in weight and reached 20% weight loss, thus required 
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euthanasia. This pronounced weight loss indicates that the initial combination dosing 

regime used in this experiment was not well tolerated in tumour-bearing mice, thus a 

dosing regime of 50mg/kg chloroquine in combination with 30mg/kg CX-5461 from the 

beginning of dosing would be preferable. 

 

Interestingly, one of the toxic effects of combining CX-5461 and chloroquine was 

anaemia. Figure 4-6e illustrates the red cell parameters from a full blood count 

analysis of cardiac blood collected at the experiment ethical endpoint, with normal 

reference ranges for comparison. While the total number of red blood cells was in the 

normal range for the vehicle and CX-5461-treated mice, these were slightly elevated 

for the chloroquine treated mice and approximately half the lower limit of the normal 

range in the combination-treated mice, indicating anaemia. The same trend was 

observed for haemoglobin levels and the hematocrit. The mean corpuscular volume 

(MCV), or the average size of the red blood cells, followed the same trend as the 

number of red blood cells. Together these parameters suggest that the dosing regime 

of CX-5461 with chloroquine used in this experiment resulted in pronounced anaemia, 

which may explain the weight loss (Figure 4-6d). Although, it should be noted that the 

blood samples were not collected at the same timepoint post-transplant, and as such, 

there is a possibility that the additional time that the combination-treated mice were 

bearing the tumour cells contributed to the anaemia, in addition to the drugs 

administered. 

 

In conclusion, of the 3 combination therapies tested, the combination of CX-5461 and 

chloroquine was the only one that improved survival in the MLL/AF9 NRAS model 

compared to CX-5461 treatment alone. The synergy is clear, as chloroquine alone had 

no impact on survival compared to the vehicle-treated mice. However, profound 

weight loss and anaemia in the combination-treated group indicated that the 

treatment regime was not tolerated and requires optimising for future experiments. 
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Figure 4-6: Combination therapy with CX-5461 and chloroquine significantly improves 

survival in vivo in a syngeneic transplant model of MLL/AF9 NRAS AML 

Mice were transplanted with MLL/AF9 NRAS cells via the tail vein, imaged by 

bioluminescence to confirm engraftment at day 7 and therapy initiated. Mice were dosed 

with vehicle (50mM NaH2PO4), 80mg/kg chloroquine (CQ) daily Monday-Friday (dropped 

to 50mg/kg as of day 19), 30mg/kg CX-5461 Monday, Wednesday, Friday, or the 

combination, until reaching an ethical endpoint. N=8 mice/ treatment group. A) Kaplan-

Meier survival curves. Log-rank test with Bonferroni corrected threshold was applied for 

comparison of multiple survival curves, such that a P value of <0.0083 was considered 

significant. Key comparisons: * = significant compared to vehicle, # = significant 

compared to CX-5461.The grey area indicates the dosing period. B) Spleen weight at 

ethical endpoint. Mean weight ± SD shown. One-way ANOVA was performed with a 

Tukey’s multiple comparison test, the adjusted p-value is shown. NS P > 0.05, *P ≤ 0.05, 

**P ≤ 0.01, ***P ≤ 0.001, **** P ≤ 0.0001. Compared to vehicle, unless indicated by a 

bar. C) The total bioluminescence (BLI) of each mouse was quantified from the 

bioluminescent images (Appendix Figure 4-4). Mean BLI ± SD shown One-way ANOVA 

was performed with a Tukey’s multiple comparison test, the adjusted p-value is shown. 

Compared to vehicle, unless indicated by a bar. D) The weights of the mice were 

monitored daily during the dosing period and the weight changes as % of initial weight 

shown. Grey = dosing days. E) Full blood count analysis at ethical endpoint. Red blood cell 

count, haemoglobin levels, haematocrit and mean corpuscular volume (MCV) are shown. 

Grey areas indicate the average and reference ranges based off Charles River guidelines 

for C57Bl/6 females North American Colonies (January 2008 – December 2012). N=2-

5/group. 
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MLL/AF9 NRAS: CX-5461 + chloroquine 
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4.2.3 Creation of GFP-luc tagged human AML cell lines and 
characterising the disease model in vivo in NSG mice 

The synergism of CX-5461 and chloroquine was also tested in human cell line 

xenografts. In order to track the human leukaemia cell lines both in vivo by live-animal 

bioluminescent imaging and potentially ex vivo through flow cytometry, the cell lines 

were tagged with GFP and luciferase (described in Methods Section 2.9). In brief, 

retroviral particles containing the MSCV-GFP-luc2 construct were used to transduce 

the MV4-11, THP-1 and MOLM-13 human leukaemia cell lines through retroviral spin 

infection. The transduced cells were then identified by GFP positivity and cell sorted 

(results not shown), and the resulting cells named ‘(cell line) GFP luc’. 

 

In order to characterise the disease produced by these cells in vivo, a small cohort of 

immunocompromised NSG mice (which lack functional B, T and natural killer (NK) cells) 

were injected with 2 x 106 cells IV via the tail vein. For the THP-1 cells, the day before 

injection the mice were irradiated with 1Gy single dose (sub-lethal dose) in order to 

facilitate the engraftment of the leukaemia cells by disrupting the complex host bone 

marrow environment227 (irradiation has been shown to result in various changes to the 

bone marrow environment including cytokine release,228 229 and lymphodepletion in 

immunocompetent models 230). The other cell lines were injected without irradiation 

of the host mice. Health monitoring was performed daily and bioluminescent imaging 

was performed every 2 days (MOLM-13 GFP luc) or weekly ( THP-1 and MV4-11 GFP 

luc) to track the progression of the disease. This continued until an ethical endpoint 

was reached. The features of each of the xenograft models are summarised in Table 

4-2 and compared to those of the MLL/AF9 NRAS syngeneic model. 

 

Figure 4-7a shows the overall survival of the three models. The MOLM-13 GFP luc cells 

produced the most aggressive disease, with a median survival of 14 days post-

transplant, followed by the MV4-11 GFP luc cells at 22 days post-transplant. 

Interestingly, the MV4-11 GFP luc cells generated a more aggressive disease than that 

published in the literature, 36 days survival post-transplant for the same number of 

cell injected 33, which may be explained by genetic drift in either the MV4-11 GFP luc 

cell line or in the NSG mouse colony, or by selection of more aggressive clones during 

the transduction process. With the exception of one mouse which became unwell at 
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44 days post-transplant, the mice in the THP-1 GFP luc group remained well at 52 days 

post-transplant and the experiment was concluded, thus a true survival time was not 

established. 

 

Bioluminescent imaging (Figure 4-7c ) in the MOLM-13 GFP luc model indicated 

engraftment was faintly visible at day 3 post-transplant, and was well established at 

day 5 post-transplant, indicating that day 4 post-transplant would be an ideal 

timepoint to confirm engraftment and begin drug treatment. Over the next week of 

imaging, the bioluminescent signal in the upper body and hind limbs increased rapidly, 

appearing to disseminate more broadly by day 14. Since the literature reported that 

hind limb paralysis is a predominant feature of this model the prone (back) position 

was also imaged. Bioluminescent signals across and either side of the spine, indicating 

peripheral organ involvement, were visible from day 7 onwards, as well as in the skull, 

which is consistent with the literature 206. The average total BLI of the mice increased 

rapidly over the 14 day period, to a level higher than that observed in the THP-1 or 

MV4-11 GFP luc groups at day 7 and day 14 post-transplant (Figure 4-7d). In the 

MV4-11 GFP luc model, engraftment was visible in the hind limbs at 7 days 

post-transplant, increasing in intensity at 14 and 21 days post-transplant and spread to 

the midsection and front limbs. In the THP-1 GFP luc model bioluminescence was first 

detected in the pelvic region at 7 days post-transplant, spreading to more distal 

regions at day 14, and continuing to increase predominately in the pelvic and 

midsection regions over the next 3 weeks. The BLI was similar to the MV4-11 GFP luc 

group at day 7 and 14 post-transplant (but significantly less than the MOLM-13 GFP 

luc), however, it surpassed the maximum average BLI of the MOLM-13 GFP luc group 

(at day 14) when the mice reached day 28 post-transplant. 

 

The spleens of the MOLM-13 GFP luc and MV4-11 GFP luc-bearing mice were 

significantly enlarged to approximately four times the normal weight (Figure 4-7b), 

consistent with the literature 33. Splenomegaly was not observed in the THP-1 GFP luc 

model. The literature reports that the spleens of THP-1 bearing mice were 2-3 times 

normal size 208, however, these published experiments were conducted at 10 weeks 

post-transplant, it is possible that the spleens of the mice in this study may have been 
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larger if the experiment was continued for a further 3 weeks. What is clear from these 

results is that spleen enlargement is not an early occurrence in this model. 

 

 

 

Figure 4-7: Characterisation of human AML cell line xenograft models 

Mice were transplanted with 2 x 106 human AML cell line cells in the tail vein (following 1 

Gy single dose irradiation for the THP-1 GFP luc cells), Methods Section 2.6.2.2. General 

health was monitored daily and the mice were euthanised once an ethical endpoint was 

reached. N=5 for MV4-11 GFP luc, N= 6 for THP-1 GFP luc, N=3-4 mice/imaging day for 

MOLM-13 GFP luc. A) Kaplan Meier survival curves. B) Spleen weight at ethical endpoint, 

mean ± SD. The fold change from a normal NSG spleen shown. C) Bioluminescent imaging. 

Due to ethical requirements regarding the frequency of imaging, a cohort of mice was 

injected with the MOLM-13 GFP luc cells then divided into 3 groups which were imaged 

on different days. Due to hind limb paralysis observed in a pilot study, these mice were 

imaged both supine (face up) and prone (face down), in order to visualise the spine. 

Different image colour scales are used between and within the different cell lines. D) 

Quantification of total bioluminescence (BLI), prone measurements not included for 

MOLM-13 GFP luc. Not significant (NS) P > 0.05, *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, **** 

P ≤ 0.0001. E) Weight changes as % initial weight. F) Images of enlarged organs at autopsy 

i) Liver of a THP-1 GFP luc injected mouse at 52 days post-transplant ii) Left (L) and right 

(R) ovaries of a MV4-11 GFP luc injected mouse at 22 days post-transplant, compared to 

the ovary of a non-tumour bearing NSG mouse of a similar age and weight iii) Ovaries and 

fallopian tubes of a MV4-11 GFP luc injected mouse at 22 days post-transplant. 
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Characterisation of human cell line xenograft models 
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Characterisation of human cell line xenograft models 
 
C) 
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Characterisation of human cell line xenograft models 
D)  
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Characterisation of human cell line xenograft models 
 
F) 
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The predominant features at endpoint varied between the three models. The 

dominant feature of the MOLM-13 GFP luc model was hind limb paralysis, which likely 

contributed to the rapid weight loss of 10-20% body weight over 1-2 days (Figure 4-7e) 

for which the mice required euthanasia. The development of hind limb paralysis is 

consistent with the reported literature 206, likely due to infiltration of cancer cells in 

the central nervous system and cord compression, as observed by a high 

bioluminescent signal around the spine (Figure 4-7b). All of the mice also had enlarged 

ovaries on one or both sides (consistent with the strong bioluminescent signal 

observed just below the midsection in the imaging, and sporadic lymph node 

enlargement, which are both reported features of this model 206,231. In the MV4-11 GFP 

luc model hind limb paralysis at the ethical endpoint was occasionally observed, which 

is a reported feature of the model 205 and explains the rapid weight loss at day 22 

(Figure 4-7e), as was ovary enlargement on one or both sides, which has not previously 

been reported. Interestingly, in the THP-1 GFP luc models the livers were massively 

enlarged due to the presence of numerous solid tumours (Figure 4-7f), explaining the 

strong bioluminescent signal from this area during imaging (Figure 4-7c), and the 

weights of the mice increasing during the course of the experiment, with two mice 

reaching more than 10% weight gain by day 52 (Figure 4-7e). The enlargement of the 

liver is a previously reported feature of this model207. Other features of this model 

included lymph node enlargement and tumours behind the eyes and under the skin, 

which have not previously been reported. Due to the irregularities of this model 

compared to other established AML transplant models, the THP-1 GFP luc model was 

not selected for further survival experiments. 

 

The predominant features of the four different orthotopic AML used in this thesis are 

summarised in Table 4-2. A comparison of the features of these AML transplant 

models to those of human AML patients is discussed in Section 4.3.3. 
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4.2.4 Treatment of human cell line xenografts 

As the most promising drug combination in the MLL/AF9 NRAS model, CX-5461 + 

chloroquine was tested in human cell line xenograft survival experiments using the 

MOLM-13 GFP luc and MV4-11 GFP luc models (Methods Section 2.6.2.2). Using the 

conditions previously established in the model characterisation experiments (Figure 

4-7) NSG mice were injected with 2 x 106 cells IV in the tail vein, then imaged at day 4 

Disease 
characteristics 

Orthotopic AML Transplant Models 
MLL/AF9 
NRAS 

MV4-11 THP-1 MOLM-13 

Syngeneic/xenograft Syngeneic Xenograft Xenograft Xenograft 
Mouse strain C57Bl/6 

(immune 
competent) 

NSG (immune 
deficient) 

NSG (immune 
deficient) 

NSG 
(immune 
deficient) 

Ethical endpoint 
reached (days post-
transplant) 

14 21 N/A 
(experiment 
terminated at 
52 days) 

14 

Spleen enlargement Yes Yes Subtle Yes 

Ovary enlargement No Yes, 
occasionally. 

No Yes, 
common. 

Lymph node 
enlargement 

No Yes, 
occasionally. 

Yes Yes 

Weight loss at 
endpoint 

No Yes. <10% of 
initial weight. 

No Yes. >10% of 
initial weight. 

Hind limb paralysis 
at endpoint 

No Yes, ~25% of 
mice. 

No Yes, all. 

Other features Enlarged liver.  Numerous 
solid tumours 
on liver. 
Tumours 
behind eyes 
and under the 
skin, 
occasionally. 

 

 
Table 4-2: Comparison of disease characteristics of orthotopic AML models 

Characteristics of each of the orthotopic AML transplant models were summarised from 

trial experiments to determine engraftment and survival time, and from vehicle-only 

treated mice from drug treatment experiments. NSG = NOD-Scid-gamma. 
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(MOLM-13 GFP luc cells) or day 7 (MV4-11 GFP luc cells) post-transplant to confirm 

tumour cell engraftment, randomised into treatment groups and dosing commenced. 

A modified dosing regime of 30mg/kg CX-5461 + 50mg/kg chloroquine was used in 

order to avoid the side effects observed in the MLL/AF9 NRAS experiment (Figure 4-6). 

As previously, “survival” was defined as the time post-transplant until the mice 

reached an ethical endpoint and required euthanasia due to symptoms such as weight 

loss, reluctance to move and hunching. Median survival times and subsequent 

statistical analysis of survival times are shown in Appendix Tables 4-1 and 4-2. 

 

 CX-5461 + chloroquine in MOLM-13 xenograft 

Chloroquine treatment at 50mg/kg did not improve survival compared to vehicle 

treatment, with a median survival time of 14 days post-transplant in both groups 

(Figure 4-8a). CX-5461 treatment at 30mg/kg improved survival significantly to 15 days 

post-transplant, as did combination treatment. There was no significant difference 

between the survival of the CX-5461 and combination-treated groups. 

 

The spleens of the vehicle-treated mice were enlarged (Figure 4-8b), which is 

consistent with Figure 4-7b. Chloroquine treatment did not significantly impact on 

spleen enlargement, whereas the spleens of CX-5461 and combination-treated mice 

were significantly smaller than the vehicle-treated mice, although still enlarged. The 

addition of chloroquine to CX-5461 treatment did not further reduce disease burden in 

the spleen. 

 

The bioluminescent imaging (Appendix Figure 4-5) shows disease patterns consistent 

with the characterisation experiment (Figure 4-6c). Quantification of the 

bioluminescent imaging showed that the total BLI (supine) of the treatment groups 

was similar, whereas the prone BLI of the chloroquine treated mice was significantly 

higher than the vehicle and the combination-treated groups (Figure 4-8d). The same 

trends in rapid weight loss from day 10 onwards were observed for all the treatment 

groups, likely due to the hind limb paralysis which is a previously confirmed feature of 

this model (Figure 4-8e), rather than toxicity of the drugs. 
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Figure 4-8: Combination therapy with CX-5461 and chloroquine does not improve 

survival in vivo in the MOLM-13 AML cell line xenograft model 

Mice were transplanted with MOLM-13 cells via the tail vein, imaged by bioluminescence 

to confirm engraftment at day 4 and therapy initiated. Mice were dosed with vehicle 

(50mM NaH2PO4), 50mg/kg chloroquine (CQ) daily Monday-Friday, 30mg/kg CX-5461 

Monday, Wednesday, Friday, or the combination, until reaching an ethical endpoint. N=8 

mice/treatment group. A) Kaplan-Meier survival curves. Log-rank test with Bonferroni 

corrected threshold was applied for comparison of multiple survival curves, such that a P 

value of <0.0083 was considered significant. Key comparisons: * = significant compared to 

vehicle. The grey area indicates the dosing period. B) Spleen weight at ethical endpoint. 

Mean weight ± SD shown. One-way ANOVA was performed with a Tukey’s multiple 

comparison test, the adjusted p-value is shown. NS P > 0.05, *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 

0.001, **** P ≤ 0.0001. Compared to vehicle, unless indicated by a bar. C) The total 

bioluminescence (BLI) of each mouse was quantified from the bioluminescent images 

(Appendix Figure 4-5). Mean BLI ± SD shown. Issues with the background levels on day 4 

of imaging meant many of the mice had a negative BLI value, so quantification was not 

shown for this timepoint. One-way ANOVA was performed with a Tukey’s multiple 

comparison test, the adjusted p-value is shown. Compared to vehicle, unless indicated by 

a bar. D) The weights of the mice were monitored daily during the dosing period and the 

weight changes as % of initial weight shown. 
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MOLM-13 xenograft: CX-5461 + Chloroquine 
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MOLM-13 xenograft: CX-5461 + Chloroquine 
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 CX-5461 + chloroquine in MV4-11 xenograft 

 
In the MV4-11 GFP luc xenograft model the vehicle-treated mice had a median survival 

of 22 days post-transplant, consistent with the characterisation experiment (Figure 

4-7a), CX-5461 treatment or chloroquine treatment did not significantly change 

median survival (Figure 4-9a). Combination treatment resulted in a small, statistically 

significant survival advantage of 2-3 days over the other 3 groups, but this may not be 

biologically significant. 

 

The spleen weights of the vehicle-treated group (Figure 4-9b), as observed in Figure 

4-7b, and the chloroquine group were similarly enlarged. The CX-5461 treated mice 

had significantly smaller spleens than the vehicle mice, but this was not further 

decreased with the addition of chloroquine. 

 

The bioluminescent imaging (Appendix Figure 4-6) of the treatment groups over the 

course of the experiment was consistent with the characterisation experiment (Figure 

4-7). There was no significant difference in the BLI quantification (Figure 4-9c) between 

the groups at day 7, 14 and 21 post-transplant, although there is a large amount of 

variation in the vehicle and combination-treated groups at day 21 post-transplant. 

 

The weights of the mice remained quite stable, in fact increased in a number of cases, 

over the course of the experiment (Appendix Figure 4-7). The exceptions were spread 

across the different treatment groups, where rapid weight loss in a 1 day period was 

likely due to the development of hind limb paralysis. These weight results indicate that 

the treatment regimes were tolerated in this model. 
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Figure 4-9: Combination therapy with CX-5461 and chloroquine improves survival in 
vivo in the MV4-11 AML cell line xenograft model 

 
Mice were transplanted with MV4-11 cells via the tail vein, imaged by bioluminescence to 

confirm engraftment at day 4 and therapy initiated. Mice were dosed with vehicle (50mM 

NaH2PO4), 50mg/kg chloroquine daily Monday-Friday, 30mg/kg CX-5461 Monday, 

Wednesday, Friday, or the combination, until reaching an ethical endpoint. N=8 

mice/treatment group. A) Kaplan-Meier survival curves. Log-rank test with Bonferroni 

corrected threshold was applied for comparison of multiple survival curves, such that a P 

value of <0.0083 was considered significant. Key comparisons: * = significant compared 

to vehicle, # = significant compared to CX-5461. The grey area indicates the dosing 

period. B) Spleen weight at ethical endpoint. Mean weight ± SD shown. One-way ANOVA 

was performed with a Tukey’s multiple comparison test, the adjusted p-value is shown. 

NS P > 0.05, *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, **** P ≤ 0.0001. Compared to vehicle, 

unless indicated by a bar. C) The total bioluminescence (BLI) of each mouse was 

quantified from the bioluminescent images (Appendix Figure 4-6). Mean BLI ± SD shown. 

One-way ANOVA was performed with a Tukey’s multiple comparison test, the adjusted p-

value is shown. Compared to vehicle, unless indicated by a bar. NS = not significant. 
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4.2.5 Summary of results 

Consistent with the literature, CX-5461 is effective in improving survival and reducing 

tumour burden in the spleen in the syngeneic MLL/AF9 NRAS model 1. In the human 

cell line xenograft models, CX-5461 resulted in limited or no survival advantage, 

however, it did significantly reduce tumour burden in the spleen. These results show 

that CX-5461 can target human AML cells in vivo, but requires adjustment to the 

dosing schedule or combination therapy to improve efficacy. Synergism between 

CX-5461 + chloroquine was shown in vivo, with combination therapy significantly 

improving survival in the MLL/AF9 NRAS and MV4-11 GFP luc models, however it did 

not reduce tumour burden in the spleen compared to CX-5461 alone. 
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4.3 Discussion 

4.3.1 Combination treatment outcomes 

 Combination treatment outcomes in the syngeneic model 

Three drug combinations were tested in the syngeneic MLL/AF9 NRAS model in order 

to determine if they provided a survival advantage compared to the individual drugs. 

The combination of CX-5461 plus orlistat (Figure 4-4) or DCA (Figure 4-5) did not alter 

survival compared to the single agents. However, the combination of CX-5461 with 

chloroquine significantly increased survival compared to the vehicle, chloroquine and 

CX-5461 alone (Figure 4-6). As a result, this drug combination was evaluated in human 

cell line xenograft models (Figure 4-8, Figure 4-9). 

 

This well-established MLL/AF9 NRAS model has benefits, but also limitations, 

compared to the human cell line xenograft models. Since the cells for the MLL/AF9 

NRAS model and the host mice are genetically matched the cells can be transplanted 

into an immune-competent host. This is important as immune cells are an integral part 

of the bone marrow microenvironment and play a role in attacking tumour cells 

(Section 4.1.1) so it is important to evaluate drug efficacy in this context. A limitation 

using this model specifically related to evaluating CX-5461 is that CX-5461 treatment 

as a single agent slows the growth of tumour cells in most areas of the mouse body 

except for the head region (Figure 4-4). This results in the mice eventually developing 

breathing difficulties for which they required euthanasia, despite minimal disease in 

the midsection including in vital organs such as the liver. Analysis of the location of the 

tumour cells revealed they are in the nasal passages, rather than the brain (Hein, 

unpublished), which may be due to medullary expansion of the turbinates, an area rich 

in lymphatics 232. Infiltration of AML cells in the nasal passage is not a reported feature 

of human disease. A comparison of the features of the MLL/AF9 NRAS model, and the 

human cell line xenograft models, with those of human AML patients is covered in 

Section 4.3.3. If the disease levels could be controlled in this region, the survival 

advantage with CX-5461 treatment would be greatly improved, however, none of the 

combination therapies tested in the MLL/AF9 NRAS model achieved this outcome. 

 



 133 

There are several future experiments which could be conducted in this model. Due to 

time constraints tolerability testing of the combination of CX-5461 with ritonavir or 

omeprazole was not completed, and neither were the survival experiments to 

determine if these combination therapies improved survival of MLL/AF9 NRAS-bearing 

mice. Of the 3 drug combinations evaluated in the MLL/AF9 NRAS model, CX-5461 + 

chloroquine was the only one which resulted in a survival advantage (Figure 4-6). In 

order to evaluate the mechanism behind this survival advantage short term treatment 

experiments (for example a single dose of individual drugs or the combination for 6 h 

in mice 10 days post-transplant when tumour levels are high but the mice are not yet 

compromised) should be performed to determine the initial effects of the drugs on 

parameters such as cell cycle arrest, apoptosis and cell death, as well as on-target 

mechanisms of action of the drugs. 

 

 Combination treatment outcomes in the xenograft experiments 

The efficacy of CX-5461 with chloroquine was tested in 2 human AML xenograft 

models, the MOLM-13 GFP luc and MV4-11 GFP luc. Despite observing a robust 

synergistic effect of CX-5461 with chloroquine in vitro, this did not translate to 

improved survival in the MOLM-13 GFP luc model (Figure 4-8), however a small 

survival advantage was observed in the MV4-11 GFP luc model (Figure 4-9). This 

survival difference, while statistically significant, may not be biologically significant. 

 

To date there are no published accounts of CX-5461 or chloroquine being testing in 

MOLM-13 xenograft models. However, CX-5461 efficacy has been tested in an MV4-11 

xenograft model, where the cells were injected into the flank of the mouse 

(heterotopic) and tumour volume compared between mice dosed with either vehicle 

or CX-5461 at 125mg/kg week by intraperitoneal injection for 3 weeks. CX-5461 was 

found to significantly inhibit tumour growth by 3-fold compared to the vehicle-treated 

mice. This astounding result contrasts with the lack of efficacy of CX-5461 and CX-5461 

with chloroquine observed in this thesis (Figure 4-9). Several factors could account for 

this discrepancy. Firstly, the location of the tumour cells differs; in the orthotopic 

model it is possible the bone marrow microenvironment supports the AML cells so 

they are more drug-resistant (Section 4.1.1). Secondly, the dosing schedule and route 

of administration differs, specifically in the heterotopic model CX-5461 was 
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administered intraperitoneally, compared to orally in the orthotopic models, which 

can alter the accessibility of the drug to the tumour cells as the peritoneum is in close 

proximity to the flank. CX-5461 was also dosed at a higher dose of 125mg/kg/week, 

compared to the 30mg/kg 3 times a week used in these studies, which will affect the 

pharmacodynamics of the drug. Lastly, the strains of mice differed between the 

experiments. In the heterotopic model used immunocompromised athymic nude mice 

(CrTac:Ncr-Foxn1nu), compared to the NSG mice used in the orthotopic models. 

Athymic nude mice only lack functional T cells 233, whereas NSG mice lack functional B, 

T and NK cells 204. Thus, if an anti-tumour immune response is important for the 

efficacy of CX-5461 (further discussed in Section 4.3.6), this would be more impaired in 

the NSG mice compared to the nude mice. There are no published reports of 

chloroquine being tested in any MV4-11 xenograft models. 

 

While the combination of CX-5461 + chloroquine was not effective in either of these 

human cell line xenograft models tested, based on the in vitro experiments perhaps in 

vivo testing with the SKM-1 cell line, which demonstrated a robust combination effect 

(Figure 3-18) would be justified. In order to do so the SKM-1 cell line would require 

tagging with GFP and luciferase (as completed for the MV4-11, THP-1 and MOLM-13 

models, Methods Section 2.9) and disease characterisation, as in Figure 4-7. 

 

 Correlating drug treatments in vitro and in vivo 

The experiments in this chapter illustrated a discrepancy between the in vitro and in 

vivo results. The most obvious example was the strong combination effect of CX-5461 

with chloroquine in vitro in the MOLM-13 cell line, which was not observed using the 

MOLM-13 GFP luc model in vivo. Several factors could contribute to this inconsistency 

including the role of the bone marrow microenvironment on the AML cells and the 

drugs not reaching effective levels or combination ratios in vivo. 

 

As mentioned previously, in vivo studies, unlike in vitro studies, take into account the 

role of bone marrow microenvironment in the response of AML cells to drugs (Section 

4.1.1). It is possible that the bone marrow stroma is providing a permissive 

environment for the AML cells and affecting their sensitivity to the drugs. Thus 

perhaps a more accurate method of evaluating drug combinations in vitro would be 
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stromal co-culture experiments. Interestingly there have been studies demonstrating 

that co-culturing primary AML patient samples with stromal cells reduced their 

sensitivity to various inhibitors, including topoisomerase II and tyrosine kinase 

inhibitors, compared to standard culture conditions 234. 

 

Alternatively, the drugs did not reach optimal concentrations in vivo, as was achieved 

in vitro. The in vitro experiments provide a controlled environment with direct contact 

between the cells and the drugs. In vivo, the drugs undergo a more complicated route 

to the tumour cells, including the requirement for its absorption, possible protein 

binding in the bloodstream, drug metabolism and excretion by various methods, which 

can alter the drug concentration in the blood and various tissues 235. For example, 

MLL/AF9 NRAS cells were sensitive to DCA and chloroquine as a single agent in vitro 

(Figure 3-8) but not in vivo (Figure 4-5, Figure 4-6), perhaps these drugs are not 

reaching the tumour cells at a concentration to have an effect. In such a situation 

increasing the drug dose would be ideal, which is possible for DCA but not for 

chloroquine due to toxicity (Figure 4-3). Alternatively, the dosing schedule could be 

altered, such as increasing the frequency to achieve a higher or more sustained drug 

concentration in the body. In order to determine if the drugs reached the AML cells at 

an effective dose, a short term drug treatment experiment could be performed. 

Specifically, tumour-bearing mice would be treated with the drugs of interest for 3, 6, 

or 24 h and tumour cells harvested to detect drug levels by mass spectrometry, as well 

as perform on-target assays for the activity of the individual drugs. 

 

A third possibility is that the drugs are not reaching the optimal ratio in vivo for 

synergy. In the in vitro studies, the ratio of CX-5461 to the metabolism modifying 

agents was critical to observe synergy. However, for the in vivo studies, the maximum 

tolerated doses were utilised rather than a set ratio. For example, in the in vitro 

experiments, 1µM of CX-5461 was found to be highly synergistic with 5µM chloroquine 

(1:5 molar ratio), while for the in vivo experiments they were dosed at a molar ratio of 

approximately 1:1.7 or 1:2.7. In this case, CX-5461 should have potentially been used 

at a lower dose, in which case it is unlikely to be effective, based on unpublished 

observations by the laboratory. Alternatively, chloroquine should be used at a higher 
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dose, however experiments presented here showed this was not possible due to 

toxicity (Figure 4-3). 

 

Pharmacokinetic (PK) drug-drug interactions, where one drug modulates the 

absorption, distribution, metabolism, or excretion of another drug 236, could also play a 

role in the lack of combination efficacy in vivo, as well as toxicity. The PK drug-drug 

interactions of CX-5461 are, as of yet, not well known. PK analysis of the plasma of 

patients in the first-in-human, Phase I dose-escalation study of CX-5461 in advanced 

hematologic cancers suggests that CX-5461 undergoes enterohepatic recirculation 82. 

Specifically, the liver and the intestine cooperate to ‘recycle’ a drug for secondary 

absorption, results in increased drug exposure 237. Disruption of this process could 

account for the decrease in survival advantage observed in mice treated with the 

combination CX-5461 + orlistat, compared to CX-5461 alone in the MLL/AF9 model 

(Figure 4-4). If orlistat is affecting hepatic metabolism (this has not been established in 

the literature, as the normal route of orlistat intake is orally, with minimal systemic 

exposure), then the concentration and efficacy of CX-5461 could be reduced. 

 

The effects of the drugs on expression and activity of drug-metabolising enzymes in 

the liver must also be considered. The effects of CX-5461 administration on the 

expression and activity of drug-metabolising liver enzymes is not yet well-

characterised. Chloroquine has been shown to inhibit activity of the enzyme 

cytochrome P450 (CYP) 2D6 in humans, up to 18% after 7 daily doses of 250 mg 

chloroquine diphosphate 238. If the metabolism of CX-5461 is dependent on this 

enzyme, then administration of chloroquine could affect the metabolism of CX-5461. 

The major enzymes involved in metabolism of chloroquine to its main metabolite 

desethylchloroquine are CYP3A4/5 and CYP2C8 239, thus if CX-5461 affects the 

expression or activity of these enzymes then the metabolism of chloroquine could be 

affected. 

 

Drug-drug interaction studies between CX-5461 and the metabolism modifying agents 

will be required to determine if it is the pharmacokinetic interactions that are altering 

the efficacy of the combinations in vivo. 
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4.3.2 Importance of disease location over total tumour burden 

A prominent feature of the different AML models used was that the location of the 

disease, rather than the total tumour burden, was important for the survival time of 

the mice. For example, in the syngeneic MLL/AF9 NRAS experiments the CX-5461 

treated mice exhibited a higher total BLI at ethical endpoint compared to the vehicle-

treated mice (Figure 4-4). As outlined in Section 4.3.1.1, the reason that the CX-5461-

treated mice required euthanasia was due to the drug not reducing disease 

progression in the nasal passages, while still having efficacy in vital organs such as the 

liver. Another example is that the THP-1 GFP luc injected mice survived weeks longer 

than the MV4-11 and MOLM-13 GFP luc injected mice, despite having a higher total 

BLI (Figure 4-7). This indicates that the THP-1 GFP luc cells either do not expand as fast 

or do not cause as much damage to vital organs as the other cell lines. While the THP-1 

GFP luc cells are clearly highly associated with liver involvement, as is evident from the 

numerous lesions observed (Figure 4-7f), these were superficial and perhaps had 

minimal effects on liver function, whereas the MLL/AF9 NRAS cells mediated 

hepatomegaly without discrete lesions (Table 4-2). 

 

4.3.3 Characteristics of AML transplant mouse models and 
comparison to human AML 

A characterisation experiment was performed where the human AML cell lines were 

injected into NSG mice and the resulting disease monitored (Figure 4-7). The 

characteristics of each of the syngeneic and xenograft were compiled (Table 4-2) and 

compared to human AML symptoms in order to determine if the mouse models 

recapitulate the human disease. In particular, bone marrow involvement and the 

spread of the disease out of the bone (extramedullary disease) was investigated. 

 

 Bone marrow involvement 

Engraftment in the bone marrow, particularly of the hind limbs and sternum, was 

visible in all 4 in vivo models of AML used in these experiments (Figure 4-4-Figure 4-9), 

as early as 3-7 days post engraftment indicating the bone marrow is the major site of 

engraftment and proliferation of the AML cells. This is consistent with the bone 

marrow being the normal site in which AML cells are found in patients, with the 
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associated bone marrow microenvironment supporting their growth (Section 4.1.1). As 

all four transplant models feature bone marrow involvement they are consistent with 

the predominant feature of the human disease in this aspect. 

 

 Hind limb paralysis 

Hind limb paralysis was observed in all mice engrafted with MOLM-13 GFP luc cells and 

in some mice engrafted with the MV4-11 GFP luc cells (Table 4-2). A possible cause of 

this paralysis is infiltration of the cells into the central nervous system (CNS) or 

enlarged organs pressing on the spinal cord. For example, the enlarged ovaries which 

were observed in the MOLM-13 and MV4-11 models (Figure 4-7f) may be causing a 

pressure point on the spine, thus contributing to the limb paralysis. This could be 

tested by following the progression of disease in male mice injected with MOLM-13 

and MV4-11 GFP luc cells. 

 

In adult human patients, the involvement of the CNS is rare, less than 1% at initial 

diagnosis increasing to 3% at relapse 240. In paediatric AML cases, the incidence of CNS 

involvement is more common at 7-29% 241,242. Furthermore, paralysis as a feature of 

CNS involvement of AML is rare, with only a limited number of reported cases, of 

which all presented with solid AML tumours (further discussed in the next paragraph) 

compressing on the spine 243,244. While it might be considered that hind limb paralysis 

in the human AML xenograft mouse models is not highly representative of the human 

disease, it is likely to be due to extramedullary spread of the AML cells, which itself is a 

common feature of AML. 

 

 Solid tumours on the liver 

A striking feature of the THP-1 GFP luc model was the numerous solid tumours present 

on the liver (Figure 4-7f) which is a previously reported feature of this model 207. In 

patients, extramedullary AML (also known as chloroma) occurs in up to 24% of AML 

patients and primarily involves the lymph nodes, and to a lesser extent the spleen, 

liver, skin, gingiva and (as previously mentioned when discussing hind limb paralysis) 

the CNS 245. Around 5% of AML patients have extramedullary AML associated with the 

liver which is associated with a poorer prognosis 245. In paediatric AML cases, 

extramedullary disease is most common in the very young patients, with an incidence 
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of greater than 30% of cases in children 1-year-old or younger 246. The THP-1 cell line is 

derived from a 1-year-old patient with AML (Table 3-1), thus could explain why this 

particular model features multiple sites of extramedullary disease, including the liver, 

multiple lymph nodes throughout the body and in the spleen (Table 4-2), whereas the 

other cell lines, which are derived from older patients, feature this less predominately. 

Thus, the THP-1 xenograft model could be a useful model for paediatric AML with 

extramedullary disease. 

 

 Spleen enlargement 

Spleen enlargement was observed in all four orthotopic models; 3-4 times normal 

spleen weight in the MLL/AF9 NRAS, MOLM-13 GFP luc and MV4-11 GFP luc models 

and 1.3 times normal spleen weight in the THP-1 GFP luc model. Splenic 

extramedullary AML is the second most common accumulation of AML cells (after the 

lymph nodes), and is found in just over 7% of patients 245. Splenic involvement is a 

consistent feature in the mouse models used in these studies, and is representative of 

human disease. 

 

 Enlarged ovaries 

Enlarged ovaries were observed in the MOLM-13 and MV4-11 GFP luc models (Figure 

4-7f). As with limb paralysis, ovarian involvement of AML is rare in patients, with only a 

few reported cases, some even preceding the development of the standard AML 

phenotype blood and bone marrow disease 247. Thus, it would be interesting to 

determine if such tumours would develop in the testes of male mice injected with the 

same human AML cell lines. It is possible that female sex hormones such as oestrogen 

may play a role in the infiltration and growth of the AML cells in the reproductive 

organs, thus the ovary enlargement may be less pronounced in older female mice. 

 

 Summary of AML xenograft versus patient features 

The main characteristic of human AML, bone marrow involvement, occurs in all four 

models used in these studies. In addition, all four, but particularly the three human cell 

line xenograft models, show features of extramedullary spread, which is a common 

occurrence in AML. Alone these observations validate these models as consistent with 
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the main features of human AML, and can be considered useful as preclinical models 

to test potential treatments for human AML. 

 

4.3.4 Targeting AML in sanctuary sites 

As outlined in the previous section, extramedullary disease is a common feature of 

AML both in human patients and the mouse models used in these studies. This is 

clinically significant, as the CNS and gonads are considered sanctuary sites that is have 

chemical and immunological privilege 248 249 250. In order to target AML cells in these 

sites, agents capable of penetrating the blood:brain or gonad barrier must be utilised. 

 

CX-5461 does not cross the blood:brain barrier 251, however, second generation Pol I 

transcription inhibitors are currently in development that have improved blood:brain 

barrier penetrance, such as PMR-116 252. Whether second generation Pol I inhibitors 

like PMR-116 cross the gonad barrier is yet to be determined. Chloroquine crosses the 

blood:brain barrier 253, as does metformin 254 and DCA 255 256, however, it is not clear if 

these agents also penetrate the gonads. Utilising these metabolism-modifying agents 

in vivo with a second generation Pol I inhibitor that can penetrate the blood:brain 

barrier, such as PMR-116, could potentially result in greatly improved survival as the 

AML cells in some sanctuary sites will be accessible. 

 

4.3.5 Limitations of the disease measurements used in the 
survival experiments 

In order to compare the efficacy of the different drug treatments, various parameters 

were collected as a measure of disease burden in the mice, including overall survival, 

spleen weight, bioluminescent imaging and weight changes. However, these methods 

suffer from limitations which can impact on the interpretation of the outcomes of the 

experiments. Spleen weight is generally a robust measure of disease burden, however 

this can also be impacted by the presence of an infection 257, for example. The mice are 

housed in a pathogen-free environment and handled in sterile conditions (and the NSG 

mice were given antibiotics for the duration of the experiments) so this is unlikely to 

occur. The bioluminescent imaging could be influenced by injection errors with the 

luciferin. If the luciferin is injected into the fat pads, or internal organs, rather than the 
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peritoneum, this will influence its distribution through the body and thus affect the 

imaging results. The location of the tumour cells can also affect the imaging, 

specifically tumour cells closer to the skin will give a stronger bioluminescent signal 

than tumour cells that are deeper internally. This will also be relevant if a drug 

treatment changes the distribution of the tumour cells to, for example, move them 

closer to the skin of the mouse which would result in an apparent increase in total 

tumour burden. An example of this is orlistat treatment (Figure 4-4), which increased 

the total BLI of the mice compared to the vehicle, however this might have simply 

been due to the changed distribution of the leukaemia cells to the periphery. Overall 

survival was defined as the time taken post-transplant until the mice reached an 

ethical endpoint based on symptoms such as weight loss, reluctance to move and 

hunching. This ethical endpoint does present a source of human error as the severity 

of the symptoms being displayed by the mice, and whether these are significant 

enough to require euthanasia, can be subjective. In order to remove as much of this 

subjectivity as possible, a clear mouse symptom scoring sheet was utilised in all mouse 

experiments and observations were made by the same person. 

 

For these reasons, the results of the various measures of disease burden were 

considered in order to draw conclusions about the efficacy of the drug treatments. Of 

the disease measurements, weight changes are considered the most robust and 

accurate, as they reflect the health of the mouse and thus disease burden. 

 

4.3.6 Differences in the outcomes of the syngeneic and xenograft 
models 

Despite the combination of CX-5461 + chloroquine demonstrating synergy in vitro in 

the MLL/AF9 NRAS, MOLM-13 and MV4-11 cell lines, the survival advantage in vivo 

was less robust and significant only in two models. Surprisingly, there was no survival 

advantage in MOLM-13 GFP luc model (Figure 4-8), despite this cell line having the 

strongest combination effect in vitro (Figure 3-12). Clearly there is a discrepancy 

between the efficacy of this drug combination between the syngeneic and human cell 

line xenograft models, where the combination effect appears to be improved from in 

vitro to in vivo in the syngeneic model, and the combination effect is much less 

pronounced in the human cell line xenograft models. A possible reason for the 
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differences in efficacy of CX-5461 + chloroquine between the different types of models 

is the absence of an immune response in NSG mice, while the C57Bl/6 mice used in the 

MLL/AF9 NRAS experiments have an intact immune system. In particular, T cells are 

important for an anti-tumour response, thus a higher level of T cells, as well as 

lymphocytes and NK cells, in the bone marrow of AML patients is associated with an 

improved outcome for patients 258. It is possible that in vivo the efficacy of CX-5461 

and/or chloroquine is also dependent on this anti-tumour immune response. An 

experiment to address this would be to inject the MLL/AF9 NRAS cells into NSG mice, 

and evaluate the combination of CX-5461 + chloroquine with respect to survival. If the 

combination was less effective in the same cells in the NSG mice compared to the 

C57Bl/6 mice, this would support the need for an intact immune system for this 

response. Thus using a humanised mouse model, such as implanting human 

mesenchymal stem cells to create a humanised bone marrow niche 259, would be 

required to test the drug combination in human cell line xenografts experiments or for 

the engraftment of primary AML patient samples. 

 

As outlined in Section 4.3.1.3, enterohepatic recirculation of CX-5461 has been 

indicated to occur in patients 82. Interestingly, intestinal bacteria are known to play a 

key role in the process of enterohepatic recirculation 237. It is possible that the 

antibiotic treatment used in the immunocompromised mice in the human cell line 

xenograft models (Methods Section 2.6.2.2) compromises the gut microflora, resulting 

in decreased exposure to CX-5461, and thus reduced efficacy in the xenograft models 

compared to the syngeneic model. As the antibiotic is provided continuously in the 

drinking water, supplementation with probiotics would not be feasible in these 

models. 

 

4.3.7 Outcomes of tolerability testing and limitations of the 
approach 

In order to evaluate the promising combination therapies identified in vitro (Chapter 3) 

in in vivo transplant models of AML, tolerability testing of the metabolism-modifying 

drugs was performed first in non-tumour bearing mice (Figure 4-2, Figure 4-3). 

Tolerable doses of the drugs as single agents or in combination with CX-5461 were 

identified for all of the promising drugs and evaluated in survival experiments. In the 
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case of CX-5461 with orlistat (Figure 4-4) and CX-5461 with DCA (Figure 4-5) these 

dosing regimes were also tolerated in MLL/AF9 NRAS tumour bearing mice, as 

indicated by no significant weight loss during the course of the experiment. However, 

treatment with CX-5461 + chloroquine (Figure 4-6) was not tolerated over the course 

of the experiments and thus lower doses were used when tested in the human AML 

cell line xenograft experiments. This highlights the limitation of tolerability testing in 

non-tumour bearing mice as it does not always completely predict the tolerability of 

the drugs in tumour bearing mice as tumour cells place additional burdens on the mice 

which can lower their tolerability to the drugs 260. 

 

4.3.8 Concluding remarks 

CX-5461 + chloroquine was confirmed as a combination therapy of interest based on 

the survival results in the MLL/AF9 NRAS model, and to a lesser extent the MV4-11 

GFP luc xenograft model. However, it is possible that chloroquine levels were not 

sufficient in vivo to have efficacy. In order to understand why CX-5461 + chloroquine 

act synergistically, and therefore identify alternative, more potent drugs which could 

be utilised instead of chloroquine to improve the effects of CX-5461, mechanistic 

analysis was performed (Chapter 5). 
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Chapter 5 Determining the 
mechanisms of synergy between CX-
5461 and chloroquine 
 

5.1  Introduction 

Previous in vitro experiments identified the metabolism-modifying agent chloroquine 

as acting synergistically with CX-5461 to reduce AML cell viability in 6 genetically 

different cell lines (Chapter 3). This drug combination was also tested using in vivo 

orthotopic transplant models of AML (Chapter 4). The combination of CX-5461 + 

chloroquine resulted in a statistically significant improvement in survival in the 

syngeneic MLL/AF9 NRAS model and the MV4-11 GFP luc xenograft model, but not the 

MOLM-13 GFP luc model despite the drug combination having a robust synergistic 

effect in this cell line in vitro. It is possible that in vivo the dose of chloroquine the AML 

cells was exposed to was not high enough to have efficacy. This is based on the 

observation that the dose of chloroquine administered in the in vivo experiments was 

limited by toxicity in combination with CX-5461, consequently, this limits the clinical 

potential of this drug combination in humans. However, by understanding the 

mechanisms by which CX-5461 + chloroquine were acting synergistically, may uncover 

other suitable targets and clinically relevant drugs that may not be as toxic. 

 

The following chapter addresses Aim 3: ‘Investigate the mechanism/s of synergy for 

promising drug combinations’. Given the published effects of CX-5461 and chloroquine 

as individual agents, mechanistic and end-point analysis was performed to determine 

how the drugs act synergistically together. 

 

5.1.1 Reported effects of CX-5461 

 Background 

As outlined in Section 1.2.3, CX-5461 was identified as a potential cancer therapeutic in 

a screen for inhibitors of rRNA synthesis 81 and has since shown efficacy in a variety of 

different blood 1,78 and solid cancers 81,83,84 in vitro and in vivo, leading to the 

commencement of clinical trials. CX-5461 is a potent and selective inhibitor of rDNA 
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transcription that can act within 30 minutes of treatment through disruption of the 

interaction between SL-1 and Pol I81. Interestingly, while CX-5461 exhibits similar 

efficacy on rDNA transcription initiation in both non-malignant and malignant cells, 

non-malignant cells are approximately 30 times less sensitive to CX-5461 in terms of 

viability, highlighting the addiction of malignant cells to rDNA transcription 81. 

Depending on the cancer type and underlying genetics, the downstream effects of Pol I 

inhibition by CX-5461 varies. 

 

 Cell cycle arrest, apoptosis, cell death and senescence 

CX-5461 has been reported to induce cell cycle arrest, apoptosis and/or senescence in 

various cancer types. For example, in the lung cancer cell line A375 and pancreatic 

cancer cell line MIA PaCa-2, CX-5461 induces autophagic cell death (a mechanism of 

programmed cell death) and cellular senescence but not apoptosis or necrotic cell 

death 81. Alternatively, in the Eµ-Myc mouse lymphoma cell model rapid 

p53-dependent apoptotic cell death is induced 78. CX-5461 also mediates apoptosis 

and G2/M cell cycle accumulation in acute lymphoblastic leukaemia (ALL) cell lines and 

patient samples in vitro, independent of p53 status 261. Cell cycle progression defects 

were also reported in AML cells within 24 h of CX-5461 treatment, predominately 

G2/M phase accumulation 1. 

 

 Activation of the nucleolar stress response 

CX-5461 acts on rDNA transcription which occurs in the nucleolus. Historically known 

as the site of ribosome biogenesis, the nucleolus has more recently been recognised as 

a sensor of cellular stress (reviewed in 262). In response to perturbations of ribosome 

biogenesis and nucleolar disruption, mediated by inhibition of Pol I transcription by 

Cx5461 treatment or inactivation of UBF 263 or TIF-1A 264, p53 levels are elevated 

leading to cell cycle arrest or apoptosis. Under normal growth conditions, p53 is bound 

and inactivated by MDM2, promoting the rapid degradation of p53 265. In response to 

certain stresses there is excess ribosomal proteins in the cell results in the 

accumulation of the RPL5/L11/5S ribonucleolar protein (5SRNP) complex, that can bind 

and sequester MDM2, resulting in increased levels of p53 266. This activation of the 

nucleolar stress response was observed in Eµ-Myc lymphoma cells, with low doses of 

CX-5461, in as little as 1 hour of treatment78. Similarly, in mouse and human AML cells 
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accumulation of p53 and phosphorylated p53 can be observed as early as 1 hour after 

CX-5461 treatment1. 

 

 Activation of ATM/ATR signalling 

As outlined in Section 5.1.1.2, cell cycle progression defects are observed in a variety 

of cancer types following CX-5461 treatment, and this often correlated often with 

activation of known components of the DNA damage pathway. For example, in acute 

lymphoblastic leukaemia cells, 24 hour treatment with CX-5461 induced ATM/ATR 

signalling, as assessed by phosphorylation of Chk1 and Chk2 261. Whereas 

phosphorylation of Chk1 and Chk2 occurred rapidly (1 hour) in AML cells in vitro 1. 

Typically DNA damage is required to activate the kinases ataxia-telangiectasia mutated 

(ATM) and ATM and Rad 3-related (ATR), these mediate a signalling cascade through 

cell cycle checkpoints, such as p53-dependent activation of Chk1 (ATR mediated) and 

Chk2 (ATM-mediated) resulting in cell cycle arrest so the DNA can be repaired or 

apoptosis 267.  

 

Interestingly, in the case of CX-5461 treatment of immortalised human fibroblast cells, 

there is no global DNA damage, thus the pathway activated has been described as 

‘DNA damage-like’ signalling 268. The proposed mechanism by which CX-5461 induces 

this DNA damage-like signalling is due to the reduction of Pol I binding to the rDNA 

promoter and transcribed regions, resulting in ‘exposed’ regions of rDNA repeats in 

open conformation stably bound by UBF, the abnormal configuration of which is 

hypothesised to induced DNA damage signalling in the absence of DNA damage 268. 

 

 Effects on the mitochondria 

There is no published literature evaluating any direct effects of CX-5461 on the 

mitochondria. However, from collaborations with the Pearson Lab (Kusnadi et al. Peter 

MacCallum Cancer Centre), we know that lymphoma cells with acquired resistance to 

the combination of CX-5461 and everolimus (mTORC1/mRNA translation inhibitor) are 

significantly more metabolically active compared to drug naïve cells, particularly in 

terms of their baseline mitochondrial activity 269. These results suggest that elevated 

mitochondrial activity is a resistance mechanism to the dual targeting of ribosome 

biogenesis and function in lymphoma cells, however, it remains to be determined such 

effects on mitochondria would also be observed in AML or normal cells. Unpublished 
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work in our laboratory has demonstrated that acute CX-5461 treatment of mouse AML 

cells in vivo alters the mRNA abundance of numerous metabolic genes including the 

upregulation of transcription of enzymes involved in fatty acid and cholesterol 

synthesis (Figure 1-5), suggesting that CX-5461 treatment alone may induce functional 

changes in the mitochondria. 

 

 Summary 

In summary, the reported effects of CX-5461 mediated Pol I transcription inhibition 

include cell cycle arrest, apoptosis and or/senescence, activation of the nucleolar 

stress response and DNA damage-like signalling, depending on the cell type. Direct or 

indirect effects of CX-5461 on mitochondrial activity have not as yet been published, 

however, our laboratory has unpublished data suggesting this occurs. 

 

5.1.2 Reported effects of chloroquine 

 Background 

As briefly outlined in Section 3.1.2.3 chloroquine, a synthetic 4-aminoquinoline 

molecule, has a long history of use in humans as an anti-malarial drug270. Chloroquine, 

a weakly basic molecule, accumulates in a pH-dependent manner in the acidic food 

vacuoles of the malarial parasite 271, affecting the pH and function of the food vacuole 

272, thus leading to toxic accumulation of heme, a by-product of haemoglobin 

degradation 273,274. Other than nausea, vomiting and diarrhoea, the most serious, 

although uncommon, side effect of chloroquine treatment is permanent retinal 

toxicity, that is associated with long-term use 275. Hydroxychloroquine is a derivative of 

chloroquine that is currently used in the clinic and has a reduced risk of retinal toxicity 

275,276. Both chloroquine and hydroxychloroquine have been approved for clinical use 

in rheumatoid arthritis 139,277,278 and lupus 279,280 due to immune-modulatory 

capabilities through affecting auto-antigen processing in antigen-presenting cells 281, 

inhibiting T cell proliferation 282 and inhibiting NK cell activity 283. 

 

During the decades of clinical use of chloroquine, various mechanisms of action have 

been identified including autophagy inhibition, DNA intercalation, ATM activation, 

mitochondrial effects, modulation of lysosomal nutrient signalling, cell cycle arrest, 

apoptosis and cell death. 
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 Inhibition of autophagy 

5.1.2.2.1 Overview of autophagy 
 
A well-studied mechanism of action of chloroquine is that of autophagy inhibition. 

Macroautophagy (hereafter referred to as autophagy) is a conserved intracellular 

recycling process by which cellular material such as damaged organelles and misfolded 

proteins are degraded in double-membrane-bound structures, then the nutrient and 

metabolites are released back to the cell. The process of autophagy is multi-step with 

many players involved, including autophagy-related proteins (ATGs, Figure 5-1).  

 

 
Figure 5-1: Overview of the process of autophagy 

Nutrient sensor mammalian target of rapamycin (mTOR) acts as a negative regulator of 

autophagy in nutrient rich conditions, while in stress conditions the activity of mTOR is 

inhibited and autophagy is induced. Autophagy begins with the formation of an isolation 

membrane or phagophore. Initiation (or nucleation) of the phagophore begins when the 

Beclin-1 (ATG6) complex is activated. Following the nucleation of the phagophore the 

membrane is elongated, requiring the incorporation of phosphatidylethanolamine-

lipidated microtubule-associated protein 1B-light chain 3 (LC3B-II/ATG8), which is formed 

when the cytosolic LC3-I is conjugated to phosphatidylethanolamine (PE), requiring ATG7. 

Adaptor proteins such as p62 guide cargo for degradation to the phagophore through 

interactions with LC3-II. The membrane of the phagophore eventually fuses around the 

cargo, forming an autophagosome. The phagophore then fuses with lysosomes containing 

degradative enzymes to form an autolysosome, and the contents are subsequently 

degraded. P62 and LC3B-II on the inner membrane are also degraded. Chloroquine and 

bafilomycin A1 interfere with lysosomal function, preventing the fusion of 

autophagosomes and lysosomes. 
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Autophagy reduces oxidative stress as dysfunctional mitochondria, a major source of 

reactive oxygen species (ROS), are removed, thus reducing ROS-induced genomic 

instability 102. Under stress conditions, such as nutrient deprivation, autophagy rates 

increase in order to provide the cell with nutrients and the building blocks required to 

cope with the stress 101. If the stress in the cell reaches an unacceptable level then 

programmed cell death via degradation of essential cell components (autophagic cell 

death) can occur 284. Chloroquine inhibits autophagy through interfering with 

lysosomal function, in a similar mechanism to the food vacuole of the malaria parasite, 

thus preventing the fusion of lysosomes with autophagosomes 143. 

 

5.1.2.2.2 Dual role of autophagy in cancer 
 
In the context of cancer cells, there is evidence for both tumour suppressive and 

tumour permissive effects of autophagy, depending on the cancer type and cellular 

assault. 

 

A reduced rate of autophagy mediates an increase in the number of damaged 

organelles 111, increasing ROS levels 112, genome instability 102 and inflammation 113, 

which creates a tumour permissive environment, both for the initiation and 

progression of cancer. Allelic loss of autophagy gene Beclin 1, which plays a critical role 

in the initiation stage of autophagy (Figure 5-1), has been reported in 40–75% of 

sporadic ovarian and breast cancers 285 and its expression is significantly reduced in 

human brain tumours, which is correlated with a higher disease grade 286. In mice, 

heterozygous deletion of Beclin 1 (homozygous deletion is embryonic lethal) renders 

mice more prone to mammary hyperplasia, lung cancer, liver cancer and lymphoma 

287,288. 

 

However, autophagy has also been reported to have a pro-survival role in many 

cancers, where it acts to help the cell cope with metabolic stresses, for example, 

increased stress accompanying a high metabolic rate, hypoxia and response to 

chemotherapy. In hepatocellular carcinoma 289 290 and pancreatic cell lines 289, 

treatment with standard chemotherapeutics have been reported to induce autophagy, 

and genetic or chemical inhibition of autophagy has been shown to synergise with 

chemotherapy in vitro and in vivo 290. 
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In AML the role of autophagy is not straightforward. Heterozygous loss of ATG5 in an 

MLL/ENL AML model mediated increased proliferation in vitro and decreased survival 

of transplanted mice in vivo 114. Decreased expression of autophagy-related genes, 

including through hemizygous deletion in some cases, and reduced autophagic flux as 

assessed by imaging flow cytometry was also reported in AML patient bone marrow 

samples 114. Autophagy has also been reported to promote chemoresistance in AML. In 

human AML cell lines and patient samples treatment with cytarabine, autophagy was 

induced through inactivation of mTOR, and chemical inhibition of autophagy with 

bafilomycin or chloroquine, or knockdown of autophagy-related proteins sensitised 

the cells to the effects of cytarabine by increasing oxidative stress, DNA fragmentation, 

caspase activation and apoptosis 291. Cytoprotective autophagy has also been shown to 

play a role in the maintenance of leukemic stem cells, with inactivation of autophagy 

by Atg5 or Atg7 knockout resulting in a reduction of leukemic stem cells and prolonged 

survival in an MLL-ENL mouse model 115. The role of autophagy in AML cells in the 

context of CX-5461 treatment remains to be determined. 

 

5.1.2.2.3 Studying autophagy: knockdown approach 
 
As outlined previously in Section 5.1.2.2.1, there are many ATGs which are critical for 

the process of autophagy. In order to study the combined effects of ribosome 

biogenesis inhibition (with CX-5461) and autophagy inhibition, the two ATGs Beclin1 

and ATG7 (Figure 5-1) were selected to be targeted using an inducible shRNA 

knockdown approach. Beclin1 (or ATG6) induces autophagy through the formation of 

the Beclin1-Vps34-Vps15 core complex, leading to the nucleation of the phagophore 

292, and control of crosstalk between autophagy and apoptosis through caspase-

mediated cleavage 293. Whereas ATG7, along with ATG3 and ATG12-ATG5-ATG16L 

multimers, are involved in the conjugation of a phosphatidylethanolamine (PE) moiety 

to LC3-I, forming LC3-II which subsequently integrates into the forming 

autophagosome 294. In the literature both Beclin and ATg7 have been successfully 

targeted with an shRNA approach. 

 

Significant knockdown of Beclin 1 protein has been reported in sarcoma cells 

(approximately 50% knockdown, 295) and the ipsilateral thalamus of rats 
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(approximately 80% knockdown, 296). In liver cancer cell line Huh7, 60% knockdown of 

ATG7 protein was achieved in 48 h using shRNA 297 and up to 90% in human CD34+ 

hematopoietic stem-progenitor cells 298. Thus genetic knockdown of Beclin 1 and ATG7 

is an achievable approach and in this thesis an inducible shRNA knockdown approach 

was selected. This was based on the observation that constitutive knockdown or 

knockout of autophagy genes can mediate compensatory mechanisms in the cell over 

time, which would make the results difficult to interpret 181. 

 

 DNA intercalation, changing chromatin structure and ATM activation 

It has been recognised for decades that chloroquine can mediate its effects as a DNA 

intercalator and thus alter chromatin structure. In a cell-free assay, chloroquine 

reversibly binds calf thymus DNA, with stronger binding to purines 299. In nuclei or DNA 

isolated from CV-1 (monkey kidney cell line), chloroquine intercalated almost 

exclusively to the DNA of the nucleosomal linker regions without affecting nucleosome 

structure 300 at concentrations of 3mM or higher, but not at 400 or 800µM. Whereas in 

studies using intact human K562 (erthyroleukaemia) cells, chloroquine intercalated 

with the DNA of nucleosomal linker regions at concentrations as low as 600µM, again 

without disruption of the nucleosomes themselves, however this did significantly 

affect folding of high order chromatin structures 176. Subsequently, chloroquine has 

been reported to activate ATM signalling without causing DNA damage (as indicated by 

the lack of increased gamma H2AX signal), both in vitro 301 and in vivo 302, improving 

survival in response to lethal low dose radiation through activation of DNA damage 

repair pathways. 

 

 Effects on mitochondria 

Chloroquine not only inhibits autophagy, but can inhibit mitophagy, a subset of 

autophagy specifically involved in the clearance of dysfunctional mitochondria, thus 

dysfunctional mitochondrial accumulate and ROS increases 303. In other studies, 

chloroquine is reported to have direct effects on mitochondria function. In primary rat 

neurons, chloroquine and an alternative autophagy inhibitor bafilomycin A1, not only 

reduced mitochondrial quality but modified mitochondrial function 111. In these cells, 

24 hours treatment with chloroquine or bafilomycin did not change mitochondrial 

number although mitochondrial bioenergetics were reduced including basal 
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respiration, maximal respiration and spare respiratory capacity, and also reduced the 

activity of complexes I, II and IV. Metabolomic analysis revealed a significant decrease 

in Krebs cycle intermediates and an increase in mitochondrial DNA damage. However, 

in this same study, acute (30 minutes) treatment with chloroquine did not alter 

mitochondrial respiration, thus it is not conclusive as to if the mitochondrial effects 

mediated by chloroquine are direct, or an indirect effect of autophagy inhibition. 

 

 Effects on lysosomal function and nutrient signalling 

As previously outlined in Section 5.1.2.2, chloroquine acts an autophagy inhibitor via 

raising the lysosomal pH and inducing lysosomal dysfunction. However, the cellular 

effects of this drug is not just limited to inhibiting autophagy. Previously thought to 

simply be a site for degradation the lysosome has more recently been recognised as a 

subcellular structure that plays a key role in multiple processes including nutrient 

signalling. mTOR complex 1 (mTORC1), which regulates cell growth through 

modulating processes such as autophagy 304, mitochondrial biogenesis 305,306 and 

nucleotide biosynthesis 307, localises to the lysosomal membrane 308. Here it is 

activated by amino acid levels, including through a sensing mechanism involving the 

proton pump vacuolar H+-ATPase 309 and lysosomal amino acid transporter SLC38A9 

310. In this manner, the lysosome acts as a hub for nutrient homeostasis and thus 

inhibition of lysosomal function with chloroquine has the potential to impact on 

multiple metabolic processes. 

 

 Cell cycle arrest, apoptosis, and cell death 

In the breast cancer cell line Bcap-37, 16µM chloroquine treatment for 48 h resulted in 

a significant G2/M arrest and elevated expression of apoptotic markers 311. Whereas 

200nM chloroquine induced G2/M phase cell cycle arrest and apoptosis in pancreatic 

cell lines in vitro 312. In the NB4 cell line (an acute promyelocytic AML cell line) 10µM 

chloroquine induced apoptosis significantly within 48 hours147 and an S phase arrest, 

concomitant with a reduction in the S phase cell cycle regulators cell division cycle 25 A 

(CDC25A) and cyclin-dependent kinase 2 (CDK2). 
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5.1.3 Potential mechanisms of synergy 

As outlined in Sections 5.1.1 and 5.1.2 there are multiple known mechanisms of action 

and consequences for CX-5461 and chloroquine treatment as single agents, and 

interestingly, some of these overlap between the two drugs (Figure 5-2). Potentially, 

the overlapping mechanisms of action and consequences of exposure may mediate an 

enhanced effect when the drugs are used in combination (i.e. synergy). Alternatively, 

the individual effects of the drugs alone may mediate an elevation of cellular stress, 

thus affecting viability. In this thesis the potential mechanisms of synergy that were 

assessed included inhibition of autophagy and altering mitochondrial activity or 

quality, with synergy being assessed via the endpoints of cell cycle arrest and cell 

death. 

 
 
  

 
Figure 5-2: Potential mechanisms of synergy between CX-5461 and chloroquine 

There are several reported processes altered by CX-5461 and chloroquine that could 

account for their synergistic action as a drug combination, including mechanisms of 

action of the drugs and endpoints of exposure to the drugs. Some, like cell cycle arrest, 

are altered by both drugs alone which could be enhanced when combined. Other effects 

are unique and in response to the drug combination these effects may combine to cause 

high levels of cellular stress, thus alter viability. Potential mechanisms of synergy that 

were investigated in this chapter are shown in red. 
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5.2 Results 

5.2.1 Cell cycle and cell death analysis 

Based on the literature demonstrating that CX-5461 exposure results in endpoints of 

cell cycle arrest and cell death in AML cell lines 1, and that chloroquine causes S phases 

arrest in the NB4 AML cell line 147, it was hypothesised that CX-5461 and chloroquine 

act synergistically via an enhancement of their effects on cell cycle arrest and cell 

death. To test this hypothesis, MV4-11, THP-1, MOLM-13 and MLL/AF9 cells were 

treated with vehicle, CX-5461, chloroquine or the drugs in combination for 24, 48 and 

72 h, then pulsed with BrdU to label newly synthesised DNA, and cell cycle or cell 

death analysed by determining DNA content and BrdU signal (Section 2.7). The 

proportion of cells in sub G1, G0/G1, S and G2/M phases are shown (Figure 5-3), with 

the sub G1 population considered to be indicative of “dead” or non-viable cells 

(including apoptotic cells) 124. 

 

The percentage of cells in the various cell cycle phases differed significantly between 

the cell lines treated with vehicle, ranging from 19% to almost 50% of cells in S phase 

(actively dividing; Figure 5-3). Chloroquine treatment did not alter the cell cycle 

distribution for any of the four cell lines, whereas CX-5461 treatment induced a G0/G1 

cell cycle arrest in 3 cell lines (MV4-11, MOLM-13 and MLL/AF9 NRAS cells) and an S 

phase delay followed by a G2/M arrest in the THP-1 cell line. This disruption in cell 

cycle progression in dividing cells following CX-5461 treatment is consistent with the 

literature findings 1. In the MOLM-13 cell line, CX-5461 treatment almost completely 

prevented cells from actively dividing, which was consistent with the plateaued dose-

response curve of CX-5461 as a single agent (Figure 3-6). Despite chloroquine not 

altering the cell cycle as a single agent, chloroquine synergised with CX-5461 to 

enhance its effects on the cell cycle, specifically by further reducing the S phase 

population in the MV4-11, MOLM-13 and MLL/AF9 NRAS cells, and also by enhancing 

the G2/M phase arrest and reduced S phase population in the THP-1 cells. 

 

Sub G1 analysis (Figure 5-3) revealed that as single agents, chloroquine treatment did 

not alter the percentage of dead cells compared to vehicle treatment, whereas CX-

5461 treatment induced cell death in the MV4-11, MOLM-13, and MLL/AF9 NRAS cells, 
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but not the THP-1 cells, consistent with the insensitivity of THP-1 cells to CX-5461 in 

the cell viability assays (Table 3-4). Interestingly, despite chloroquine not altering the 

sub G1 population as a single agent, chloroquine synergised with CX-5461 to induce 

cell death in the THP-1, MOLM-13 and MLL/AF9 NRAS cells, but not in the MV4-11 

cells. The synergistic drug effect observed with cell death was particularly pronounced 

in the p53 WT MOLM-13 cells, increasing from approximately 30% (CX-5461 alone) to 

60% (combination treatment) of the cells classified as SubG1, which is consistent with 

the strong synergism observed when total viable cell number using the MTT assays 

was assessed (Figure 3-12). The greatest fold increase (~6-fold) was observed in the 

p53 null THP-1 cells. 
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Figure 5-3: Chloroquine enhances the effects of CX-5461 on cell cycle progression and 

cell death 

Quantitation of cell cycle distribution by BrdU incorporation and DNA content (DAPI) was 

analysed by flow cytometry (Methods Section 2.12) after treatment with CX-5461, 

chloroquine or the combination of the two after the indicated timepoints. The sub G1 

population was considered indicative of cell death. Graphs show the mean  SD of n=3 

experiments. CX = CX-5461, CQ = chloroquine. 
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5.2.2 Effect of CX-5461 and chloroquine on autophagy protein 
expression 

Chloroquine is well characterised as an autophagy inhibitor (see Section 5.1.2.2). If CX-

5461 and chloroquine were to act synergistically via chloroquine-mediated inhibition 

of autophagy, this would suggest that cells, in this case, AML cells may upregulate 

autophagy as a survival mechanism to overcome the effects of CX-5461, as has been 

published to occur in response to other chemotherapies (Section 5.1.2.2). To test this, 

three human AML cell lines (MV4-11, THP-1 and MOLM-13) were treated over a time 

course with a range of concentrations of CX-5461 as a single agent (based on in vitro 

sensitivity determined by viability assay, (Table 3-4)) and the abundance of the 

autophagy protein LC3B-II was measured by western blot (Figure 5-4). Acute treatment 

(6 hours) with CX-5461, chloroquine and the combination of drugs was also performed 

(Figure 5-5). The LC3B-II protein is part of the autophagosome membrane, and thus 

levels of LC3B are indicative of the number of autophagosomes (Figure 5-1). Thus, if 

autophagy is upregulated the flux rate (number of autophagosomes) and LC3B-II 

abundance will increase. If autophagy is blocked at a late stage, such as is observed 

with chloroquine treatment, autophagosomes will be prevented from merging with 

lysosomes, leading to their accumulation and LC3B-II expression will increase. If 

autophagy is also upregulated by CX-5461, there may be a synergistic increase in LC3B-

II levels with the combination treatment. 

 

As expected, given the established effect of chloroquine as an autophagy inhibitor, 

chloroquine treatment mediated an increase in LC3B-II abundance compared to the 

vehicle in the MV4-11 (Figure 5-5a), THP-1 (Figure 5-5b) and MOLM-13 (Figure 5-5c) 

cells lines. 

 

The MV4-11 cells (Figure 5-4a) are the most sensitive of the 3 cell lines to CX-5461 in 

terms of viability (Table 3-4) and interestingly CX-5461 mediated a dose-dependent 

increase in LC3B-II levels at 3 h, which was maintained at 6 h treatment. By 24 h LC3B-

II levels had returned back to basal in the presence of CX-5461, indicating a transient 

induction of autophagy. In the THP-1 cells (Figure 5-4b), which are insensitive to CX-

5461 in terms of viability (Table 3-4), also mediated a dose-dependent increase in 

LC3B-II abundance detectable at 3 h and 6 h of treatment, with a maximum increase of 
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3.4 fold compared to the vehicle. However, unlike that observed in the MV4-11 cells, 

LC3B-II levels remained elevated at 24 h of CX-5461 treatment, indicating that CX-5461 

mediated a sustained increase in autophagy in the THP-1 cells. Interestingly, in the 

MOLM-13 cells (Figure 5-4c), which displayed moderate sensitivity to CX-5461 as a 

single agent (Table 3-4) and of the 3 cell lines tested displayed the highest degree of 

synergy with the combination of CX-5461 + chloroquine (Figure 3-12), there were 

minimal changes in LC3B-II levels detected, in fact at some doses there was a decrease. 

Together these results suggest that CX-5461 induces autophagy in a cell-dependent 

manner, and there is no correlation between sensitivity to CX-5461 treatment with 

respect to viability and induction of autophagy. 

 

The effect of the combination of CX-5461 + chloroquine on LC3B abundance was also 

evaluated in these cell lines. Human AML cell lines were treated with a single dose of 

CX-5461, chloroquine or the combination (with the concentration based on in vitro 

sensitivity by viability assay, Table 3-4) for 6 h and the abundance of autophagy marker 

LC3B-II assessed by western blot. CX-5461 treatment lead to an increase in LC3B-II 

levels in the MV4-11 cells, but not the THP-1 or MOLM-13 cells, indicating autophagy 

was not being upregulated at this particular timepoint in these two particular cell lines. 

This is consistent with the previous results of the single-agent treatment for MV4-11 

and MOLM-13 cells, but not the THP-1 cells (Figure 5-4). In all three cell lines, there 

was no further increase in LC3B-II abundance with combination treatment when 

compared to chloroquine or CX-5461 treatment alone, indicating that the combination 

of drugs is not having a synergistic effect on autophagy, or perhaps that the maximum 

dynamic range of the assay has been reached. 
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Figure 5-4: Autophagy flux in response to a CX-5461 time course 

AML cell lines a) MV4-11, b) THP-1 and c) MOLM-13 were treated with CX-5461 for 3, 6 or 

24 h. Protein was extracted and equal amounts of protein separated using SDS-PAGE, 

followed by immunoblotting for LC3B-II protein levels (Section 2.6). Beta actin was used as 

a loading control. A representative western blot image of n=3 experiments is shown. 

Quantification of band intensity was performed and LC3B-II protein levels expressed as a 

fold-change over the vehicle, after normalising to beta-actin levels. Graphs show the mean 

 SD of n=3 experiments. 
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Figure 5-5: Autophagic flux following short term CX-5461 and chloroquine treatment 

AML cell lines a) MV4-11, b) THP-1 and c) MOLM-13 were treated with vehicle (Veh), CX-

5461 (CX; 125nM for MV4-11, 1000nM for THP-1 and MOLM-13), chloroquine (CQ; 20µM 

for MOLM-13, 40µM for MV4-11 and THP-1) or the combination of the two drugs (Com) 

for 6 h. Protein was extracted and 30µg protein separated using SDS-PAGE, followed by 

immunoblotting for LC3B-II protein levels (Section 2.6). Beta actin was used as a loading 

control. A representative western blot image of n=2 experiments is shown. 
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5.2.3 Ultrastructural changes by transmission electron 
microscopy 

 Transmission electron microscopy (TEM) was performed to visualise and count the 

autophagy structures (autophagosomes, autolysosomes and lysosomes, as outlined in 

Figure 5-1). The human AML cell lines MV4-11, THP-1 and MOLM-13 were treated with 

vehicle, 1µM CX-5461, 40µM chloroquine or a combination of the two drugs for 24 h, 

then processed for TEM (Section 2.9). An alternative autophagy inhibitor, bafilomycin, 

as well as serum starvation, were also included as controls for inhibition and induction 

of autophagy, respectively. Two representative cells from each treatment are 

illustrated in Figure 5-6, which also includes a higher magnification view of the 

cytoplasm for each treatment. In the MV4-11 cells, the number of structures in 10 

randomly selected cells were counted (Figure 5-7), however, due to time constraints 

this experiment was only performed once. 

Figure 5-6: Ultrastructural changes following CX-5461 and chloroquine treatment 

Human AML cell lines a) MV4-11, b) THP-1 and c) MOLM-13 were exposed to vehicle, 

serum starvation, 20nM bafilomycin (Baf), 1µM CX-5461, 40µM chloroquine (CQ) or CX-

5461+chloroquine (CX+CQ) for 24 h, fixed and processed for transmission electron 

microscopy (TEM; Section 2.7). Representative cells of each treatment are shown. Scale 

bar on higher power images = 1µM. N = nucleus, M = mitochondria, A = autophagy 

structure. n=1. 
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In the vehicle-treated samples, the nuclei and mitochondria are readily visible, as are 

some small vacuoles and autophagy structures in the cytoplasm. There were relatively 

few vacuoles in the MV4-11 (Figure 5-6a) and MOLM-13 (Figure 5-6c) vehicle-treated 

cells compared to the THP-1 cells (Figure 5-6b) which had more and larger vacuoles. 

Consistent with the LC3B-II levels (Figure 5-5), in chloroquine-treated cells, across all 

three cell lines, there was an increase in the size and number of vacuoles and 

autophagy structures, including autophagosomes containing large, electron-dense 

structures. These were also present in the bafilomycin- and CX-5461 + chloroquine-

treated cells. As chloroquine and bafilomycin are late-stage inhibitors of autophagy, 

specifically blocking the fusion of the autophagosomes with lysosomes, the increased 

number of autophagosomes containing un-degraded cargo is unsurprising. Serum 

starvation also mediated an increase in the number and size of cytoplasmic vacuoles 

and autophagy structures in all 3 cells lines, particularly in the THP-1 cell line. In some 

of the MV4-11 cells CX-5461 treatment led to a loss of contrast and granular texture in 

the nucleus and cytoplasm, which may indicate a loss of viability, consistent with the 

sensitivity of these cells to CX-5461 with respect to viability (Figure 3-5). No obvious 

changes in the number or size of autophagy structures was observed with CX-5461 

treatment, consistent with LC3B-II levels at this timepoint (Figure 5-4). In the THP-1 

and MOLM-13 cells CX-5461 treatment mediated an increase in the size and number of 

vacuoles and autophagy structures, also consistent with the changes in LC3B-II 

abundance (Figure 5-4). 

 

In addition to visualising autophagy structures, another aim of TEM was to count these 

structures, however this proved difficult due to limited resolution of the membranes 

and some uncertainty as to the nature of the structures observed with autophagy 

inhibitor treatment. A trial counting of autophagy structures, based on guidance from 

the literature 313 181 314, was performed in the MV4-11 samples in order to determine 

the numbers of autophagosomes, autolysosomes and lysosomes (Figure 5-7). 

Consistent with the LC3B-II results the number of autophagosomes/cell in the CX-5461 

treated samples slightly increased compared to the vehicle, while a 3-fold change was 

observed in the serum-starved, chloroquine, CX-5461 + chloroquine, and bafilomycin-

treated samples compared to vehicle. Autolysosomes were rarely detected across all 

the samples, and were predominantly identified in the vehicle, serum starved and 
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CX-5461 -treated samples, with none observed in the chloroquine, CX-5461 + 

chloroquine and bafilomycin-treated cell. While this was consistent/correlated with 

the extent of autophagy inhibition, since the overall numbers of structures identified 

were small definitive conclusions cannot be drawn. Lysosomes were also rarely 

detected in the samples, with slightly more in the chloroquine, CX-5461 + chloroquine 

and bafilomycin samples, again consistent with autophagy inhibition. 

 

 

 
Figure 5-7: Quantification of autophagy structures observed by TEM in MV4-11 cells 

The human AML cell line MV4-11 was exposed to vehicle, serum starvation (SS), 20nM 

bafilomycin (Baf), 1µM CX-5461 (CX), 40µM chloroquine (CQ) or CX-5461+chloroquine 

(CX+CQ) for 24 h, fixed and processed for transmission electron microscopy (Section 2.7). 

Samples were de-identified and 10 cells were imaged/treatment. Counting of autophagy 

structures was performed and then the samples were re-identified. N=1. 
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5.2.4 Combining alternative autophagy inhibitor bafilomycin with 
CX-5461 

To further evaluate if autophagy inhibition synergises with CX-5461 treatment, 

combination testing was performed with an alternative autophagy inhibitor, 

bafilomycin A1 (bafilomycin). Bafilomycin blocks autophagosome-lysosome fusion 315, 

thus is a late-stage autophagy inhibitor like chloroquine and demonstrated similar 

effects on the ultrastructure of the AML cells as chloroquine treatment (Figure 5-6). 

This analysis was performed in the MOLM-13 cell line which demonstrated the most 

synergy of the four cell lines tested with the combination of CX-5461 + chloroquine 

(Figure 3-12). Synergy testing was performed as previously (Methods section 2.5.5). 

Figure 5-8 shows that bafilomycin alone at concentrations up to 15nM had no effect 

on cell viability. 11/15 of the combinations of CX-5461 with bafilomycin had a 

synergistic effect on the total viable cell number of MOLM-13 cells, particularly at 

300nM CX-5461 or higher. This indicates that bafilomycin, like chloroquine, is 

synergistic in combination with CX-5461 in vitro, supporting the conclusion that 

autophagy inhibition mediates the synergy between the two drugs. However, like 

many drugs depending on the concentration evaluated, bafilomycin can mediate other 

effects in cellular processes, such as directly altering mitochondrial function 316,317, so 

this evidence should be considered supportive but not definitive. In order to 

conclusively determine the role of autophagy inhibition in combination with ribosome 

biogenesis inhibition, a genetic approach is required. 
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Figure 5-8: Alternative autophagy inhibitor bafilomycin A1 synergises with CX-5461 to 

reduce AML cell number 

MOLM-13 cells were cultured for 96 h in the presence of CX-5461 or bafilomycin (baf), 

as single agents or in combination. Total viable cell number was determined using the 

MTT assay (Methods section 2.5). Graphs show the meanSD of n=3 experiments. In 

order to determine if a combination was synergistic the combination index (CI) of each 

data point was calculated using CompuSyn (Methods Section 2.5.5) and displayed in 

the inlayed table (synergism was designated as a CI value <0.75, shown in green). 
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5.2.5 Combining CX-5461 treatment with genetic knockdown of 
autophagy proteins 

Human AML cell lines MV4-11, THP-1 and MOLM-13 with stable doxycycline-inducible 

shRNA constructs to Beclin 1 (BECN1) or ATG7 (2 targeting sequences per gene) were 

generated using lentiviral transduction (Section 2.10). Induction of shRNA expression 

with doxycycline was performed for 72 h, and the cells then treated with CX-5461 for a 

further 96 h before cell viability was analysed using the MTT assay (Section 2.5). 

Knockdown of the autophagy proteins was also assessed by western blot analysis 

(Section 2.8). 

 

Analysis of the controls (Figure 5-9) shows that the sensitivity of the non-targeting cell 

lines to CX-5461 is consistent with the viability results of the parental cell lines in 

Chapter 3 (Table 3-4) and that doxycycline treatment alone did not affect viability in 

any of the three cell lines compared to the no-doxycycline controls. Western blot 

analysis revealed that partial knockdown of protein expression was achieved in all the 

cell lines with the targeting shRNA sequences, but not in the non-targeting control. 

Neither BECN1 shRNA target nor the two ATG7 shRNA targets lead to a significant 

change in viability in combination with CX-5461 treatment when compared to the non-

targeting control in the 3 cell lines tested (Figure 5-9). Thus, the genetic knockdown of 

autophagy proteins did not synergise with CX-5461 treatment, which suggests that the 

synergy observed between CX-5461 + chloroquine (or bafilomycin) is not due to 

autophagy inhibition. 



 171 

 

 

Figure 5-9: Genetic knockdown of autophagy-related genes BECN-1 and ATG-7 does not 

synergise with CX-5461 to reduce AML cell number 

 

AML cell lines containing inducible shRNA sequences to BECN1 or ATG7 were treated with 

doxycycline (dox) for 72 h to induce shRNA expression, then treated with CX-5461 for a 

further 96 h. Cell viability was assayed with the MTT assay (Section 2.5) and expression of 

BECN1 and ATG7 protein was assayed by western blot analysis (Section 2.6). A repeated 

measure two-way ANOVA with Tukey’s multiple comparison correction was used to 

compare the viability between the cell lines with different concentrations of CX-5461. No 

significant differences were observed. N=3 for the MTT assay, n=1 western blot. 
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5.2.6 Metabolic flux analysis 

Given the reported effects of chloroquine altering mitochondrial function (Section 

5.1.2.4), and the appearance of mitophagic-like structures in the TEM in the 

chloroquine and CX-5461 + chloroquine-treated samples (Figure 5-6), alterations in 

mitochondrial function were analysed as a potential mechanism of synergy through 

performing a mitochondrial stress test (Section 2.11). Following 24 h drug pre-

treatment, the oxygen consumption rate (OCR) was measured as an indicator of 

mitochondrial respiration and the extracellular acidification rate (ECAR) as an indicator 

of glycolysis using the Seahorse Extracellular Flux Analyser. In addition, drug-naïve cells 

were treated at the time of the assay (acute treatment). Two cell lines were evaluated; 

the THP-1 cell line (limited sensitivity to CX-5461 + chloroquine by viability assay), and 

the MOLM-13 cell line (very sensitive to the combination; Figure 3-12). 

 

For the MOLM-13 cells, consistent with them being much more sensitive to 

combination treatment in terms of viability, the shifts in the energy profile were 

pronounced (Figure 5-10a). CX-5461 treatment shifted the flux towards mitochondrial 

respiration and away from glycolysis, whereas the combination treatment shut down 

both mitochondrial respiration and glycolysis resulting in a quiescent phenotype, 

represented by a significantly lower rate of basal respiration compared to the vehicle, 

CX-5461 or chloroquine-treated cells (Figure 5-10b). Consistent with the THP-1 cells 

being less sensitive to the drugs, both individually and in combination, any shifts in the 

energy profile (Figure 5-10a) were minimal. Specifically, CX-5461 treatment 

significantly increased the maximal respiration (Figure 5-10c) and spare respiratory 

capacity (Figure 5-10d) in the MOLM-13 cells, with an upward trend observed in the 

THP-1 cells, while chloroquine significantly decreased the maximum respiration rate in 

the MOLM-13 cells. Interestingly, combination treatment had the opposite effect on 

the respiratory capacity of the two cells lines. In the THP-1 cells combination 

treatment significantly increased the maximal respiration and spare respiratory 

capacity, while in the MOLM-13 cells it was significantly decreased. These results 

suggest that CX-5461 mediates mitochondrial stress and the cells are adapting to this, 

however, combination treatment mediates loss of mitochondrial viability due to the 

effects of chloroquine, explaining why MOLM-13 cells are particularly sensitive to the 

combination treatment in terms of viability. 
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Acute drug treatment at the time of the assay indicated that CX-5461 and chloroquine 

as single agents did not significantly affect respiratory capability compared to vehicle 

(Appendix Figure 5-1), indicating that these drugs are not likely to be directly affecting 

the mitochondria. 

 

Figure 5-10: CX-5461 and chloroquine synergise to alter mitochondrial function 

AML cell lines THP-1 and MOLM-13 were treated with vehicle, 1µM CX-5461 (CX), 40µM 

chloroquine (CQ) or CX-5461+chloroquine (CX+CQ) for 24 h, equal cell number plated, 

then metabolic flux analysed using a mitochondrial stress test on the Seahorse XFe97 

analyser (Section 2.11). a) Energy map of basal levels of oxygen consumption rate (OCR) 

and extracellular acidification rate (ECAR), b) Basal respiration rates c) Maximal 

respiration rate following mitochondrial uncoupling with FCCP, d) Spare respiratory 

capacity (difference in the OCR between the maximum respiration rate and basal rate). 

One-way ANOVA was performed with a Tukey’s multiple comparison test, the adjusted p-

value is shown. Not significant P > 0.05, *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, **** P ≤ 

0.0001. Significant results only marked. N=3. Compared to vehicle, unless indicated by a 

bar. 
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5.3 Discussion 

5.3.1 Summary of results and synergy hypothesis 

In this chapter, four potential mechanisms and endpoints of synergy between CX-5461 

and chloroquine were assessed; cell cycle, cell death, inhibition of autophagy and 

altered mitochondrial activity. Chloroquine enhanced the cell cycle and cell death 

endpoints of exposure to CX-5461. While CX-5461 induced autophagy in some cell 

lines and the alternative autophagy inhibitor bafilomycin also synergised with CX-5461 

to reduce AML cell viability, however, the genetic knockdown of autophagy genes did 

not synergise with CX-5461 treatment, suggesting that autophagy does not play a 

significant role in the synergy between CX-5461 and chloroquine. Interestingly, 

metabolic flux analysis revealed that the combination of drugs caused significant 

changes in mitochondrial respiration which is a potential mechanism of synergy. 

 

Based on the results presented in this chapter, the following hypothesis was devised to 

account for the synergy observed between CX-5461 and chloroquine in AML cells 

(Figure 5-11). As an established autophagy inhibitor chloroquine blocks autophagy, 

including mitophagy (the recycling of mitochondria), thus can result in an 

accumulation of dysfunctional mitochondria in the cell. In addition, metabolic flux 

analysis suggests that the combination of CX-5461 and chloroquine may indirectly 

impact on the mitochondria, placing the cells under a high degree of metabolic stress 

and leading to the endpoints of cell cycle arrest and cell death. 
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Figure 5-11: Hypothesis of the mechanisms of synergy between CX-5461 and chloroquine 

Based on the results presented in this chapter the following hypothesis was devised to 

account for the synergy observed between CX-5461 and chloroquine in AML cells. As an 

established autophagy inhibitor chloroquine blocks autophagy, including mitophagy (the 

recycling of mitochondria) leading to an accumulation of dysfunctional mitochondria which 

causes some degree of metabolic stress. Flux analysis results also indicate that the 

combination of the drugs might be having indirect effects on the mitochondria, placing the 

cells under a high degree of metabolic stress and leading to cell cycle arrest and cell death. 
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5.3.2 Autophagy as a potential mechanism of synergy 

Interestingly, mechanistic analysis indicated that the synergy observed between CX-

5461 and chloroquine is not due to autophagy inhibition by chloroquine, its major, 

well-characterised mechanism of action (Section 5.1.2.2). It is also surprising that CX-

5461 does not appear to robustly induce autophagy in all AML cell lines (Figure 5-4) 

given the link between inhibition of Pol I transcription and autophagy induction. 

Specifically, inhibition of Pol I transcription with adriamycin and actinomycin-D, or 

knockdown of Pol I transcription factors in a breast cancer cell line induces nucleolar 

disruption mediated autophagy 318 and CX-5461 induces autophagic cell death in 

osteosarcoma cell lines 83. While LC3B-II levels usually indicate changes in autophagic 

flux there are some exceptions. In ovarian cancer cell lines elevated LC3B-II following 

oxidative stress was shown not to be associated with induction of autophagy but 

rather anoikis (detachment-induced programmed cell death) 319. Furthermore, 

accumulation of LC3B-II protein is cell line dependent following autophagy induction 

by nutrient starvation 320. An alternative method of measuring autophagic flux 

following CX-5461 and combination treatment would be to use the long-lived protein 

degradation assay, where the degradation of radiolabelled long-lived proteins is used 

as a readout of autophagic activity, as has been utilised to study autophagic flux in 

AML cells in response to differentiation induction 321, providing a more direct measure 

of autophagy. 

 

TEM analysis is also considered a reliable method of observing autophagic activity, 

however counting the number of autophagy structures proved challenging. Overall, 

while the results are consistent with the changes in LC3B-II abundance, the variation 

was consistently high across all the samples (Figure 5-7), and counting 3D structures in 

a 2D context is not ideal. Thus, an alternative assay to count the number of autophagy 

structures would be to perform immunofluorescence with the LC3B antibody and 

count the number of LC3B positive puncta, which mark the membrane of the 

autophagosomes and autolysosomes 322. A technique known as correlative light and 

electron microscopy (CLEM), which combines light and electron microscopy on the 

same sample, would also be a beneficial technique to utilise here as the data of light 

and electron microscopy could be correlated on the same sample to identify the 
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membrane of the autophagy structures based on LC3B expression, then characterise 

the structures as autophagosomes or autolysosomes based on appearance by TEM. 

 

Due to the multiple effects of chloroquine (Section 5.1.2), a genetic approach is also 

recommended to assist in the identification of mechanisms of action181. Interestingly, 

genetic knockdown of autophagy-related genes Beclin 1 and ATG7 did not synergise 

with CX-5461 to reduce AML cell number (Figure 5-9), indicating that CX-5461 and 

chloroquine are not acting synergistically through the action of chloroquine as an 

autophagy inhibitor. However, the success of the knockdown needs to be considered. 

Western blot analysis confirmed that partial, but not complete, knockdown of Beclin 1 

and ATG7 protein expression was achieved. Other studies confirmed that a 50% 

knockdown of expression of these proteins has functional effects in other cell types 

295,297; whether this knockdown is sufficient to inhibit autophagy in AML cells is 

unknown and should be assessed through methods such as LC3B-II expression by 

western blot (as in Figure 5-4) or long-lived protein degradation assay 321, particularly 

in the context of autophagy induction through serum starvation, for example. It is also 

possible that there was some kind of compensatory mechanisms that occurred over 

the course of the experiments, and this could be further analysed by knocking down 

two or more autophagy-related genes. Gene editing technology (for example CRISPR 

deletion) could be employed as an alternative approach to knockdown 181. 

 

5.3.3 Mitochondrial effects as a potential mechanism of synergy 

TEM analysis revealed numerous electron-dense structures in the bafilomycin, 

chloroquine, and CX-5461 + chloroquine-treated cells. Such electron-dense structures 

have previously been identified as mitophagy structures (autophagosomes containing 

mitochondria) in a study evaluating the effect of the MDM2 inhibitor Nutlin 3a in AML 

cell lines 323. As chloroquine and bafilomycin are late-stage inhibitors of autophagy, 

blocking the fusion of autophagosomes with lysosomes, the increased appearance of 

autophagosomes containing un-degraded cargo is unsurprising. However, the 

frequency of autophagosomes containing mitochondria suggests that mitophagy is 

upregulated, thus the autophagy inhibitors could be indirectly affecting mitochondrial 

function, as has been previously suggested 111. A technique to identify the contents of 

these electron-dense structures would be immunofluorescence using the autophagy 



 180 

marker LC3B in combination with mitochondrial or lysosomal markers in order to 

evaluate co-localisation, a technique which has been used to study mitophagy in the 

context of heart infarctions 324. CLEM could also be used to correlate autophagy, 

mitochondrial and lysosomal markers by immunofluorescence with the electron-dense 

structures identified by TEM. This technique has been used to study autophagosome 

biogenesis in HeLa cells 325 and to study the autophagy in the context of 

Mycobacterium infection in a whole organism Zebrafish model 326. 

 

Mitochondrial flux analysis indicated that the combination of CX-5461 and chloroquine 

lead to significant changes in mitochondrial function, perhaps due to inducing 

mitochondrial stress (Figure 5-10). Changes in the OCR, such as elevated maximal 

respiration and spare respiratory capacity in MOLM-13 following CX-5461 treatment 

(Figure 5-10b,c), could be due to changes in mitochondrial number, expression and/or 

the activity of mitochondrial complexes or mitochondrial viability. Mitochondria 

number can be assessed by determining mitochondrial DNA content using qPCR 111,327 

or digital droplet PCR 328. The expression of mitochondrial complexes, including 

aconitase, citrate synthase and complex IV subunits, can also alter cellular respiration 

rate which can be assessed by western blot 111. Activity of the individual mitochondrial 

complexes can be determined by permeabilising the cells and measuring the OCR with 

Complex I, II or IV-linked substrates using the Seahorse, as has been performed in 

primary neurons with chloroquine and bafilomycin treatment 111. Changes in 

mitochondrial viability can be assessed using flow cytometry and the membrane-

permeant fluorescent dye JC-1, with its localisation in the mitochondria, forming 

aggregates and leading to a shift in the wavelength of fluorescence emission, being a 

measure of mitochondrial membrane potential, which has also been utilised to assess 

mitochondrial changes in AML cell lines treated with chemotherapeutics 106. 

 

A potential mechanism via which CX-5461 and chloroquine are synergising through the 

mitochondria is by the production of ROS. Autophagy plays a role in controlling ROS 

levels through removing dysfunctional mitochondria 102, as such is in unsurprising that 

blocking autophagy (genetically or chemically) mediates increased ROS levels in 

various cell types 329, including cancer cells such as hepatocellular carcinoma 330. It has 

also been shown that inhibition of ribosome biogenesis with CX-5461 leads to ROS 
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accumulation in aortic medial smooth muscle cells 331, however, the effects of CX-5461 

on ROS levels in AML cells is not yet characterised. If CX-5461 does elevate ROS levels 

in AML cells, this could be a mechanism by which CX-5461 and chloroquine synergise, 

which presumably is mitochondria-dependent, to affect AML cell viability. Since AML 

cells are more sensitive to oxidative stress than normal cells 332 this would fit with our 

hypothesis. To evaluate this possibility, the level of intracellular ROS following CX-

5461, chloroquine or combination treatment could be measured using flow cytometry 

331. 

 

Narrowing down the mechanism of action in the mitochondria will greatly assist in 

guiding the rational choice of alternative inhibitors to combine with CX-5461. Further 

discussion of targeting mitochondria in cancer, including mitochondrial inhibitors with 

its clinical potential, is explored in Chapter 6. 

 

5.3.4 Other potential mechanisms of synergy 

There are multiple other potential mechanisms of synergy that, due to time 

limitations, were not assessed in this thesis. These include the nucleolar stress 

response, DNA damage signalling, effects on Pol I transcription and lysosomal effects 

(Figure 5-2). 

 

 Nucleolar stress response 

The nucleolar stress response is activated by multiple cellular stresses, including Pol I 

transcription inhibition, resulting in accumulation of p53 (Section 5.1.1.3). It was 

recently demonstrated that autophagy induction is a downstream consequence of 

such stress signalling. Chemical inhibition of Pol I transcription and siRNA knockdown 

of basal Pol I transcription factor Transcription Initiation Factor IA (TIF-IA) resulted in 

nucleolar disruption and autophagy induction, and this was dependent on nucleolar 

protein nucleophosmin (NPM) 318. By inhibiting autophagy with chloroquine this may 

enhance nucleolar stress signalling resulting in reduced cell viability. This can be 

assessed by determining p53 and p21 expression by western blot 1 and assessing the 

translocation of the nucleolar marker protein nucleolin through immunofluorescence 

as a measure of nucleolar disruption 318. 
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 DNA damage signalling 

Chloroquine has long been known to have DNA intercalating properties, mediating 

activation of ATM signalling (Section 5.1.2.3) which may be the focal point for synergy 

with the DNA damage-like signalling induced by CX-5461 (Section 5.1.1.4). In 

erythroleukaemia cells, a subset of AML, DNA intercalation was not observed below 

600µM chloroquine treatment 176, thus as the highest concentration of chloroquine 

used in these in vitro experiments was 40µM, it is unlikely to have a significant DNA 

intercalating effect. However, there is the potential that chloroquine might accumulate 

to higher levels in different AML cell lines so it should still be considered. This could be 

assessed through western blot analysis of p53, Chk1, Chk2, pChk1 and pChk2 

expression 1, in addition to expression of the DNA double-strand break marker γH2AX 

to check for global DNA damage 268. 

 

 Pol I transcription inhibition 

While CX-5461 is a well-established inhibitor of Pol I transcription, including in AML 

cells 1, the effects of chloroquine on Pol I transcription have not been reported thus 

far. Due to its DNA intercalating properties 176, there is the potential that chloroquine 

could disrupt rDNA transcription. This could be assessed with qRT-PCR for 45S pre-

rRNA 81 or [32P] orthophosphate labelling to measure 45S pre-RNA synthesis 1,78. If 

chloroquine was to also inhibit ribosome biogenesis, this may be the focus of the 

synergy observed in combination with CX-5461. 

 

 Lysosomal effects 

As outlined in Section 5.1.2.5, in addition to a role in autophagy, lysosomes also act as 

hubs for nutrient signalling through mTORC1. Metabolic flux analysis revealed that the 

combination of CX-5461 and chloroquine altered mitochondrial respiration (Figure 

5-10), which may be due to chloroquine inhibiting lysosome function, specifically the 

nutrient signalling pathways. This could also explain why the alternative inhibitor 

bafilomycin A1 also synergises with CX-5461 and reduces AML cell number (Figure 

5-8), specifically bafilomycin A1 inhibits lysosomal function through its actions on the 

vacuolar-ATPase 315 (which is known to play an important role in the nutrient signalling 

of the lysosome through mTORC1 309). Activation of mTORC1 following CX-5461, 

chloroquine or combination treatment can be assessed by western blot for 

phosphorylation of mTORC1 downstream target S6K1 (pT398) in the presence or 
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absence of amino acids, also using immunofluorescence to evaluate co-localisation of 

mTORC1 and the lysosomal marker lysosomal-associated membrane protein 1 

(LAMP1) 309. 

 

5.3.5 Conclusion 

Thus far, the mechanistic and endpoint analysis of the synergy between CX-5461 and 

chloroquine indicates that cell cycle arrest, cell death and altered mitochondrial 

activity are likely to be the processes involved in the synergy. The drug’s effects on the 

mitochondria are novel and a promising finding. While there appears to be limited 

clinical potential for the use of chloroquine in combination with CX-5461 (as addressed 

in Chapter 4) this data does present an alternative avenue for combination therapy, 

thus narrowing down the search for drugs that may have improved efficacy and 

reduced toxicity when combined with CX-5461, further discussed in Chapter 6. 
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Chapter 6 Discussion 
 

6.1  Summary of results 

Targeting ribosome biogenesis, a cellular process frequently upregulated in cancer, 

with the novel Pol I transcription inhibitor CX-5461 is highly efficacious in pre-clinical 

models of solid and haematological cancers 1,81, which lead to Phase I and I/II clinical 

trials 82,85. However, as is common with single-agent therapies, the in vivo studies 

demonstrated that eventually, resistance to CX-5461 occurs, highlighting the need for 

a drug combination approach. Based on the well-established link between ribosome 

biogenesis and cellular metabolism, both in normal cells and also a cancer setting, it 

was hypothesised that targeting these two processes in combination would prove 

more efficacious in AML, a model of aggressive malignancy with poor therapeutic 

options when compared to the single drugs alone. In vitro synergy testing in AML cell 

lines was performed to identify promising drug combinations of interest (Chapter 3), 

which were then tested for efficacy in in vivo transplant models of AML (Chapter 4). 

Finally, in vitro mechanistic analysis of the most promising drug combination was 

performed (Chapter 5). 

 

In vitro testing of the novel ribosome biogenesis inhibitor CX-5461 in combination with 

10 clinically-approved metabolism-modifying drugs (Chapter 3) confirmed that of 

these 5 drugs (orlistat, DCA, ritonavir, omeprazole and chloroquine) acted 

synergistically with CX-5461 to reduce AML cell viability (Figure 3-19), with the 

autophagy inhibitor chloroquine being the most effective (Figure 3-12). Three 

synergistic combination therapies were further evaluated in an in vivo syngeneic 

mouse AML model (Chapter 4). Orlistat and DCA treatment did not improve survival 

when combined with CX-5461 and compared to CX-5461 alone (Figure 4-4, Figure 4-5), 

whereas chloroquine did (Figure 4-6). CX-561 + chloroquine treatment was also 

evaluated in human cell line xenograft mouse models, but found to have limited 

efficacy (Figure 4-8, Figure 4-9), despite robust in vitro synergy. As the dosing of CX-

5461 and chloroquine could not be increased further due to toxicity, mechanistic 

analysis was then performed in order to identify an alternative to chloroquine with 

reduced toxicity, and potentially improved efficacy (Chapter 5). CX-5461 + chloroquine 
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synergy was observed at the level of cell cycle arrest and cell death in all four cell lines 

tested (Figure 5-3), and the upstream mechanisms of synergy leading to this was then 

assessed. The role of autophagy in the synergy between CX-5461 and chloroquine was 

not definitive. CX-5461 induced autophagy in some cell lines but not others, and this 

did not correlate with sensitivity to CX-5461 with respect to viability (Figure 5-4, Figure 

5-5). In addition the autophagy inhibitor bafilomycin also synergised with CX-5461 

(Figure 5-8), however genetic knockdown of autophagy-related genes, Beclin 1 and 

ATG7, did not synergise with CX-5461 treatment (Figure 5-9), suggesting autophagy 

may not be the mechanism of synergy between CX-5461 and chloroquine, although 

the knockdown was partial (and the phenotypic consequences of the knockdown on 

autophagy are yet to be confirmed) and there might have been compensatory 

mechanisms involved (as outlined in Section 5.3.2), thus conclusions regarding the role 

of autophagy cannot be drawn yet. Metabolic flux analysis revealed that the drug 

combination significantly affected mitochondrial activity (Figure 5-10), decreasing 

respiration in the MOLM-13 cell line which was very sensitive to the drug combination 

with respect to viability, whereas increased respiration in the THP-1 cell line which had 

limited sensitivity to the drug combination. These results indicate that the combination 

of CX-5461 and chloroquine can place cells under mitochondrial stress and that drug 

combination sensitivity may be dependent on the cells ability to adapt/respond to 

such stress. Therefore, direct drug targeting of the mitochondria was identified as a 

promising combination with ribosome biogenesis inhibition, and potentially more 

efficacious than CX-5461 plus chloroquine. 

 

6.2  Targeting mitochondria in AML 

Mechanistic analysis of CX-5461 and chloroquine in Chapter 5 revealed that 

combination therapy with these drugs significantly affected mitochondrial respiration 

(Figure 5-10), which is a published effect of chloroquine via inhibition of mitophagy 

and perhaps other indirect effects on the mitochondria 111, however, this is a novel 

response to CX-5461 treatment. Interestingly, in the AML cell lines, a significant 

decrease in maximum mitochondrial respiration was observed in the MOLM-13 but 

not the THP-1 cell line, thus the response was not common to all cell lines. Potentially 

a more selective mitochondrial inhibitor is required to: 

- Directly target mitochondrial activity; 
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- Reduce side effects that might make some cells not responsive; 

- Obtain a more uniform response in all cells. 

Thus ,directly targeting mitochondrial function was identified as a promising approach 

in combination with ribosome biogenesis inhibition. There are currently several 

clinically-used medications that target well defined mitochondrial functions including 

metformin, phenformin, tigecycline and doxycycline (Figure 6-1). 
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6.2.1 Clinical agents for targeting mitochondria 

Metformin is an anti-diabetic medication that interferes with mitochondrial function 

by inhibiting complex I of the mitochondrial electron transport chain (Section 

3.1.2.2)132. Metformin was selected as a candidate for evaluation with CX-5461 in vitro 

in Chapter 3, but was not evaluated further as it interfered with the mechanism of 

 
Figure 6-1: Targeting cancer mitochondria 

Various clinically approved drugs target the mitochondria and could be repurposed as 

cancer therapeutics. Chloroquine is known to inhibit mitophagy (the recycling of 

damaged mitochondria) through inhibition of autophagy, and potentially has direct 

effects on mitochondrial function through unknown mechanisms. Anti-diabetic 

medications metformin and phenformin target complex I of the electron transport chain 

(ETC). Antibiotic tigecycline inhibits the function of the mitochondrial ribosome to 

translate components of the ETC complexes. 
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action of both viability assays used (Figure 3-3, Figure 3-4). Entry of metformin into 

cells is mediated by organic cation transporters (OCTs), particularly OCT1 333,334, which 

are highly expressed only on certain cell types including hepatocytes 334 and adipocytes 

335, facilitating the effects of metformin as an anti-diabetic. In other cell types 

expression of OCTs is often low, including in AML patient bone marrow samples 336. 

Metformin has shown efficacy in AML cells in vitro but only at concentrations of 10mM 

134, which is more than 10-fold higher than plasma concentrations achieved in human 

patients 178, and this is likely due to the low expression of OCTs in these cells. In the 

same study daily dosing of metformin by IP injection significantly reduced tumour 

volume in a subcutaneous AML cell line xenograft model, however as discussed in 

Section 4.3.1.2, dosing via IP might result in higher concentrations of drug reaching the 

subcutaneous AML cells than achieved in a orthotopic model and also does not 

represent the normal oral dosing route for human patients. In a retrospective analysis 

of diabetic patients with AML, metformin treatment did not have an effect on overall 

survival or disease-free progression337, potentially due to the drug not reaching the 

cancer cells at a high enough concentration to have efficacy. Together these factors 

suggest that metformin could be useful for in vitro mechanistic analysis with CX-5461, 

but potentially have limited clinical use in AML, unless a novel formulation is devised 

to improve uptake and targeting to the mitochondria (for example metformin coupled 

to a mitochondrial vector showed efficacy in pancreatic cancer in vitro and in vivo 338). 

 
Phenformin is an alternative to metformin, another anti-diabetic medication that 

inhibits complex I of the electron transport chain339. While phenformin is also 

transported into hepatocytes by OCT1, it displays a higher affinity for the transporter 

and transport activity compared to metformin 333, and thus could be a better 

alternative to treat cancer cells that have low OCT expression. However, the clinical 

use of phenformin has been stopped due to the incidence of lactic acidosis in patients, 

particularly those with renal or liver insufficiency 340,341 which would also limit its 

clinical potential as a therapy in cancer (although the risk: benefit profile can vary 

greatly between diseases such as diabetes and cancer). There is certainly a need for 

third-generation derivatives of metformin with improved efficacy and reduced toxicity. 

A novel metformin derivative HL010183 showed increased efficacy against triple-



 189 

negative breast cancer 342 and cutaneous squamous cell carcinoma 343 compared to 

metformin in vitro and in vivo, however, it is yet to be assessed in clinical trials. 

 
Tigecycline is a broad-spectrum antibiotic that binds to the bacterial 30S ribosomal 

subunit, inhibiting translation and thus killing the bacteria 344. Tigecycline is 

administrated intravenously and has a favourable clinical profile, causing only mild side 

effects in most patients, including nausea, diarrhoea and vomiting, which are thought 

to be due to the drug irritating the gastric mucosa 345. Due to the similarities between 

the bacterial and mitochondrial ribosomes, tigecycline has also been shown to affect 

mitochondrial function in eukaryotic cells by inhibiting the mitochondrial ribosome to 

translate the 13 proteins encoded by the mitochondrial genome, which comprise 

components of the mitochondrial electron transport chain complexes I-IV 106, making it 

of interest as a potential cancer therapeutic. Tigecycline has been shown to have 

strong efficacy in AML as a single agent 106. In a panel of 9 human and mouse AML cell 

lines in vitro treatment with tigecycline significantly reduced AML cell viability within 

72 hours, and induced apoptosis within 6 hours. Importantly, 20 human patient AML 

samples, but not normal hematopoietic cells, displayed a similar or greater sensitivity 

in terms of viability to tigecycline compared to the AML cell lines. Pre-treatment with 

tigecycline significantly reduced the clonogenic potential of primary AML cells but not 

normal hematopoietic cells in vitro, and similarly reduced the repopulating potential of 

the AML cells in vivo in NSG mice, thus targeting leukaemia-initiating cells. The effects 

of tigecycline on mitochondrial ribosome translation were confirmed, with a reduction 

of protein levels and increase in mRNA of the respiratory complex IV subunits 

cytochrome C oxidase-1 and 2 (cox 1 and 2) which are translated by mitochondrial 

ribosomes, but not grp78 and X-linked inhibitor of apoptosis protein (XIAP) which are 

translated by cytosolic ribosomes. Incorporation of [3H]-leucine into mitochondria was 

also significantly reduced with tigecycline treatment. In the same study 106, in a 

subcutaneous human cell line xenograft model, twice daily IP injections of 50 or 

100mg/kg tigecycline for three weeks significantly reduced tumour growth compared 

to the control, without gross changes (toxicity) to the organs. Based on these findings a 

Phase I dose-escalation study of tigecycline in 27 AML patients was commenced, with 

daily IV dosing 5 or 7 days a week for 2 weeks, followed by 1 week off the drug, and 

this cycle continued until disease progression 346. Up to four cycles of treatment were 
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completed and the maximum tolerated dose was determined to be 300mg/day single 

dose. Despite reaching a peak serum concentration (Cmax) of approximately 12μM, 

which has been demonstrated to be efficacious in vitro 106, no partial or complete 

responses were observed (as measured by number of blasts in the bone marrow, 

neutrophil count and platelet count) and there was no consistent increase in Cox1 

mRNA or decrease in protein (due to inhibition of translation) in peripheral blood 

mononuclear cells, indicating the drug was not hitting its target. The biological half-life 

(t1/2) was found to be approximately 9.5 hours, 2–6‐fold lower than that reported in 

non-cancer patients 347-349, perhaps explaining the lack of a response. Clearly, further 

adjustments to the dosing schedule are required in order to achieve efficacy in AML 

(such as twice daily as performed in non-cancer patients 347-349), however overall the 

toxicity results were promising. 

 
Doxycycline is another broad-spectrum antibiotic drug that is being investigated as a 

potential cancer therapeutic. The semi-synthetic tetracycline drug, doxycycline has 

been used for decades as an anti-microbial in both animals and humans, with either 

oral or intravenous administration 350. Like tigecycline, doxycycline targets bacterial 

ribosome translation through binding the 30S ribosomal subunit 351 and inhibits 

mitochondrial ribosome translation in a variety of eukaryotic models at a 

concentration as low as 0.5µg/mL in some 352. Doxycycline is commonly used in both in 

vitro and in vivo models for research to control gene expression, known as the Tet-

On/Off systems (as in Methods 2.10). In the genetic knockdown of autophagy 

experiments presented in this thesis, there was no synergy between CX-5461 and 

chloroquine in the context of 1µg/mL doxycycline treatment to induce shRNA 

expression (Figure 5-8), which does not support the hypothesis that ribosome 

biogenesis synergises with inhibition of mitochondrial function. However, it is possible 

that this concentration of doxycycline was insufficient to inhibit mitochondrial 

translation in the AML cell lines, as was observed in the lung cancer cell line A549 

where 1µg/mL doxycycline was insufficient to inhibit mitochondrial ribosome 

translation and 5µg/mL or higher was required 352. This requires confirmation 

experimentally in the AML cell lines, and can be done so by evaluating the protein 

levels of the mitochondrial ribosome-translated protein Cox 1 352. In a variety of solid 

tumours including breast, prostate and lung cancer mitochondrial biogenesis was 
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identified as a feature of cancer stem cells and thus targeting this with doxycycline 

inhibited tumour sphere formation, particularly at 10µM or higher 353. In a small 

clinical pilot study of 15 breast cancer patients, 14 days of oral doxycycline therapy 

significantly reduced biomarkers of stemness CD44 and aldehyde dehydrogenase 1 

(ALDH1; markers of cancer stem cells) in almost 90% of patients, however, inhibition of 

mitochondrial translation was not confirmed 354. 

 

While these clinically-used mitochondria-inhibiting agents directly target 

mitochondrial activity, some issues with concentration/dosing required to achieve this 

inhibition, as outlined above, suggests that novel drugs with increased potency for 

inhibiting mitochondrial activity would be an even more promising approach. 

 

6.2.2 Novel mitochondrial inhibitors 

Novel mitochondrial-targeting agents are also in development as cancer therapeutics. 

One example is the novel compound CCI-006 which has shown efficacy in MLL-

translocated AML cell lines through inhibiting mitochondrial respiration, although the 

exact mechanism of action is still to be determined 355. A relatively small subset of AML 

cell lines were not responsive to CCI-006 although they did display a similar reduction 

in mitochondrial respiration as the CCI-006 sensitive cell lines and had a stronger 

glycolytic phenotype, highlighting the variability of AML cell lines with respect to 

reliance on mitochondrial function. Such novel therapies could provide a more 

targeted approach to inhibiting mitochondrial function in cancer, compared to the 

clinically-used drugs outlined in Section 6.2.1, but will require considerable study to be 

translated to the clinic. 

 

6.2.3 Combining CX-5461 with mitochondrial inhibitors 

Mitochondrial flux analysis (Figure 5-9) suggested that CX-5461 and chloroquine 

synergised at the level of mitochondrial function, as such combining drugs that 

specifically target the mitochondria is a promising approach to improve the efficacy of 

CX-5461. As outlined in Section 6.2, there are currently several clinically approved 

drugs that target mitochondrial function that warrant evaluation in combination with 

CX-5461.  
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Ideally, these mitochondrial-targeting drugs would be evaluated for synergy with CX-

5461 following the experimental approach used in this thesis. Specifically they would 

first be tested in vitro in AML cell lines first (as in Chapter 3), however, a different 

readout to that used in this thesis may be required since metformin interfered with 

the readouts for both the neutral red and MTT assays (Figure 3-3, Figure 3-4). One 

such assay could be using high throughput flow cytometry to determine cell number 

via physical particle counting (cell size and granularity), which is not dependent on 

biochemical functions, including mitochondrial function. If synergy is observed with 

these mitochondrial-targeting agents in combination with CX-5461 in multiple AML cell 

lines (as in Figure 3-19), as done in Chapter 4 the combination therapy will be 

evaluated for efficacy using in vivo mouse models of AML. Issues with the in vivo 

efficacy of the mitochondria-targeting drugs, as well as clinical translatability, as 

outlined above, must be kept in mind when testing any promising combinations in 

vivo, so it will be important to include markers of on-target effects in these studies. 

 

If the drug combination improves survival in the mouse models of AML, mechanistic 

analysis such as those performed in Chapter 5 will be required to confirm the 

mechanisms of action. Specifically, the drugs effect on mitochondrial function will be 

evaluated. For metformin and phenformin; inhibition of complex 1 activity will be 

assessed using the Seahorse XFe analyser 111, for tigecycline; inhibition of 

mitochondrial translation will be confirmed by measuring mRNA and protein levels of 

Cox 1 and 2 which are translated by mitochondrial ribosomes 106,352 and comparing 

these to the levels of cytoplasm-translated succinate dehydrogenase 352, grp78 or XIAP 

106 to confirm that global translation is not inhibited. For all 4 drugs metabolic flux 

analysis, including a mitochondrial stress test and individual complex activity, will be 

conducted using the Seahorse XFe analyser. These assays will also be conducted with 

CX-5461 as a single agent and in combination with the mitochondrial-inhibitors. The 

hypothesis developed in Chapter 5 regarding the mechanism of synergy between CX-

5461 and chloroquine (Figure 5-11) would suggest that directly targeting cancer 

mitochondrial activity in combination with CX-5461 will result in increased synergy in 

vitro and improved efficacy and reduced toxicity in vivo, compared to CX-5461 and 

chloroquine, providing a drug combination with the potential of clinical translation. 
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6.3  Alternative approaches for improving CX-5461 
efficacy 

6.3.1 CX-5461 and immunotherapy 

Evaluation of promising drug combinations in in vivo AML transplant models revealed 

the interesting suggestion that CX-5461 was more effective in the syngeneic MLL/AF9 

NRAS model compared to the xenograft models (Figure 4-6, Figure 4-8, Figure 4-9), 

which is a trend has also been observed by others in the laboratory (unpublished). 

Other than the mouse-derived MLL/AF9 NRAS cells being 10 times more sensitive to 

CX-5461 than the human cell lines (Table 3-4), the major difference between these two 

types of models is the immunodeficiency of the mice used, suggesting that the 

immune system could play a role in the response of the AML cells to CX-5461. As 

suggested in Section 4.3.6, this could be examined by transplanting the mouse-derived 

MLL/AF9 NRAS cell line into the immunocompromised mice normally used for the cell 

line xenograft experiments, and comparing the efficacy of CX-5461 treatment. This is 

important for the clinical development of CX-5461, including any potential of 

combining it with immunotherapy with the aim to improve efficacy in patients. As 

outlined in Section 4.1.1, leukaemia cells can influence the surrounding 

microenvironment, including through preventing the normal immune response to the 

presence of cancer cells. Immunotherapy has shown astounding results in numerous 

cancers including through chimeric antigen receptor (CAR) T cells targeting CD-19 in 

large B cell lymphoma 356 and acute lymphoblastic leukaemia 357. The most striking has 

been through blockade of programmed cell death protein 1 (PD-1)/programmed cell 

death ligand 1 (PD-L1), which mediates an immune checkpoint blockade, in advanced 

melanoma patients 358, which has opened up this field as viable therapies also in the 

treatment of AML 359. Gemtuzumab ozogamicin, a CD33-targeted drug conjugate, is 

the only currently approved antibody-targeted therapy for AML 360, although others 

are in clinical development, including immune checkpoint inhibitors 361. The human cell 

line xenograft models used in this thesis, could be used to evaluate the efficacy of CX-

5461 in combination with immune checkpoint inhibitors including, for example, the 

THP-1 cell line which highly expresses programmed death receptor ligand 1 (PD-L1) 362. 

Testing CX-5461 in combination with PD-1 inhibitors such as pembrolizumab 363 or 
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nivolumab 364, which are also in clinical trials for use in AML, would be rational choices 

to evaluate based on the results presented in this thesis. 

 

6.3.2 Potential mechanisms of synergy not explored in this thesis 

As outlined in Section 5.3.4 there are other potential mechanisms mediating the 

synergy between CX-5461 and chloroquine which were not assessed in this thesis. 

These involve the nucleolar stress response, DNA damage signalling, Pol I transcription 

inhibition and lysosomal effects. One or more of these mechanisms could also be 

contributing to the synergy observed between the two drugs, and thus may also reveal 

novel combination therapy strategies, thus warrant investigation. 

 

6.4  Concluding statement 

The results of this thesis support the well-established link between ribosome 

biogenesis and cellular metabolism within the cell, however importantly for the first 

time, it also demonstrates that targeting these two processes can effectively treat 

AML. Specifically, targeting mitochondrial function in combination with inhibition of 

ribosome biogenesis by CX-5461 is a novel therapeutic approach for AML. Critically, 

this combination was effective in AML, a model of aggressive disease that currently 

has limited therapeutic options in the clinic and thus has the potential to have a 

profound impact on patient care. 

 

While the combination effect of CX-5461 and chloroquine observed in vitro, did not 

always translate well in vivo and toxicity issues were observed, the results in this thesis 

provide a solid platform and rationale to develop similar combinations with limited 

drug toxicity. This may be achieved by repurposing already clinically-approved 

metabolism-modifying drugs, such as metformin or tigecycline which directly target 

the mitochondria and have few side effects, in combination with CX-5461 as cancer 

therapeutics. Such results, if positive, also mean a more rapid translation of promising 

combination therapies to the clinic compared to unapproved drugs. Speeding up the 

process of translating research observations to the clinic from the traditional decades 

to just years, and would be highly beneficial to patients. 

 



 195 

While in a number of cases significant inroads have been made into the treatment, and 

even cure, in many cancers there are still many where this is not the case. Indeed, for 

some cancers, the treatments have changed little for decades, such as AML. Thus, this 

work has provided an important insight into combinations to utilise with CX-5461 in 

cancer, but especially in an aggressive model of AML. After decades, there is promising 

data that may facilitate a novel approach to tackle this disease. 
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Appendix  
 

Chapter 4 supplementary data 
 

 
Appendix Figure 4-1: Weight changes from combination therapy of CX-5461 and 

orlistat in the syngeneic MLL/AF9 NRAS AML model 

The weights of the mice were monitored daily during the dosing period and the weight 

changes as % of initial weight shown. Dosing occurred daily. 
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Appendix Figure 4-2: Bioluminescent images from combination therapy of CX-5461 

and DCA in the syngeneic MLL/AF9 NRAS AML model 

Imaging was performed weekly from 7 days post-transplant. The day 7 images are 

shown on a lower image colour scale to the subsequent weeks images, in order to show 

that engraftment has occurred. 
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Appendix Figure 4-3: Weight changes from combination therapy of CX-5461 and DCA in 

the syngeneic MLL/AF9 NRAS AML model 

The weights of the mice were monitored daily during the dosing period and the weight 

changes as % of initial weight shown. Dosing days are shown in grey. 
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Appendix Figure 4-4: Bioluminescent images from combination therapy of CX-5461 and 

chloroquine in the syngeneic MLL/AF9 NRAS AML model 

Imaging was performed weekly from 7 days post-transplant. The day 7 images are shown 

on a lower image colour scale to the subsequent weeks images, in order to show that 

engraftment has occurred. 
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Appendix Figure 4-5: Bioluminescent images from combination therapy of CX-5461 
and chloroquine in the xenograft MOLM-13 GFP luc model 

Imaging was performed weekly from 4 days post-transplant. The day 4 images are 
shown on a lower image scale to the subsequent weeks images, in order to show that 
engraftment has occurred. 

 
Appendix Figure 4-5: Bioluminescent images from combination therapy of CX-5461 

and chloroquine in the xenograft MV4-11 GFP luc model 

Imaging was performed weekly from 7 days post-transplant. The day 7 images are 

shown on a lower image scale to the subsequent weeks images, in order to show that 

engraftment has occurred. 
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Appendix Figure 4-6: Weight changes from combination therapy of CX-5461 and 

chloroquine in the xenograft MOLM-13 GFP luc model 

The weights of the mice were monitored daily during the dosing period and the weight 

changes as % of initial weight shown. Dosing days are shown in grey. 
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Median 
survival 
(days) 

Model 

MLL/AF9 NRAS 
MOLM-13 

GFP luc 
MV4-11 GFP 

luc 
Treatment regime 

CX-5461 + 
orlistat 

CX-5461 + 
DCA 

CX-5461 + 
chloroquine 

CX-5461 + 
chloroquine 

CX-5461 + 
chloroquine 

Vehicle 17 15 15 14 22 

Metabolism 
drug 

17 14.5 14 14 21 

CX-5461 29 20 20 15 22 

Combination 25 19.5 23 15 24 

 
Appendix Table 4-1: Survival times from in vivo combination treatment experiments 

Median survival times of treatment groups were calculated from combination 

treatment experiments in Sections 4.2.2 and 4.2.4. 

 
 

P values 

Model 

MLL/AF9 NRAS 
MOLM-13 

GFP luc 
MV4-11 GFP 

luc 
Treatment regime 

CX-5461 + 
orlistat 

CX-5461 + 
DCA 

CX-5461 + 
chloroquine 

CX-5461 + 
chloroquine 

CX-5461 + 
chloroquine 

Veh vs. Met 0.0926 N.S. 0.1172 N.S. 0.0455 N.S. 0.2888 N.S. 0.2151 N.S. 

Veh vs. CX 0.0023 * 0.0001 *** 0.0001 *** 0.0027 * 0.1750 N.S. 

Met vs. CX 0.0035 * 0.0001 *** <0.0001 **** 0.0017 * 0.0338 N.S. 

Veh vs. combo 0.0023 * 0.0001 *** 0.0003 *** 0.0007 ** 0.0007 ** 
Met vs. combo 0.0035 * 0.0001 *** 0.0002 *** 0.0004 ** 0.0003 ** 

CX vs. combo 0.0083 * 0.3840 N.S. 0.0049 * 0.1759 N.S. 0.0032 * 

 
Appendix Table 4-2: Statistical analysis of survival times from in vivo combination 

treatment experiments 

Log-rank test with Bonferroni corrected threshold was applied for comparison of 

multiple survival curves, such that a p-value of <0.0083 was considered significant. Not 

significant (NS) P > 0.0083, *P ≤ 0.0083, **P ≤ 0.015, ***P ≤ 0.001, **** P ≤ 0.0001. 

Veh = vehicle, met = metabolism modifying drug, CX = CX-5461. 
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Chapter 5 supplementary data 
 
 

 

Appendix Figure 5-1: Acute effects of CX-5461 and chloroquine as individual agents on 

mitochondrial function 

Metabolic flux of AML cell lines THP-1 and MOLM-13 was analysed using a mitochondrial 

stress test on the Seahorse XFe97 analyser (Section 2.11), with injection of vehicle, 1µM 

CX-5461 (CX), 40µM chloroquine (CQ) performed during the assay. a) Basal respiration 

rates, b) Respiration rates following drug injection, c) Maximal respiration rate following 

mitochondrial uncoupling with FCCP, d) Acute response (difference in the OCR following 

drug injection and basal respiration, e) Spare respiratory capacity (difference in the OCR 

between the maximum respiration rate and basal rate). One-way ANOVA was performed 

with a Tukey’s multiple comparison test, the adjusted p-value is shown. Not significant P > 

0.05, *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, **** P ≤ 0.0001. Significant results only marked. 

N=3. 
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