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Abstract: An all-dielectric metasurface is deemed to serve a potential platform to 
demonstrate spectral filters. Silicon-rich silicon nitride (SRN), which contains a relatively 
large portion of silicon, can exhibit higher refractive indices, when compared to silicon 
nitride. Meanwhile, the extinction coefficient of SRN is smaller than that of hydrogenated 
amorphous silicon, leading to reduced absorption loss in the shorter wavelength. SRN is 
therefore recommended as a scattering element from the perspective of realizing all-dielectric 
metasurfaces. In this work, we propose and embody a suite of highly efficient structural color 
filters, capitalizing on a dielectric metasurface that consists of a two-dimensional array of 
SRN nanodisks that are embedded in a polymeric layer. The SRN nanodisks may support the 
electric dipole (ED) and magnetic dipole (MD) resonances via Mie scattering, thereby leading 
to appropriate spectral filtering characteristics. The ED and MD are identified from field 
profile observation with the assistance of finite-difference time-domain simulations. The 
manufactured color filters are observed to produce various colors in both transmission and 
reflection modes throughout the visible band, giving rise to a high transmission of around 
90% in the off-resonance region and a reflection ranging up to 60%. A variety of colors can 
be realized by tuning the resonance by adjusting the structural parameters such as the period, 
diameter, and height of the SRN nanodisks. The spectral position of resonances might be 
flexibly tuned by tailoring the polymer surrounding the SRN nanodisks. It is anticipated that 
the proposed coloring devices will be actively used for color displays, imaging devices, and 
photorealistic color printing. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

The metasurface, which is based on a two-dimensional (2D) arrangement of nano-scale 
scattering elements and thus perceived as a planar counterpart of optical metamaterials, has 
been researched in virtue of their preeminent capabilities for manipulating the polarization, 
phase, and amplitude of light in various spectral bands [1–4]. The metasurface can potentially 
serve as a miniaturized version of the conventional free-space optical devices, encompassing 
lenses, waveplates, and spectral filters [1–4]. One of the most salient applications empowered 
by such a metasurface lies in structural color filters, which can provide colors in the visible 
wavelength regime to possibly supersede dye/pigment-based coloring in display, imaging, 
color printing, photovoltaic, and so forth [5–9]. To date, a variety of structural color filters 
and color printing have been attempted, resorting to plasmonic nanoresonators [8–16] and 
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metasurfaces [17–25]. All-dielectric metasurfaces incorporating high-index materials like 
crystalline silicon (c-Si), hydrogenated amorphous silicon (a-Si:H), and titanium dioxide 
(TiO2) are preferred to their plasmonic counterparts, in which the inherent loss resulting from 
metallic films prohibits the bandwidth from being controlled. The metasurface in silicon (Si) 
is advantageous due to its high performance, enhanced cost effectiveness, and good 
compatibility with the complementary metal-oxide-semiconductor (CMOS) process; while Si, 
being the second-most-abundant material in nature, exhibits relatively high refractive indices 
[17–22]. However, it is challenging to grow a high-quality c-Si on a foreign substrate like 
glass. Polycrystalline silicon (poly-Si), which can be deposited via chemical vapor deposition 
(CVD), is a viable alternative that provides refractive indices equivalent to that of c-Si. 
Nevertheless, at temperatures higher than about 300 °C, the deposition of poly-Si on a glass 
or plastic substrate is hardly permitted. For instance, process techniques including 
laser/thermal annealing and atomic layer deposition (ALD) were additionally required to form 
a poly-Si layer on a glass substrate [26,27]. Considering poly-Si is composed of a multitude 
of small crystallites, optical scattering loss may be caused by the grains. An a-Si:H layer can 
readily be deposited on a foreign substrate via CVD process at relatively low temperature. 
Yet, it is vulnerable to relatively high absorptions in the short wavelengths, degrading the 
efficiency in the blue region [18]. Recently, TiO2 was adopted as a prominent candidate to 
construct an all-dielectric metasurface [28–30] and its derivatives like color filters [24,25]. In 
the meantime, silicon nitride (SiN) has received ample attention as a prime platform for 
embodying the metasurface, recognizing that its preparation is fully compatible with the 
CMOS process, while the large bandgap allows for improved transparency and efficiency 
across the visible band [31,32]. SiN based metasurfaces were taken advantage of to create 
metalenses, wavefront manipulation, and imaging [31–36]. A suite of structural color filters 
in SiN was primarily reported based on the guided-mode resonance (GMR) [37–39]. 
However, no SiN metasurface rendering color generation has yet been interpreted from the 
viewpoint of Mie scattering mediated resonances. Since SiN gives lower refractive indices 
compared with the cases of c-Si, a-Si:H, and TiO2, SiN nanoparticles may not be 
recommended as an efficient scattering element in the case of an all-dielectric metasurface. It 
is reported that for nanoparticles exhibiting a certain aspect ratio, the scattering efficiency can 
be enhanced with increasing refractive indices [40]. Hence, for the case of low-index 
materials, their surface area should be enlarged to boost the scattering. It should be mentioned 
that when it comes to Si-rich SiN (SRN), it contains a relatively large portion of Si and thus 
could offer a higher refractive index compared with SiN and TiO2. Therefore, it should be 
reasonably emphasized that SRN is a viable candidate as a foundation for creating a high-
quality metasurface. Moreover, SRN allows for a low-temperature deposition via CVD; as a 
result, the benefit of low absorption in the short wavelengths could be attained, thus 
overcoming the critical weakness of a-Si:H. 

In this work, we suggest an all-dielectric metasurface tapping into an array of SRN 
nanodisks, enabling considerable scattering, which is crucial for both electric dipole (ED) and 
magnetic dipole (MD) resonances induced by the Mie scattering. We attempt to concoct a set 
of structural color filters counting on the proposed SRN metasurface, creating a variety of 
colors in transmission mode as well as reflection mode. The operation mechanism underlying 
the proposed metasurface has been inspected through the observation of electric and magnetic 
field distributions, which are presumed to be responsible for the ED and MD resonances 
excited by the SRN nanodisks. 

2. Optical properties of dielectric materials affiliated with Si 

Figure 1 plots the optical properties in the visible wavelength region for dielectric materials 
associated with Si, inclusive of c-Si, a-Si:H, SRN, and SiN. The refractive indices of c-Si and 
a-Si:H are available from Palik [41], while those of SRN and SiN are obtained by 
characterizing their films deposited on a glass substrate using an ellipsometer (J. A. Woollam 
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Fig. 3. (a) Measured and calculated transmission spectra for the fabricated color filters. (b) 
Their color outputs in transmission mode. (c) CIE 1931 chromaticity diagrams corresponding 
to the measured and calculated spectra, respectively. 

The reflection spectra for the prepared color filters were similarly scrutinized, in 
conjunction with the coloring performance in reflection mode. The reflection spectra and 
corresponding color images as captured by a microscope are presented in Figs. 4(a) and 4(b), 
respectively. The observed outcome indicates that the device performance has been slightly 
affected by fabrication errors. The prepared metasurfaces are monitored to provide colors 
scanning from light blue, through yellowish green, to orange in reflection mode, when the 
structural parameters of the SRN nanodisks like the period and diameter are varied. The 
proposed SRN metasurface tends to give rise to higher efficiencies in longer wavelengths 
than in shorter wavelengths, which is attributed to the fact that the resonances mediated by the 
Mie scattering are highly promoted in the spectral regime near λ = 550 nm, in light of the 
dimensions of the SRN nanodisks. In contrast, the reflection efficiency is severely degraded 
in the shorter wavelength region, on account of nonnegligible optical extinction on top of 
inefficient scattering mediated resonance. The efficiency can be elevated in the shorter 
wavelength band below λ = 550 nm, when structural parameters including the height and 
diameter are properly adjusted to mediate scattering. This work was particularly concerned 
about the height of H = 200 nm. The related chromaticity coordinates for the reflection 
spectra are plotted on the CIE 1931 chromaticity diagram, as sketched in Fig. 4(c). 
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Fig. 4. (a) Measured and calculated reflection spectra for the fabricated color filters. (b) Their 
color outputs in reflection mode. (c) CIE 1931 chromaticity diagrams corresponding to the 
measured and calculated spectra, respectively. 

In order to achieve a variety of colors, we adjusted the structural parameters such as P and 
D at the same time. A periodic boundary condition was adopted for the calculation to address 
coupling between adjacent nanodisks [46]. We also explore the spectra by changing the gap 
between adjacent nanodisks, which are enclosed in the polymer, while the contour map of the 
calculated reflection spectra is depicted in Fig. 5(a). The gap is varied from 100 nm to 300 nm 
in steps of 10 nm, while the height (H) and diameter (D) of the nanodisks are fixed at 200 nm. 
The calculated scattering cross-sections corresponding to gaps of 150 nm, 200 nm, and 250 
nm, are delineated in Fig. 5(b). The scattering cross-section is defined as the ratio of the 
scattered power going through the closed surface to the power-per-unit area for the incident 
wave. It is observed that for the proposed metasurface which resorts to periodically arranged 
SRN nanodisks, the spectral response may be tailored by changing the gap between 
neighboring elements, which might be mutually coupled to a certain extent and affect the 
resonance characteristics. It is expected that the coupling can be taken advantage of to adjust 
the phase of transmitted light and manipulate the wavefront [47,48]. 
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Fig. 7. (a) Scattering, absorption, and extinction cross-sections of the metasurface 
corresponding to P = 400 nm and D = 200 nm, where the SRN nanodisks are in contact with 
air. (b) E-field (left) and H-field (right) profiles for the ED resonance at λ = 582 nm as 
observed in the yz-plane. (c) Field profiles for the MD resonance at λ = 642 nm as observed in 
the xz-plane. 

Likewise, we scrutinized the proposed metasurface which engages a lattice of SRN 
nanodisks embedded in the polymeric layer of ZEP520A. As portrayed in Fig. 8(a), the ED 
and MD resonances almost coincide, exhibiting a wavelength separation of as small as 18 nm. 
Though the nanodisks placed in the polymer may incur a wavelength shift for the ED 
resonance, the field profiles in charge of the ED and MD resonances, corresponding to λ = 
646 nm and 662 nm, are displayed in Figs. 8(b) and 8(c), respectively. As sketched in Fig. 
8(b), the E-field in conjunction with the circular H-field is reinforced near the center of the 
nanodisk at λ = 646 nm, underscoring the existence of the ED resonance. The reinforced H-
field near the center of the nanodisk in combination with the surrounding E-field loop is 
believed to represent the MD resonance at λ = 662 nm, as shown in Fig. 8(c). It is noteworthy 
that similar phenomena may hold true for the rest of the devices adopting different design 
parameters. 

 

Fig. 8. (a) Scattering, absorption, and extinction cross-sections of the metasurface 
corresponding to P = 400 nm and D = 200 nm, where the SRN nanodisks are in contact with a 
polymer of ZEP520A. (b) E-field (left) and H-field (right) profiles for the ED resonance at λ = 
646 nm as observed in the yz-plane. (c) Field profiles for the MD resonance at λ = 662 nm as 
observed in the xz-plane. 
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5. Methods 

5.1 Numerical simulations 

The refractive indices of the SRN and SiN films were obtained by using an ellipsometer (J. A. 
Woollam M2000D) operating in the spectral range from 193 nm to 1,690 nm, while the 
dispersion characteristics of c-Si and a-Si:H are derived from Palik [41]. For the proposed all-
dielectric metasurfaces, the transmission/reflection spectra, extinction cross-sections, and 
field profiles were estimated by means of the FDTD method-based tool [45]. A normally 
incident plane wave was illuminated to a unit cell, satisfying a periodic boundary condition, 
so that an array of periodically arranged SRN nanodisks could be emulated. 

5.2 Device fabrication 

The proposed color filters were manufactured to exhibit dimensions of 40 μm × 40 μm. A 
200-nm thick SRN film was deposited on a glass substrate in plasma enhanced CVD system 
(Plasmalab 100, Oxford), where a mixture of SiH4 and NH3 diluted in helium was used as a 
precursor gas. By altering the SiH4 to NH3 gas ratio, we could tailor the nitrogen content in a 
grown film; i.e., with the help of ammonia gas, the portion of nitrogen in the film is increased, 
thus reducing the extinction coefficient in the visible band and the corresponding refractive 
index. The adopted process entails: Gas flow rates of 7.5 sccm SiH4 / 4 sccm NH3 / 142.5 
sccm He, a gas pressure of 850 mTorr, a power of 30 W at 13.56 MHz (radio frequency), and 
a substrate temperature of 300 °C. After spin coating of an electron beam resist (ZEP520A 
from Zeon Chemicals), a thin layer of e-spacer 300Z (Showa Denko) was introduced to 
prevent charging during subsequent electron beam exposure. The nanostructure pattern was 
then formed using an electron beam writer (EBL, Raith150) and developed in ZED-N50. A 
60-nm thick Al layer was subsequently deposited by e-beam evaporation (Temescal BJD-
2000), accompanied by a lift-off process in which the sample is soaked in a resist remover 
(ZDMAC from ZEON Co.). An array of remaining rectangular Al patterns was used as the 
etch mask to transfer the designed pattern into the SRN film through inductively coupled 
plasma-reactive ion etching (Plasmalab System 100, Oxford). The etching conditions were 
optimized to achieve a highly anisotropic profile for the SRN layer, while CHF3 with a small 
addition of SF6 gas was used as plasma etch chemistry. The residual Al etch mask was finally 
removed by wet etching. The resist, serving as the polymer, was spin-coated to enclose the 
SRN nanodisks. 

5.3 Optical characterization 

The completed SRN pattern was visually evaluated by dual beam (SEM/FIB) high-resolution 
scanning electron microscopy (FIB II, Quanta 3D FEG, FEI). The transmission spectra were 
obtained by a spectrometer (Avaspec-3648, Avantes) which is tethered to a multimode fiber, 
while a collimated beam originating from a halogen lamp (HL-2000-FHSA, Ocean Optics) 
was shone via a focusing lens to the prepared filter that was mounted on a motorized rotation 
stage. For the proposed devices, the spectral response is stable for incident angles ranging up 
to ~5°. With the intention of ensuring that the optical response is governed by normally 
incident light, the test setup has been devised to exhibit a numerical aperture below 0.017. 
The reflection spectra were observed by a spectrometer equipped with a reflection probe, 
which is specifically devised to accept the optical beam that normally reflects from the 
devices. Color images originating from each pixel of the color filters were taken via a digital 
microscope (Leica DM4000 M) in transmission mode and a CCD camera attached to the 
spectrometer was exploited in reflection mode. 

6. Conclusion and discussion 

Structural color filters employing an all-dielectric metasurface, which exploits a 2D lattice of 
SRN nanodisks embedded in a polymeric layer, were developed in the visible band to 
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produce not only subtractive colors in transmission mode but additive colors in reflection 
mode as well. The proposed metasurface, which incorporates 200-nm-thick SRN nanodisks, 
provides a high efficiency in the green and red band. The device is anticipated to potentially 
yield enhanced reflection even in the shorter spectral regime when the structural parameters 
associated with the nanodisks are appropriately selected. Thanks to the introduction of a 
proper polymer medium enclosing the SRN nanodisks, the overall spectral response of the 
filters could be effectively engineered to approximately assume a single dominant resonance, 
thus enabling the prediction of achievable color outputs. The ED and MD resonances 
mediated by the Mie scattering were keenly scrutinized through the analysis of the field 
profiles pertaining to the SRN nanodisk structures. Under the deliberation that from the 
viewpoint of the structural coloring, SiN was mostly employed to implement narrow band 
filters based on the GMR effect [37–39], the refractive index of SiN has been substantially 
elevated to become SRN, with a view to making it pertinent to the invocation of scattering in 
a nanostructure, as verified through the current work. It should be remarked that the 
resonance could be mediated by Mie type scattering, taking into account the scattering cross-
section and the corresponding field profile. Recently, perfect reflection for a periodic 
structure was explained based on the leaky mode resonance [54,55]. It is expected that 
considering the proposed metasurface featuring a periodic arrangement of nanostructures 
provides near-perfect reflection in the spectral band around 650 nm, the leaky mode 
resonance can be a viable approach for the purpose of inspecting all-dielectric metasurfaces. 
A wide range of coloring can be made possible by tuning the resonance via the adjustment of 
the structural parameters of the SRN nanodisks. 
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