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Abstract: An all-dielectric metasurface is deemed to serve a potential platform to
demonstrate spectral filters. Silicon-rich silicon nitride (SRN), which contains a relatively
large portion of silicon, can exhibit higher refractive indices, when compared to silicon
nitride. Meanwhile, the extinction coefficient of SRN is smaller than that of hydrogenated
amorphous silicon, leading to reduced absorption loss in the shorter wavelength. SRN is
therefore recommended as a scattering element from the perspective of realizing all-dielectric
metasurfaces. In this work, we propose and embody a suite of highly efficient structural color
filters, capitalizing on a dielectric metasurface that consists of a two-dimensional array of
SRN nanodisks that are embedded in a polymeric layer. The SRN nanodisks may support the
electric dipole (ED) and magnetic dipole (MD) resonances via Mie scattering, thereby leading
to appropriate spectral filtering characteristics. The ED and MD are identified from field
profile observation with the assistance of finite-difference time-domain simulations. The
manufactured color filters are observed to produce various colors in both transmission and
reflection modes throughout the visible band, giving rise to a high transmission of around
90% in the off-resonance region and a reflection ranging up to 60%. A variety of colors can
be realized by tuning the resonance by adjusting the structural parameters such as the period,
diameter, and height of the SRN nanodisks. The spectral position of resonances might be
flexibly tuned by tailoring the polymer surrounding the SRN nanodisks. It is anticipated that
the proposed coloring devices will be actively used for color displays, imaging devices, and
photorealistic color printing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The metasurface, which is based on a two-dimensional (2D) arrangement of nano-scale
scattering elements and thus perceived as a planar counterpart of optical metamaterials, has
been researched in virtue of their preeminent capabilities for manipulating the polarization,
phase, and amplitude of light in various spectral bands [1—4]. The metasurface can potentially
serve as a miniaturized version of the conventional free-space optical devices, encompassing
lenses, waveplates, and spectral filters [1-4]. One of the most salient applications empowered
by such a metasurface lies in structural color filters, which can provide colors in the visible
wavelength regime to possibly supersede dye/pigment-based coloring in display, imaging,
color printing, photovoltaic, and so forth [5-9]. To date, a variety of structural color filters
and color printing have been attempted, resorting to plasmonic nanoresonators [8—16] and
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metasurfaces [17-25]. All-dielectric metasurfaces incorporating high-index materials like
crystalline silicon (c-Si), hydrogenated amorphous silicon (a-Si:H), and titanium dioxide
(TiO,) are preferred to their plasmonic counterparts, in which the inherent loss resulting from
metallic films prohibits the bandwidth from being controlled. The metasurface in silicon (Si)
is advantageous due to its high performance, enhanced cost effectiveness, and good
compatibility with the complementary metal-oxide-semiconductor (CMOS) process; while Si,
being the second-most-abundant material in nature, exhibits relatively high refractive indices
[17-22]. However, it is challenging to grow a high-quality c-Si on a foreign substrate like
glass. Polycrystalline silicon (poly-Si), which can be deposited via chemical vapor deposition
(CVD), is a viable alternative that provides refractive indices equivalent to that of c-Si.
Nevertheless, at temperatures higher than about 300 °C, the deposition of poly-Si on a glass
or plastic substrate is hardly permitted. For instance, process techniques including
laser/thermal annealing and atomic layer deposition (ALD) were additionally required to form
a poly-Si layer on a glass substrate [26,27]. Considering poly-Si is composed of a multitude
of small crystallites, optical scattering loss may be caused by the grains. An a-Si:H layer can
readily be deposited on a foreign substrate via CVD process at relatively low temperature.
Yet, it is vulnerable to relatively high absorptions in the short wavelengths, degrading the
efficiency in the blue region [18]. Recently, TiO, was adopted as a prominent candidate to
construct an all-dielectric metasurface [28—30] and its derivatives like color filters [24,25]. In
the meantime, silicon nitride (SiN) has received ample attention as a prime platform for
embodying the metasurface, recognizing that its preparation is fully compatible with the
CMOS process, while the large bandgap allows for improved transparency and efficiency
across the visible band [31,32]. SiN based metasurfaces were taken advantage of to create
metalenses, wavefront manipulation, and imaging [31-36]. A suite of structural color filters
in SiN was primarily reported based on the guided-mode resonance (GMR) [37-39].
However, no SiN metasurface rendering color generation has yet been interpreted from the
viewpoint of Mie scattering mediated resonances. Since SiN gives lower refractive indices
compared with the cases of c-Si, a-Si:H, and TiO,, SiN nanoparticles may not be
recommended as an efficient scattering element in the case of an all-dielectric metasurface. It
is reported that for nanoparticles exhibiting a certain aspect ratio, the scattering efficiency can
be enhanced with increasing refractive indices [40]. Hence, for the case of low-index
materials, their surface area should be enlarged to boost the scattering. It should be mentioned
that when it comes to Si-rich SiN (SRN), it contains a relatively large portion of Si and thus
could offer a higher refractive index compared with SiN and TiO,. Therefore, it should be
reasonably emphasized that SRN is a viable candidate as a foundation for creating a high-
quality metasurface. Moreover, SRN allows for a low-temperature deposition via CVD; as a
result, the benefit of low absorption in the short wavelengths could be attained, thus
overcoming the critical weakness of a-Si:H.

In this work, we suggest an all-dielectric metasurface tapping into an array of SRN
nanodisks, enabling considerable scattering, which is crucial for both electric dipole (ED) and
magnetic dipole (MD) resonances induced by the Mie scattering. We attempt to concoct a set
of structural color filters counting on the proposed SRN metasurface, creating a variety of
colors in transmission mode as well as reflection mode. The operation mechanism underlying
the proposed metasurface has been inspected through the observation of electric and magnetic
field distributions, which are presumed to be responsible for the ED and MD resonances
excited by the SRN nanodisks.

2. Optical properties of dielectric materials affiliated with Si

Figure 1 plots the optical properties in the visible wavelength region for dielectric materials
associated with Si, inclusive of ¢-Si, a-Si:H, SRN, and SiN. The refractive indices of ¢-Si and
a-Si:H are available from Palik [41], while those of SRN and SiN are obtained by
characterizing their films deposited on a glass substrate using an ellipsometer (J. A. Woollam
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M2000D). The c-Si and a-Si:H give rise to high indices (around n = 4). The a-Si:H is
unfortunately susceptible to high extinction for shorter wavelengths below A = 550 nm,
causing a significant level of absorption. In contrast, SiN exhibits a relatively lower refractive
index in combination with negligible extinction. SiN film is known to be readily attained with
the help of CVD at a low temperature of around 250 °C. Noting the composition of SiN film
is varied by adjusting the relative flow rates for SiH, and NH, gases, it is remarked that SiN is
engineered to assume higher refractive indices by boosting the content of Si during the
deposition process. Consequently, in terms of the efficiency of scattering, SRN is reckoned to
be unequivocally preferred to SiN or TiO,.
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Fig. 1. Dispersion characteristics of Si-related dielectric materials including c-Si, a-Si:H, Si-
rich SiN (SRN), and SiN in the visible spectral band. SRN is found to provide higher refractive
indices than SiN, while exhibiting lower loss than a-Si:H.

3. Nano-structural coloration enabled by the proposed SRN metasurface

Figure 2 shows the configuration of the proposed all-dielectric metasurface, where a 2D
lattice of SRN nanodisks is embedded in a polymeric film on top of a glass substrate. A
polymeric material is spin-coated to fill in the gap between nanodisks so as to provide a flat
top surface, which is useful for facilitating the planarization crucial for the practical
integration of image sensors [42,43]. The polymer, which can increase the refractive index of
the medium surrounding the nanodisks, helps bring the transmission dip and reflection peak
close together. It is hence beneficial that the center of resonance is concretely rather than
vaguely defined to better predict the resulting coloring behavior. A copolymer, ZEP520A,
which has been popularly utilized as an electron-beam resist, is selected for building the
polymeric layer. The height (H) of the SRN nanodisks is set to 200 nm, which is nearly the
thickness of the polymeric layer. The diameter (D) is varied from 80 nm to 200 nm in steps of
20 nm to implement different metasurfaces operating in the visible band, while the period (P)
is determined in accordance with the relationship given by P = D + 200 [nm]. For a
metasurface resorting to cylindrical nanoparticles, the resonance condition is likely to be
controlled by tailoring the structural parameters, such as the height and diameter [44]. The
detailed fabrication procedure is elaborated on in a later section. Figure 2 shows that the
presence of the metasurface which relies on the SRN nanodisks embedded in a polymer
causes incident light to be spectrally filtered out to exhibit flexible coloring in the visible
band. The corresponding electric (E-) and magnetic (H-) fields are aligned parallel to the x-
and y-axis, respectively. Scanning electron microscope (SEM) image of the fabricated
metasurface, subscribing to the design parameters of P = 400 nm, D = 200 nm, and H = 200
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nm, is displayed in the inset of Fig. 2. The SRN nanodisks embedded in the polymer
(ZEP520A) appear to be embodied in a high fidelity to the design, as desired.
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Fig. 2. Configuration of the proposed all-dielectric metasurface resorting to SRN nanodisks
built into a polymeric layer. The inset depicts a cross-sectional view of the metasurface which
comprises an array of SRN nanodisks with the dimensions of P =400 nm, D = 200 nm, and H
=200 nm.

The measured and calculated transmission responses for different metasurfaces are plotted
in Fig. 3(a). The spectral positions in relation to the ED and MD resonances are traced for
each case and marked in dashed lines. The operation and origin of the resonances are
discussed further in the next section. The transmission response has been calculated using a
commercially available simulation tool, FDTD Solutions (Lumerical, Canada), which is based
on the finite-difference time-domain (FDTD) method [45]. The optical transmission spectra
were practically examined by a fiber-coupled spectrometer. The observed coloring outputs in
transmission mode for the proposed devices, which were fabricated in the pixel sizes of 40
pm x 40 pm, are revealed in Fig. 3(b). The related chromaticity coordinates were obtained
from the measured and calculated spectra and mapped on the standard International
Commission on Illumination (CIE) 1931 chromaticity diagram, as shown in Fig. 3(c).
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Fig. 3. (a) Measured and calculated transmission spectra for the fabricated color filters. (b)
Their color outputs in transmission mode. (¢) CIE 1931 chromaticity diagrams corresponding
to the measured and calculated spectra, respectively.

The reflection spectra for the prepared color filters were similarly scrutinized, in
conjunction with the coloring performance in reflection mode. The reflection spectra and
corresponding color images as captured by a microscope are presented in Figs. 4(a) and 4(b),
respectively. The observed outcome indicates that the device performance has been slightly
affected by fabrication errors. The prepared metasurfaces are monitored to provide colors
scanning from light blue, through yellowish green, to orange in reflection mode, when the
structural parameters of the SRN nanodisks like the period and diameter are varied. The
proposed SRN metasurface tends to give rise to higher efficiencies in longer wavelengths
than in shorter wavelengths, which is attributed to the fact that the resonances mediated by the
Mie scattering are highly promoted in the spectral regime near A = 550 nm, in light of the
dimensions of the SRN nanodisks. In contrast, the reflection efficiency is severely degraded
in the shorter wavelength region, on account of nonnegligible optical extinction on top of
inefficient scattering mediated resonance. The efficiency can be elevated in the shorter
wavelength band below A = 550 nm, when structural parameters including the height and
diameter are properly adjusted to mediate scattering. This work was particularly concerned
about the height of H = 200 nm. The related chromaticity coordinates for the reflection
spectra are plotted on the CIE 1931 chromaticity diagram, as sketched in Fig. 4(c).
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Fig. 4. (a) Measured and calculated reflection spectra for the fabricated color filters. (b) Their
color outputs in reflection mode. (c) CIE 1931 chromaticity diagrams corresponding to the
measured and calculated spectra, respectively.

In order to achieve a variety of colors, we adjusted the structural parameters such as P and
D at the same time. A periodic boundary condition was adopted for the calculation to address
coupling between adjacent nanodisks [46]. We also explore the spectra by changing the gap
between adjacent nanodisks, which are enclosed in the polymer, while the contour map of the
calculated reflection spectra is depicted in Fig. 5(a). The gap is varied from 100 nm to 300 nm
in steps of 10 nm, while the height (H) and diameter (D) of the nanodisks are fixed at 200 nm.
The calculated scattering cross-sections corresponding to gaps of 150 nm, 200 nm, and 250
nm, are delineated in Fig. 5(b). The scattering cross-section is defined as the ratio of the
scattered power going through the closed surface to the power-per-unit area for the incident
wave. It is observed that for the proposed metasurface which resorts to periodically arranged
SRN nanodisks, the spectral response may be tailored by changing the gap between
neighboring elements, which might be mutually coupled to a certain extent and affect the
resonance characteristics. It is expected that the coupling can be taken advantage of to adjust
the phase of transmitted light and manipulate the wavefront [47,48].
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Fig. 5. (a) Contour map of the calculated reflection spectra when the gap between adjacent
nanodisks is varied from 100 nm to 300 nm, while the height (H) and diameter (D) of the
nanodisks are fixed as 200 nm. (b) Calculated scattering cross-sections corresponding to gaps
of 150 nm, 200 nm, and 250 nm.

As depicted in Fig. 2, the proposed metasurface exploits an array of SRN nanodisks that
are immersed in a polymeric layer. It is worthwhile to consider the influence of the optical
medium enclosing the SRN nanodisks upon the metasurface performance. Toward that end,
our metasurface, leveraging the configuration of embedded SRN nanodisks, is compared to a
metasurface in which nanodisks are just exposed to air, as summarized in Fig. 6. Here, the
metasurfaces are assumed to comprise an identical lattice of SRN nanodisks with P =400 nm
and D = 200 nm. For the case of the nanodisks in contact with air, separate reflection peaks
are observed at A = 582 nm and 642 nm, accounting for the ED and MD resonances,
respectively, as indicated by the blue curve. For the proposed metasurface in which the SRN
nanodisks are enclosed in a commercialized polymer, ZEP520A with n = ~1.55, the reflection
peak in connection with the ED resonance is confirmed to red-shift as anticipated, so that the
ED and MD resonances approximately coincide to establish a single peak. The polymer is
deemed to increase the effective refractive index of the medium surrounding the nanodisks, so
that the resonance peak could shift to longer wavelengths. The ED resonance is believed to
red-shift and broaden when the cylindrical nanodisks are immersed in a homogeneous
medium, whereas the MD resonance is comparatively less sensitive to the surrounding media
[40,49]. Considering that color reproduction is governed by a combination of various
wavelengths, a single band of spectral response might be preferable from the perspective of
predicting coloring behavior, compared with a multi-band of spectral response [50,51]. The
results confirm that the polymeric layer plays the role of preferentially making the reflection
peaks for the ED and MD resonances closely neighbor, thereby enhancing the definition of
the created colors.
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Fig. 6. Reflection spectra for the metasurface with P = 400 nm and D = 200 nm, depending on
the surrounding medium. The metasurface whose SRN nanodisks are exposed in air provides
distinct reflection peaks for the ED and MD resonances. When the SRN nanodisks are
immersed in a polymer with n = 1.55, the resonance peak for the ED is apparently observed to
red-shift.

4. Mechanism underlying transmission and reflection resonances for SRN
nanodisks

When it comes to nanoparticles made of high-index materials like Si, the ED and MD
resonances are presumed to be primarily induced via Mie scattering [44,49,52,53]. To explore
the operation principle underpinning the SRN based metasurface, the proposed nanodisks
were assessed in terms of the scattering cross-section along with the field profiles, with the
assistance of FDTD simulations [45]. The performance of the metasurface under dimensions
of P =400 nm and D = 200 nm is considered, dependent on the presence of the medium
surrounding the SRN nanodisks. Figure 7 shows the calculated cross-sections and field
profiles for the case where the nanodisks are in contact with air. In regard to the calculated
cross-sections in Fig. 7(a), the transmission dip and reflection peak are identified to account
for the ED and MD resonances, respectively, which are mediated by the Mie scattering. From
the standpoint of the double resonances associated with the metasurface exploiting the SRN
nanodisks, the field profiles for the resonance peaks at A = 582 nm and 642 nm are depicted in
Figs. 7(b) and 7(c), respectively. As per the field profiles observed in the yz-plane, as shown
in Fig. 7(b), the E-field is chiefly confined in the middle of the SRN nanodisk while the H-
field develops a loop in the vicinity of its center at the shorter wavelength of 582 nm,
categorically indicative of the ED resonance. As shown in Fig. 7(c), the MD resonance,
transpiring at a longer wavelength of 642 nm, which is evident through the enhanced H-field
that develops near the center of the disk, alongside the circular E-field pattern. Consequently,
the observation of the developed field profiles can distinguish the ED and MD resonances.
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corresponding to P = 400 nm and D = 200 nm, where the SRN nanodisks are in contact with

air. (b) E-field (left) and H-field (right) profiles for the ED resonance at A = 582 nm as

observed in the yz-plane. (c¢) Field profiles for the MD resonance at A = 642 nm as observed in
the xz-plane.

Likewise, we scrutinized the proposed metasurface which engages a lattice of SRN
nanodisks embedded in the polymeric layer of ZEP520A. As portrayed in Fig. 8(a), the ED
and MD resonances almost coincide, exhibiting a wavelength separation of as small as 18 nm.
Though the nanodisks placed in the polymer may incur a wavelength shift for the ED
resonance, the field profiles in charge of the ED and MD resonances, corresponding to A =
646 nm and 662 nm, are displayed in Figs. 8(b) and 8(c), respectively. As sketched in Fig.
8(b), the E-field in conjunction with the circular H-field is reinforced near the center of the
nanodisk at A = 646 nm, underscoring the existence of the ED resonance. The reinforced H-
field near the center of the nanodisk in combination with the surrounding E-field loop is
believed to represent the MD resonance at A = 662 nm, as shown in Fig. 8(c). It is noteworthy

that similar phenomena may hold true for the rest of the devices adopting different design
parameters.
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polymer of ZEP520A. (b) E-field (left) and H-field (right) profiles for the ED resonance at A =
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5. Methods
5.1 Numerical simulations

The refractive indices of the SRN and SiN films were obtained by using an ellipsometer (J. A.
Woollam M2000D) operating in the spectral range from 193 nm to 1,690 nm, while the
dispersion characteristics of c-Si and a-Si:H are derived from Palik [41]. For the proposed all-
dielectric metasurfaces, the transmission/reflection spectra, extinction cross-sections, and
field profiles were estimated by means of the FDTD method-based tool [45]. A normally
incident plane wave was illuminated to a unit cell, satisfying a periodic boundary condition,
so that an array of periodically arranged SRN nanodisks could be emulated.

5.2 Device fabrication

The proposed color filters were manufactured to exhibit dimensions of 40 um x 40 pm. A
200-nm thick SRN film was deposited on a glass substrate in plasma enhanced CVD system
(Plasmalab 100, Oxford), where a mixture of SiH, and NH; diluted in helium was used as a
precursor gas. By altering the SiH, to NH; gas ratio, we could tailor the nitrogen content in a
grown film; i.e., with the help of ammonia gas, the portion of nitrogen in the film is increased,
thus reducing the extinction coefficient in the visible band and the corresponding refractive
index. The adopted process entails: Gas flow rates of 7.5 sccm SiHy / 4 sccm NH; / 142.5
sccm He, a gas pressure of 850 mTorr, a power of 30 W at 13.56 MHz (radio frequency), and
a substrate temperature of 300 °C. After spin coating of an electron beam resist (ZEP520A
from Zeon Chemicals), a thin layer of e-spacer 300Z (Showa Denko) was introduced to
prevent charging during subsequent electron beam exposure. The nanostructure pattern was
then formed using an electron beam writer (EBL, Raith150) and developed in ZED-N50. A
60-nm thick Al layer was subsequently deposited by e-beam evaporation (Temescal BJD-
2000), accompanied by a lift-off process in which the sample is soaked in a resist remover
(ZDMAC from ZEON Co.). An array of remaining rectangular Al patterns was used as the
etch mask to transfer the designed pattern into the SRN film through inductively coupled
plasma-reactive ion etching (Plasmalab System 100, Oxford). The etching conditions were
optimized to achieve a highly anisotropic profile for the SRN layer, while CHF; with a small
addition of SF¢ gas was used as plasma etch chemistry. The residual Al etch mask was finally
removed by wet etching. The resist, serving as the polymer, was spin-coated to enclose the
SRN nanodisks.

5.3 Optical characterization

The completed SRN pattern was visually evaluated by dual beam (SEM/FIB) high-resolution
scanning electron microscopy (FIB II, Quanta 3D FEG, FEI). The transmission spectra were
obtained by a spectrometer (Avaspec-3648, Avantes) which is tethered to a multimode fiber,
while a collimated beam originating from a halogen lamp (HL-2000-FHSA, Ocean Optics)
was shone via a focusing lens to the prepared filter that was mounted on a motorized rotation
stage. For the proposed devices, the spectral response is stable for incident angles ranging up
to ~5°. With the intention of ensuring that the optical response is governed by normally
incident light, the test setup has been devised to exhibit a numerical aperture below 0.017.
The reflection spectra were observed by a spectrometer equipped with a reflection probe,
which is specifically devised to accept the optical beam that normally reflects from the
devices. Color images originating from each pixel of the color filters were taken via a digital
microscope (Leica DM4000 M) in transmission mode and a CCD camera attached to the
spectrometer was exploited in reflection mode.

6. Conclusion and discussion

Structural color filters employing an all-dielectric metasurface, which exploits a 2D lattice of
SRN nanodisks embedded in a polymeric layer, were developed in the visible band to
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produce not only subtractive colors in transmission mode but additive colors in reflection
mode as well. The proposed metasurface, which incorporates 200-nm-thick SRN nanodisks,
provides a high efficiency in the green and red band. The device is anticipated to potentially
yield enhanced reflection even in the shorter spectral regime when the structural parameters
associated with the nanodisks are appropriately selected. Thanks to the introduction of a
proper polymer medium enclosing the SRN nanodisks, the overall spectral response of the
filters could be effectively engineered to approximately assume a single dominant resonance,
thus enabling the prediction of achievable color outputs. The ED and MD resonances
mediated by the Mie scattering were keenly scrutinized through the analysis of the field
profiles pertaining to the SRN nanodisk structures. Under the deliberation that from the
viewpoint of the structural coloring, SiN was mostly employed to implement narrow band
filters based on the GMR effect [37-39], the refractive index of SiN has been substantially
elevated to become SRN, with a view to making it pertinent to the invocation of scattering in
a nanostructure, as verified through the current work. It should be remarked that the
resonance could be mediated by Mie type scattering, taking into account the scattering cross-
section and the corresponding field profile. Recently, perfect reflection for a periodic
structure was explained based on the leaky mode resonance [54,55]. It is expected that
considering the proposed metasurface featuring a periodic arrangement of nanostructures
provides near-perfect reflection in the spectral band around 650 nm, the leaky mode
resonance can be a viable approach for the purpose of inspecting all-dielectric metasurfaces.
A wide range of coloring can be made possible by tuning the resonance via the adjustment of
the structural parameters of the SRN nanodisks.
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