
 

 

 

 

NOVEL EPIDEMIOLOGICAL TOOLS TO 

INFORM MALARIA CONTROL AND 

ELIMINATION IN MELANESIA 

 

 

Eimear Cleary 

A thesis submitted for the degree of Doctor of Philosophy of the Australian National 

University 

 

 

 

 

 

 

 

 

 

© Copyright by Eimear Cleary 2019 

All rights reserved 



1 
 

DECLARATION BY THE AUTHOR 

 

I declare that this thesis presents my original work and does not contain, in part or in full, 

material previously published or written by another person except where it is otherwise 

acknowledged in the text.  I have clearly indicated the contribution by others to all jointly-

authored works that I have included in my thesis. The work presented in this thesis is an 

accurate account of research undertaken during a PhD candidature in the Research School of 

Population Health at the Australian National University, and has not been previously submitted 

for any other degree or diploma at any university or institution. 

 

 

 

         

            

                                                                                       ____________________________ 

          Eimear Cleary 

 

 

 

 

 

 

 

 

 

 

 



2 
 

LIST OF PAPERS AND STATEMENT OF AUTHORS CONTRIBUTIONS TO 

JOINTLY AUTHORED ARTICLES 

 

This thesis by compilation is based on the following papers: 

 

Paper I: Cleary E, Hetzel M, Clements ACA. A review of malaria epidemiology and control 

and elimination programmes in Papua New Guinea. (Manuscript in preparation for submission 

to Malaria Journal) 

 

Paper II: Cleary E, Hetzel M, Siba P, Lau C, Clements ACA. Spatial Ecology and Predicted 

Risk of Malaria in Papua New Guinea, 2010/2011: A comparison of models from which to 

generate spatial risk maps. (Manuscript in preparation for submission to Malaria Journal) 

 

Paper III: Eimear Cleary, Abby Harrison, Stuart Lee, Livingstone Tavul, Manuel Hetzel, Ivo 

Mueller, Melanie Bahlo, Alyssa Barry, Archie Clements. Landscape genomics of Plasmodium 

falciparum in Papua New Guinea reveals major population subdivisions associated with 

ecological niches and a routes of malaria transmission. . (Manuscript in preparation for 

submission to Nature Communications) 

 

Paper IV: Cleary E, Barry A, McCaw J, Clements ACA. Examining the impact of human 

movement on malaria resurgence using a Ross-Macdonald meta-population model and the 

example of Solomon Islands. (Manuscript in preparation for submission to Epidemics) 

 



3 
 

For each publication in the thesis, I was first author. My contribution to each of the thesis 

chapters is as follows: 

 

1. ACAC and I conceived the theme of this literature review. MH recommended substantial 

proportion of published the research literature reviewed for this paper. I conducted a review of 

the published work and wrote the manuscript. ACAC provided comments and I undertook 

revisions accordingly. 

 

2. ACAC and I developed the concept of the analysis. MH and PS collected the observational 

data used in the analysis. I obtained and processed ecological covariate data used for the 

analyses. I reviewed the published literature, conducted the analysis, produced output, tables 

and figures, and drafted the manuscript. ACAC and I interpreted the results. CL provided 

intellectual support in developing statistical models. ACAC provided comments and I 

undertook revisions on the manuscript as recommended.   

 

3. ACAC, AB and I developed the concept of the analysis. AH, SL, TL, MH, IM, MB and AB 

collected and genotyped the data used in the analyses. I carried out statistical analysis, reviewed 

published literature, drafted the manuscript and produced output, tables and figures. AB and 

AH produced supplementary material figures and tables for the chapter appendix. ACAC and 

AB provided comments on the drafted manuscript and I coordinated input and undertook 

revisions based on co-author comments.   

 

  



4 
 

ACKNOWLEDGEMENTS 

 

There are several people I’d like to acknowledge and thank for their support and 

encouragement over the last four years.  

Firstly, I’d like to sincerely thank my primary PhD supervisor, Archie Clements for the 

generous giving of his time, help and advice during the course of this PhD.  I’d also like to 

acknowledge and thank the other members of my supervision panel, Manuel Hetzel for his 

generous provision of data, Aparna Lal for her regular supervision meetings, Darren Gray, and 

Susana Nery for her intellectual input in the planning aspects of parts of this thesis. I’d also 

like to thank Colleen Lau and Helen Mayfield for their research and analytical support.  

I’d like to extend a thank you to James McCaw and the mathematical and computational 

biology group at the University of Melbourne for accommodating me as a visiting researcher 

and for offering me such a warm welcome. In particular I’d like to thank Alex Zarebski, Ada 

Yan, Michael Lydeamore and Jackson Kwon for their analytical and modelling support. 

I would especially like to express my gratitude to Alyssa Barry at the Walter and Eliza Hall of 

Medical Research for her immense contribution to parts of this research thesis, not least for the 

generously sharing data with me which formed a central component of the thesis research. 

I’d also like to thank Charles Spillane and the Plant and AgriBiosciences Research Centre 

group at NUI Galway for providing me with a research space and support while I was finishing 

my thesis write up and who also have been incredibly hospitable and welcoming. Also thank 

you to Farouq and Rose in the Lane Café for providing me with endless hours of desk and write 

up space.  

I’d like to say a very special thank you to the people in the Global Health Department, and to 

the people in the Research School of Population Health at the ANU for being so welcoming 



5 
 

when I moved to Canberra, and to the ANU IT staff, in particular Omar Ibrahim, who provided 

me with a huge amount of remote technical support.  

I’d like to thank my fellow PhD students who I’ve gone through the PhD process with over the 

last number of years, and for their incredible. Particularly Maura Tilbury for always being an 

incredible support and friend, Patrizio Mancuso for his exceptionally generous hospitality and 

for going through the write up process with me. 

Thank you to my fantastic group of friends at home, many of whom have proof read parts of 

this thesis. I’m very lucky to have all of you. 

A very special thank you to all the Black Gate crew for their moral support and fun times! 

I especially would like to thank my wonderful sisters and brother Iobhan, Deirdre, Mairead and 

Eoin for all their help, support, counselling and long phone calls before, during, and after I 

moved to Australia. 

Finally, a most important thank you to my mother Peig for her unwavering support, kindness, 

generosity and motivation always. You’ve always told me that I could do whatever I wanted 

as long as I put my mind to it. I couldn’t ask for a better mother. Thank you so much.  

I’d like to dedicate this thesis to the memory of my father, PJ Cleary. 

 

This research was generously funded by a Postgraduate Award from The Australian National 

University. 

 

 

 



6 
 

ABSTRACT 

Background: 

Malaria is a vector-borne parasitic disease that in 2017 was responsible for an estimated 219 

million clinical cases of infection and an estimated 435000 deaths globally, over 60% of which 

were among children under five years of age. Estimating the spatial distribution of malaria 

within endemic countries, and risk factors for transmission, is essential to the effective planning 

and allocation of malaria prevention interventions such as long lasting insecticide treated nets 

(LLINs), indoor residual spraying (IRS), enhanced case detection using rapid diagnostic tests 

(RDTs), malaria chemoprevention and antimalarial drugs.  

The aims of this PhD thesis were to: 1) describe the epidemiology of malaria in Papua New 

Guinea (PNG) and summarise previous control strategies and outcomes in PNG over the last 

century; 2) compare the accuracy of multilevel generalised linear regression models (GLMs) 

with Bayesian decision network (BDN) models in the spatial prediction of prevalence of 

malaria in PNG based on associations of national parasite surveillance data with ecological and 

demographic covariates; 3) predict the geographic niches of eight genotypes of Plasmodium 

falciparum in PNG to ascertain patterns of connectivity in the human population in terms of 

malaria transmission; and 4) examine the impact of human movement between high and low 

transmission intensity locations on malaria transmission using a mathematical model based on 

the example of two islands of Solomon Islands. 

Methods: 

Data for this research was obtained from a number of different sources: published literature 

was obtained from online archives of science literature PubMed, Google Scholar, and the 

Australian National University library online resources; a national malaria indicator survey 

(MIS) which was conducted in five villages randomly sampled from a geo-referenced village 
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database in 17 of the 20 provinces of PNG by the Papua New Guinea Institute of Medical 

Research in 2010 and 2011, and; household-based national malaria indicator survey data 

collected in PNG and Solomon Islands between October 2008 and August 2009, where samples 

were collected and genotyped using the highly polymorphic Pfmsp2 marker. Climate data at 

1km resolution was obtained from the WorldClim online climate data repository and 

environmental remote sensing image data were obtained from Earthdata, the NASA hosted 

remote satellite imagery online database, at 250m resolution. Modelling approaches included: 

a comparison of GLMs with BDN models using point prevalence and ecological data to predict 

the spatial distribution of P. falciparum and P. vivax malaria in PNG; a Dirichlet regression 

model examining associations of P. falciparum genotype predominance with ecological 

covariates for the prediction of geographic niches of distinct parasite genotypes in PNG; and a 

Ross-Macdonald mathematical model using estimates of P. falciparum prevalence in two 

island of Solomon Islands (representing a high and low transmission location) for the 

estimation of the impact of varying rates of human migration on malaria transmission with 

relaxed or sustained use of vector control interventions.  Geographic information system 

software ArcGIS version 10.3 (ESRI, Redlands, California) was used for processing and 

collating data and statistical analyses were carried out using the R open-source statistical 

software package version 3.2.2 (R Foundation for Statistical Computing, Vienna, Austria) and 

Stata version 14 (StataCorp, College Station, Texas). 

Results: 

In terms of P. falciparum and P. vivax spatial distribution in Papua New Guinea, BDN models 

were found to have improved accuracy in spatial predictions when compared with generalised 

linear models. Statistically significant associations were found between P. falciparum 

prevalence and maximum average temperature during the three hottest months of the year, 

enhanced vegetation index (EVI) during one of the hottest months of the year, distance to the 



8 
 

coastline, and precipitation during the driest three months of the year. P. vivax prevalence had 

statistically significant associations with EVI during one of the coldest and wettest months of 

the year, distance to the coastline, elevation, average precipitation during the three wettest 

months of the year and gradient, or slope, of the landscape. The predicted spatial distribution 

of P. falciparum and P. vivax based on BDN models followed a similar pattern to survey data 

with higher predicted prevalence on the islands to the East of PNG and northern coastline of 

the mainland, and lower predicted prevalence in the highlands and south coast. The results of 

the Dirichlet regression model identified geographic niches of eight distinct P. falciparum 

genotypes in PNG based on associations with population density, elevation, distance to the 

coastline, latitude and longitude, and their quadratic terms. The results of the mathematical 

model predicted that in the absence of sustained vector control post-elimination, resurgence of 

malaria may occur relatively quickly in low-transmission intensity locations where 

connectivity with high-transmission intensity locations exists due to human migration, such as 

in the islands of Solomon Islands. 

Conclusions: 

This PhD research provides a comprehensive review of literature on the control strategies for 

and challenges to, achieving goal of global malaria elimination, and a review of the current 

epidemiology of malaria, and major periods of malaria control in Papua New Guinea, drawing 

conclusions on reasons for failure of control programmes in the past and future directions for 

current control efforts.   This thesis also identifies novel epidemiological methods for improved 

prediction accuracy in the spatial distribution of malaria based on environmental and climate 

predictors, a method for inferring human connectivity in terms of malaria transmission in PNG 

using parasite genotype data and the application of a mathematical model to in examining the 

transmission dynamics of malaria transmission in two islands in Solomon Islands under 
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varying rates human migration between both locations, vector control, and biological 

assumptions underlying malaria transmission dynamics.  
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CHAPTER 1. INTRODUCTION 

 

1.1 Context  

 

In 2017, the global number of malaria cases was an estimated 219 million, a decrease in 20 

million cases compared with 20101. This is primarily the result of a renewed commitment to 

global malaria elimination since 2007, through national and regional programmes of malaria 

control and increasing access to vector control interventions and improved treatment for 

infection2-4.  This current commitment to malaria elimination is the first global attempt at 

controlling and eliminating malaria since the malaria eradication campaign of the 1950s5, 

proposed by the World Health Organisation (WHO) in 19556, following the success of malaria 

elimination in the United States of America (USA) in 1951.  

The 1950s campaign aimed to achieve a systematic process of elimination from the north to 

south of the northern hemisphere, and south to north of the southern hemisphere, through vector 

control by residual household spraying with dichlorodiphenyltrichloroethane (DDT)5-7. 

Although malaria elimination was achieved in 37 countries in Europe, North America, the 

Caribbean and parts of Asia and South-America during this campaign8, the emergence of vector 

resistance to DDT and antimalarial drug resistance in Plasmodium parasites led to the 

programme being largely perceived as a failure5,9,10. The aim of malaria eradication was 

subsequently abandoned until 2007 when the current goal of global elimination was proposed 

by Bill and Melinda Gates, amongst others.  

The current strategy for malaria elimination, outlined by the Global Technical Strategy for 

Malaria 2016-2030, and adopted by the World Health Assembly in 2015 in line with the 

Sustainable Development Goals (SDG) 2030, aims to reduce malaria incidence and mortality 

by 90%, eliminate malaria in 35 new countries, and prevent resurgence of malaria in countries 
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that were malaria free in 20154.  This involves building strong partnerships and government 

commitment, generating evidence-based policy for the elimination of malaria in diverse 

transmission zones, and investing in effective control interventions and surveillance tools11. 

Underpinning the strategy, just as with the global eradication campaign of the 1950s, is the 

importance of understanding the epidemiology of malaria and using novel epidemiological 

tools to direct resources and target interventions.  

1.2 Background 

Global malaria  

In 2016, 91 countries in the world reported indigenous malaria cases, with 90% of the global 

malaria burden in sub-Saharan Africa12. The majority of global infection is caused by the P. 

falciparum parasite, accounting for 99% of cases in sub-Saharan Africa in 2016, whereas P. 

vivax is the dominant parasite in large parts of Asia and the Americas12. Malaria burden in the 

Asia-Pacific region is the highest outside of sub-Saharan Africa13 but a substantial reduction in 

malaria burden has been achieved in this region over the past 15 years14. 

Prevention of malaria  

The primary interventions used in the reduction of global malaria incidence are (i) vector 

control through distribution of long lasting insecticide treated nets (LLINs) and indoor residual 

spraying (IRS), (ii) preventative therapies through seasonal malaria chemoprevention 

programmes, (iii) enhanced case finding using diagnostic approaches such as rapid diagnostic 

tests (RDT) and microscopy, and (iv) rapid, effective treatment with anti-malarial combination 

drugs. Effective surveillance is essential for providing regular estimates of malaria incidence, 

and identifying areas and populations where malaria intervention resources can be targeted for 

maximum impact12.   
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Study area 

 

PNG is a Pacific Island nation bordering Australia to the south west and  consisting of the 

eastern half of New Guinea and a collection of several large and several hundred small 

islands15. In PNG, the epidemiology of malaria varies considerably across the country and 

small-area spatial variations in malaria prevalence exist, attributed to vector density, village 

bed net use, the availability of antimalarials and access to health care facilities16,17. The national 

malaria prevalence in 2008/2009 ranged from 0% to 49.7% by community (?) with a weighted 

national average of 12.1%18. In 2010/2011 infection prevalence was 6.7% in villages below 

1600m, composed of 3.4% P. falciparum, 2.1% P. vivax and 0.06% P. malariae and mixed 

infections19. There are considerable urban-rural and regional disparities associated with access 

to quality healthcare and health infrastructure varies considerably between different regions. 

Poverty rates are high with  people of lower income being at a marked disadvantage in terms 

of health care access20,21. Use of LLINs among people who have access to them is high 

(estimated to be approximately 78.7%)22,23, but access can be restricted due to poor 

infrastructure and remoteness of villages24. Additional barriers to LLIN use include perception 

of low malaria risk, indifference, and reluctance to use LLINs in the heat23,25.  

Solomon Islands is an archipelago in the South Pacific, bordering PNG to the west and with 

Vanuatu as its closest neighbour to the south east26. In 2011, the national coverage of LLINs 

was 91%,  the ability of health centres to diagnose malaria with confirmatory testing was 

97%27, and in 2014, malaria prevalence had decreased from over 170 cases per 1000 population 

in 2005 to just over 25 cases per 1000 population. By 2016, however, this number had increased 

to just under 100 confirmed cases per 100 population28. Health care is provided largely by 

provincial public health programmes with health care centres which range in size and 

complexity from nurse aid posts, located in remote areas to larger area health centres and 
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provincial hospitals26. Access to LLINs is high in Solomon Islands with 86% of households 

surveyed in 2015 in possession of at least one LLIN, but with reported usage of only 57%29,30. 

PNG and Solomon Islands are both aiming for malaria elimination by 203012,14. However, in 

the context of stage of elimination, PNG is controlling malaria whereas Solomon Islands is 

technically nearing elimination. It is therefore likely that different epidemiological tools, and 

methodologies for examining drivers of transmission in these different endemic settings, will 

be required.    

The aim of this thesis is to review the current objectives and strategies for achieving global 

malaria elimination,  review the epidemiology and current and historical elimination 

programmes in PNG, and apply three different epidemiological approaches to support malaria 

interventions: 1) predicting the spatial distribution of malaria prevalence in a control setting 

using different spatial statistical methods, and comparing those methods in terms of prediction 

accuracy; 2) predicting the spatial distribution of parasite genotype clusters to infer how 

parasite populations in distinct geographic areas, and by extension their human hosts, are 

connected; and 3) simulating the impact of human migration between a high-transmission 

intensity location and a low-transmission intensity location with an absence of local 

transmission, on resurgence of malaria in the latter, under conditions of sustained or ceased 

vector control. These tools are applied in the context of malaria control, elimination, and 

prevention of reintroduction in Melanesia, specifically PNG and Solomon Islands 

1.3 Research goals and objectives 

 

Objective 1: 

To summarise existing epidemiological tools for informing malaria control programmes and 

targeting interventions and how they can be applied to the control, elimination and prevention 

of reintroduction settings. This is detailed in chapter 2. 
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Objective 2: 

To describe the current epidemiology of malaria in PNG and summarise the historical periods 

of malaria control in the country. This review is contained in chapter 3. 

Objective 3: 

To compare the predictive accuracy of different multivariable models in the prediction of the 

spatial distribution of P. falciparum and P. vivax infections using environmental and climatic 

variables as predictors of malaria risk in PNG. This manuscript forms chapter 4.  

Objective 4: 

To infer patterns of connectivity and human migration in PNG using a Dirichlet regression 

model of associations between P. falciparum genotype data and environmental covariates. This 

work is described in chapter 5. 

Objective 5: 

To use a mathematical model to examine the impact of human migration from a high-

transmission intensity location on resurgence of malaria in a low-transmission location where 

local transmission of malaria has ceased, using the example of Nggela, one of the Solomon 

Islands. This paper forms chapter 6.  

1.4 Approach and methods 

Data for this research includes P. falciparum and P. vivax prevalence data, P. falciparum 

genotype cluster data, measures of climate and other aspects of the biophysical environment, 

migration and socio-demographics which were obtained from numerous different sources, and 

published research obtained from online archives of published scientific literature. Published 

research comprising both literature review chapters were obtained from a comprehensive 

search and review of literature published in various science journals and online books.  P. 

falciparum and P. vivax prevalence data, and data on vector control interventions, and socio-
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demographics were collected as part of the national malaria indicator survey (MIS), conducted 

in five villages randomly sampled from a geo-referenced village database in each of 17 of the 

20 provinces of PNG by the Papua New Guinea Institute of Medical Research in 2010 and 

2011. P. falciparum genotype data were collected as part of a household-based national malaria 

indicator survey conducted in PNG and Solomon Islands between October 2008 and August 

2009, following which positive samples were genotyped using the highly polymorphic Pfmsp2 

marker. Climate data on precipitation and temperature, at 1km resolution aggregated over 50 

years, were obtained from the WorldClim online climate data repository31. Environmental 

remote sensing image data for enhanced vegetation index (EVI) and digital elevation were 

obtained from Earthdata32, the NASA hosted remote satellite imagery online database, at 250m 

resolution. Slope data were derived from the digital elevation model, and distance to the 

coastline for each village point from which parasite prevalence data was collected was 

calculated.  

Modelling approaches included a comparison of the predictive accuracy of generalized linear 

models (GLM) with Bayesian decision network (BDN) models using point prevalence P. 

falciparum and P. vivax data, and ecological data to predict the spatial distribution of malaria 

in PNG. A Dirichlet regression model was used to examine associations of P. falciparum 

genotype predominance with ecological covariates, latitude and longitude, and population 

density, to predict geographic niches of distinct parasite genotypes in PNG. A Ross-Macdonald 

model using estimates of P. falciparum prevalence in Solomon Islands was used to simulate 

the impact of varying rates of human migration on malaria transmission between two islands 

in the absence of, or with sustained use of, vector control interventions. Geographic 

information system (GIS) software ArcGIS version 10.3 was used for processing and collating 

data and statistical analyses were carried out using R statistical software and Stata version 14. 
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1.5 Contribution of this thesis 

This thesis comprises a literature review summarising an overview of the strategies used to 

prevent and treat malaria, the types of surveillance used in different endemic settings, and the 

current challenges facing national and global elimination objectives. It summarises general 

statistical modelling techniques for malaria prediction and examines ecological and 

demographic drivers of transmission. This thesis also presents an up-to-date review of malaria 

epidemiology and national malaria control efforts in PNG, including a description of historical 

elimination programmes, dating back to the start of the 1900’s. Major contributions of this 

thesis include an examination and comparison of epidemiological methods for predicting 

malaria risk and estimating the impact of connectivity of distinct geographic areas and human 

mobility on malaria transmission, which can be utilised in different endemic settings.  

BDN models are being used in infectious disease risk prediction with increasing frequency, 

and this thesis compares the ability of these models to predict spatial risk of malaria with 

conventional regression models. In doing so, this research produces spatial predicted risk maps 

of P. falciparum and P. vivax in PNG, and quantifies the predictive accuracy of these maps and 

the spatial distribution of uncertainty in spatial risk predictions, which can be used by the 

national malaria control programme in PNG for allocation of interventions and malaria control 

resources. This work also gives insight into the environmental drivers of malaria transmission 

in PNG, and using BDN models, presents these drivers in an intuitive manner to help 

communicate environmental risk factors in a way that is accessible to at-risk populations and 

policy makers.   

This thesis also contributes to the growing field of research that aims to examine how malaria 

transmission is facilitated by the connectivity of distinct geographic areas and the movement 

of people, and advances the use of genomic data as an epidemiological tool for understanding 
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malaria transmission dynamics at a population level. Developing maps showing the predicted 

distribution of eight P. falciparum genotypes in PNG allows us to explore how different 

communities in PNG might be connected in terms of malaria transmission. This is, to our 

knowledge, the first study of this type using malaria genotype data and spatial statistical 

prediction methods. Understanding how malaria transmission dynamics are influenced by 

connectivity of distinct populations can help to inform surveillance and control operations, 

particularly if malaria is eliminated from provinces before elimination is achieved in endemic 

provinces to which they may be connected by human mobility.  

This theme is expanded upon in the following study, which uses a mathematical model to 

estimate the impact of human movement on malaria transmission dynamics. The model 

simulates human mobility between two distinct island regions assuming local transmission has 

ceased in one location but is ongoing in the area to which it is connected by population 

movement. This work examines model parameters associated with resurgence and estimates 

the time it would take for transmission to be re-established after vector control interventions 

cease in the eliminating area. It also explores the effect of sustained vector control interventions 

through reducing the man biting rate (simulating LLIN use) and relative vector abundance 

(simulating IRS). In doing so we consider important questions for control programmes about 

continued surveillance and vector control interventions post elimination in places that remain 

connected to an endemic area by human mobility.  

1.6 Research and thesis structure 

This thesis consists of seven chapters; an introduction, background, four research chapters (one 

narrative review and three analytic research chapters) structured for submission as journal 

publications, and a discussion chapter summarising the findings and general conclusions of the 

thesis as well as future research directions. The three analytic research chapters examine the 
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use of epidemiological tools for informing malaria control and elimination programmes in 

different endemic settings: controlling malaria; and eliminating malaria/preventing the 

reintroduction of malaria. The details of each chapter are listed below.  

Chapter one is the thesis introduction, providing on overview of the current global malaria 

situation, context of the thesis and background on malaria control strategies and the main 

geographic focus of the research presented in this thesis, that being PNG and Solomon Islands. 

It also outlines the main thesis objective, research approach and methods, and thesis 

contribution and structure.  

Chapter two is a literature review of the types of surveillance used in control, elimination and 

prevention of reintroduction settings and current challenges faced by malaria control and 

elimination programmes. It also describes epidemiological tools for predicting malaria risk in 

control and elimination settings and for simulating the dynamics of malaria, both as a result of 

different interventions and of human population movement. These tools are the focus of, and 

primary research methods used, in the subsequent thesis chapters. 

Chapter three is a narrative review of current and historical malaria control programmes in 

PNG. It summarises the current epidemiology of P. falciparum and P. vivax epidemiology in 

PNG and the three major historical periods of malaria control in PNG and discusses current 

control strategies, challenges to elimination and future directions of control programmes.  

Chapter four is an analytic research chapter comparing two statistical methodologies, BDN 

models and GLMs, in terms of their predictive accuracy for malaria spatial risk prediction. 

Models are developed examining associations between P. falciparum and P. vivax with 

ecological drivers of transmission in PNG, a country classified as controlling malaria. 

Predictive accuracy was compared using model cross-validation.  
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Chapter 5 explores the use of genomic data in predicting the spatial predominance of P. 

falciparum genotype clusters in PNG. The application of this methodology is an attempt to 

examine how distinct populations are connected in terms of malaria transmission, in order to 

direct surveillance and control resources and prevent transmission between endemic and 

eliminating areas. Although PNG is classified as controlling malaria only, the genetic parasite 

population structure in PNG, due to relative isolation of distinct human populations, is 

indicative of a country with low transmission of malaria. Therefore this methodology can also 

be applied in the context of pre-elimination or elimination.  

Chapter 6 is an analytic research chapter that focuses on simulation of the impact of human 

mobility on resurgent malaria transmission in a location where local transmission has ceased, 

but ongoing transmission may be sustained by population connectivity with a neighbouring 

endemic location. This chapter uses the example of two of the Solomon Islands for illustrative 

purposes.   

Chapter 7 presents a general discussion of the main findings of the thesis, assesses the 

limitations of the research, makes recommendations for future investigations and presents the 

main conclusions. It summarises the key research findings of each chapter, interprets potential 

reasons for results obtained and discusses applications of the research carried out here in 

broader contexts. It also compares the research findings of this thesis with published research 

from other malaria endemic and eliminating areas.  
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CHAPTER 2.  

 

BACKGROUND: AN OVERVIEW OF MALARIA PREVENTION STRATEGIES AND 

CHALLENGES FACING NATIONAL AND GLOBAL ELIMINATION OBJECTIVES 

1. Introduction 

1.1 Context  

Considerable progress has been made toward global malaria elimination since a renewed 

commitment to this goal was made in 2007. Between the years 2000 and 2015 the global 

incidence of malaria was reduced by 41%, malaria attributed mortality rates reduced by 62%1,  

and 19 previously endemic countries achieved zero indigenous cases for three consecutive 

years2.  In 2016 the World Health Organisation (WHO) identified 21 countries with the 

potential to eliminate malaria by 2020, and in 2017 44 countries reported fewer than 10,000 

malaria cases, up from 37 countries in 2010 (notably, 26 countries reported fewer than 100 

cases)3.  

The strategy outlined for the global elimination of malaria involves intensified control 

strategies in endemic areas to achieve low transmission and a reduction in mortality4 and  

shrinking the malaria map by progressively eliminating malaria from the endemic margins 

inward4,5. Elements that are intrinsic to the success of elimination programmes are interruption 

of transmission through control and reduction of the mosquito vector population, stemming the 

flow of imported infections from endemic areas6 and collaborative regional partnerships to 

support and strengthen national elimination programmes7. Robust surveillance systems for 

estimating incidence of malaria infection, and epidemiological tools for identifying at risk 

populations, ecologically suitable habitats for vectors, and heterogeneities in infection 

prevalence are essential in guiding interventions and aiding planning for control programmes.  
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In 2016 the number of countries classified as endemic for malaria had reduced to 91 from 1082 

and in 2018 the number of countries reporting fewer than 100,000 cases was 49, up from 46 in 

20178. In 2019, the number of countries with fewer than 100 indigenous cases had increased to 

25 from 17 countries in 20108. In the eleven high burden to high impact (HBHI) countries 

however, there were an estimated 155 million malaria cases in 2018, ten countries of which 

were in sub-Saharan Africa8,9. The path toward malaria elimination is a continuous process. 

Depending on environmental, biological and financial determinants, variation in national and 

subnational endemicity may exist as progress is made toward a malaria free status10. As 

elimination efforts continue, heterogeneity in malaria transmission arises in response to control 

interventions and elimination programmes. Surveillance strategies should be tailored in 

response to this heterogeneity in infection risk10. The aim of this Chapter is to summarise key 

strategies of control and methods of surveillance, review some of the current challenges to 

achieving global malaria elimination and describe epidemiological tools used for informing 

interventions and surveillance in control, elimination and prevention of reintroduction settings. 

2. Strategies for control and prevention of malaria 

 

Integral to the success of malaria programmes is the scaling up and maintaining of vector 

control interventions such as long lasting insecticide treated nets (LLINs) and indoor residual 

spraying (IRS), rapid infection diagnosis facilitated by use of rapid diagnostic tests (RDTs), 

and effective malaria drug treatment, most often achieved with artemisinin-based combination 

therapy (ACT)6. Since publication of the first and second editions of the WHOs guidelines on 

treatment of malaria in 2006 and 2010, all countries in which P. falciparum is endemic have 

updated their treatment policy to recommend ACTs as the recommended front-line therapy for 

malaria infection14. Between 2015 and 2017 national malaria programmes delivered 624 

million LLINs, 85% of which were distributed as part of free distribution programmes, and 206 
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million ACTs3. However intense selection pressure due to high levels of drug administration,  

the unregulated availability of poor-quality medications and exposure of vectors to insecticides 

over a long period of time can result in emergence of resistance in the parasite and vector15,16. 

The most effective way of preventing malaria from progressing to severe clinical infection is 

in the prompt diagnosis of infection, in particular by use of RDTs, 276 million of which were 

distributed in 20173. However income and socio-economic disparities, living in rural areas as 

opposed to urban areas and distance to health centres still present barriers to effective diagnosis 

and access to treatment. Occupational risks are also important, particularly those associated 

with forested areas (for example, logging and gem mining), and these occupational groups are 

often missed by LLIN distribution campaigns which focus on residential homes and villages17. 

This highlights the importance of surveillance programmes for  detection of malaria cases and 

estimation of heterogeneity in national prevalence, to ensure access to diagnosis, treatment and  

vector control interventions, and targeting of resources for maximum impact3.  

 

3. Surveillance  

An ideal surveillance system requires capability for early detection of all malaria infections 

and prompt, complete reporting of detected cases to a centralised database3,18, with timely 

analysis and reporting of results back to local jurisdictions to inform an effective response19 

and robust data collection on surveillance activities themselves20. Surveillance can involve 

monitoring of infection incidence as well as entomological indicators, which can help identify 

populations at higher malaria risk3. Malaria surveillance falls mainly under two categories, 

passive and active, which receive greater or lesser relative emphasis depending on the different 

stages of elimination. 
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3.1 Passive Surveillance 

Passive surveillance involves collecting malaria case data among a cohort of patients with 

clinical infection attending a health clinic and  involves no active search for cases21. This type 

of surveillance records clinical burden of malaria22 and is useful for estimating the population 

incidence of febrile malaria cases without the logistical and financial burdens inherent in 

population-wide surveys.  For this method of surveillance to be effective, data should be 

regularly reported by local health jurisdictions to a central health authority database21, which 

in most countries is based on a malaria-specific information system, for collation, estimation 

and analysis of malaria incidence23,24,25.  

In settings with a large proportion of sub-clinical infection however, cases are likely to be 

underreported and as a result prevalence estimates determined by passive surveillance may 

suffer from health-seeking biases, often characterised by underestimation of actual burden25,26. 

This can be improved by encouraging health seeking behaviour and increasing the availability 

of sensitive diagnostic tests6.  One effective approach for improving access to malaria diagnosis 

and treatment is extending health access through community health care workers to deliver 

health care services to vulnerable and hard-to-reach populations with limited access to health 

care. This strategy, known as integrated community case management (iCCM),  can also 

involve the systematic gathering, aggregating, analysing and reporting of data to identify gaps 

in treatment and intervention coverage for more equitable delivery of health care services27.   

Passive surveillance is generally characteristic of countries where the programmatic focus is 

the control of malaria as a public health problem6. However, passive surveillance may be 

inadequate for effective spatial targeting of resources as countries progress towards 

elimination. In such settings, systematically collected data may be preferential for determining 

accurate spatial distribution of malaria risk and reservoirs of infection, including asymptomatic 

infection28. 
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3.2 Active Case Detection  

As countries move toward elimination, control strategies require a shift from early case 

detection and treatment of symptomatic cases to more active surveillance of malaria 

infection3,29. Active case detection involves the detection of malaria infection and residual 

parasite carriers through mass screening of high-risk populations30,31. Active case detection and 

treatment among high risk migrants or mobile populations (section 4.3) is crucial for 

interrupting transmission and preventing reintroduction4,32. However, mass population 

screening may be logistically unfeasible and financially prohibitive for a national malaria 

control programme, and mass population screening of this type is usually conducted as part of 

large scale research projects. Malaria control programme resources may be best directed at 

more targeted active screening, which can be informed by risk assessment methods including 

spatial prediction. Georeferenced point data collected during active surveillance or baseline 

surveys can be used for spatial prediction of the distribution of infection in non-sampled 

locations (predictive risk maps) using a variety of statistical modelling approaches (section 

5.2). To generate such predictive risk maps (section 5.1), models can incorporate associations 

with environmental and climate data, which can be visualised, processed and integrated with 

malaria survey data using geographic information software (GIS).  

3.2.1 Reactive Case Detection  

Reactive case detection (RCD) is active surveillance carried out among people and households 

situated within close proximity of a detected malaria infection, supported by georeferencing 

and mapping of confirmed malaria cases within a defined region or ‘buffer zone’ of the index 

case20,33. A reactive case detection surveillance programme is typically employed in 

elimination or prevention of reintroduction settings where surveillance includes collection of 

data on origin of infection and recent migration34. When malaria transmission occurs in 
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spatially proximal clusters6,35,36, RCD can identify undiagnosed and asymptomatic carriers of 

infection for treatment and assist targeted interventions for prevention of sustained 

transmission. Evidence from simulation studies suggests that RCD is more beneficial in low-

transmission settings with a recent decrease in transmission37. In RCD surveillance systems 

where all individuals within a defined catchment zone of confirmed cases are screened, the 

likelihood of detecting asymptomatic cases can be substantially higher than that of 

asymptomatic cases detected by passive case detection36,38.  

As a method of surveillance, however, RCD can be logistically and financially demanding36 

and may be limited in detecting asymptomatic cases if  presence of fever is a prerequisite for 

reactive screening36. There is also evidence to suggest that RCD practices such as guidelines 

for the defined radius where screening around the index case takes place varies between control 

programmes, and is often decided arbitrarily and by what is operationally feasible6. Screening 

of all household members as opposed to symptomatic individuals only, also varies to a large 

extent between the control programmes of different countries52,37-39, and a standard, evidence 

based protocol for implementation of reactive case detection would be beneficial to control 

programmes of countries wishing to achieve elimination20.  

3.2.2 Proactive case detection  

Proactive case detection (PACD) involves parasitaemia screening and treatment among high 

risk population groups in the absence of a passively detected index case40. This method of 

active case detection can be useful for identifying clusters or hotspots of asymptomatic 

infection among high risk groups which can act as reservoirs of infection, maintaining year 

round transmission41, but can be challenging to encourage population participation in areas 

with low perceived  transmission risk40. PACD can be a useful surveillance strategy in low to 

moderate transmission settings with defined spatial or temporal risk such as elevated risk 
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among hotpops or higher seasonal transmission40. PACD through repeated household 

screening can substantially reduce parasite prevalence when compared with households 

screened at only one time point42. Repeated active household screening is resource intensive 

however and may not be logistically feasible for control programmes in many countries.3.3 

Cross-sectional surveys 

Georeferenced cross-sectional surveys such as Demographic and Health surveys (DHS) or 

Malaria Indicator Surveys (MIS)43 are surveys administered to a randomly selected subset of 

the population which collect key malaria indicator data such as usage and ownership of LLINs, 

socio-demographic information, IRS  coverage and population level malaria prevalence44. 

Cross-sectional surveys of this type can be used to assess heterogeneities in, and drivers of, 

malaria risk7,45, and as a way of estimating the spatial distribution of baseline disease 

prevalence before implementation of control interventions.  

Surveys such as MIS are useful in moderate transmission settings as an impact evaluation tool 

or as a means of assessing change in prevalence but become less useful as transmission 

decreases40,46. In low transmission settings  diagnostic tools such as microscopy and RDTs may 

not be sensitive enough to detect low population levels of infection and as these surveys capture 

prevalence at only one time point, evaluation of progress toward elimination becomes difficult 

in low transmission settings46. Cross-sectional surveys such as these therefore become less 

cost-effective for assessing community level infection using household surveys and targeted 

surveillance of high risk populations should instead be prioritised47.  In low transmission or 

elimination settings, case-control analysis of routine surveillance data to identify risk factors 

for malaria can provide a more suitable epidemiological tool where cross-sectional surveys are 

inappropriate47,48.  
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4. Challenges to malaria elimination  

Challenges to achieving malaria elimination are often multi-factorial, and are often outside the 

control of national malaria programmes, such as a lack of adequate funding, internal conflict 

and mass displacement of populations2. This section focusses on some of the challenges to 

elimination that can be approached from an epidemiological perspective.  

4.1 Heterogeneity in transmission 

Drivers of malaria transmission are complex and varied and include environmental factors, 

vector population dynamics, and anthropogenic and socio-demographic factors49. These 

influencing factors can differ by country, as well as exhibit small area variation, which gives 

rise to heterogeneity in efficacy of malaria control programmes4,50. A contributing factor to this 

heterogeneity arises from the changing epidemiological profile of at-risk populations, as 

progress is made toward elimination.  In low transmission, and decreasing prevalence areas, a 

higher proportion of adults and males7, hard to reach populations10, people involved in  high-

risk occupational activities47,51, migrants and rural communities with poor access to health 

services are often at disproportionate risk of infection10. As transmission decreases, 

surveillance and epidemiological tools must be tailored for examining heterogeneity in malaria 

transmission and detecting  residual foci of transmission12,52. Decisions made regarding malaria 

control need to take local heterogeneity in transmission and vector and parasite resistance into 

account53,54 and focus on targeted control operations rather than a universal approach to 

intervention coverage and treatment12,55.  

4.2 Asymptomatic malaria and low density infections  

As malaria prevalence decreases under intensified control41,56-58, and heterogeneity in malaria 

transmission arises58,59, malaria transmission may recede to small pockets of residual 

transmission, where asymptomatic infections can still occur despite the lower intensity of 
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transmission and waning population immunity. Asymptomatic or undiagnosed infections are 

invisible to the health system10, but contribute to sustained transmission, and detection of these 

infections is a priority for national control, surveillance and intervention programmes17.  

In endemic settings with higher levels of population level immunity, low density infections 

pose a challenge to screening programmes as they are difficult to detect through active 

screening using diagnostics with lower sensitivity/specificity such as RDTs, and go undetected 

by passive surveillance systems as low-density infections are often asymptomatic60. In some 

low transmission settings, P. vivax parasites have been found to contribute disproportionately 

to the asymptomatic and low density reservoirs of infection61-63. P. vivax infections pose 

additional challenges to elimination programmes due to infection recrudescence attributed to 

reactivation of dormant liver-stage hypnozoites and the transmission reservoir that is 

maintained as a consequence64.  

Residual malaria hotspots may occur as a result of differences in environmental and ecological 

suitability for  anopheles breeding habitats22,65, differences in intensity of vector control 

intervention coverage, or may be driven by elements of the climate, environment, ecology or 

socio-demographic characteristics of the human population35. As a result, the same control 

strategies may not be appropriate for all endemic settings within a country or at all time-

points10.  A shift in intervention strategies, tailored to the local endemic context of individual 

countries20 is therefore required and foci of infection and high risk areas should be targeted as 

a country nears elimination 4,6,50. Additionally, “hotpops”, or high-risk sub-groups in the 

population should be identified and targeted for reactive case detection, particularly for 

detection of asymptomatic infection57. 

4.3 Imported malaria  
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As malaria control programmes progress toward elimination, particular attention needs to be 

paid to mitigating the potential for malaria resurgence facilitated by human mobility and cross-

border migration66. Malaria prevalence among mobile populations, at international borders and 

in forested areas may often go undetected and provide reservoirs of introduced parasite 

infections in low transmission locations or areas where malaria elimination has already been 

achieved 17,67. Migratory workers in particular may contribute to a large proportion of the 

infection reservoir68.High-risk groups within this population such as forest dwellers7 and 

miners18 are often missed by  malaria screening operations and LLIN distribution programmes, 

which typically target resources at village and household level68. Migratory workers may also 

have barriers to health access due to their remote location and mobility69. 

Active surveillance and screening of migratory populations which records travel history and 

origin of infection, and regional collaboration initiatives will be integral to preventing re-

establishment of local transmission post elimination6,20,12,34. Receptivity to reintroduction, 

assessed through examination of the interactions between entomological, ecological,  and 

epidemiological factors favourable to transmission70,71, will aid in assessing the risk to 

resurgence in an area where elimination has been achieved but  is connected by human mobility 

to an area where transmission remains endemic. Detection of imported cases, strengthening of 

control programmes in countries whose neighbours are aiming to achieve elimination, and 

regional collaborations for malaria control will be mutually beneficial for achieving regional 

elimination across connected areas37. 

 

4.4 Drug and insecticide resistance  

Artemisinin combination therapies (ACTs) are compounds derived from the artemether plant, 

combined with drugs from a different class in the one tablet. Artemisinin is paired with a 

partner drug to ensure simultaneous administration of both drugs and  to clear remaining 
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parasites after three days of ACT treatment administration, as artemisinin has a short half-life72. 

Artemisinin derivatives include dihydroartemisinin, artesunate and artemether73. Partner drugs 

include mefloquine, sulfadoxine/pyrimethamine, lumefantrine, amodiaquine and 

chlorproguanil/dapsone73.  

ACTs were introduced as malaria treatment in South East Asia in the 1990s following 

emergence of antimalarial resistance to chloroquine and sulfadoxine-pyrimethamine, and 

became the front-line treatment for malaria following WHO recommendations in 200574. 

Malaria parasites show ‘a remarkable ability to develop resistance’75, and ACT resistant 

parasites are increasingly widespread in parts of South East Asia76,77. Current 

dihydroartemisinin-piperaquine and mefloquine-artesunate failure rates are over 30% in 

northern Cambodia and the Myanmar-Thailand border areas, which severely threatens malaria 

control and elimination efforts78,79.   

Cost effective and user friendly molecular methods and surveillance tools for detecting 

antimalarial resistance are required to detect the emergence of resistant parasites80. The 

Worldwide Antimalarial Resistance Network (WWARN) ACT Partner Drugs Molecular 

Surveyor, for example, is an online tool and freely accessible map interface for a database of 

over 86,000 samples from over 76 countries on antimalarial resistance biomarkers obtained 

from published data81. The aim of this tool is to provide publically accessible data and maps to 

aid countries and organisations in planning their response to drug resistance53.  

Resistance to the four insecticide classes has emerged in malaria vector populations globally, 

but of particular concern is emergence to pyrethroids, the group of insecticides cleared for use 

in all LLINs, and for IRS in many countries, by the WHO Pesticide Evaluation Scheme 

(WHOPES) 82. Of the 79 malaria endemic countries from which data on insecticide resistance 

of Anopheles vectors was collected by the WHO in 2016, only 10 were found to have no 

evidence of resistance to any of the four insecticide classes2,83. Resistance of malaria vectors 
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to insecticide can be phenotypic resistance, a vectors ability to resist and survive the effects of 

an insecticide, or emerge through resistance mechanisms, the underlying genes that confer 

inherited traits of resistance.  Resistance may be considered as impacting on intervention 

effectiveness when physiological resistance is established as the cause for increasing malaria 

transmission83. Widespread emergence of malaria vectors to insecticides, can result in 

reduction in LLIN efficacy and control programme failure, and monitoring and surveillance of 

vector resistance is essential to inform selection of appropriate vector control interventions83,84.

  

5. Epidemiological tools for informing control and surveillance strategies  

5.1 Maps of Malaria risk and infection    

As countries approach elimination, high-resolution maps of malaria, including spatial clusters 

of cases or spatial predictions of risk, are useful in detecting the remaining foci of 

transmission33, informing national strategic plans for malaria control and elimination, and 

targeting interventions where they may have the most impact85,86. The type of maps that are 

most useful may be dependent on whether a programme is aiming for control or elimination, 

or the geographic scale of the area of focus. Visualisation of the spatial distribution of malaria 

cases on a map enables an assessment of changing transmission patterns and heterogeneity in 

disease burden 87 88, including in response to interventions89-91. Maps of disease data may be 

better at conveying information in an accessible way to a wider audience than more traditional 

approaches such as tables, although preferences may differ depending on target populations79. 

Such maps can be produced for the purpose of visualisation using GIS, which are software 

systems for collating and analysing georeferenced data.  

 

5.2 Spatial analysis 
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Georeferenced disease survey data can be spatially joined with remotely sensed climate and 

environment data in a GIS to produce a dataset that can be used to develop spatial statistical 

models, which can be used to identify and explain spatial patterns in the data and to predict the 

spatial risk of infection22,92.  Spatial prediction is a form of interpolation, whereby a model is 

used to estimate a variable of interest (e.g. malaria risk) at non-sampled locations within a 

geographical area. There are multiple different approaches for spatial prediction, including 

generalized linear models (GLM) and other regression approaches, polynomial trend surfaces, 

geostatistical models, multiple criteria decision analysis, and Bayesian Decision Networks 

(BDN).  

In recent years, an approach that integrates geostatistical concepts into a GLM framework using 

Bayesian methods for parameter estimation, called model-based geostatistics (MBG), has 

become increasingly popular. In model-based geostatistics, Bayesian inference is used to 

estimate model parameters and the GLM framework allows for the incorporation of covariate 

effects and non-Gaussian distributed outcomes (which are challenging within a traditional 

geostatistical approach), whereas the geostatistical component allows the explicit inclusion of 

spatial structure 87,93. This approach has enabled spatial risk prediction of malaria endemicity 

and mapping of vector habitats94,95,22, and is the underpinning method used by the globally 

influential Malaria Atlas Project96. 

Model based geostatistics and other Bayesian modelling approaches have  the advantage of 

being able to provide a robust quantitative estimate of parameter uncertainty, including in 

spatial predictions97,98,22. This uncertainty may arise from specification of the model and from 

uncertainty inherent in parasite survey and remotely sensed environmental data due to 

observational measurement error and natural variation among populations being 

surveyed92,99,100. Mapping the uncertainty of predictions allows visualisation of how reliable 
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risk estimations are, and provides information on the potential consequences that could arise 

from relying on the spatial predictions for intervention planning101.  

 

5.3 Genetic epidemiological tools  

Genetic diversity of Plasmodium parasite populations may be reflective of malaria transmission 

intensity, and the extent of parasite mixing between distinct geographic locations influenced 

by isolation or connectivity of parasites and their hosts from other populations102.  In high 

transmission areas, genetic populations tend to be more diverse with little structure in the 

parasite population due to lots of genetic crossover and transmission between distinct 

geographic locations103. In low transmission areas a parasite population structure, low genetic 

diversity and high genetic differentiation arises in the parasite population as a result of intensive 

vector control interventions causing malaria transmission to recede to geographic pockets of 

transmission50,104. High genetic parasite diversity has also been observed in low-transmission 

settings where a high proportion of malaria infection is attributed to importation of malaria 

infection105. Genetically distinct parasite strains found in abundance in different geographic 

areas may imply a certain amount of connectivity between those locations106,50,107. Therefore, 

examination of predominant genotypes and associated gene flow may give insight into parasite 

and human migration or the geographic source of new infections108,109,110. 

Genomic profiling, or ‘barcoding’ of Plasmodium parasites using haplotypes specific to 

different geographic locations can help identify these geographically distinct clusters, and 

molecular surveillance can help identify sources of new infection110. Combining genetic tools 

with spatial analytical methods could allow for spatial visualisation and prediction of parasite 

genetic structure. The benefit of such an approach could be to assist in identifying spatial 

dominance and geographical niches of parasite genotypes, and, consequently, help infer 

parasite migration patterns and how this movement has impacted on malaria transmission 
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between different geographical areas111. However, there may be financial and logistic barriers 

to introducing genetic surveillance in some elimination countries. Therefore, more work needs 

to be done to evaluate the usefulness of these tools and to establish how they can be cost-

effectively and sustainably implemented in elimination settings. 

5.4 Mathematical Models 

Mathematical models are useful tools for understanding malaria transmission in different 

endemic settings and predicting patterns of diseas37,112,113and for informing ways to interrupt 

transmission by simulating the effects of different interventions114,115,116. Within a modelling 

framework, parasite transmission is governed by vector capacity, density, longevity and biting 

rates66. The basic reproduction number in mathematical models, a measure of potential 

transmission intensity, is defined by the number of secondary infections arising from the 

introduction of an infectious individual to a totally susceptible population115,117. The first 

mathematical model for malaria, developed by Ronald Ross, was a basic representation of 

malaria transmission incorporating susceptible, infectious and recovered (SIR) population 

compartments with transmission governed by parameters on vector biting rate and proportion 

of bites that produce infection in humans. The model was tested by fitting functions to epidemic 

curves118,119 and provided evidence for malaria prevention by vector control 

interventions119,120. MacDonald updated this model by including the extrinsic within-vector 

development period of the parasite66,119. Since then, mathematical models have been used to 

examine and explore the effect of combined interventions for elimination of artemisinin-

resistant parasites,  examine the impact of ceasing interventions too early on resurgence of anti-

malarial drug resistant parasites, amongst many other applications to malaria121. Models have 

also been used for simulation of malaria transmission under varying conditions of human 

migration and vulnerability to reintroduction once malaria has been eliminated52, an application 

that will be further explored in this thesis. 
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6. Conclusions 

Effective epidemiological tools are essential for informing intervention efforts, developing a 

better understanding of malaria transmission heterogeneity and understanding the impact of 

human (and parasite) movement on malaria transmission dynamics122. Novel tools for 

informing targeted interventions are needed to address challenges that arise as the global 

prevalence of malaria decreases and the goal of global malaria elimination advances. In 

particular, epidemiological tools need to be appropriately tailored to control, elimination and 

prevention of reintroduction settings.  
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CHAPTER 3. A REVIEW OF MALARIA EPIDEMIOLOGY AND CONTROL AND 

ELIMINATION PROGRAMMES IN PAPUA NEW GUINEA 

CONTEXT 

Chapter 3 summarises the current epidemiology of malaria in Papua New Guinea, including 

environmental drivers of transmission and vector habitats and species distribution. In this 

chapter we also review the three major historical time periods of malaria control in PNG, the 

current control programme in operation in the country, and future directions for control and 

elimination.  

The research presented here is a result of a comprehensive review of literature on malaria in 

PNG published over the last century, beginning with expeditions to PNG in the early 1900s 

and leading up to published research on current control and elimination efforts. By reviewing 

and summarising the three main periods of malaria control in PNG, which we hope to identify 

common themes regarding strategies and challenges which have contributed to relative 

successes of previous control programmes, and draw conclusions about factors which led to 

their eventual breakdown. In doing so we extrapolate that integrated control interventions 

across all periods of control had success in reducing malaria prevalence however, logistical 

and financial pressures of such concerted control efforts, poor planning and administration, and 

lack of political will eventually contributed to the programmes being abandoned. Previous 

control programmes and interventions have also altered the epidemiology of malaria in PNG, 

which lends support for evaluating current interventions through national surveillance of 

malaria prevalence, incidence, transmission and species distribution as the control programme 

progresses.   

This paper is formatted as a manuscript for submission to Malaria Journal. 
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CHAPTER 3. A REVIEW OF MALARIA EPIDEMIOLOGY AND CONTROL AND 

ELIMINATION PROGRAMMES IN PAPUA NEW GUINEA 

 

Cleary E.1, Hetzel M2,3, Clements, A.C.A4. 

1. Research School of Population Health, Australian National University, Canberra, Australia.   

2. Swiss Tropical and Public Health Institute, Basel, Switzerland 

3. University of Basel, Basel, Switzerland 

4. Curtin University, Perth, Australia 

Abstract 

The research and control of malaria has a long history in Papua New Guinea, sometimes 

resulting in substantial changes to the distribution of infection and transmission dynamics in 

the country. There have been three major periods of malaria control in PNG, and a current 

control programme commenced in 2004. Each previous control programme had success in 

reducing malaria burden in the country, but multiple factors led to programme failures and the 

eventual breakdown of control. A comprehensive review of literature dating from 1900 to 2018 

was undertaken to summarise the current control, epidemiology, vector ecology and 

environmental drivers of malaria transmission in PNG. Furthermore, control strategies 

employed in the past and reasons underpinning the ultimate failure of these previous control 

and elimination programmes are discussed.   

 

1. Introduction 

The population of Papua New Guinea (PNG) consists of over 8 million people spread across 

22,000 villages. Many of these villages are situated in rugged landscapes with difficult terrain 
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resulting in many highly isolated communities and a population that is one of the most 

culturally and ethnically diverse in the world1,2. The human settlement patterns in PNG have 

historically been shaped by malaria transmission, with the population mostly living above 

1300m, where temperatures are too low for sustained malaria transmission3,4, and below 600m 

where the local population has developed acquired immunity to infection5-7. The main species 

of human malaria in PNG are Plasmodium falciparum (P. falciparum), Plasmodium vivax (P. 

vivax) and, to a lesser extent, Plasmodium malariae (P. malariae). P. falciparum is the 

predominant parasite in PNG, although a decrease in P. falciparum infection, observed since 

2010, has resulted in an increase in relative abundance of P. vivax3,4,8.  P. falciparum and P. 

vivax have a spatial distribution that covers the entire country with no geographic preference 

of the two parasite species observed in surveyed locations9,10.  

 

A renewed commitment to malaria control in 2004,  and free nation-wide LLIN distribution 

campaigns carried out since 2005 has resulted in a substantial decrease in national malaria 

prevalence2,9,11. Despite this however, prevalence remains one of the highest outside Sub-

Saharan Africa and over 90% of the population are considered to be at risk12. The aim of this 

review is to examine the current epidemiology, vector species and drivers of malaria 

transmission in PNG. We also aim to summarise progress that has been made by the current 

national malaria control programme, and learnings from the challenges that have led to the 

breakdown of control programmes in the past.  

 

2. Epidemiological drivers of malaria transmission in PNG 

Malaria transmission in PNG is mostly perennial, with year round transmission in the islands 

and coastal lowlands, and  seasonal transmission  occurring only on the south coast where 

transmission halts during the dry season3. Marked heterogeneity in transmission and complex 
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epidemiology exists, driven by diversity in vectors, as well as environmental and climate 

drivers, which can vary significantly between geographic locations. Small area variation also 

exists with  marked heterogeneity observed between villages, and even households within the 

same village9,13-15,16. In addition to the environmental factors that drive these entomological 

and parasitological phenomena, human genetic factors such as red blood cell polymorphisms, 

which cluster in familial groups17,18, differences in sporozoite and inoculation rates between 

villages, and response to control interventions also contribute to this heterogeneity in 

transmission9,16.   

 

Temperature, rainfall and altitude are the most important environmental drivers of 

transmission3, and temporal variations in transmission associated with temperature and rainfall 

are observed in all areas of the country19,20. Temperature is inversely related to altitude and 

mosquito infectivity21 while surface gradient and incline is associated with vector ecology and 

formation of larval habitat. The extent of these associations differ between different provinces, 

and during the wet and dry seasons22. In the mountainous interior and highland provinces of 

PNG for example, steep slopes are less suitable for the formation of standing pools of water as 

rainfall runs off into small streams. In the dry season, when the water level of small streams is 

low, this run off may add abundance to small streams, helping formation of suitable breeding 

habitats. In the wet season however, when stream water levels are higher, the extra abundance 

of water and  heavy flow of the stream water may flush out breeding sites22. The heterogeneity 

in malaria transmission in PNG can in part be attributed to the variation in environmental 

drivers of transmission associated with vector abundance and habitat across the country, with 

malaria vectors in PNG exhibiting wide variation in preferred larval and breeding habitats.  

 

3. Vector species, spatial distribution and habitats 
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The three main malaria vector species of human importance in PNG are Anopheles farauti (An. 

farauti), An. koliensis and An. punctulatus23-25. Each species has a wide spatial distribution10, 

coexisting to a certain extent, but with distinct ecology and habitats22. The abundance of these 

three species is associated predominantly with rainfall and vegetation cover, however each of 

the dominant vector species in PNG have distinct ecological preferences10,22.   The habitat of 

An. farauti is predominantly coastal10,26, being found in streams, brackish water and coastal 

villages3,22. As a result of its widespread distribution along the PNG coastline27, this species 

has the widest distribution among all malaria vectors in the country. Although An. farauti 

mainly have a coastal habitat, An. farauti 6 is also found at high altitudes, being the only species 

with a preference for high altitudes10. An. farauti is most abundant at the end of the dry season22. 

  

The preferred habitat of An. koliensis is fresh water pools in low altitude, inland areas proximal 

to vegetation, temporary pools in grasslands, and around the edge of forests3,22. The abundance 

of this species may increase over 250% in the wet season16,28.  An. punctulatus is found most 

commonly in the hills, although their habitats are diverse and  extend from lowland coasts and 

valleys up to elevations of 2000 meters, with preferred breeding sites in shallow, sunlit pools 

of water created by ruts and drains3,27.  The larvae of An. puctulatus develop rapidly under 

optimal conditions and have the ability to quickly colonise previously uninhabited areas22. The 

dispersal and breeding habitats of An. punctulatus have been impacted and expanded by the 

activities and movements of humans such as logging and mineral exploration, changes in 

settlement patterns and agricultural cultivation29,27. 

 

The three main vectors in PNG have different host and biting preferences with An. koliensis  

and An. punctulatus being more anthropophilic than An. farauti30. An. koliensis and An. 

punctulatus have higher inoculation rates than An. farauti, mainly because of higher  abundance 
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and biting rates of these species16. An. koliensis bite at night-time,  both indoors and outdoors,  

and generally rest close to their breeding site after feeding31, rather than close to their next 

blood meal indoors22. Adult An. punctulatus are night-time biters, mainly feeding between 

midnight and the early morning hours.3,22 They may rest indoors for prolonged periods of 

time31, or close to their breeding site22. An. farauti are mostly night time and early evening 

biters, although they do occasionally bite during the day33. Biting and resting habits of vectors 

may influence susceptibility of vectors to IRS interventions22. Indoor spraying pilot projects 

conducted during the 1950s demonstrated that dichloro-diphenyl-trichloroethane (DDT) was 

effective against An. punctulatus and An. koliensis but not against An. farauti, which 

subsequently affected vector species composition32,33.   

 

4. History of malaria control in PNG 

4.1 1900 Robert Koch’s malaria expedition 

Since the early 1900s, malaria in PNG has been the subject of ongoing control programmes, 

interventions and research34,35. Some of the earliest research into the chemotherapeutic 

application of quinine in the treatment of malaria and interruption of vector breeding was 

conducted by Robert Koch in the Madang district of PNG in 190034-37.  Koch also led early 

vector control efforts of mosquito elimination through drainage of breeding sites, elimination 

of larvae by use of the larvicidal fish, Gambusia affinis, indoor residual spraying with DDT, 

infrastructure development around settled areas to prevent vector breeding and routine 

surveillance among at-risk populations38,3,5.  

Control programmes implemented during this time had some success in halting epidemics, 

primarily in highlands provinces, and achieved a substantial reduction in prevalence in the rest 

of the country. However, problems with administration, training and discontent with the 
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programme, and reluctance of the general population to adhere to a disagreeable regimen of 

malaria prophylaxis with quinine, eventually contributed to a breakdown of the control 

programme 3,5. Programme operations were also less effective on the islands due to poor 

coordination of activities during peaks and troughs in transmission and the change in vector 

biting behaviour in response to spray interventions5.  

4.2 During and post-World War II 

During the Pacific War of World War II, control efforts in PNG were again intensified, but 

focussed predominantly on protecting the health of troops, members of the local population 

involved in national defence5,39, and labourers working on coastal plantations and in highland 

regions36. Malaria transmission in the highlands manifested as seasonal epidemics and 

outbreaks, often in tea and coffee plantations where people from the endemic lowlands 

travelled to work40,41, and were often marked with substantial morbidity and mortality42,23.  

Beginning in 1942, the malaria control campaign focused on vector control through use of 

mosquito nets, protective clothing and dimethyl-phthalate repellant, larviciding and draining 

of breeding grounds near campsites5,39,43,44.   Infectious disease control interventions around 

Port Morseby between 1946 and 1948 included the burning off of vegetation in the surrounding 

areas to expose habitats suitable for Aedes aegypti breeding (a major arbovirus vector). 

However, this burning off of vegetation facilitated instead the formation of breeding grounds 

suitable for Anopheles species43. At this point mepacrine, an antimalarial drug related to 

chloroquine and mefloquine,  was widely used as a malaria preventative, predominantly among 

allied forces during the second world war45, but subsequent emergence of wide-scale resistance 

resulted in discontinuation of its use43.   

At the time, DDT was considered the gold standard of insecticides,43 however the residual 

properties of DDT as an effective indoor insecticide had not yet been fully realised and its use 
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at the time was in aerial spraying interventions. An integrated malaria control strategy of 

‘bonification’, a programme of village improvement or community development was instead 

employed for malaria control. This involved the distribution of antimalarials, drainage of 

breeding grounds and larval control with Gambusia. Interventions were facilitated by aid post 

orderlies, with one person from each village being trained in control methods and supplied with 

antimalarials from the Department of Public Health43.  From about 1950 however, as the burden 

of disease was decreasing, efforts to sustain the bonification control programme were 

beginning to wane, as was investment in the training of control specialists and malaria 

education. The intensified integrated intervention approach of aerial spraying with DDT, and 

provision of protective clothing, mosquito nets, screens for houses, antimalarials and insect 

repellent to all at-risk populations, which had been employed in the protection of troops during 

war time, were subsequently considered to be too expensive to be sustainable in ‘peace time 

administration’ and were subsequently abandoned43.  

4.3 1950 to 1980  

The first pilot project on residual spraying with DDT as a means of malaria control and 

eradication was undertaken in Maprik, Sepik province in 19575,46. At the time, DDT was used 

as a malaria control intervention in well over half the population of PNG as it was considered 

safe, effective and economically viable5, and the persistent nature of the insecticide on indoor 

surfaces meant that contact time with resting vectors was increased43. By the early 1970s, the 

malaria control programme predominantly involved spraying with DDT, supplemented with 

mass drug administration (MDA) during malaria outbreaks, and covered 14 of the 19 

administrative districts of PNG5. In the highlands, the spraying regimen operated once per year, 

and case detection was carried out by passive surveillance. Active monthly surveillance was 

continued among a population of 20,000 people in the highlands for a period of 18 months but 

was discontinued following detection of only three positive slides over the surveillance period. 
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The low rates of infection detected during this surveillance time period impacted the morale of 

surveillance teams and led to the conclusion that surveillance of this type was too resource 

intensive for an area of such low parasite rates5.47 Prior to commencement of indoor spraying 

in the highlands,  parasite prevalence was 5 - 10%47, In the islands and lowlands, where 

prevalence was higher, spraying was carried out twice a year and case detection was carried 

out by active surveillance5.    

The success of this period of control operations, however, suffered from inconsistencies 

between different administrative areas in the running of the control programme, caused by a 

lack of inter-district coordination and communication5. The programme was also hampered by 

inadequate water transport facilities, financial constraints, and too small a number of technical, 

administration and training staff. Death of pets and destruction of household building materials 

associated with DDT spraying also led to a general refusal of IRS and a reluctance to allow 

strangers carrying out these spray operations into households5,25. In 1970, a four-year-long 

integrated MDA and residual spraying campaign in Karamui came to an end and an evaluation 

survey in 1971 deemed it to have been a failure due to administrative, operational and technical 

reasons. No regular evaluation of vector susceptibility to DDT was carried out during the 

campaign and concerns were starting to emerge regarding insecticide resistance48. Resistance 

resulted in a  resurgence in local infection rates in some areas to a level higher than had existed 

pre-control programme commencement5.  

By 1974, after ten years of integrated interventions, and in excess of 30 rounds of spraying in 

some parts of PNG, the control programme was yielding poor results25,36 and was operational 

in only part of the country49. It was suggested that the training received by malariologists during 

the early 1970s placed too much of an emphasis on vector control through IRS with DDT and 

as a result of broader approaches employed by earlier programmes being neglected49. 

Confidence in an eradication programme was abating in favour of a more realistic goal of 
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control49,50.  While the programme had achieved some success in reduction of prevalence and  

interrupting transmission in the highlands5, an eradication programme was only believed to 

have been feasible had the following been achieved: nationwide coverage of the interventions, 

adequate planning, administration, operation and assessment, sustained financial backing, 

visible economic benefits, full government support, integration of the programme with good 

national and local health services, and adequate health education25,49.  

5. Global Fund to Fight Aids, Tuberculosis and Malaria: 2004 to present  

Between 2005 and 2009, the National Department of Health, in partnership with Rotarians 

Against Malaria, led a free nation-wide distribution campaign of 2.4 million LLINs, resulting 

in 65% national coverage, with the aid of a US$16 million grant awarded by the Global Fund 

to fight Aids Tuberculosis and Malaria9,11. A further grant of US$102 Million awarded in 2009, 

facilitated distribution of an additional 2.5 million LLINs between 2009 and 2011 to all 

households in all provinces, resulting in an increase in country level coverage to 81.8% of 

households owning at least one LLIN2,51. In the highly malaria-endemic islands of PNG,  

coverage increased from 29.3% to 98.3%51,52 and a significant reduction in prevalence was 

reported one year after LLIN distribution, with malaria prevalence in the lowlands decreasing 

from 11.1% in 2008-2009 to 5.1% in 2010-2011 to 0.9% in 2013-20144. Prevalence of P. 

falciparum and P. vivax along the north coast of PNG has decreased 12 and 6 fold, respectively 

following 8 years of malaria control interventions, and surveys carried out in 2013-2014 have 

recorded a historic low in national transmission8.  

 

National distribution of LLINs has also resulted in a decrease in malaria prevalence in the 

highlands since 2010, both directly and indirectly as a consequence of lower rates of infection 

and importation from the lowlands4. Prior to commencement of the current national malaria 

control programme, little malaria control had been undertaken in the highlands provinces since  
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the 1980s, and by the early 2000s malaria prevalence in the highlands had rebounded to pre-

control levels40. Infections at this time were attributed predominantly due to P. falciparum and 

locations and timings of epidemics were largely similar to epidemics of the 1960s and 70s, 

associated with substantial morbidity and high prevalence of clinical infection53. Malaria in the 

PNG highlands continues to be unstable and is characterised by seasonal epidemics, with 

endemic transmission occurring in the mountain valleys7,40.  

 

As well as the free distribution of LLINs, the national malaria control programme expanded to 

include RDTs or microscopy for diagnosis of febrile illness and ACT for malaria treatment. 

Until 2002, diagnosis of malaria and treatment was administered on a presumptive basis2,3,29 

and fever cases were often treated as malaria even with a negative diagnosis by RDT54,55.  New 

malaria treatment guidelines introduced in 2009 advocate for parasitological diagnosis of fever 

cases with RDT or light microscopy and treatment only in the case of a positive diagnosis40,56 

and this protocol is now applied in most health centres8. Prior to 2010, treatment of the 

hypnozoite stage of infection with primaquine was not a formal part of the PNG treatment 

guidelines and 87% of children had a relapse of P. vivax infection within 6 weeks of 

treatment57. Since the distribution of these antimalarials and diagnostics to health centres in 

2008—2009 and 2010—20118,58 there has been an increase in the percentage of health centres 

stocking RDTs from 17.5% in 2010 to 90.2% in 201259,60,61, and in the use of RDTs for 

diagnosis of febrile illness61. In 2014, 85% of health centres surveyed were able to provide 

first-line treatment for uncomplicated malaria, and 42% of health facilities had first-line 

treatment available for severe malaria59. 

 

6. Challenges to malaria control in PNG 
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While recent increases in funding and mass distribution campaigns in PNG have substantially 

increased access to LLINs, malaria diagnostics and treatment, use of these interventions may 

still need to be increased, and barriers to access remain. Firstly, success of implementation of 

these distribution campaigns depends on the management, logistics and operation of the 

distribution programme44,62. The primary barriers to LLIN ownership and use are undersupply 

and limited accessibility 52,63. The mountainous terrain, coupled with the high proportion of the 

population living in remote villages with poor infrastructure and access to basic services, makes 

distribution of interventions challenging4,21,51.  Often villages are only reachable by boat, air, 

or walking on foot for several days2. Additional barriers to use of LLINs include perceptions 

of low malaria risk, indifference, sparing LLINs for later use and reluctance to use a LLIN in 

the heat52,51. Visitors to households are also at an increased risk of infection as they do not 

travel with an LLIN52 and do not usually have access to one in the households they are visiting 

and spending the night51.   

 

Despite the scale up in availability of RDTs and ACTs, recent evidence suggests that less than 

half of confirmed or suspected malaria cases were prescribed treatment with ACTs at health 

centres4. Research suggests that RDT diagnostics are largely being used in place of 

complementary diagnostics with the result that levels of assessment are largely similar to what 

they were prior to the scale up of RDT diagnostics61. In addition to vector control and treatment 

interventions, good access to well-functioning, staffed and resourced health centres is 

important in achieving malaria elimination64,65,49. However distance to the nearest health 

facility has been reported as a factor in whether or not formal treatment is sought for suspected 

malaria65 and considerable urban-rural and within-region disparities exist in access to quality 

health care66.  
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7. Lessons learned and future of malaria control and elimination in PNG 

Critical evaluations following the breakdown of previous control programmes uncover 

common themes in breakdown of control operations. Poor planning, a lack of cohesion in 

administration between different provincial districts, as well as difficulty in sustaining 

investment and control efforts once a visible decrease in malaria burden was observed, were 

inadequacies evident in all three major historical control periods. Poor communication with 

populations where interventions were being targeted, as well as general dissatisfaction with 

drug treatment and insecticide spraying regimens were also cited as creating challenges to 

control efforts. Malaria control programmes in the past have significantly altered the 

transmission dynamics of malaria resulting in emergence of resistance and resurgence of 

malaria at higher rates than had existed prior to commencement of control interventions5,29. As 

noted following the breakdown of control programmes in the 1970s, success of malaria control 

programmes in PNG are contingent on a broader approach to control through nationwide 

coverage of interventions, directed by  adequate planning and administration25,49 and this, as 

well as obstacles faced by previous control programmes, should be taken into consideration as 

current control efforts progress.  

 

Heterogeneity and small area variation in transmission should be examined when planning 

distribution of control interventions, and change of transmission dynamics in response to 

control interventions evaluated by sustained surveillance26.  Surveillance is currently carried 

out as cross-sectional surveys or passive case detection. Novel statistical methodologies for 

interpolating risk of infection outside of surveyed areas may improve allocation of resources 

and directing additional surveillance operations to where they will have most impact. 13,67. 

Novel statistical methods and epidemiological tools for interpolating infection risk and 

heterogeneity in spatial distribution of P. falciparum and P. vivax transmission outside of 
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surveyed areas will be useful in guiding and planning allocation of control interventions to 

areas where they will have most impact. 

 

Migration between the highlands and coastal lowlands continues to be associated with 

epidemic outbreaks of imported P. falciparum, posing a major challenge for malaria control in 

the highlands68, and  a major focus of control interventions in PNG should be the reduction of 

risk of importation to the highlands via human migration53. Continued surveillance to identify 

foci  of residual transmission as transmission decreases and high risk areas for post elimination 

resurgence, is necessary to achieve and sustain elimination40. Improved methods for examining 

the impact of human mobility and connectivity of distinct geographic locations on malaria 

transmission in PNG will be beneficial to control programmes for guiding surveillance 

operations. Such epidemiological methods may include examining the geographic niches of 

distinct Plasmodium parasite genotypes to understand how connectivity of distinct populations 

influences malaria transmission dynamics. Methods for assessing risk of resurgence in parts of 

the country where elimination has been achieved, but remain connected to endemic areas via 

human mobility will be useful for targeting vector control interventions and estimating when 

control interventions should be sustained or can be discontinued.   

 

8. Conclusions 

Although it has been argued that perhaps the most realistic goal for PNG in terms of malaria 

elimination is stable low level transmission and perhaps elimination from the highlands, the 

potential for resurgence in the highlands post elimination due to human migration is real and 

may present a threat to national elimination programmes of neighbouring countries, or 

countries with which PNG has close and frequent contact. Here we have presented a review of 

the present and historical state of malaria epidemiology and control in Papua New Guinea in 
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an effort to identify obstacles to the success of previous malaria control programmes and to 

inform current and future control and elimination strategies. 
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CHAPTER 4. SPATIAL ECOLOGY AND PREDICTED RISK OF MALARIA IN 

PAPUA NEW GUINEA: A COMPARISON OF MODELS FROM WHICH TO 

GENERATE RISK MAPS 

CONTEXT 

Chapter 4 compares statistical models for generating national scale spatial predictions of 

malaria distribution in PNG, a country in the control stage of malaria elimination. In this 

chapter, the application of traditional frequentist GLM approaches and the emerging BDN 

modelling approach have been explored with respect to spatial prediction of malaria risk, and 

the predictive accuracy of both methods were quantified.  

P. falciparum and P. vivax national point prevalence data, collected as part of a nationwide 

malaria indicator survey, were used in conjunction with ecological covariates associated with 

malaria transmission in PNG to predict the spatial distribution of malaria on a national scale. 

We explore environmental and climate drivers associated with transmission of both parasite 

species in PNG and discuss the difficulties in malaria risk prediction in this context, due to 

complexity of the disease ecology of malaria and spatial variation in malaria risk factors across 

PNG. Comparison of the accuracy of BDN models with a GLMs found a better predictive 

performance of the BDN models. Ensuring the predictive accuracy of statistical models in 

spatial risk prediction is integral to the success of malaria control programmes. This chapter is 

formatted for submission as a manuscript to Malaria Journal.     
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Abstract 

Introduction 

Considerable progress towards controlling malaria has been made in Papua New Guinea 

through the national malaria control programme’s free distribution of long lasting insecticidal 

nets, improved diagnosis with rapid diagnostic tests and improved access to artemisinin 

combination therapy.  Predictive risk maps can help to inform targeted interventions and 

monitor changes in malaria epidemiology over time as control efforts continue. This study 

aims to compare the predictive performance of risk maps generated using Bayesian decision 

network (BDN) models and multilevel logistic regression models for improved accuracy in 

malaria spatial risk prediction. 

Methods 

Multilevel logistic regression models and Bayesian decision network models were developed 

using 2010/2011 malaria prevalence survey data collected from 77 randomly selected villages, 

to determine associations of Plasmodium falciparum and P. vivax prevalence with 

precipitation, temperature, elevation, slope, enhanced vegetation index and distance to the 



75 
 

coast. Predictive performance of multilevel logistic regression and BDN models were 

compared by cross validation methods.  

Results 

Prevalence of P. falciparum was significantly associated with precipitation during the three 

driest months of the year, June to August (β= 0.015; 95% CI = 0.01 – 0.03),  whereas P. vivax 

infection was associated with elevation (β = -0.26; 95% CI = -0.38 - -3.04), precipitation 

during the three driest months of the year (β = 0.01; 95% CI = -0.01 - 0.02) and slope (β = 

0.12; 95% CI = 0.05 - 0.19). Compared with GLM model performance, BDNs showed 

improved accuracy in prediction of P. falciparum (AUC = 0.5681; AUC = 0.7502, 

respectively) and P. vivax (AUC = 0.6786; AUC = 0.7488, respectively) on cross-validation. 

Conclusion 

BDNs provide a more flexible modelling framework than generalized linear models and may 

have a better predictive performance when developing malaria risk maps due to the multiple, 

interacting factors that drive malaria risk in different geographical areas. When developing 

malaria risk maps, BDNs may be particularly useful in predicting risk where spatial variation in climate 

and environmental drivers of malaria transmission exists, as is the case in Papua New Guinea. 

  

1. Introduction 

Papua New Guinea (PNG), a Pacific island nation with a population of over 8 million people1, 

has had a steady decline in malaria prevalence since 2004 when the national malaria control 

programme was awarded a Global Fund to Fight Aids, Malaria and Tuberculosis grant. This 

funding facilitated the free national distribution of long lasting insecticide treated nets (LLINs), 

improved diagnosis by rapid diagnostic tests (RDTs) and scaling up of artemisinin-based 

combination therapy (ACT) in all health facilities2. Consequently, Plasmodium falciparum and 

P. vivax prevalence has reduced from 3.4%3 and 2.1% to 1.6% and 0.5% between 2010 and 
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2014 respectively4,5. PNG is currently classified as being in the control stage on the pathway 

towards malaria elimination2. Despite this decline in prevalence, PNG still has the highest 

incidence of malaria in the Asia Pacific Region, equal only in a global context to the highest 

burden countries in Sub-Saharan Africa6,7. 

The epidemiology of malaria varies considerably across the country and small-area spatial 

variations in malaria prevalence also exist8, attributed in part to varied implementation of 

interventions including village LLIN use and the availability of antimalarials8. Environmental 

and climate factors associated with mosquito breeding sites and different vector dynamics, 

particularly between low lying coastal areas and the highlands, also contribute to the variation 

in the spatial distribution of malaria prevalence9,10. In the PNG lowlands, malaria transmission 

is perennial, with seasonal transmission only in coastal regions where rainy and dry seasons 

are distinguishable11. In highland regions, marked seasonality exists where transmission is 

lower and unstable. In these areas, which are prone to seasonal epidemics or outbreaks and 

where populations lack acquired immunity, morbidity and mortality can be more severe 11. The 

spatial distribution of both P. falciparum and P. vivax spans the entire country, however in 

terms of relative contribution to disease, P. falciparum is responsible for a greater proportion 

of infections3. The relative abundance of P. vivax has recently been observed to be increasing 

however, concurrent with a decrease in P. falciparum prevalence12. 

Predictive risk maps based on spatial statistical models examining associations between 

environmental variables (often sourced using satellite remote sensing) and disease risk (often 

measured using surveys or surveillance data) are useful evidence-based decision tools for 

allocation of resources in control programmes10,13. These tools are of particular value in the 

context of constrained resources and in directing interventions to remote or difficult to access 

communities.  Spatial risk maps can assist with surveillance and control interventions through 

revealing the geographical bounds of disease occurrence and variations in disease risk, 
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including spatial changes in prevalence in response to control intervention14-17,  providing a 

better understanding of the epidemiology of disease over various spatial scales18.   

Epidemiological risk maps are often generated using the results of generalized linear models 

(GLM) that include environmental, demographic and intervention-related covariates. Such 

models can be developed at a range of spatial scales from global to local19,20. However, 

challenges in using GLMs in the spatial prediction of malaria can be posed by spatial and 

temporal non-stationarity (where relationships between variables and correlation structures 

vary across a study area or time period), non-linear associations with predictive risk factors, 

spatial autocorrelation, complex causal pathways, and complex interactions between 

covariates, including collinearity21. All of these factors might limit the prediction accuracy of 

GLM based approaches.  

In recent years, graphical model-based approaches, such as Bayesian decision networks 

(BDNs), have become more ubiquitous in infectious disease risk prediction, and used with 

good success14,22. BDNs are graphical representations of variables, or nodes, in a system linked 

together, and to the outcome of interest, to describe a network of complex interactions23,19. 

Such models can capture complex interactions of drivers of transmission and interacting 

nonlinear effects, and can provide quantitative representation of uncertainty in spatial 

predictions14,19. Variables are connected via directed arcs, indicating the direction of the 

association, with conditional probability tables quantifying the relationship between each 

variable23-25,26. BDNs can be structured using a machine algorithm to learn the model structure 

with available data or structured using expert knowledge26-28. BDNs have been shown to have 

good prediction accuracy for malaria at high temporal and spatial resolution, although previous 

research has focused on malaria predictions at village level only and not at a broader spatial 

surface21.  
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Spatially explicit BDNs can provide visual representations of variables of interest, such as 

predictive risk of infectious disease14,19,24,29, and have become increasingly popular for 

modelling of ecological and environmental systems with improved predictive accuracy 

compared to traditional methods (such as GLMs) 25,30. Predictive accuracy, and the ability to 

demonstrate uncertainty in predictions, is beneficial for appropriately allocating resources 

when deciding where to disseminate control interventions. In this paper, we aim to produce 

national risk maps for P. falciparum and P. vivax infection in PNG, and to compare the 

predictive accuracy of GLM and BDN based methods for generating malaria risk maps in a 

complex environment. 

2. Materials and Methods 

2.1 Infection data   

Data were collected as part of the national malaria indicator survey (MIS), which was 

conducted by the Papua New Guinea Institute of Medical Research, in 2010 and 2011. The 

survey was conducted in five villages randomly sampled from a geo-referenced village 

database in 17 of the 20 provinces of PNG, representing 77 villages in total. In each village, 30 

households were randomly selected for inclusion and all present, consenting household 

members over six months of age were included as eligible for participation in the survey. 

Datasets collected included information on household use of LLINs, a treatment-seeking 

behaviour survey relating to recent febrile illness and collection of capillary blood samples for 

determination of parasite prevalence and species by microscopy. Malaria diagnosis was 

determined by RDT and treatment was provided for any participants with detected cases 

encountered during the course of the survey5. Village GPS coordinates and elevation above sea 

level were also recorded, and village level prevalence of P. falciparum and P. vivax was 
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determined based on survey results. More detailed information pertaining to data collection can 

be found in the survey report5. 

2.2 Data on the physical environment  

Average monthly precipitation and temperature data, aggregated over a 50 year period from 

1950 to 2000, at 1km2 resolution were downloaded from the WorldClim website31. Elevation 

and slope data were extracted from a global digital elevation model (GDEM) obtained from 

the National Aeronautics and Space Administration (NASA) online repository of remote 

sensing image data, collected by the Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) aboard the Terra satellite32. Enhanced vegetation index (EVI) data were 

derived from the remote sensing images collected by the Moderate Resolution Imaging 

Spectroradiometer (MODIS), also aboard Terra. Distance to the coast was calculated using 

geographic information system (GIS) software by defining a coastline polygon and calculating 

the Euclidean distance from each cell on the map to the coast. All covariate data processing 

was carried out using ArcGIS software version 10.3 (ESRI, Redlands, California). 

2.3 Univariate analysis and variable selection  

Maps of observed P. falciparum (Figure 1.) and P. vivax (Figure 2.) prevalence across the 77 

surveyed villages in PNG were generated in ArcGIS and overlain with climate and 

environmental raster layers. Median values for temperature during the three hottest and coldest 

months (December to February, and June to August, respectively), and precipitation during the 

wettest and driest three months (January to March, and June to August, respectively), EVI 

during the hottest (January) and coldest (July) months of the year, and slope and elevation data 

were extracted to 5km and 10km buffer zones around the centre point of each survey village 

location. The Euclidean distance from each centre village point to the coastline of PNG was 

also calculated and values extracted. All data management and extraction was carried out using 
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ArcGIS software. Univariate analysis of associations between prevalence of P. falciparum and 

P. vivax with environmental and climate data, using both 5km and 10km buffers, was carried 

out using multilevel logistic regression models that accounted for clustering at the village level. 

Variables were selected for inclusion in further analyses based on a p-value of < .05 and lowest 

value of the Akaike Information Criterion (AIC). Collinearity of variables between 

environmental and climate variables was assessed prior to inclusion in models using a tolerance 

cut point of <.02 and VIF cut-off value of >5. The only variables found to exhibit collinearity 

were temperature and elevation and the most appropriate variable for inclusion in multivariate 

regression models were selected based on lowest AIC value, obtained on univariate analysis. 

All univariate and multivariate regression analyses were carried out using Stata statistical 

software version 14 (StataCorp, College Station, Texas). 

2.4 Multivariable generalised linear regression models  

Multilevel mixed-effects logistic regression models were developed for P. falciparum and P. 

vivax using selected variables, with proportion of bednet ownership of each village (survey 

data included both insecticide treated net (ITN) and LLIN coverage), age, gender, wealth 

quintile and annual quarter during which the survey was carried out included in the models to 

adjust for confounding of associations with environmental variables. Separate multivariable 

models were built for both Plasmodium species and final models for each were selected based 

on the lowest Akiake Information Criterion (AIC) value.  To identify spatial autocorrelation, 

semivariograms of the regression model residuals were plotted using the R open source 

software version 3.2.2 (R Foundation for Statistical Computing, Vienna, Austria). There was 

no evidence of spatial autocorrelation from the semivariograms and we were unable to fit 

spatial GLMs using model-based geostatistics, therefore spatially explicit GLMs were not 

developed further.  
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2.5 Spatial risk prediction and generation of risk maps using generalized linear modelling 

results 

Spatial risk predictions were made, using environmental and climate fixed effects only, by 

multiplying values for each cell of the environmental variable raster layers in the model by the 

corresponding covariate coefficient from the multilevel regression models, adjusted for socio-

demographics. The resulting raster layer values were summed (together with the intercept) and 

the logit calculated using the map algebra tool in ArcGIS. Although not all variables in P. 

falciparum and P. vivax multilevel mixed-effects models were found to be significant upon 

regression analysis, all were retained for generation of predicted risk maps. The equations for 

spatial risk prediction (p) in each location (i) of P. falciparum and P. vivax are as follows: 

2.6 Bayesian decision network models 

A machine-learned BDN, and a BDN model structured based on the biological assumptions 

underlying malaria transmission in PNG, and associations with ecological covariates obtained 

upon initial univariate analysis (an expert structured model), were compiled using Netica 

software version 5.24 (Norsys Software Corp., Vancouver, Canada) and the bnlearn package33 

in R statistical software. For the expert structured model, the variables found to have strongest 

associations with the outcome, based on AIC criterion, were placed closest to the parent node 

and sensitivity to findings analyses were conducted in Netica software to verify appropriate 

positioning of variables in the network. Sensitivity to findings analysis verify which nodes in 

the model are most informative in making predictions for the outcome of interest. Machine-

P. falciparum: Logit (pi) =-59.467 – .005 * Enhanced vegetation index in Julyi – .073 * Distance to coasti + 4.77 

* Maximum temperature (December to February)i – .09 * Maximum temperature (December to February)i
2 + 

.015 * Precipitation (June to August)i 

P. vivax: Logit (pi) =-5.941 + .038 * Enhanced vegetation index (January)i – 1.33 * Distance to coasti – .26 * 

Elevationi + .01 * Precipitation (June to August)i + .12 * Slopei 
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learned models were defined and optimal model structure determined based upon the hill-

climbing algorithm in the bnlearn package in R statistical software.  Continuous predictor 

variables in the model were discretised using the equal interval method for discretisation in R 

software. Climate and environmental variables used in the BDN models were, for the most 

part, the same predictor variables as those used for the GLM models. There were however a 

few exceptions, described as follows.  

Whereas a measure of maximum temperature during the three hottest months of the year, 

together with a corresponding quadratic term was used in the P. falciparum GLM model, it 

was not considered appropriate to use a discretised quadratic term in the BDN model as the 

non-linear relationship with P. falciparum would only be captured using a continuous variable. 

Instead, the variable with the next strongest association to the outcome, minimum temperature 

during the three hottest months, was used. Altitude was also included in this model, which 

could not be included in the GLM model due to collinearity. Likewise, temperature (minimum 

temperature during the three hottest months of the year) was included in the P. vivax model, 

which was previously excluded from the GLM model due to collinearity. 

Network models were structured with P. falciparum and P. vivax infection status as parent 

nodes and explanatory variables as child nodes with directed arcs connecting explanatory 

variables in the model to each other and to the outcome variable of interest. Networks were 

structured using environmental variables only, in order to ensure that 1) conditional probability 

tables (CPTs) could be generated quantifying associations between the states of all variables in 

the model given the number of observations in the dataset, 2) to ascertain prediction accuracy 

using environmental variables alone for comparison with regression model spatial predictions 

which were validated against demographic adjusted village level prevalence and 3) spatial 

predictions from the models would be based on environmental variables only, given that these 

were the variables for which all non-sampled locations had observations.  
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CPTs were generated quantifying the relationships between explanatory variables and the 

outcome variable. CPTs and predicted probability of the outcome34 were based on data entered 

into the model and a-priori beliefs were updated through belief propagation using Bayes’ 

Theorem (posterior = likelihood * prior / probability of evidence )23,26. A-priori beliefs relate 

to the logical structure of explanatory nodes in the expert structured model and a-priori 

probabilities are updated as new knowledge about the systems is obtained (observational data 

on which the model is learned and CPTs are produced) making them posterior beliefs35.   

2.7 Spatial risk prediction and generation of risk maps using Bayesian decision network model 

results 

Prediction probabilities for P. falciparum and P. vivax were determined according to 

conditional probability tables from the BDN model and predictions were made for each spatial 

point on a continuous gridded vector layer of environmental and climate measures for PNG 

using the bnspatial package in R. The spatial distributions of these predicted probabilities were 

plot in ArcGIS and the resulting gridded point maps smoothed using the inverse weighting 

function. Maps showing degree of spatial entropy representing uncertainty for both models 

were also produced in the bnspatial package.  

2.8 Cross validation of GLMS and BDNs 

The predictive accuracy of the P. falciparum and P. vivax models was assessed by cross-

validation of predicted prevalence (pi) values against observed adjusted prevalence, generating 

Receiver operating characteristic (ROC) curves and obtaining Area under the curve (AUC) 

values.  Observed prevalence values adjusted for age, gender, wealth quintile, bednet use and 

season during which the surveys were carried out were calculated using the dstdize command 

in Stata statistical software.  Cross validation of the predictive accuracy of the spatial risk 

prediction of the models was carried out by predicting spatial distribution of P. falciparum and 



84 
 

P. vivax based on the results of regression models using 75% of the survey data (training 

dataset), and extracting predicted median values to a 5km buffer around each village point for 

the remaining 25% of villages (test dataset) in ArcGIS. Cross validation to assess predictive 

accuracy of the models was carried out by plotting predicted values test datasets against 

observed adjusted prevalence using ROC curves, from which AUC values were obtained.  

The predictive accuracy of machine-learned BDN models and expert structured models was 

assessed using cross validation methods. Cross validation was carried out by defining a training 

dataset (75% of the full dataset) from which CPTs in the machine-learned and expert structured 

models were defined. Predictions were then made from these models on a test dataset (the 

remaining 25% of the full dataset) and ROC curves and AUC values showing results of cross-

validation generated. Two iterations of cross-validation were carried out for each P. falciparum 

and P. vivax machine-learned and expert structured models using two sets of randomly 

generated training and test datasets. The predictive accuracy of machine-learned models was 

compared with expert structured models, and the latter, which demonstrated the most accurate 

predictive performance on cross validation, were selected for spatial prediction of malaria risk. 

3. Results 

3.1 Demographics  

Survey results showed that observed P. falciparum prevalence (2.83%; 95% CI: 2.51% - 

3.16%) was slightly higher than P. vivax prevalence (2.07%; 95% CI: 1.79% - 2.35%) (Table1). 

Geographically, the highest prevalence of both P. falciparum (Figure 1) and P. vivax (Figure 

2) was observed in the islands of East New Britain and New Ireland, the north coast and on the 

Papuan Peninsula in the east of the country. Prevalence of P. falciparum was highest among 

children aged between six months and five years of age (5.59%) and males (3.11%). The 

highest observed prevalence of P. falciparum at village level was 27.6%, whereas the highest 
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prevalence of P. vivax at the village level was 15.8%. Prevalence of both P. falciparum and P. 

vivax was slightly higher among LLIN users (3.02%; 2.25%, respectively), possibly suggesting 

higher LLIN usage among populations at known higher risk.  

Table 1 

Plasmodium falciparum and Plasmodium. vivax prevalence of 10,028 individuals surveyed in the 2010/2011 

National Malaria Control Intervention and Prevalence of Parasitaemia Household Survey 

 P. falciparum P. vivax 

Variable  N (%)  N (%) 

 

Disease Prevalence 284 (2.83; 95% CI: 2.52 – 3.18) 208 (2.07; 95% CI: 1.80 – 2.37) 

   

Gender   

Female 135 (2.56) 103 (1.95) 

Male 147 (3.11) 104 (2.20) 

Age   

0 – 5 99 (5.59) 88 (4.97) 

6 – 18 117 (3.76) 74 (2.38) 

19 – 100 68 (1.32) 46 (0.90) 

Bednet use   

No 122 (2.62) 87 (1.87) 

Yes 162 (3.02) 121 (2.25) 

Total 284 (2.83) 208 (2.07) 

 

3.2 Generalized linear modelling analysis 

Among the environmental predictor variables, P. falciparum was found only to be significantly 

associated with precipitation during the three driest months of the year, June to August (β= 

0.015; 95% CI = 0.01 – 0.03) in the final multivariable model (Table 2),  whereas P. vivax 

infection at village level was associated with elevation (β = -0.26; 95% CI = -0.38 - -3.04), 

precipitation during the three driest months of the year (β = 0.01; 95% CI = -0.01 - 0.02) and 

slope (β = 0.12; 95% CI = 0.05 - 0.19). In terms of demographics, the highest wealth quintile 

was negatively associated with P. falciparum prevalence (β = -0.89; 95% CI = -1.62 - -0.016) 

as was age, with participants aged between five and 18 years of age at lower risk compared 
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with children under five (β = -0.33; 95% CI = -0.53 - -0.12), as well as those over 18 years of 

age (β = -1.27; 95% CI = -1.62, -0.92). P. falciparum prevalence was also associated with 

season during which the survey was conducted, with a higher risk between March and May, 

compared with November to February (β = 1.11; 95% CI = 0.33 – 1.88). P. vivax was associated 

with age, with lowest risk among the participants over 18 years of age (β = -1.55; 95% CI = -

2.08 - -1.02). Maps generated based on the results of these models show highest P. falciparum 

predicted risk (0.03% – 0.06%) in New Britain, New Ireland, Sandaun and Milne Bay (Figure 

3), consistent with observations from the national malaria survey. The spatial distribution of P. 

vivax (Figure 4.) generated based on the results of the GLM show highest predicted prevalence 

in Western, Sanduan and East Sepik provinces with a low predicted prevalence in the highlands 

and islands regions, which is contrary to expected findings given the observational results 

obtained from the parasite prevalence survey. 

Table 2  

Results of Plasmodium. falciparum and Plasmodium vivax generalised linear multivariable regression models 

P. falciparum P. vivax 

Variable  Beta Coefficient (95% CI) 

 

Variable  Beta Coefficient (95% CI) 

Enhanced Vegetation Index Jul -0.005 (-0.07 - 0.06) Enhanced vegetation Index Jan  0.038 (-0.02 - 0.09) 

Distance to the coast -0.73 (-2.73 - 0.77) Distance to the coast  1.33 (-0.01 – 2.98) 

Tmax Dec to Feb (hottest)  4.77 (-1.10 – 9.97) Elevation -0.26 (-0.38 - -3.04) 

Tmax sq -0.09 (-0.19 - 0.02) Precipitation Jun to Aug (driest)  0.01 (-0.01 - -0.02) 

Precipitation Jun to Aug (driest)  0.01 (0.01 - 0.03) Slope  0.12 (0.05 - 0.19) 

Bednet ownership proportion village  0.91 (-0.23 – 2.11) Bednet ownership proportion village -0.45 (-1.78 – 0.88) 

Female  -0.14 (-0.37 - 0.09) Female -0.04 (-0.40 - 0.31) 

Wealth quintile 2  0.30 (-0.15 - 0.75) Wealth quintile 2  -0.06 (-0.39 - 0.50) 

Wealth quintile 3 -0.06 (-0.57 - 0.45) Wealth quintile 3  0.16 (-0.41 - 0.74 

Wealth quintile 4 -0.36 (-0.83 - 0.09) Wealth quintile 4 -0.24 (-0.81 - 0.33) 

Wealth quintile 5 -0.89 (-1.62 - -0.16) Wealth quintile 5 -0.79 (-1.57 - -0.15) 

Age >5 - 18 -0.33 (-0.53 - -0.12) Age >5 – 18 -0.67 (-1.10 - -0.25) 

Age >18 + -1.27 (-1.62 - -0.92) Age >18 + -1.55 (-2.08 - -1.02) 

Season Mar - May  1.11 (0.33 – 1.88)    

Season Jun - Aug  0.74 (-0.11 – 1.59)    



87 
 

3.3 Bayesian decision network spatial predictions  

Expert BDNs for both P. falciparum (Figure 5) and P. vivax (Figure 6.) were structured with 

EVI, region and distance to the coastline variables positioned with arcs directly related to 

disease prevalence, as these variables were found to be the strongest predictors of both P. 

falciparum and P. vivax  risk. Spatial risk maps showing the predicted distribution of P. 

falciparum (Figure 7) based on the results of the BDN models predict the probability of P. 

falciparum prevalence to be highest in the island provinces of PNG, New Ireland and New 

Britain (.03 to 0.12), consistent with the results of the observed prevalence collected in the 

household survey. High predicted prevalence was also seen along the northern coast in the 

provinces of Sandaun, East Sepik and Madang (0.03 to 0.12). Average predicted probability 

was lower in the highland provinces (0.001 to 0.03), along the south coast (0.001 to 0.03), 

where population density is sparser, and in Milne bay (0.001 to 0.03). The predicted probability 

of P. vivax (Figure 8) was also highest in the islands ranging from 1.0% to 3.0% and 6.0% to 

8.0%. The highest predicted probability of P. vivax prevalence along the north coast where 

highest observed prevalence was observed ranged between 3.0% and 6.0%. Predicted 

probability was lowest along the south coast, similar to patterns observed for P. falciparum 

(0.01 to 0.03). The spatial pattern of entropy, or uncertainty in risk prediction, had a similar 

distribution to the spatial distribution of highest predicted probability of P. falciparum (Figure 

9) and P. vivax (Figure 10), reflecting higher standard errors for higher predicted prevalences.     

3.4 Comparison of prediction accuracy  

For the multivariable, multilevel GLMs, cross validation (Table 3) showed unsatisfactory 

agreement for P. falciparum (Figures 11a & 11b), with the predicted risk not performing much 

better than random allocation of status relative to any of the three cut-points (AUC at 1% = 

0.5681; AUC at 2.5% = 0.5927; AUC at 5% = 0.5634) and somewhat satisfactory agreement 



88 
 

with observed data for P. vivax (Figures 11c & 11d),  at 1% and 2.5% prevalence cut-off values 

(AUC at 1% = 0.6786; AUC at 2.5% = 0.5739), but not at a prevalence cut-off value of 5% 

(AUC at 5% = 0.4988). Validation of expert structured BDN models for spatial prediction 

probability of P. falciparum and P. vivax showed better prediction accuracy for P. falciparum 

(BDN test data AUC = 0.74502; Figure 12) and P. vivax (BDN test data AUC = 0.7623; figure 

13) compared with the GLMs, and machine learned models, on both iterations of cross 

validation.  

Table 3. 

Results of cross validation for generalised regression models and Bayesian decision network models 

 Area under receiver operating characteristic curve (AUC) 

 P. falciparum P. vivax 

       

GLM cross-validation 1% cut-off 2.5% cut-off 5% cut-off 1% cut-off  2.5% cut-off 5% cut-off 

Village level 0.5681 0.5927 0.5634 0.6786 0.5739 0.4988 

BDN cross validation 1st iteration  2nd iteration 1st iteration  2nd iteration 

Village level expert structured Train Test Train Test Train Test Train Test 

 0.7412   0.7502 0.7412   0.7502 0.7448 0.7623 0.7413 0.7769 

BDN cross validation 

Village level machine structured 

1st iteration  2nd iteration 1st iteration 2nd iteration 

Train Test Train Test Train Test Train Test 

 0.7407 

 

0.6978 

 

0.7252 

 

0.7442 

 

0.5 0.5 0.6843 0.7092 

BDN cross validation: The training and test datasets were split twice and cross validation carried out. 1st and 2nd iterations are the results 

of the cross validation each time the training and test datasets were split 

 

4. Discussion 

The results of this analysis show a better accuracy in the spatial prediction of malaria in PNG 

when using BDN models compared with the more commonly used GLM approach. The reasons 

for this improvement in prediction accuracy may lie in the ability of BDN models to retain 

collinear variables and  incorporate complex interactions between explanatory variables in the 

model30, meaning that more information is available for estimating the outcome. Our findings 
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are consistent with other studies that have shown BDNs to have improved prediction accuracy 

for levels of E. coli in recreational water sites in New Zealand compared with several 

alternative methods36, and in assessing risk of Murray Valley encephalitis virus in Western 

Australia37.  

Predicted risk of P. falciparum was found to be highest along the northern coast of PNG in 

Sandaun, East Sepik, Madang provinces, which is consistent with the higher average 

temperatures (Appendix 4.1) observed in these provinces of between 27⁰C and 32⁰C. Lower 

average risk was predicted in Morobe where average temperatures fall to between 11⁰C and 

24⁰C, and along the southern coast in provinces where population density is much lower than 

those on the northern coast. Predicted spatial prevalence in the Western Highlands province, 

Chimbu and Enga was low, consistent with survey results, and concordantly, predicted risk 

was highest in the island provinces of New Britain and New Ireland.  The predominant 

predicted risk in West New Britain was slightly lower than in East New Britain, where elevation 

and vegetation index values are lower (Appendix 4.2 & 4.3). The spatial distribution of P. vivax 

predicted risk, based on the results of the expert structured BDN model had a similar 

distribution pattern to P. falciparum predicted risk. 

As stated previously, drivers of malaria transmission across PNG vary spatially, and therefore 

a single, stationary model of environmental and climate predictors (such as the multilevel GLM 

presented here) does not seem to be appropriate for prediction of malaria risk. The drivers of 

malaria transmission in PNG appear to vary spatially. For example, while temperature may be 

a significant driver of transmission in the lowlands or coastal areas, altitude may be a better 

predictor of malaria risk in the highlands. To some extent, this variation was captured in the 

BDN using the region variable, but other solutions could include non-stationary GLMs with 

different covariate effects for different regions, or geographically weighted regression 

approaches.  
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An additional benefit of BDNs is that they can be used to define scenarios by which specific 

states of explanatory variables are selected, such as lowest defined temperature range and 

highest range of values for rainfall, and the probability of malaria under those specific 

environmental conditions can be predicted by the model. This could be useful for predicting 

the spatial distribution of malaria under different climate and environmental scenarios, or by 

incorporating intervention variables and scenarios tested to model the effects of different 

interventions on disease distributions.  

Prediction accuracy of the expert structured BDN model was better than the machine learning 

hill climbing algorithm. However, for expert structured BDNs, the way in which explanatory 

variables are structured is subject to interpretability and inconsistencies between different 

models of the same system or disease are likely to arise37. Coupling expert opinion with 

statistical inference to weigh the importance of explanatory variables with regard to the 

outcome should improve consistency in the way in which relationships in the model are 

structured28. While machine learning algorithms can be used to structure models21, spurious 

associations may exist that arise due to chance, as was observed here with associations defined 

by the machine learned models (Appendix 4.3 & 4.4). Cyclical arcs defined between nodes in 

the machine-learned models may violate conditional independence assumptions of the model, 

creating difficulty in generating CPTs and possibly contributing to the poor predictive 

performance of machine structured models observed here. Defining too many associations 

between explanatory variables, when insufficient observations exist to support these 

associations, can prevent estimation of CPTs making spatial predictions based on the results of 

these models difficult.  

Using BDN models allows graphical representations of the complex interactions of 

demographic and environmental covariates associated with infectious disease transmission, 

and ecology of disease, to be generated which can be of particular benefit when communicating 
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information to the public, stakeholders, national and local control programmes and funding 

authorities13,38,39.  The inherent ability of BDN models to represent uncertainty associated with 

spatial prediction risk is also valuable for portraying the reliability of risk maps to control 

programmes. National malaria control interventions need to ensure that disease prevention and 

control interventions are delivered to areas where risk is highest, and being able to visually 

represent the accuracy of risk maps can help guide decisions about efficient and cost-effective 

targeting of vector control interventions40.  

Generating spatial risk maps using the results of models from which we can represent this 

uncertainty in predictions, as well as carrying out cross validation on model predictions, make 

BDN models valuable epidemiological tools for guiding interventions and surveillance41. The 

visual nature of BDNs lend themselves to being easily interpretable in population health 

communication and in demonstrating different explanations of the outcome26,37. In Vietnam, 

for example, BDNs have been used for communication of mitigation and public health 

strategies to farmers on complex interactions of various factors involved in small-scale 

agriculture which can impact levels of E.coli in drinking water42. In PNG, evidence suggests 

that indifference, due to perceived low risk of malaria and absence of mosquitoes, are barriers 

to high coverer age of LLIN use43. In education and behavioural change programmes, the 

improved visualisation of novel tools such as BDNs showing how risk may vary between 

populations may improve coverage and uptake of vector control interventions38,44.  

P. vivax may present a particular challenge to malaria control programmes due to the high 

number of infections in PNG attributed to recrudescence45 and novel epidemiological tools for 

improved risk prediction and insight into environmental contributions to P. vivax transmission 

will be useful for informing control and elimination programmes46. The high recrudescence 

rate complicates the development of ecological models of transmission due to introducing a 

source of error in estimating covariate effects, and may limited the prediction accuracy of such 
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models. In the future it would be useful to model the impact of LLIN coverage across PNG, 

and to generate national predictions of parasite prevalence using national survey data collected 

subsequent to the data used here to examine, and validate, how well BDN models perform at 

predicting parasite response to intervention coverage.  

Limitations  

Explanatory variables with continuous data must first be discretised before being used in the 

BDN approach demonstrated here, leading to a potential loss of information and subjective 

decisions regarding the discretization threshold26. Our approach did not incorporate spatial 

autocorrelation in the models, which would make them unsuitable for data in which there is 

spatial dependency21, and methods need to be developed to accommodate this issue.  

Conclusions 

Results obtained from our comparative analysis examining the predictive accuracy of BDNs 

and GLMs found BDNs to perform better in terms of prediction accuracy for malaria in PNG. 

More work needs to be done to develop spatial BDN approaches and to make them more 

accessible to epidemiologists and disease control personnel. 
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Tables and Figures 

Figure 2. Plasmodium vivax prevalence among 77 survey villages in Papua New Guinea, 2010/2011 

Figure 1. Plasmodium falciparum prevalence among 77 survey villages in Papua New Guinea , 2010/2011 
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Figure 3. Plasmodium falciparum predicted risk spatial distribution based on the results of a generalised linear 

multivariate model in Papua New Guinea 

Figure 4. Plasmodium vivax predicted risk spatial distribution based on the results of a generalised linear 

multivariate model in Papua New Guinea 
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Figure 5. Expert structured Bayesian decision network showing associations of environmental variables 

with Plasmodium falciparum prevalence in Papua New Guinea. 

 

Figure 6. Expert structured Bayesian decision network showing associations of environmental variables 

with Plasmodium vivax prevalence in Papua New Guinea.   
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Figure 7. Predicted spatial distribution of Plasmodium falciparum risk in Papua New Guinea based on a Bayesian decision 

network model  

Figure 8. Predicted spatial distribution of P. vivax risk in Papua New Guinea based on a Bayesian decision network model  
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Figure 9. Spatial distribution of Shannon Index measure of entropy or uncertainty for Plasmodium falciparum 

predictions made using Bayesian decision network ecological model. 

 

Figure 10. Spatial distribution of Shannon Index measure of entropy or uncertainty for Plasmodium vivax 

predictions made using Bayesian decision network ecological model 
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Figure 11 a – d. Receiver operating characteristic curves from results of Plasmodium falciparum and 

Plasmodium vivax generalised linear model cross validation  

      

Figure 11a. Plasmodium falciparum cross 

validation 0.01 demographic adjusted village level 

prevalence cut-off against median village prevalence 

extracted from cross validation maps. AUC = 0.5681 

Figure 11b. Plasmodium falciparum cross validation 

0.025 demographic adjusted village level prevalence 

cut-off against median village prevalence extracted 

from cross validation maps. AUC = 0.5927 

 

      

Figure 11c. Plasmodium vivax cross validation 0.01 

demographic adjusted village level prevalence cut-

off against median village prevalence extracted from 

cross validation maps.  AUC = 0.6786 

 

Figure 11d. Plasmodium vivax cross validation 0.025 

demographic adjusted village level prevalence cut-off 

against median village prevalence extracted from 

cross validation maps.  AUC = 0.5739 

 

 

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

S
e
n
s
it
iv

it
y

0.00 0.25 0.50 0.75 1.00
1 - Specificity

Area under ROC curve = 0.5681

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

S
e
n
s
it
iv

it
y

0.00 0.25 0.50 0.75 1.00
1 - Specificity

Area under ROC curve = 0.5927

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

S
e
n
s
it
iv

it
y

0.00 0.25 0.50 0.75 1.00
1 - Specificity

Area under ROC curve = 0.6786

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

S
e
n
s
it
iv

it
y

0.00 0.25 0.50 0.75 1.00
1 - Specificity

Area under ROC curve = 0.5739



101 
 

   

 

 

 

 

AUC = 0.7412        AUC = 0.7502 

Figure 12. Receiver operating characteristic curves from results of Plasmodium falciparum Bayesian decision 

network model cross validation 

      AUC = 0.7448              AUC = 0.7623 

Figure 13. Receiver operating characteristic curves from results of Bayesian decision network Plasmodium vivax 

model cross validation 
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Appendix 4 

Supplementary material  

 

 

 

 

 

Figure S1 Average Temperature range in Papua New Guinea in January. Average temperature 

data aggregated over 50 years from 1950 to 2000 

  

  

 

 

 

 

 

 

Figure S2 Elevation range Papua New Guinea 

Legend

temperature range

Value

11 - 16

16 - 18

18 - 21

21 - 24

24 - 27

27 - 29

29 - 32

Temperature range Jan (⁰C) 

Elevation (metres)  

High 7946 m 

 Low -270 m 
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 Figure S3 Enhanced Vegetation Index in Papua New Guinea in July 2011 

 

 

 

 

 

 

 

 

 

 

Figure S4 Plasmodium falciparum machine-learned Bayesian decision network model 
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Figure S5 Plasmodium vivax machine-learned Bayesian decision network model 
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Landscape genomics of Plasmodium 

falciparum in Papua New Guinea 

reveals major population subdivisions 

associated with ecological niches and 
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CHAPTER 5. LANDSCAPE GENOMICS OF PLASMODIUM FALCIPARUM IN 

PAPUA NEW GUINEA REVEALS MAJOR POPULATION SUBDIVISIONS 

ASSOCIATED WITH ECOLOGICAL NICHES AND ROUTES OF MALARIA 

TRANSMISSION. 

CONTEXT 

In chapter 5, we propose a novel method for examining how parasite populations from distinct 

geographical areas are connected by human mobility among endemic areas. Determining 

parasite population connectivity of geographic areas through human mobility is important for 

informing malaria elimination programmes, as without identifying potential sources and routes 

of malaria transmission, elimination efforts in connected areas may be hampered. 

This chapter uses a Dirichlet regression model to examine associations between distinct 

population clusters determined through Plasmodium falciparum genotype data and landscape 

ecology data to predict predominance of distinct parasite genotypes across Papua New Guinea 

(PNG). By examining the predicted spatial distribution of these distinct parasite populations or 

‘demes’, we were able to infer how certain land areas of PNG permit parasite migration, or 

have been connected historically, in terms of malaria transmission. We extrapolate that these 

corridors of transmission have arisen via human migration. In contemporary malaria spatial 

epidemiology, addressing the impact of human mobility on malaria transmission, and 

examining methods for measuring human mobility, is one of the key areas of research currently 

receiving attention and has important implications for planning malaria control and 

containment of drug resistance. The research method in the chapter presented here is a novel 

interpretation of how parasite genetic data can be used to infer patterns of human mobility, 

together with its impact on malaria transmission dynamics, and informing elimination 
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programmes in such a manner as to prevent resurgence once elimination in specific areas within 

a country has been achieved. 

This chapter has been formatted for submission as a manuscript to the journal of the Nature 

Communications. 
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Abstract: 

As malaria transmission declines and recedes to small geographic foci, gene flow becomes 

more contained geographically, and genetically distinct pathogen populations may occupy 

distinct niches with differing transmission dynamics. This study aimed to predict the spatial 

distribution of distinct genotype clusters of Plasmodium falciparum across Papua New Guinea 

(PNG), a country with highly variable malaria transmission. A total of 708 parasite genotypes 

based on a 154 single nucleotide polymorphism (SNP) barcode were obtained from 27 survey 

locations across all malaria-endemic provinces of PNG. Eight genetically distinct sub-

populations (clusters) were determined based on ancestry co-efficients derived from Bayesian 

cluster analysis. A Dirichlet multivariate regression model examined associations of the eight 

P. falciparum genotype clusters with latitude and longitude, elevation, human population 

density and Euclidean distance from the coastline. The regression model was used to predict 

the spatial distribution of each genotype cluster across the country based on associations with 

these ecological covariates. Statistically significant associations were found with latitude and 

longitude for 6 of the 8 genetic clusters. Four clusters were associated with distance to the 

coastline and population density, but only two clusters were associated with elevation.  Based 

on associations of spatial P. falciparum genotype data with environmental variables, distinctive 

geographical niches were predicted, including at least two distinct populations on the mainland 

that differ from those of the outlying islands. The results identify potential routes of parasite 

migration (gene flow) between neighbouring areas with high transmission. Mapping these 

geographical niches and parasite population connectivity can guide targeted control and 

intervention programmes for prevention of transmission between distinct geographic areas 

which are connected in terms of malaria transmission.  

  



110 
 

One Sentence Summary: 

The geographical distribution of distinct Plasmodium falciparum genotype clusters was 

determined using a Dirichlet regression model and the results were used to predict the relative 

predominance of each genotype cluster across Papua New Guinea.  

Main text: 

5.1 Introduction 

A concerted international commitment to malaria control has resulted in a reduction in the 

global burden of malaria of over 30% over the past two decades1,2. Despite this, the disease 

remains a major global health problem causing an estimated 216 million clinical cases and 

435,000 deaths in 20172. As endemic countries progress towards malaria elimination and 

malaria parasite populations shrink, major challenges to achieving malaria elimination will 

include the adaptation of the parasite in response to control interventions, and tailoring 

surveillance and intervention programmes to track and accommodate these changes. 

Particularly challenging to elimination will be the potential resurgence, and sustained 

transmission, of malaria facilitated by human migration3, including that of emergent anti-

malarial resistant parasite strains4,5,6.  

Parasite population genomics can provide deep insights into transmission dynamics that could 

be harnessed to accelerate malaria control and elimination7-9. In areas of high transmission, 

parasite populations tend to be genetically diverse, with little genetic differentiation between 

different geographic areas10,11. This is mainly as a result of extensive co-infection of strains, 

providing ample opportunity for meiotic crossover between genetically distinct parasites upon 

transmission to the mosquito vector and population mixing (gene flow) as a result of parasite 

migration between different geographic locations12-14. As transmission declines and recedes to 

small geographic pockets or hotspots, focal parasite inbreeding increases and gene flow is 
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contained to defined geographic areas, such that parasite populations differentiate into 

genetically distinct clusters8,14. Emergence of population structure may arise because of a 

reduction in the number of distinct strains and more focal clustering of infections due to 

effective control programmes10,11,13-16.  A reduction in local parasite diversity may also arise as 

a result of limited migration between distinct populations. This potentially leads to a highly 

structured population demonstrative of marked interruption to local transmission17.  

Examining the extent to which Plasmodium parasite populations are structured in relation to 

human mobility can help to infer to what extent human population movement impacts on 

malaria transmission in a given setting11,18. Genomic data can also provide high precision 

accuracy in determining the source of infections in low transmission areas where outbreaks 

may be the result of imported or local residual transmission19-21. However, a major barrier to 

the uptake of genomic surveillance by malaria control programs is the complex output resulting 

from population genetic analyses. New approaches need to be developed that allow this 

information to be translated into easily understood data that could guide malaria policy and 

interventions.  

Landscape genomics is an emerging field combining genetics, spatial statistics and landscape 

ecology22 that allows parasite genome variation attributed to geographic processes to be studied 

in detail8, and identify genetic changes associated with environmental variation23. Statistical 

models incorporating georeferenced population genomics data with spatial environment data 

can help to examine the geographic distribution of parasite population genetic variation, gene 

variants that drive adaptation23 and variation in the ecology of distinct or related parasite 

lineages24. Genomic data have not yet been effectively employed in malaria surveillance25, and 

no previous research has utilised genomic data in predicting the geographic distribution of 

Plasmodium parasites, or their spatial relationships with the physical environment24.  
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We have generated a high density spatially referenced parasite population genetic dataset 

through genomic profiling (also known as “barcoding”) of P. falciparum isolates from 

throughout Papua New Guinea (PNG). In 2008, the PNG National Malaria Control Program 

conducted an extensive malaria indicator survey collecting blood samples from more than 

10,000 individuals living in all malaria endemic regions of the country (17/20 provinces)26. At 

this time, prevalence of P. falciparum ranged from 0 - 47% throughout the country27 and 

analysis of the complexity of infection and genetic diversity of P. falciparum populations 

(based on msp2 genotyping) was consistent with a wide range of transmission intensities 28.  

To evaluate genomic surveillance as a tool for malaria control and elimination, we determined 

P. falciparum population structure by barcoding more than 700 isolates using a panel of 154 

neutral genome wide single nucleotide polymorphisms (SNPs) (Harrison et al. manuscript in 

prep). Population genetic analysis of this data revealed a subdivided parasite population 

comprised of eight distinct genetic “clusters” distributed unevenly throughout the malaria 

endemic areas of PNG (Figure 1, Harrison et al, in prep). Together with remote sensing data, 

this dataset has provided a unique opportunity to explore parasite genetic data using spatial risk 

models. The aim of the current study is to use these datasets to produce predictive maps of P. 

falciparum population structure (specifically, the relative predominance of the eight genotype 

clusters) across PNG, based on a Dirichlet regression model.   

 

5.2 Results 

P. falciparum SNP barcoding reveals geographic subdivision of the PNG parasite population. 

Genetic clusters identified through STRUCTURE analyses were asymetrically distributed 

throughout the country (Figure 2). This suggested substantial population structure in some 

regions (e.g. Islands, Milne Bay, Manus) and mixing between others (Sepik, Madang, Morobe). 
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Some clusters were represented across broad regions of the country (clusters 1, 2) while others 

were restricted to particular geographic regions (3= Islands, 5=Sepik, 6=mainland, 7=Milne 

Bay) and some were restricted to a small number of isolates in a single geographic region 

suggesting they may represent a clonal expansion of a recently imported infection or samples 

from relatively isolated villages (4 = Sepik, 8 = Morobe). Notably, the Manus population 

consisted of isolates with high predominance of clusters 1 and 2. Supplementary table 1 

contains summaries of the proportion of isolates within each geographic region that have 

>=0.75 ancestry in each cluster. 

Figure 1. Results of Bayesian cluster analysis of 708 P. falciparum isolates barcoded with 154 SNPs for eight 

genetic clusters (K=8). The cleaned SNP barcode dataset was subject to analysis using STRUCTURE software29  

by running the analysis for K=1-20 and 20 runs, with an MCMC burnin of 5000 and total MCMC iterations up to 

50,000. The data were visualised using the Starmie package30 which separates the admixture co-efficients for each 

K. The parasite populations were subdivided according to provincial layers which accounts for geographic 

proximity of village clusters and/or known routes of human migration (1=West Sepik/Papua border, 

13=Morobe/Eastern highlands fringe, 16=Northern (Oro), 17 = Central, 19= Manus, 20 = West New Britain 

(north), 21 = West New Britain (south), 22=East New Britain, 23= New Ireland, 26 = Bougainville/Milne Bay, 4 

= Sepik (coast), 7 = Madang/W Highlands fringe).  
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Figure 2. Map of Papua New Guinea showing sampling locations and mean ancestry coefficients for each of 27 

geographic areas. 

Statistical models reveal that genotype clusters were strongly associated with geographic 

provenance  

Most P. falciparum genetic clusters were found to demonstrate spatial trends captured by their 

associations with latitude and/or longitude, and their quadratic terms, with the exception of 

clusters 4 and 8 (Table 1). Cluster 4 accounted for only a small proportion of genetic ancestry 

in the majority of geographic locations (.001 to .217), with the exception of Ilahup, East Sepik 

Province where 21.7% of genetic ancestry was attributed to cluster 4. Likewise, cluster 8 had 

a relatively small contribution to genetic ancestry in all geographic locations from where 

samples were taken, with a range of .001 in Wonera, Eastern Highlands Province to .134 in 

Morobe Province. These were represented by a small number of samples (Figure 2, Table S2) 

and may indicate relatively isolated villages with highly focal transmission or cases that have 

emerged from a single origin importation event.  
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Clusters 1 (p < .0001), 2 (p < .001) and 6 (p < .001) were significantly associated with 

Euclidean distance to the coast, with cluster 1 exhibiting the highest proportion of genetic 

ancestry in the coastal province of Madang (0.312), Manus Island (0.590) and West New 

Britain (0.282) and cluster 2 exhibiting the highest genetic ancestry in Mandang and Morobe 

(0.390, 0.408). Cluster 6 had highest proportion of genetic ancestry in Madang province 

(0.402), Morobe (0.702), the coastal highland provinces of East and West Sepik (0.230, 0.269) 

and Central province on the south eastern coast. Clusters 1 (p < .001), 2 (p < .0001), 6 (p < 

.001) and 7(p < .01) were significantly associated with human population density.  

Spatial predictions reveal the predicted range of genetic clusters 

Spatial predominance of each distinct P. falciparum genotype cluster was ascertained by 

making predictions from the Dirichlet regression model to a 3768 point gridded dataframe of 

measures of population density, elevation, distance to the coastline and latitude and longitude 

coordinates across PNG (Figure 3). Cluster 1 shows the greatest predominance (20% – 90%) 

in the highlands of PNG, the outer islands, Manus Island, New Hanover in New Ireland, 

Mussau Island one of the St. Matthias islands, situated to the north west of New Ireland, and 

Port Moresby. Cluster 2 was predicted to dominate only in the highlands (25% - 40%). Cluster 

3 was predicted to dominate in the east of New Britain and New Ireland and in the west of 

Bougainville (25% – 35%).  

Areas where clusters 4 (7% - 10%) and 5 (25% to 40%) were predominant were in the South 

Western and Sepik provinces. Cluster 6 was predicted to be more dominant in the highlands, 

extending into the north coastal provinces of Madang and East Sepik (25% - 35%), with 

substantial overlap with areas where cluster 2 was predominant. Cluster 7 exhibited greater 

dominance in the archipelago off Milne Bay, with moderate predominance (40% - 70%) on the 

PNG mainland at Milne Bay. Cluster 8 was found to be mainly coastal in the south and north 
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of the country and on the coast of New Britain, although with a generally low degree of 

predominance (7% - 8%). Upon cross validation of model results, spatial predictions generated 

using a training subset of the data and applied to a validation subset were found to perform 

well for clusters 1 to 7 but poorly for genotype cluster 8 (AUC test dataset range = 0.505 – 

0.652; Table 2).Predictions for cluster 3 were found to perform the best overall (AUC test 

dataset range = 0.695 – 0.908).  

5.3 Discussion  

Spatially referenced parasite genetic surveys provide data that can help to identify routes of 

transmission, emergence of genetic traits such as anti-malarial resistance, and changes in 

malaria epidemiology in response to control interventions7,16,31,32. Examining the spatial 

distribution of parasite population structure19 can help to identify changing transmission 

dynamics in different areas and evaluate the efficacy of control and elimination strategies33,10,15. 

Defining patterns of gene flow and spatial variance within parasite population structures can 

help countries decide when to switch from broad-ranging control efforts to targeted control, to 

define relatively isolated and fragmented populations for targeted elimination, and to map 

migration patterns between distinct epidemiological areas to assess the risk of reintroduction 

and the spread of drug resistant parasites19. Models comparing genetic data with cell phone 

data for quantifying movement of people find related information about the patterns of 

geographic spread of parasites and impact of human mobility on malaria transmission34,35. 

 

Bayesian cluster analysis initially revealed eight genetically distinct clusters that were unevenly 

distributed amongst the geographic areas of PNG. Parasites from all endemic areas had 

common ancestry in several of these clusters, which suggests a common founder population 

and/or historically high levels of gene flow between endemic areas. However, specific clusters 

were dominant in the eastern group of Islands (New Britain, New Ireland, Bougainville), Milne 
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Bay and Manus Island. In addition, a number of clusters were more dominant on the Mainland 

and relatively underrepresented in the Islands and Milne Bay. This is consistent with low gene 

flow between the major endemic regions of the Mainland, the Islands and Milne Bay, 

suggesting that these regions harbour distinct parasite populations or “demes” that could be 

independently targeted by control interventions. The way in which population genetic data have 

been presented to date (e.g. ancestry co-efficient plots) fail to capture the spatial distribution of 

the genetic clusters or demes, making the information and spatial patterns  difficult for non-

experts to interpret. Here, using spatial data on P. falciparum genotypes and related 

environmental variables, we were able to predict the ecological niches of eight genetically 

distinct P. falciparum genotype clusters in PNG with a high degree of accuracy for some 

clusters.  

The spatial distribution of cluster 1 implies substantial gene flow between Port Moresby, the 

Highland region, Manus Island and western New Ireland, possibly due to recent human 

population movement. The distribution pattern implies that parasite migration could be 

occurring via the capital city Port Moresby to highland areas and the islands, possibly as a 

result of movement of people by air, given that Port Moresby is the commercial airline flight 

hub of PNG through which all domestic flights connect. However, P. falciparum transmission 

is extremely low in the southern regions of PNG27 (including where the capital, Port Moresby, 

is located), thus the dataset excluded samples from this region, and we were unable to confirm 

whether parasites from this region were locally transmitted or imported from other endemic 

areas. However, these results closely mirror those of a recent study of the other major human 

malaria parasite in the region, Plasmodium vivax, where the endemic areas nearby to Port 

Moresby were found to harbour parasites with both Island and Mainland ancestry, suggesting 

it is a sink of malaria transmission28 (Fola et al. 2018 MEEGID). This suggests that Port 
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Moresby airport could be a point of intervention following subnational elimination to prevent 

reintroduction to other regions of PNG.  

Also of note was the predicted localised transmission in the Highland region of clusters 2 and 

6, indicating co-circulation and localised transmission of these distinct P. falciparum 

genotypes, albeit at low levels as indicated by the low predicted predominance in this region 

(0.25 to 0.4 & 0.25 – 0.35, respectively). Localised transmission of one parasite genotype in 

the highlands suggest that control and prevention of reintroduction interventions in highland 

provinces could be successful for targeted elimination. The higher predicted predominance of 

cluster 3 in the spatially proximal locations of East New Britain, New Ireland and western 

Bougainville suggests frequent population movement and localised transmission between these 

islands. Travel between these islands is likely by sea and possibly to and from several ports on 

each island, which may pose a challenge to surveillance and interventions aimed at these 

mobile populations.  

The dominance of cluster 4 as a distinct parasite population in the western most parts of the 

country, South Western and Sepik provinces, suggest a cross-border transmission zone 

including West Papua. The spatial prevalence of cluster 7 in the archipelago off Milne Bay, 

and to a lesser extent on the Milne Bay mainland, suggest gene flow between the mainland and 

the islands of Milne Bay. Interestingly, spatial predictions of any of the other 7 clusters were 

not dominantly exhibited in this peninsula, which may suggest that transmission remains 

strongly localised in this area and that this population is disconnected from other parts of PNG, 

offering a good target for spatial malaria elimination. We do acknowledge that the dataset was 

spatially sparse in some areas, with spatial predictions of relative predominance of each cluster 

being informed by observations from distant locations. This was mainly an issue with 

predictions in the Highlands that were not informed by any data from that region. 
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Genetic diversity of malaria parasites is indicative of the capacity for adaptation to selective, 

evolutionary and environmental pressures, as has been observed with the emergence of 

antimalarial resistant parasite strains8,18. However, there is also evidence to suggest that 

occupation of geographical niches by distinct Plasmodium genotypes may be driven, in part, 

by selective pressure and genetic adaptation exerted on Plasmodium parasite strains by 

different anopheline species36,37. The three main anopheles species involved in human malaria 

transmission in PNG occupy distinct habitats and as a result there is marked heterogeneity in 

the geographical distribution of these species38,24. Specifically, different species predominate 

in the lowlands, inland and coastal regions, and island provinces. Furthermore, the PNG human 

population shows spatial genetic heterogeneity with differing prevalence of genetic 

polymorphisms in different geographic areas, including those associated with malaria 

susceptibility39,40 .  Thus, the distinct host species in different areas might explain some of the 

spatial variation in predominant Plasmodium genotypes.  

Local circulation of parasites where population movement is limited may also explain distinct 

spatial separation of parasite clusters. The human population of PNG is predominantly rural 

and sometimes isolated, separated geographically and culturally41 by high mountain ranges,  

forests, large rivers42, and poor road infrastructure, which may have resulted in limited 

Plasmodium gene flow between areas. This, together with differences in intensity of 

transmission and control interventions across the country may explain the highly structured 

parasite population, high levels of genetic differentiation and variable levels of P. falciparum 

genetic diversity between distinct populations and geographic areas within PNG15,42.  

In planning interventions, the genetic diversity and structure of malaria parasite populations is 

an important factor to consider in how well control strategies may work in different geographic 

locations42. Genetic diversity is an indicator of how robust the parasite population may be when 

faced with environmental pressures, for example, how susceptible it may be to targeted drug 
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treatment42. If these parasites also diverge at antigen loci, increasing mobility of human 

populations may result in infection by genotypes that people have not formerly been exposed 

to, and consequently, lead to more severe clinical infections. Understanding the parasite 

population structure and origin of infection may be beneficial for allocating resources and 

planning treatment and interventions for infection with non-indigenous parasite genotypes that 

might result in more severe clinical cases. Identifying introduced infection when estimating 

small area incidence is important for determining whether cases are attributed to local disease 

ecology or importation for targeting appropriate control responses43. Recent genotyping of 

malaria parasitic infections in Eswatini however found high genetic diversity in a low 

transmission area, with similar levels of genetic diversity among imported and local cases, with 

difficulty in accurately discriminating between these two groups of infection44.  

The impact of human population movement on malaria transmission will present a major 

barrier to elimination18,19 and quantifying patterns of human movement and migration is an 

area of research that is becoming more widely used in determining transmission patterns of 

infectious disease6,34,45-47. For example, using mobile phone tracking data to inform patterns of 

human movement is becoming increasingly popular. Mobile phone data captures only 

population level migratory patterns however and does not include information on movement 

of high risk or infected populations. Population genetics of malaria parasites, may provide 

novel methods for inferring patterns of human movement by examining the distribution of 

geographically distinct parasitic genotype clusters and connected catchments48 or genetic 

relatedness based on identity by descent49. Understanding how distinct populations are 

connected in terms of malaria transmission, together with information on population and 

infection size in areas of genetically distinct infection clusters allows for targeted control efforts 

in transmission sources and sinks. However, it is difficult, given the lack of other indicators of 

migration including mobile phone records and travel history34  to explore the validity of these 
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maps as inference for human movement patterns within PNG, and this work would benefit by 

comparing the results obtained here with human movement patterns obtained using mobility 

data and movement models35.  

Here we use the novel approach of combining genetic data with spatial epidemiological 

methods to examine the predicted spatial distribution of Plasmodium parasite subpopulations. 

In examining the distinct geographic areas where malaria transmission is most likely attributed 

to specific plasmodium parasite genotypes, and inferring connectivity between these 

geographic locations in terms of malaria transmission, we attempt to better understand how 

malaria transmission may be facilitated by human movement. This approach could lead to the 

development of indicators of the success of control efforts in limiting onward transmission of 

malaria10 and assessing the risk of re-introduction of malaria from reservoirs of infection in 

neighbouring villages and countries after local transmission has ceased50. Examining the 

geographic niches of P. falciparum genotypes also allows us to identify areas in which distinct 

genotypes are circulating enabling targeted elimination in areas where transmission is 

localised. 

 

5.4 Conclusion 

Eight distinct Plasmodium falciparum subpopulations were found to inhabit distinctive 

geographical niches in PNG and statistically significant correlations were found between 

parasite genotype cluster relative predominance and geolocation, distance from the coastline, 

elevation, and human population density. Parasite genomic data may prove useful in 

developing tools for risk assessment in conjunction with spatial epidemiology and as an 

indicator for understanding how human migration may be contributing to onward transmission 

of malaria.  

5.5 Methods  



122 
 

Study site and samples 

A total of 8936 samples were collected during a national malaria indicator survey of 

participants from randomly selected households in 49 villages from 16 provinces in PNG 

between October 2008 and August 200951. Further details of the survey methodology are 

published elsewhere51,52. For the genotyped samples, we assigned the villages to 27 catchment 

areas predicted to harbour distinct parasite populations on the basis of the close proximity of 

villages (< 4.5⁰ lat long), the surrounding topography, including elevation, and predicted 

human movement based on our knowledge about transport networks within PNG. Genomic 

DNA was extracted from whole-blood samples using the QiaAmp DNA Extraction Kit 

(Qiagen, Chadstone, Victoria, Australia) or the FavorprepTM genomic DNA extraction kit 

(Favorgen, Taiwan). Light microscopy (LM) and ligase detection reaction–fluorescent 

microsphere assays (LDR-FMA) were performed to identify samples infected with different 

Plasmodium species53.  

SNP genotyping and population genetic analysis 

All P. falciparum positive samples from the nationwide survey (n = 1513) were initially 

genotyped using the highly polymorphic Pfmsp2 marker as previously described to determine 

multiplicity of infection (MOI)54. A total of 722 isolates with a single clone infection (MOI=1) 

and a subset of samples with two clone infections (MOI=2) were selected for this study to 

supplement the sample sizes in some geographic areas. Isolates were then genotyped for 191 

SNPs using the Fluidigm BioMark platform as described elsewhere (Harrison et al. in prep). 

After excluding 37 SNPs and 14 samples with high levels of missing data, a total of 708 isolates 

genotyped at 154 SNPs with sample sizes ranging between 2– 87 in the different geographic 

areas were used to explore population structure (Table S1, Dataset 1). Genetic ancestry was 

defined using the Bayesian clustering algorithm implemented in the software STRUCTURE29. 
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STRUCTURE was run for 1-20 genetic clusters (K) repeating the runs 20 times with different 

seeds, an MCMC burn-in period of 5000 iterations and total MCMC iterations up to 50,000. 

The optimal K was determined using the Evanno method55. We also checked MCMC 

diagnostics by looking at the change in admixture parameter over the MCMC runs. All of the 

analysis and visualisations were performed in a new R package known as Starmie30.  

Data on the Physical Environment 

Elevation data, distance of each of the 27 village locations to the coastline and population 

density were obtained from open-source remote sensing image data repositories. Elevation 

raster files for each tile covering PNG were obtained from a Global Digital Elevation Model 

downloaded from NASA’s Earth Observing System Data and Information System, Reverb56 

(download date: December, 2015). Spatial population density data were obtained from the 

WorldPop online repository57(download date: May 2017). A coastline polyline was defined 

using the PNG shapefile coastline and distance calculated from the centre point of each of the 

27 geo-referenced village locations from which survey data were collected. Spatial averages of 

all environmental covariates were extracted from a 5km buffer around each of the 27 village 

locations. All spatial data processing was carried out using ArcGIS software version 10.3 

(ESRI, Redlands, California).  

Statistical Analysis 

The aim of the statistical analysis was to 1) quantify the association between explanatory 

variables relating to the physical environment and the relative predominance of each genotype 

cluster in each location, and 2) to predict the relative predominance of each genotype cluster 

throughout the land surface of PNG. For multivariable regression, a Dirichlet distribution was 

chosen due to the continuous multinomial distribution of the dependent variables. There were 

eight dependent variables, the value of each of which was a proportion of 1; these dependent 
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variables were the proportions of each P. falciparum genotype cluster attributed to the malaria 

infection of each of the 789 survey participants. 

Explanatory variables were latitude and longitude coordinates, elevation, distance to the 

coastline, and human population density. Quadratic terms for latitude and longitude were 

included to allow for spatial prediction of non-linear trends across the land surface of PNG. 

Location of survey locations was selected as an explanatory variable based on the assumption 

that geographic proximity was an important predictor of the spatial predominance of distinct 

parasite genotypes. Elevation and distance to coastline were selected as they are associated 

with the habitats of distinct Anopheles species in PNG, and with human movement as 

topography and elevation i.e. presence of mountain ranges may be barriers to human human 

mobility. Population density was included to attempt to exclude plasmodium genotype 

predictions being made for ecologically suitable areas, based on results of the model, but where 

population density is low and high spatial distribution of plasmodium genotypes unlikely. All 

variables were added to the model without implementing a variable reduction strategy. 

Statistical analysis was carried out using R open source software version 3.2.2 (R Foundation 

for Statistical Computing, Vienna, Austria). Spatial predictions were made to a data file with 

3769 data points representing a grid of georeferenced points covering the land mass of PNG. 

Elevation, population density and Euclidean distance to the coast, were extracted at each grid 

point. Spatial predictions of the proportion of each genotype cluster found at each grid point 

location were done using the fitted parameters of the Dirichlet regression model.  

Model Validation  

Cross validation methods using R statistical software were used to validate spatial predictions 

of the Dirichlet regression model for each genetically distinct cluster (Table 2). The dataset 

was split into a training subset (containing 70% of observations) and a test subset (containing 
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30% of observations) using random allocation. Dirichlet regression was carried out on the 

training dataset and predictions from the Dirichlet regression models were made for the test 

dataset and compared to the observed proportion of each genotype dichotomized relative to 

four different cut-points, 0.1, 0.25, 0.5 and median predominance. For clusters 4 and 8, the 

model coefficients were too small to use 0.25 and 0.5 as cut off points for cross validation and 

so these values were reduced by a magnitude of ten to produce reasonable validation results. 

Receiver operating characteristic (ROC) curves were then estimated to test the discriminatory 

performance of the predictions.  

Table 1. Associations of  Plasmodium falciparum genetic clusters with ecology covariates  

Cluster Coefficient 

Covariates Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 

Longitude     0.258*** -0.110* 0.485*** -0.071 -0.436*** -0.155** 0.122* 0.015 

Latitude 0.156*** -0.020 0.135** -0.016 -0.061 -0.066 -0.319*** -0.056 

Longitude2 0.018 -0.032 -0.074** 0.002 -0.013 -0.045 0.160*** -0.004 

Latitude2 -0.212*** -0.221*** -0.057 0.044 -0.099* -0.163** 0.215*** -0.004 

Elevation 0.001 0.001 0.001 0.001 0.001 0.001’ 0.001 -0.001 

Dist Coast 0.819*** 0.305** 0.281 -0.141 -0.223 0.481** 0.090 0.086 

Population 0.008** 0.009*** -0.011*** -0.003 -0.004 0.005** 0.007* 0.004 

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘’’0.1 
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Figure 3. Spatial predictions of eight distinct plasmoduim genotype clusters based on the results of a Dirichlet regression model, Papua New 

Guinea. 

 

Table 2. AUC values obtained from cross validation of eight Plasmodium genotype model coefficients against 4 different cut-off 

values  

Training dataset: 70% of full dataset 

Test dataset: Full dataset – training dataset = 30% of full dataset 

 .1 cut off value AUC .25 cut off//.025 cut off AUC .5 cut off//.05 cut off AUC Median cut off AUC 

 Train Test Train Test Train Test Train Test 

Cluster 1 .685 .639 .701 .649 .698 .682 .66 .647 

Cluster 2 .697 .662 .685 .662 .65 .632 .695 .665 

Cluster 3 .786 .855 .832 .908 .683 .908 .701 .695 

Cluster 4* .63 .601 .703 .706 .731 .822 .548 .52 

Cluster 5 .776 .812 .817 .822 .864 .845 .765 .753 

Cluster 6* .742 .717 .721 .77 .723 .798 .73 .791 

Cluster 7 .741 .781 .813 .821 .841 .905 .657 .719 

Cluster 8 .589 .505 .597 .593 .639 .652 .537 .533 

*Due to the small size of predicted predominance coefficients of clusters 4 and 8, the cut off values for model prediction validation 

were reduced by a fator of 10. The .25 and .5 cut off values for each other cluster were therefore changed to .025 and .05. The .1 

cut off value remained unchanged. 
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Appendix 5 

Supporting files 

Supplementary table S1 contains summaries of the proportion of isolates within each 

geographic region that have >=0.75 ancestry in each cluster. 

 

 

Table S2 contains data on the geolocation, environmental covariate data and population size of 

the village locations where the survey was carried out, as well as the number of people in each 

village who were recruited as part of the survey (sample no.)  

 

Table S1. Prevalence of isolates with unmixed ancestry in each geographic region. Shading indicates the prevalence level (darker 

colours = higher). 

Geographic	area Row	Labels n Cluster	1 Cluster	2 Cluster	3 Cluster	4 Cluster	5 Cluster	6 Cluster	7 Cluster	8 Total

West	Sepik/Papua 1 17 0.18 0.00 0.00 0.00 0.12 0.06 0.00 0.00 0.35

West	Sepik	inland	(YAM,TAB) 4.5 11 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.09

East	Sepik	(DRE,Sentinel	site) 4.1 56 0.00 0.02 0.00 0.00 0.38 0.04 0.00 0.00 0.43

East	Sepik	inland	(Maprik	WGS) 4 47 0.00 0.00 0.00 0.17 0.40 0.11 0.00 0.00 0.68

West	Sepik	coast	(SIA) 2 15 0.00 0.00 0.00 0.00 0.27 0.00 0.00 0.00 0.27

East	Sepik	north	coast	(PAN,WIA) 3 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

East	Sepik	south	coast	(KAR,ORE) 5 5 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.20

Madang	north	coast	(ZOG,WAZ) 6 33 0.09 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.24

Madang	(ORD,BAF) 7 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Madang	town	(WGS) 7.1 24 0.00 0.08 0.00 0.00 0.00 0.17 0.00 0.00 0.25
Madang	valley	(KES,MAO) 9 78 0.00 0.03 0.03 0.00 0.09 0.14 0.00 0.00 0.28

EHP	(WON) 11.2 1 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Morobe	valley/EHPborder	(WAR,NGA,	ABO) 10 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Morobe	(MUM,Sentinel	site) 11 87 0.06 0.02 0.01 0.00 0.06 0.03 0.00 0.00 0.18

Morobe	(BUN) 11.1 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Morobe	(FIN,Sentinel	site;	GIT,AGO,	SIU,GOD,GIN)13 87 0.13 0.14 0.00 0.00 0.01 0.03 0.06 0.11 0.48

Northern/Oro	(KEN,FOR,	MAR) 16 12 0.17 0.08 0.00 0.00 0.08 0.00 0.00 0.00 0.33

Central 17 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Manus	Island 19 16 0.56 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.75

WNB	north	coast	(BNL,EWA) 20 43 0.19 0.00 0.12 0.00 0.00 0.00 0.09 0.00 0.40
WNB	south	coast	(SIM,KUL) 21 55 0.13 0.00 0.36 0.00 0.00 0.00 0.09 0.00 0.58

ENB	 22 22 0.00 0.00 0.14 0.00 0.00 0.00 0.14 0.00 0.27

New	Ireland 23 57 0.05 0.00 0.37 0.00 0.00 0.04 0.14 0.00 0.60

Bougainville 24 2 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.50

Milne	Bay	 25 1 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00

Milne	Bay	(Alotau	WGS) 26 30 0.00 0.00 0.00 0.00 0.00 0.00 0.73 0.00 0.73
Milne	Bay	outer	island	(MUT) 27 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Proportion	of	isolates	with	ancestry	>=0.75	
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Table S2. Summary of sample numbers, geographic location, GPS co-ordinates and environmental data for each village location 

where survey was carried out from 16 provinces in PNG between October 2008 and August 2009 

Province Village Latitude Longitude Distance to 

coast 

Elevation Population size Sample no. 

Central Abau -10.11 

 

148.46 

 

0.086 

 

32 

 

5 

 

2 

 

East_New_Britain 

 

Vumarita -4.21 

 

151.80 

 

0.002 

 

75 

 

25 

 

22 

 

East_Sepik 
 

Ilahup 
 

-3.39 
 

142.57 
 

0.145 
 

705 
 

8 
 

47 
 

 Kamakor 

 

-3.42 

 

142.55 

 

0.183 

 

858 

 

8 

 

2 

 

 Dreikikir 

 

-3.58 

 

142.77 

 

0.268 

 

322 

 

3 

 

56 

 

 Oremai 

 

-4.29 

 

144.37 

 

0.314 

 

15 

 

2 

 

5 

 

Eastern Highlands 

Province 

Wonera 

 

-6.80 

 

145.89 

 

1.047 

 

1775 

 

10 

 

2 

 

Madang 

 

Zogari 

 

-4.20 

 

144.90 

 

0.001 

 

16 

 

25 

 

33 

 

 Matupi 

 

-5.23 

 

145.79 

 

0.003 

 

12 

 

52 

 

24 

 

 Bafulu 

 

-5.23 

 

145.61 

 

0.160 

 

80 

 

27 

 

2 

 

Manus 

 

Warabei 

 

-2.03 

 

147.17 

 

0.031 

 

83 

 

12 

 

16 

 

Milne_Bay 

 

Ahioma 

 

-10.19 

 

150.31 

 

0.005 

 

374 

 

13 

 

30 

 

 Doma 

 

-10.56 

 

150.75 

 

0.001 

 

11 

 

10 

 

2 

 

 Mutawa 
 

-8.43 
 

151.12 
 

0.011 
 

14 
 

32 
 

2 
 

Morobe 

 

Ngariawang 

 

-6.35 

 

146.45 

 

0.598 

 

632 

 

7 

 

3 

 

 Finschhafen 

 

-6.61 

 

147.85 

 

0.002 

 

202 

 

33 

 

78 

 

 Bundun 

 

-6.84 

 

146.62 

 

0.326 

 

835 

 

6 

 

2 

 

 Gwasak 

 

-7.07 

 

146.49 

 

0.467 

 

913 

 

7 

 

87 

 

New_Ireland 

 

Butei 

 

-2.67 

 

150.64 

 

0.003 

 

16 

 

7 

 

57 

 

Northern_Oro 

 

Kendata 

 

-8.89 

 

148.11 

 

0.325 

 

546 

 

6 

 

12 

 

West_New_Britain Ewasse 

 

-5.32 

 

151.01 

 

0.004 

 

52 

 

21 

 

43 

 

 Simimla 

 

-6.08 

 

149.60 

 

0.127 

 

311 

 

4 

 

55 

 

West_Sepik 

 

Siaute_No2 

 

-3.20 

 

142.20 

 

0.094 

 

86 

 

8 

 

15 

 

 Tabale 

 

-3.53 

 

142.07 

 

0.441 

 

381 

 

8 

 

11 

 

 Skonga 
 

-4.57 
 

141.20 
 

1.735 
 

386 
 

2 
 

17 
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Figure S2. DeltaK estimates for each K in the STRUCTURE analysis.  

The Evanno method55 (REF) was used to measure the change in log-likelihood for each K over all runs. Note 

the peak at K=8. 

Figure S1. Mean log posterior probability for each K in the STRUCTURE analysis.  

We estimated optimal K by simply plotting the log posterior probability of the data for each K and look for the inflection point in the curve. 

STRUCTURE computes the estimated log posterior probability by taking the ratio of the mean estimated log-likelihood of the data and the 

estimated variance of the log-likelihood of the data over all MCMC chains.  
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CHAPTER 6: EXAMINING THE IMPACT OF HUMAN MOBILITY ON MALARIA 

RESURGENCE USING A ROSS MACDONALD META-POPULATION MODEL AND 

THE EXAMPLE OF SOLOMON ISLANDS 

CONTEXT 

 

In chapter 6 we examine how human mobility and sustained or relaxed vector control through 

LLIN use and IRS may impact malaria infection resurgence in Nggela, a small island group in 

Solomon Islands, which is well connected to Guadalcanal, a larger island where malaria is 

endemic. Estimating time to resurgence, and magnitude of resurgent infection prevalence under 

sustained or relaxed vector control in an eliminating area that remains connected to an area 

endemic for malaria is important for malaria programmes to determine which vector control 

interventions should be prioritised for use post-elimination. Estimating likelihood of 

resurgence after cessation of control efforts for guiding surveillance operations is also 

important for guiding surveillance efforts in areas where local transmission has ceased but 

where importation of infection remains a risk.  

This chapter uses a Ross-Macdonald model parameterised with data on malaria infection from 

Guadalcanal, assuming local transmission in Nggela has ceased, simulating chance of 

resurgence given continued migration between both islands. We hypothesised that malaria 

transmission between both islands may be occurring, facilitated by human mobility, given that 

malaria infections attributed to clonal (i.e. identical) parasites were detected during a malaria 

indicator survey conducted in 2008/2009.  Model simulations were run under different 

scenarios of migration rate, infection prevalence in Guadalcanal, human biting rate and vector 

abundance. The outcomes assessed were estimated time to, and magnitude, of resurgent 

infection peak in Nggela. From model simulations we were able to determine which model 

parameters had greatest impact on infection peak and from this we inferred which interventions 



136 
 

may be most beneficial in the prevention of resurgence of malaria in Nggela, should elimination 

be achieved while transmission is ongoing in Guadalcanal. This manuscript is formatted for 

submission to the journal Epidemics.  
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Abstract  

Introduction 

As progress is made toward malaria elimination, connectivity between areas of different levels 

of transmission via human mobility needs to be better understood to avoid resurgence of 

infection where and when elimination has been achieved. Here we perform a model based 

assessment on the impact of population mobility between a location where malaria 
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transmission has been interrupted, represented by a small island group in Solomon Islands, and 

another location (a larger island), where transmission is ongoing, on risk of malaria resurgence 

in the malaria-eliminated location. 

Methods 

A Ross-Macdonald metapopulation model was parameterised using malaria prevalence data 

from Guadalcanal Island and data pertaining to vector biology and malaria transmission 

dynamics from published research. Simulations of the model were run with varying estimates 

of rate of human mobility, human biting rate and vector abundance to elucidate which model 

parameters would have greatest impact on malaria resurgence in Nggela (connected to 

Guadalcanal by human mobility), in the event that local transmission has been interrupted in 

Nggela. 

Results  

An increasing rate of human migration between Guadalcanal and Nggela had the greatest 

impact on malaria resurgence in Nggela. Increasing biting rate, vector abundance and infection 

prevalence in Guadalcanal also increased the number of infections in Nggela at infection peak 

indicating that maintaining vector control interventions whilst malaria transmission is ongoing 

in Guadalcanal is necessary to prevent malaria resurgence in Nggela. 

Conclusion  

In order for countries to maintain their malaria-free status post elimination, surveillance aimed 

towards detecting imported infections and vector control interventions must be maintained 

while post-elimination areas remain connected to areas where transmission is ongoing. 
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6.1 Introduction 

One of the major obstacles to achieving global malaria elimination will be understanding the 

role that human mobility and migration plays in facilitating ongoing transmission and 

reintroduction of malaria post-elimination1. Introduction of malaria parasites into populations 

where vectorial capacity remains, but background immunity has waned following extended 

time periods with no exposure, carries the potential for resurgence in a relatively short period 

of time2,3. Parasite re-introduction may occur via migration of asymptomatic but infectious 

individuals to an area where local transmission has ceased, or migration of susceptible 

individuals to a location where transmission is ongoing, before subsequently returning to the 

area vulnerable to reintroduction4,5,6. Indeed, many pre-elimination and eliminating countries 

have reported a decrease in locally acquired malaria infection but a stable rate of imported 

cases as they approach elimination1,7,8. Understanding the contribution of human movement to 

sustained malaria transmission between endemic and eliminating areas will be crucial for 

planning malaria surveillance operations and allocation of vector control resources, such as 

long lasting insecticide treated nets (LLINs) and indoor residual spraying (IRS), in the 

prevention of resurgent malaria epidemics9-11. Assessing the risk of resurgence and determining 

when to cease vector control following elimination, and which interventions to prioritize in the 

post-elimination period, can however be challenging12. 

In the Nggela Islands, a small group of islands in the Central Province of Solomon Islands,  

transmission of malaria is low with presence of some asymptomatic P. falciparum infections 

on the island13. It is unclear whether local transmission of Plasmodium falciparum has ceased 

or if parasites are being re-introduced by incoming travellers or returning residents from areas 

with higher P. falciparum burden13. Parasite phylogeny carried out on samples collected in 
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2008/2009 (unpublished data, Harrison in prep) show transmission attributed predominantly to 

a clonal parasite genotype on the island, which has been found by phylogenetic analysis to be 

present in the much larger, neighbouring island, Guadalcanal, where malaria is endemic and 

transmission is ongoing. Presence of this clonal parasite on both islands provided justification 

for the hypothesis of malaria transmission occurring between Nggela and Guadalcanal as a 

result of human mobility between both islands.  Guadalcanal has a high incidence of malaria 

relative to many of the other islands in the archipelago, with three-quarters of infections  found 

in the northern part of the island,  most proximal to Nggela14. Guadalcanal is well connected 

to Nggela by a ferry service and private motorized boats13. Presence of this same parasite 

genotype on both islands suggests malaria transmission occurring between both Nggela and 

Guadalcanal, facilitated by human movement, although it is not clear from observational data 

in which direction transmission may be occurring.  

 In this study, we aimed to examine the impact of connectivity via human migration between 

Nggela and Guadalcanal on malaria transmission in Nggela by implementing a bi-directional 

metapopulation Ross-Macdonald model based on the model developed by Acevedo et al15. The 

metapopulation model simulates transmission dynamics in two patches which are connected 

because of contact or mobility between distinct populations2,15.  The Ross-Macdonald model 

describes the cyclical transmission of the Plasmodium parasite between mosquitoes and 

humans. The model incorporated parameters relating to mosquito biting rate, the proportion of 

bites that produce an infection in humans and mosquitoes, and the extrinsic incubation period 

of the parasite within the mosquito. Interventions can be introduced into the model, whereby 

they reduce the basic reproduction number, R0, which represents the average number of new 

cases arising due transmission of infection from an index case16,17 . 

We simulated human mobility under varying human biting rates, relative vector abundance, 

infection prevalence in Guadalcanal and rates of human migration between both islands, under 
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the assumption that local transmission in Nggela has ceased and initial infection prevalence 

was zero, in order to gain insight into how movement of people between Guadalcanal and 

Nggela may affect malaria transmission dynamics in Nggela once elimination is achieved. In 

doing so, we aimed to examine the conditions under which human mobility impacts malaria 

transmission in elimination settings, particularly those that are vulnerable to (re-)introduction 

due to close proximity to high-transmission areas.  The specific objectives of this paper were 

to estimate: 

1. To what extent human migration impacts on risk of (re)introduction of malaria into a 

setting in Solomon Islands where transmission has been interrupted. 

2. What length of time might it take for resurgence to occur if vector control interventions 

in Nggela have ceased. 

3. The effect that different rates of human migration between Nggela and Guadalcanal 

may have on malaria transmission. 

4. To what extent different levels of vector control and vector abundance impact malaria 

transmission in Nggela, given sustained human migration between both islands. 

6.2 Methods 

Study site  

Solomon Islands is an archipelago of islands situated to the north east of Australia, bordering 

Papua New Guinea (PNG) to the west. It is made up of nine island provinces, with the capital, 

Honiara, located in the northern part of Guadalcanal, and Nggela islands situated in Central 

province. Guadalcanal and Nggela are designated the terms patch 1 and patch 2 when 

describing the mathematical model (Figure 1)18.  

Ross-Macdonald metapopulation model  
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We used a Ross-Macdonald two-patch metapopulation model to examine the impact of 

frequent human migration between the islands of Nggela (patch 1) and Guadalcanal (patch 2; 

Figure 1). Varying values were used for relative vector abundance and human biting rate, 

reflecting different degrees of vector control, as well as differing rates of migration and 

infection prevalence in patch 2. 

 

 

 

 

 

 

 

 

 

 

 

We assumed heterogeneous transmission of malaria between the two distinct patches15, but that 

characteristics of individuals and likelihood of infection in both populations was homogeneous, 

consistent with previous metapopulation modelling work15,19,20.  Within each patch, we also 

Figure 1. Geographic location of Solomon Islands, Guadalcanal (patch 1) and Nggela (patch 2). 
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assumed that the population was well mixed, and that each individual had an equal chance of 

coming into contact with infectious vectors21,22.  

The models implemented to run these simulations were based on models developed by 

Acevedo et al.15, with infection parameters adjusted to local transmission dynamics in Solomon 

Islands. In each patch, susceptible individuals (Sh) are infected by infectious vectors (Iv) and 

susceptible vectors (total vector population, Nv – infectious vectors, Iv) are infected by 

infectious humans (Ih). The subscripts 1 and 2 denote humans and vectors in patch 1 and 2 

respectively, while K12 and K21 denote travel between each patch (1 to 2 and vice versa). The 

model also assumes that susceptible vectors in patch 1 are infected by infectious individuals 

who travel from patch 2 to 1, and susceptible humans who travel from patch 1 to 2 are infected 

by infectious vectors in patch 2. The differential equations used to estimate transition between 

different compartments in the model are as follows:  

Differential equations for the Ross-McDonald metapopulation model 

Nggela Patch 1 human (h) & vector (v) model 

dIv1/dt = ac(Ih1 + k21Ih2)(exp (-μn))((Nv1-Iv1)/Nv1)) - μIv1; 

dSh1/t = -mabIv1(Sh1/Nh1)+ (ϒIh1); 

dIh1/dt = mabIv1(Sh1/Nh1)– (ϒIh1); 

Guadalcanal Patch 2 human (h) & vector (v) model  

dIv2/dt = ac(Ih2 + k12Ih1)(exp (-μn))((Nv2-Iv2)/Nv2) - μIv2; 

dSh2/dt = -mabIv2(Sh2/Nh2)+(ϒIh2); 

dIh2/dt = mabIv2(Sh2/Nh2)- (ϒIh2); 

 

Table 1. Ross-Macdonald metapopulation model parameters  

a Human biting rate15 0.1 (bites per mosquito per day) 
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b Proportion of bites that produce an infection in humans15,27 0.1  (probability) 

c Proportion of bites that produce an infection in mosquitoes15,28 0.214 (probability) 

μ Per capita rate of mosquito mortality15,29 0.167 (probability of mosquito dying per day) 

n Extrinsic incubation period of parasite in mosquitoes15,25  10 days  

ϒ Average human recovery rate15 0.0067 days-1 

m Ratio of female mosquitos to humans15 10 (relative vector abundance) 

Ih1 Proportion of infectious humans, Nggela (patch 1) 0.0 (0% prevalence) 

Ih2 Proportion of infectious humans, Guadalcanal (patch 2) 13 0.096 (9.6% prevalence)  

Nh1 Total human population size, Nggela (patch 1) 24 26051 people 

Nh2  Total human population size, Guadalcanal (patch 2) 24 158222 people 

K12 Proportion of total population travelling from patch 1 to 2 who 

are likely to be infections 

0.1 (infectious migratory population) 

K21 Proportion of total population travelling from patch 2 to 1 who 

are likely to be infections 

0.1 (infectious migratory population) 

 

We modelled the effect of migration between Nggela (patch 1) and Guadalcanal (patch 2) under 

the assumption that local transmission in Nggela has ceased and that the percentage of 

infectious humans is zero in order to estimate the level of vector control which needs to be 

maintained in Nggela in order to prevent resurgence of transmission. Fixed values for model 

parameters pertaining to vector and disease biology were used in the model (Table 1).  All 

simulations were run using the deSolve package23 in R open source software version 3.2.2 (R 

Foundation for Statistical Computing, Vienna, Austria).  

Simulations from the model were run under the following scenarios: 

1. Zero infection prevalence in patch 1 with connectivity between patch 1 and patch 2 

quantified using varying migration rates. 

2. Zero infection prevalence in patch 1 with varying migration rates between patch 1 and 

patch 2 and varying values of human biting rate. 



145 
 

3. Zero infection prevalence in patch 1 with varying migration rates between both islands 

and varying vector abundance in both patches. 

4. Zero infection prevalence in patch 1 with varying migration rates between both islands 

and varying infection prevalence in patch 2. 

Fixed model parameters 

Parameters related to vector biology and disease transmission dynamics were obtained from 

methods published by Acevedo et al.15. The total human population (Nh1) in Nggela (patch 1) 

was 26,051 and the total human population size (Nh2) in Guadalcanal (patch 2) was 158,222 in 

accordance with data recorded in the 2009 Solomon Islands census24 (noting that the current 

population estimate for both islands is significantly higher, but that 2009 provides the last 

accurate and verifiable estimate). In both islands, the extrinsic incubation period of the P. 

falciparum parasite within the mosquito (n) was estimated to be 10 days15,25, the proportion of 

bites producing parasite infection in mosquitoes (c) was estimated at 0.214, and the proportion 

of bites estimated to produce infection in humans (b) was 0.1. The average human recovery 

rate (ϒ), assumed to be the same on both islands, was 0.67% of infected population per day15 

and the average mosquito mortality rate (μ) was 16.7% per day. In this model, both susceptible 

and infectious mosquito mortality rates are included to account for a proportion of the mosquito 

population dying before becoming infectious.  

Model simulations with variable model parameters 

P. falciparum infection prevalence (Ih2) in Guadalcanal (patch 2) was initially set at 96 

infections per 1000 population13 (9.6%). In Nggela (patch 1) infection prevalence (Ih1) was set 

at 0% to examine the likelihood of resurgence under the assumption that local transmission has 

ceased. Human biting rate (a) was initially set at 0.1 bites per mosquito per day and initial 

relative vector abundance (m) was set at a ratio of 10 female mosquitoes to humans. Migration 
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rates were expressed as the proportion of the population travelling daily between each patch 

who are likely to be infectious. As the proportion of asymptomatic infections in areas where 

malaria remains endemic is high such as patch 2, it is likely that asymptomatic yet infectious 

individuals are likely to continue to travel. In low transmission areas such as patch 1, 

parasitemia is more likely to result in clinical infection and therefore infectious individuals are 

less likely to travel26. Model simulations were run with the parameter settings as described 

above.  

Sensitivity analysis with variable model parameters 

The sensitivity of time to infection peak, magnitude of infection peak, and number of people 

infected 100 days, 250 days and 500 days following introduction of infection to Nggela was 

assessed under varying rates of model parameters migration rates, human biting rates, vector 

abundance and infection prevalence in Guadalcanal. The impact on infection in Nggela, was 

examined using infection prevalence in Guadalcanal ranging from Ih2 = 0.096 to Ih2 = 0.2 and 

migration rate between patch 1 and 2 varying from 0.1 to 0.5.  

Simulations were run with relative vector abundance (m) varying from a ratio of female 

mosquitoes to humans of m = 10 to m = 15 to m = 20 in both patches, to examine the impact of 

IRS control interventions on mosquito abundance on infection prevalence in Nggela. 

Sensitivity analyses also examined the impact on infection when the model was parameterised 

with a 50% increase in human biting rate (a = 0.15 bites per mosquito per day) and a 50% 

decrease in human biting rate (a = 0.05 bites per mosquito per day) to examine the impact of 

intensified and relaxed LLIN use in Nggela, respectively. Further sensitivity analyses were also 

run examining impact of varying the human biting rate from a = 0.01 to a = 0.3, and migration 

rate from 0.01 to 0.5 on magnitude of peak infection, to examine impact of biting rate and 

migration rate with all other model parameters fixed. 
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6.3 Results 

Under rates of migration between Nggela and Guadalcanal of k12 = 0.1 and k21 = 0.1, with 

human biting rate a = 0.1, vector abundance of m = 10 in both locations, and infection 

prevalence in Guadalcanal Ih2 = 0.096, 1.15% of the population were infected within 

approximately eight months of initial infection importation to Nggela (infection peak = 301 

people at day 238; Figure 2). A 50% increase in vector abundance (m = 15) in both Nggela and 

Guadalcanal resulted in a 100% increase in number of people infected at infection peak in 

Nggela (Figure 3), within a slightly longer timeframe (infection peak = 602 people at day 322).  

A 50% increase in biting rate (a=.015) also resulted in an increase in number of people infected 

at peak infection and increase in time to infection peak (infection peak = 1706 people at day 

500; Figure 4). Increasing the migration rate between Nggela and Guadalcanal by a factor of 

five (k12 = 0.5; k21 = 0.5) resulted in an increase in the number of people infected at infection 

peak to 1453, with a slight decrease in time to infection peak (237 days; Figure 5).  Increasing 

infection prevalence in Guadalcanal to 20% (Ih2 = 0.2) at the higher rate of migration (k12 = 

0.5; k21 = 0.5) substantially increased the number of people infected in Nggela at infection peak 

and decreased time to peak infection (infection peak = 2,810 people at day 225; Figure 6). 

 

 

 

 

 

 

 

 

      

Figure 2. Model simulation showing time to malaria resurgence in patch 1 with migration rate between patch 1 

and 2 = 0.1 and migration rate from patch 2 to 1 = 0.1. Human biting rate = 0.1; infection prevalence in patch 2 = 

0.096; relative mosquito to human population abundance = 10.  

Susceptible 

Infected  



148 
 

 

 

 

 

 

 

 

 

Figure 3. Model simulation showing time to malaria resurgence in patch 1 with migration rate from patch 1 and 

2 = 0.1, migration rate from patch 2 to 1 = 0.1 and 50% increase in vector abundance in patch 1 and 2. Human 

biting rate = 0.1; infection prevalence in patch 2 = 0.096; relative vector abundance = 15. 

 

 

 

 

 

 

 

 

Figure 4. Model simulation showing time to malaria resurgence in patch 1 with migration rate from patch 1 and 

2 = 0.1, migration rate from patch 2 to 1 = 0.1 and a 50% increase in human biting rate. Human biting rate = 0.15; 

infection prevalence in patch 2 = 0.096; relative vector abundance = 10. 

  

 

 

 

 

 

 

Figure 5. Model simulation showing time to malaria resurgence in patch 1 with ten-fold increase in migration 

between patch 1 and 2. Migration rate from patch 1 to 2 = 0.5; migration rate from patch 2 to 1 = 0.5; human 

biting rate = 0.1; infection prevalence in patch 2 = 0.096; relative vector abundance = 10. 
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Figure 6. Model simulation showing time to malaria resurgence in patch 1 with migration rate between patch 1 

and 2 increased by a factor of 10 and increase in infection prevalence in patch 2. Migration rate from patch 1 to 2 

= 1.0; migration rate from patch 2 to 1 = 1.0; human biting rate=0.1; infection prevalence in patch 2 = 0.2; relative 

vector abundance = 10.  

 

Varying vector abundance parameters also had an observable effect on infection peak, which 

increased with increasing migration rate between Nggela and Guadalcanal. Doubling the 

relative vector abundance (m = 20) at the lowest migration rate (k12=0.1; k21 = 0.1) resulted in 

an infection peak of 1196 people at day 493 Table 2). A five-fold increase in migration rate 

coupled with an increase in vector abundance however resulted in an infection peak of 5232 

people at day 500. The largest increase in infection peak (infection peak = 9535 people at day 

441) was observed under increased rates of migration (k12 = 0.5; k21 = 0.5) biting rate (a = 0.15) 

and infection prevalence in Guadalcanal (Ih2).  

An increase in biting rate (a = 0.15) and migration rate (k12 = 0.5; k21 = 0.5) alone also had a 

substantial impact on infection peak with 6932 people infected in Nggela after 500 days. A 

50% decrease in biting rate (a = 0.5) at the lowest migration rate (k12 = 0.1; k21 = 0.1) however 

resulted in a substantial decrease in infection peak to 55 people at day 170. The impact of a 

50% decrease in biting rate was also observed when the model was parameterised using higher 

rates of migration (k12 = 0.5; k21 = 0.5) and infection prevalence in Guadalcanal (Ih2 = 0.2) with 

peak infection of 560 people at day 169.  Sensitivity analysis conducted to examine the impact  

Susceptible 

Infected  
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Table 2. Sensitivity analysis model simulations run at different values for vector abundance, biting rate and migration rate 

between Nggela (Patch 1) and Guadalcanal (Patch 2) 

Infection parameters Patch 1 results 

Human 
biting rate 
(a) 

Migration 
rate patch 
1 to 2 
(k12) 

Migration 
rate patch 
2 to 1 
(k21) 

Infectious 
humans 
patch 2 
(Ih2) 

Vector 
abundance 
(m)  

Peak 
Infection 
(people) 

Peak 
Infection 
(day) 

Infection  
Day 100 
(people) 

Infection  
Day 250 
(people) 

Infection  
Day 500 
(people) 

 

Transmission dynamics with no migration between patch 1 and patch 2 

0.1 0 0 0.1 10 0 0 0 0 0 

 
Transmission dynamics at varying migration rates and vector abundance with infection prevalence in patch 2 set at 0.1 

0.1 0.1 0.1 0.096 10 301 238 222 300 208 

0.1 0.1 0.1 0.096 15 601 322 364 583 538 

0.1 0.1 0.1 0.096 20 1196 493 532 998 1196 

0.1 0.2 0.2 0.096 10 595 237 441 595 414 

0.1 0.2 0.2 0.096 15 1177 319 723 1145 1053 

0.1 0.2 0.2 0.096 20 2268 481 1051 1931 2266 

0.1 0.5 0.5 0.096 10 1453 237 1085 1451 1032 

0.1 0.5 0.5 0.096 15 2810 324 1761 2735 2579 

0.1 0.5 0.5 0.096 20 5232 500 2531 4462 5232 

 
Transmission dynamics  at varying migration rates and fixed vector abundance with infection prevalence in patch 2 set at 0.2 

0.1 0.1 0.1 0.2 10 607 233 455 606 415 

0.1 0.2 0.2 0.2 10 1189 230 899 1185 810 

0.1 0.5 0.5 0.2 10 2810 225 2175 2795 1933 

 
Transmission dynamics at varying migration rates, fixed vector abundance, 50% increase in human biting rate and infection prevalence 
in patch 2 set at 0.096 and 02. 

0.15 0.1 0.1 0.096 10 1706 500 626 1266 1706 

0.15 0.2 0.2 0.096 10 3155 500 1233 2425 3155 

0.15 0.5 0.5 0.096 10 6932 500 2950 5485 6933 

0.15 0.1 0.1 0.2 10 2950 500 1256 2387 2951 

0.15 0.2 0.2 0.2 10 5068 484 2431 4376 5067 

0.15 0.5 0.5 0.2 10 9535 441 5542 8852 9508 

 
Transmission dynamics at varying migration rates, fixed vector abundance, 50% decrease in human biting rate and infection prevalence 
in patch 2 set at 0.096 and 02. and infection prevalence in patch 2 with a 50% decrease in human biting rate 

0.05 0.1 0.1 0.096 10 55 170 48 50 22 

0.05 0.2 0.2 0.096 10 109 170 96 100 44 

0.05 0.5 0.5 0.096 10 272 170 239 249 110 

0.05 0.1 0.1 0.2 
10 

113 170 100 104 46 

0.05 0.2 0.2 0.2 
10 

226 169 199 206 91 

0.05 0.5 0.5 0.2 10 560 169 494 510 226 
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of varying biting and migration rates on infection transmission found a linear associated 

between increased migration and infection peak and a monotonic, sigmoidal increase in 

infection peak associated with an increase in biting rate (Figure 7).  

 

6.4 Discussion 

Results from model simulations carried out in this study show that an increased rate of daily 

migration is likely to result in an increase in imported infection and a resurgence in malaria 

transmission in a relatively short period of time (within one year). Parameterising the model 

with a low migration rate results in a relatively small resurgent infection peaks in Nggela, when 

compared with results of model simulations run using a five-fold increased migration rate. 

Migration rates used in this study were estimations of likely movement of infectious 

populations between both islands, and may not be reflective the actual mobility rates.  An 

increased estimate of infection prevalence in Guadalcanal is also likely to result in an increase 

in infection incidence and imported infection cases, supporting a collaborative control strategy 

Figure 7. Results of sensitivity analysis showing increasing infection prevalence in patch 1 at increasing biting rate 

(a) and increasing migration rate (k12; k21). 
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between both islands which maintains vector control in both elimination and endemic areas 

until elimination has been achieved in both locations30.  

In terms of vector control, results from model simulations run in this study suggest that vector 

abundance and biting rate under varying rates of migration between both locations have a 

substantial impact on likelihood of infection resurgence in Nggela. Model simulations found 

that a 50% decrease in biting rate, even at higher infection prevalence in Guadalcanal and 

higher migration rate between Guadalcanal and Nggela resulted in an 80% decrease in infection 

peak compared with baseline model parameters. These results provide evidence supporting the 

continued use of vector control interventions in Nggela while transmission in Guadalcanal is 

ongoing for achieving reductions in biting rate and vector abundance as well as an increase in 

vector mortality rate through increased use and distribution of LLINs31.  

Our model results correspond with the results of other modelling work which concluded that 

the parameters most significant for control were human biting rate (a) and vector mortality rate 

(μ)32. The work carried out here also supports previous findings that where vectorial capacity 

and potential for transmission remains, removal of vector control carries a high risk or 

resurgence34.  Continuing use of LLINs, which may already have a high coverage in 

elimination populations, until the threat of importation through human movement from 

adjacent endemic populations has ceased, may be an effective strategy for minimising the risk 

and scale of resurgence26. Partial loss of immunity among populations where transmission has 

ceased means that even more intensified coverage of vector control interventions may be 

necessary post elimination, rather than any kind of relaxation of interventions, as the population 

is more vulnerable than before35.  

The results of the phylogenetic analysis of samples from Nggela and Guadalcanal was 

indicative of either: clonal expansion, which arises as a result of importation of a genetically 
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distinct parasite into a new environment, and colonisation and proliferation of the 

unrepresentative gene in the new population36 (i.e. infections in Nggela arose from importation 

of infection from Guadalcanal), or; reduction of local transmission in Nggela to a point where 

one parasite genotype remained and re-established in the local population. Outbreaks have 

resulted from clonal expansion of Plasmodium parasites imported via cross-border migration 

from neighbouring countries37-39, and into low transmission areas, as has been observed in the 

highlands of neighbouring PNG40, and epidemics caused by clonal expansion have the potential 

to spread antimalarial resistant malaria in a relatively short space of time41.  

While it is not clear whether or not clonal expansion of the P. falciparum genotype in Nggela 

is as a result of imported infection from Guadalcanal, presence of this genotype in both islands 

is nevertheless indicative of transmission occurring between both islands, likely as a result of 

human mobility. This inter-island transmission presents a risk of resurgence if elimination is 

achieved on one island while malaria transmission remains endemic on the other. In addition 

to this, the cases detected in Nggela were asymptomatic. Asymptomatic infections may be an 

important source of sustained local transmission and are less likely to present to health care 

facilities or be detected by passive surveillance systems13. 

The impact of a higher infection prevalence in Guadalcanal on greater infection resurgence on 

Nggela, suggests a mutually beneficial impact of malaria reduction in both locations, affirming 

the strategy of national and regional collaboration for overall reductions in malaria 

prevalence30,42. Results from other mathematical model simulations also predict that the 

success of elimination is dependent on preventing importation of infection and regional scale 

elimination strategies30.  Surveillance to detect imported infections will be needed to inform 

national policy in the pre-elimination and elimination stages and estimate risk of resurgence 

while areas remain vulnerable and receptive to malaria tranmsission8,35. Future malaria 

surveillance in Solomon Islands should incorporate travel history to try to determine source of 
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infection.43 Additional information collected should determine whether cases detected in 

Nggela are as a result of local transmission or inter-island travel13. 

Future work focusing on collecting more detailed migration data and parasite prevalence 

among migratory populations may give better estimates of the risk of inter-island malaria 

transmission. Using cell phone data43-45, malaria indicator surveys incorporating travel 

history46, or travel surveys incorporating diagnosis of infection by rapid diagnostic tests, may 

provide an improved measure of mobility rates and movement of malaria parasites4.  Cell phone 

data may be useful in capturing more representative information about general migration 

patterns, and travel surveys might identify a greater proportion of the migratory population 

with asymptomatic malaria infection,6 providing higher resolution data with which to 

parameterise models. Travel survey data could also assist in identifying sinks of transmission 

and common sources of infection47,48,  49 and demographics of migratory populations for 

targeting control and surveillance operations to mitigate the risk of malaria importation6,20,48.  

6.5 Limitations 

Some limitations are inherent in the model we used for this research. Firstly, the model does 

not address risk among mobile individuals or the probability of travel given infection51 and so 

may not estimate correctly the rate of migration of infected individuals. In addition to this, the 

assumption of a well-mixed population between patch 1 and 2 through migration between 

Nggela and Guadalcanal results in an immediate non-zero prevalence in Nggela, whereas actual 

time to importation of infection to Nggela would likely be longer, dependent on likelihood of 

travelling with infection, or chance of onward transmission given travel of people with 

asymptomatic infection.  

The model also assumes a well-mixed population with equal likelihood of infection based on 

interaction between human and vector populations in both patches. In reality, the probability 
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of infection may differ depending on geographic location and demography. Human mobility 

dynamics are also likely to be associated with demography, which in turn is associated with 

infection risk, rather than random. Model simulations were run under a simplified set of 

assumptions however to estimate the relative impact of migration on malaria resurgence in 

Nggela under varying levels of vector control. The assumption of a well-mixed population with 

equal risk of infection and likelihood of migration was therefore considered appropriate within 

this context of this research. 

6.6 Conclusions 

Increased rate of migration between Nggela and Guadalcanal, infection prevalence in 

Guadalcanal, human biting rate and vector abundance resulted in resurgent malaria in Nggela 

within an average of one year time period. Inter-island transmission of malaria through human 

migration may be a major obstacle to achieving sub-national malaria elimination in Solomon 

Islands, and the success of elimination programmes will be strongly dependent on the 

prevention of infection importation and resurgence through sustained surveillance and vector 

control. 
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CHAPTER 7. DISCUSSION 

 

7.1 Introduction 

At this current point of progression toward malaria elimination, and as advancements are made 

by regional and national control and elimination programs, several challenges to sustained 

control and effective elimination of malaria exist. In countries aiming for control, 

heterogeneities in malaria prevalence may present challenges in the allocation of vector control 

interventions and resources to areas where they will have most impact. As national and regional 

malaria prevalence decreases, changes in the demographic profile to a higher risk among older 

adults, occupational groups such as forest goers, and mobile and cross-border migratory 

populations may be observed1,2. This requires a reorientation of control interventions and 

surveillance operations toward these groups3. 

In low-transmission settings, the success of elimination programmes will be strongly dependent 

on identifying and targeting residual foci of transmission, including asymptomatic reservoirs 

of infection and prevention of  malaria infection importation from areas where transmission 

remains endemic4. Once national elimination has been achieved, prevention of resurgence 

should be a priority for elimination programmes through prevention of importation of infection 

and sustained vector control.  Reasons for resurgence post-elimination are multi-factorial and 

can include cross-border or international importation of infection, funding shortages, failure to 

implement control programme technical strategy well and relaxing of vector control 

interventions5. In countries at all levels of malaria endemicity, emergence of insecticide and 

anti-malarial drug resistant parasites will pose a substantial threat to the success of control and 

elimination programmes5,6. Other obstacles to achieving elimination which are more difficult 

to address also exist such as continuing surveillance and control efforts in conflict settings7. 
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As global malaria transmission decreases, and these new associated challenges arise, new, 

effective epidemiological tools are needed to evaluate progress against national targets, 

examine spatial patterns of malaria transmission in response to control efforts, and attempt to 

predict how malaria transmission may be impacted by changing demographics and risk factors. 

The research presented in this thesis describes challenges which may be faced by malaria 

control and elimination programmes, and novel epidemiological tools for addressing some of 

these challenges. These tools can be broadly applied to the three different control settings of 

malaria elimination – control, elimination and prevention of reintroduction.  

7.2 Key research findings 

Chapter 2 provides an overview of the current global malaria situation and strategies for 

malaria control and elimination, describes epidemiological tools that can be used for targeting 

these interventions and discusses how these tools can be utilised to effectively deal with current 

and forecasted challenges in malaria elimination. One of the main priorities and biggest 

challenges for malaria elimination is the impact that human mobility may have on malaria 

transmission and resurgence post elimination. Several methods have been evaluated for 

effectively measuring human mobility and assessing the impact that this will have on malaria 

transmission; however, the most effective and efficient way of doing so being yet to be 

determined8-10.  

A further obstacle to global malaria elimination, discussed in chapter 2, is the emergence of 

insecticide and anti-malarial drug resistant parasites, associated with socio-economic 

disparities and behavioural practices around adhering to anti-malarial treatment regimens11, 

amongst other factors. The independent emergence of anti-malarial drug resistance in several 

geographic locations in the Greater Mekong subregion, as well as the African continent12, is a 

threat to global elimination of malaria, making elimination of P. falciparum while ACTs are 

still effective an urgent priority3, requiring sustained intervention and political will13.    
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Appropriate allocation and evaluation of control interventions, including quantification and 

examination of the spatial distribution of delivered interventions, is essential for improving and 

maintaining programmatic performance. Effective, sustainable surveillance for continual 

assessment of malaria incidence, updated in real time, and collated and analysed for feedback 

to control programmes, is integral to the achievement of global malaria elimination. Chapter 2 

discussed how such approaches can be enhanced by epidemiological methods that help make 

better use of routinely collected operational and surveillance data in control, elimination and 

prevention of reintroduction settings. Developing simple yet effective technical solutions of 

this type should be a current focus in the field of operational research.  

Chapter 3 describes the current epidemiology and strategies for national malaria control in 

PNG. Chapter 3 also includes a summary of the previous malaria control programmes and 

reasons for programme failure or instances of resurgence post elimination5. A review of 

literature identified key challenges to the current malaria control programme in PNG, as well 

as challenges faced by historical control programmes. Barriers to distribution of control 

interventions exist, including poor infrastructure and isolation of populations, as well 

disparities in access to health care, which limits access to proper diagnosis and treatment.  

Previous control programmes suffered from unsustained commitment, political will, financing 

and resources for maintaining interruption of transmission. Critically, a lack of programmatic 

cohesion and inadequacies in planning were consistently cited as an impediment to the success 

of all three major previous attempts at malaria control in PNG. This highlights the importance 

of high-quality evidence to support programmatic decision making including epidemiological 

tools which allow, for example, visualisation of the variation in risk across the country. 

Chapter 4 highlights the importance of assessing the predictive accuracy of statistical models 

used to predict the spatial distribution of infectious disease. Evidence from this work suggests 
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that where transmission may be associated with ecological drivers that vary across the country, 

with complex interactions (including collinearity), a traditional GLM modelling approach may 

be inappropriate for spatial predictions on a national scale. There are several reasons why 

graphical models such as BDNs are more accurate in informing predicted probability 

distributions. Firstly, within a Bayesian framework, flexible structuring of the model enables 

the integration of expert knowledge about the ecology of the disease with observational data to 

improve model performance. BDN models quantify associations between covariates in the 

model, as well as with the defined outcome of interest, allowing collinear variables to be 

included in the same model.  

In countries such as PNG, where the environmental drivers of malaria vary between different 

areas, and consequent heterogeneity in transmission exists, incorporating explanatory variables 

which may otherwise have to be excluded due to problems of collinearity may also aid in 

improvement of model prediction accuracy. An additional benefit of using models of this type 

is in the ability to demonstrate uncertainty in predictions. From a malaria control point of view, 

information such as this is important for informing control programmes particularly on a 

national scale where resources need to be targeted in the most efficient and economical manner 

possible. Where the degree of uncertainty is high due to uncertainty in measurements, or 

insufficient data, additional surveillance operations or surveys to obtain new information, or 

alternative evidence gathering strategies may be employed for improvement in risk estimations.    

Chapter 5 demonstrates the application of integrating parasite genotype data with spatial 

models to infer connectivity between distinct geographic locations in terms of malaria 

transmission. Model results showed a spatial predominance of specific P. falciparum 

genotypes in distinct areas of PNG. This strategy of examining the parasite population structure 

may be beneficial in deducing how distinct geographic locations are connected, and identifying 

sources of infection where imported cases are likely to have originated from. Gaining insight 
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into transmission dynamics by examining the parasite population structure in this way may also 

help in assessing risk of resurgence in areas where elimination has been achieved, but remain 

connected to areas where transmission remains endemic. Consequently this may aid in 

informing decisions regarding sustained vector control and surveillance operations in areas 

where local transmission has ceased. Genetic surveillance strategies are financially and 

logistically demanding however, and may not be feasible in may elimination settings.  

The research findings from chapter 6 demonstrate the importance of sustained interventions in 

areas vulnerable to resurgence if elimination is achieved while connectivity to areas where 

malaria remains endemic is sustained by human mobility. Where vectorial capacity remains 

and where the location is connected to an endemic area by human migration, there is potential 

for resurgence and reestablishment of local transmission. This provides evidence for use of 

sustained control interventions following elimination and the need for regional collaboration  

to reduce transmission concurrently across many connected areas4. Chapter 6 also demonstrates 

the application of mathematical models in simulating malaria transmission under hypothetical 

scenarios such as increased migration between two distinct geographic areas, under sustained 

or waning vector control and under conditions of increased or decreased abundance of vector 

populations relative to the human population. For a model to be considered robust, it must 

reflect the transmission dynamics of the disease accurately enough for predictions to be valid, 

while not being so specific that predictions are heavily reliant on parameters of the model. A 

simplified Ross-Macdonald model was applied in this case to the context of preventing malaria 

resurgence in areas in Solomon Islands to examine the effect of varying human biting, vector 

abundance and migration rates on resurgent infection. 

Results of mathematical modelling work presented in chapter 6 highlighted the importance of 

vector control through use of LLINs in areas of Solomon Islands aiming for elimination or 

prevention of reintroduction when connected to areas where malaria remains endemic. The 
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results obtained from this work is supported by other research findings suggesting that vector 

control through LLIN use may have the greatest impact on preventing resurgent malaria 

compared with IRS alone14,15. Mathematical modelling work suggests that even while 

sustaining malaria intervention coverage at current levels, a moderate increase in malaria 

incidence may occur as a result of partial loss of immunity among populations where 

interventions have been directed. In order to avoid this, vector control intervention coverage 

needs to be higher than 80% of at-risk populations and to achieve this level of coverage, 

innovative epidemiological tools to appropriately direct vector control interventions are 

needed3.  

Mathematical models can help in planning surveillance operations and allocation of vector 

control interventions by providing practical tools to assess the feasibility of malaria 

elimination, identify cost-effective strategies to shorten elimination timelines (if coupled with 

economic analysis approaches), and provide national control programmes with tools for 

assessing and tailoring malaria control and elimination strategies to specific settings16,17. 

Mathematical models will also be useful tools in guiding interventions evaluating which 

control tools will have greatest impact on prevention of resurgence post elimination and in 

deciding for how long control interventions should be sustained post elimination given the 

likelihood of resurgence. 

7.3 Limitations  

There were some limitations to the analytical research contained in this thesis, which were also 

outlined in each research chapter. One of the primary limitations of this thesis is that data used 

for the analytical work were collected between 2010 and 2011 in the case of data used for the 

spatial prediction of malaria in PNG in chapter 4, and between 2008 and 2009, in the case of 

data used for examination of spatial predominance for parasite genotype data in chapter 5 and 
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to parameterise the mathematical model in chapter 6. Predictions of the spatial distribution of 

malaria made using 2010/2011 data, may not correspond to the current prevalence rates in PNG 

as control interventions which have been ongoing in the intervening time period may have 

altered transmission dynamics.  

Likewise, data used to examine the spatial predominance of P. falciparum genotypes were 

collected ten years ago, and changes in transmission and mobility dynamics of the population 

may have occurred in the intervening time, which may not be reflected by results obtained here. 

This work is however, likely to be a good indication of how populations in PNG have 

historically been connected in terms of malaria transmission and therefore still has relevance 

for guiding control programmes. Also it is difficult given the lack of other indicators of 

migration including mobile phone records data and travel history, to explore the validity of 

these maps as inference for human movement patterns within PNG. 

Migration rates used for parameterisation of the mathematical model may not be reflective of 

daily migration rates of infectious individuals in Solomon Islands. Cell phone data, GPS data 

or travel surveys may give better estimations of migration rates and improved precision in 

model predictions on magnitude and time to resurgence in the event of reintroduction of 

infection post elimination. 

7.4 Future research  

Crucial to making progress in global elimination will be continuing to improve our 

understanding of how human mobility connects distinct geographic areas and facilitates 

transmission of malaria parasites. Future work should focus on integrating parasite genotype 

data with human mobility data, such as mobile phone records, to examine how these data 

sources compare in mobility models for the prediction of connectivity. Combining parasite 

genotype data with movement data such as Google location, census or mobile phone records 
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data, may give better insights into how human movement impact malaria transmission 

dynamics. Various different strategies and data sources for measuring human mobility and 

connectivity of populations in terms of malaria transmission are currently being explored to 

improve the understanding of spatial transmission of malaria18,19.  

The global malaria elimination strategy has focused on ‘shrinking the malaria map’ by 

eliminating on a sub-national or national level and then scaling up to regional level20. However, 

a more nuanced approach might be warranted, whereby areas where similar parasite 

genotyopes circulate, or areas which are connected in terms of malaria transmission through 

human movement and circulation of similar parasite genotypes, are identified and targeting 

with coordinated interventions21. Effective regional collaborations are also required to prevent 

resurgence in countries that have achieved elimination that are connected to endemic areas by 

human migration3.  

 

Future research to expand on work carried out within the context of this thesis specifically 

should focus on: 

 Generating maps estimating the predictive risk of P. falciparum and P. vivax infection 

across PNG updated with data collected from surveys carried out subsequent to 

2010/2011 to examine current predicted malaria prevalence in PNG, and explore how 

prevalence may be changing in response to control interventions. 

 Integrating Plasmodium parasite genotype data with call record or google location data 

to examine how well models using these different data sources compare at identifying 

routes of transmission as a result of human mobility.  

 Examining risk of resurgence in eliminating areas in Solomon Islands using more 

detailed measures of human migration data such as travel surveys or call record data 

and parasite prevalence among migratory populations. 



168 
 

 Examining risk of resurgence in eliminating areas using mathematical models which 

incorporate parameters on likelihood of travelling with infection, or chance of onward 

transmission given travel of people with asymptomatic infection. 

 

7.5 Conclusions 

This thesis provided a review of the current progress being made toward malaria elimination, 

and some of the challenges inherent in achieving this goal. Strategies used in the control and 

elimination of malaria and epidemiological tools which can be used in the planning of control 

and elimination programmers and targeting of resources and interventions were reviewed. In 

PNG, key future and previous challenges to achieving elimination were identified and 

recommendations were provided for future directions of control and elimination. The 

application of several epidemiological methods for examining the spatial distribution of 

malaria were also examined.  

Novel statistical methods (BDNs) were compared with conventional models (GLMs) and the 

predictive accuracy of the spatial distribution of malaria using both approaches were compared. 

Both models examined associations of P. falciparum and P. vivax prevalence from 

observational data collected in a national malaria survey in 2010/2011 with ecological drivers 

of transmission derived from remote sensing image data. Cross validation of model results 

determined that novel BDN models had improved performance, compared with GLM models, 

for predicting the spatial distribution of malaria in PNG. The geographic niches of P. 

falciparum genotypes were examined using the results of a Dirichlet regression model 

examining associations of eight distinct Plasmodium parasite genotypes with ecological 

covariates including elevation, latitude and longitude coordinates, population density and 

distance of survey villages from the coastline. The predicted spatial distribution of these 
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genotypes based on model results gave insight into the transmission of malaria parasites in 

PNG and how distinct populations are connected in terms of malaria transmission.  

Finally, using a Ross-Macondald metapopulation model, we were able to estimate the 

likelihood of resurgence in Nggela, an island of low malaria transmission in Solomon Islands, 

if local transmission has ceased but importation of infection is occurring through connectivity 

with Guadalcanal, an islands where malaria transmission remains endemic. From model 

simulations we determined that malaria resurgence is likely to occur within one year, given 

sustained human mobility between both islands and relaxed vector control interventions in 

Nggela. We also determined that human biting rate is the most important parameter in malaria 

resurgence, suggesting that malaria resurgence may be preventable through sustained LLIN 

use. 

This thesis descried epidemiological methods which can be applied in examining malaria 

transmission dynamics in control, elimination and prevention of reintroduction settings and the 

findings of this thesis may help in guiding national control and elimination programmes in 

PNG, Solomon Islands and further afield.   
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