
PHYSICAL REVIEW A 98, 013420 (2018)

Intershell-correlation-induced time delay in atomic photoionization
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We predict an observable Wigner time delay in outer atomic shell photoionization near inner shell thresholds.
The near-threshold increase of time delay is caused by intershell correlation and serves as a sensitive probe of this
effect. The time delay increase is present even when the inner and outer shell thresholds are hundreds of electron
volts apart. We illustrate this observation by several prototypical examples in noble gas atoms from Ne to Kr. In
our study, we employ the random phase approximation with exchange and its relativistic generalization. We also
support our findings by a simplified, yet quite insightful, treatment within the lowest-order perturbation theory.
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I. INTRODUCTION

The effect of intershell correlation is an established phe-
nomenon in atomic photoionization. This effect manifests
itself particularly clearly in valence subshells of noble gas
atoms which leads to a significant modification of the pho-
toionization cross section and angular anisotropy parameters.
This modification can be accounted for accurately within the
random phase approximation with exchange (RPAE) [1] and its
relativistic analog, the relativistic random phase approximation
(RRPA) [2,3]. Correlation of the outer atomic shell with its
inner counterparts is known to be weaker as the corresponding
thresholds can be separated by hundreds of electron volts [4].
The discrete spectrum below the inner shell threshold manifests
itself by series of autoionization resonances in the outer shell
photoionization cross section [5]. However, the outer shell
photoionization cross section can remain relatively flat and
unaffected immediately above the inner shell threshold. This
is so because the interelectron Coulomb interaction that drives
the intershell correlation is weak in atomic shells that are so
far apart.

At the same time, the opening of the inner shell at a
sufficiently large photon energy can add a sizable phase shift
to the photoionization amplitude of the outer shell even though
the modulus of the amplitude is only changed slightly. A rapid
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change of the phase occurs in an interval of several electron
volts and the energy derivative of the phase is large. When
this derivative is converted to the time delay by the Wigner
formula [6]

τW = ∂ arg f (ε)

∂ε
= Im

f ′(ε)

f (ε)
(1)

it is translated into a measurable quantity on the order of 10 as
(1 as = 10−18 s). This time delay becomes a sensitive probe of
intershell correlation in a situation where measurement of the
total photoionization cross section of the outer shell brings little
evidence of this correlation. We note that modern experiments
can detect photoemission time delay with a subattosecond
precision [7] and attosecond streaking measurements can now
be expanded to the soft-x-ray range up to 350 eV [8].

We illustrate this effect by considering several prototypical
examples in inner and outer shells of noble gas atoms. We
employ the RPAE methodology as described in [9] and its
relativistic counterpart RRPA [2,3]. We intentionally leave
out the question of the probe field and associated effect of
the Coulomb-laser coupling (CLC) which modifies the atomic
time delay as

τa = τW + τCLC. (2)

The CLC, known also as continuum-continuum (CC) correc-
tion, is commonly represented by a hydrogenic approximation
[10,11]. Irrespective of the accuracy of this representation, at
such large photoelectron energies, this correction should be
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vanishingly small. So in the following we concentrate solely
on the Wigner component of the time delay τW . Atomic units
are used throughout the paper unless otherwise specified. One
atomic unit of time is equal to 24.2 as and 1 atomic unit of
energy is equal to 2 Ry or 27.2 eV.

II. THEORY

A. Random phase approximation

The random phase approximation was applied to calculate
photoionization cross sections and angular anisotropy param-
eters in valence shells of noble gas atoms some forty years ago
[12]. Since then, it became a standard technique to account for
intershell correlation in valence shell photoionization in these
atoms (see [1] and references therein). It had been general-
ized for inner shell photoionization by adopting experimental
ionization thresholds and including the lifetime of the inner
vacancy due to its Auger decay. These generalizations are
collectively termed GRPAE [13]. The RPAE [14] and RRPA
[15] had been previously employed to evaluate the Wigner time
delay in valence and inner shells of noble gas atoms. Therefore
we describe the theory of these methods only briefly.

We adopt the notation of [14] and write the (nonrelativistic)
amplitude of photoionization from a bound state i to an ingoing
scattering state defined by the photoelectron momentum k as

fni�i
(k) ≡ 〈ψ (−)

k |ẑ|φi〉 ∝
∑
l=li±1
m=mi

eiδ�(E)i−lY�m(k̂)

×
(

� 1 �i

−m 0 mi

)
dik,

dik ≡ 〈k�‖ r ‖ni�i〉. (3)

These bound and continuous states are orthogonal and are
eigenstates of the frozen core atomic Hamiltonian. We con-
sider the case of linearly polarized incident photons whose
polarization direction is taken as the quantization ẑ axis. The
proportionality constant depends on the normalization of the
final-state scattering wave function. The reduced dipole matrix
element, stripped of all the angular momentum projections, is
defined as

〈k�|| r ||ni�i〉 = �̂�̂i

(
� 1 �i

0 0 0

) ∫
r2dr Rk�(r ) r Rni�i

(r ),

(4)

where we use a shortcut, �̂ = √
2� + 1. Equations (3) and (4)

employ the length gauge of the electromagnetic interaction.
The analogous expressions in the velocity gauge contain the ∇z

and ∂/∂r operators, respectively. The gauge invariance of the
present results serves as an additional test on the accuracy of the
present calculations. We note that for two competing ionization
channels l = li ± 1, the phase of the amplitude (3) depends on
the direction of the photoelectron k̂. In what follows, we restrict
our calculations to the polarization direction k̂‖ẑ as is usually
the case experimentally.

We consider the intershell correlation which connects the
transition in the outer shell i → k with the inner shell transition
j → p. The correlation-affected outer shell amplitude is ex-
pressed by the same Eq. (3) in which the reduced dipole matrix
element dik is substituted with the solution of the integral

equation:

Dik (ω) = dik + 1

3

∑∫
p

DjpVik,jp

ω + εj − εp + iδ
, (5)

where a positive infinitesimal +iδ denotes the bypass of the
real pole of the denominator in the complex energy half plane.
Furthermore, dik is a dipole matrix element in the absence of
correlation given by Eq. (4) and Vik,jp = 2Uik,jp − Uij,kp is
the Coulomb matrix containing the direct and exchange parts.
The direct Coulomb matrix is expressed as

Uik,jp = �̂�̂′ �̂i �̂j

(
� 1 �i

0 0 0

)(
�′ 1 �j

0 0 0

)

×R
(1)
�,�′,�i ,�j

(k, p, ni, nj ), (6)

where R(1) is a Slater integral [1]. In the exchange matrix,
the electron k� and the hole nj�j states are swapped. By
definition, both the dipole and Coulomb matrices are real
quantities. The fraction 1/3 in Eq. (5) is the result of the

angular momentum projection summation. The symbol
∑∫

denotes the integration over the continuum spectrum
∫

dεp

and the sum over the discrete spectrum
∑

p of the inner shell
excitations. Since i and j refer to the outer and inner shell,
respectively, the corresponding ionization potentials satisfy the
relation Ii = |εi | 
 Ij = |εj |. In the case of a deep inner shell,
its energy should be augmented by an Auger decay width and
an infinitesimal δ should be replaced with a finite half width
γj/2.

The partial photoionization cross section in RPAE is
proportional to the absolute square of the dipole matrix
element (5)

σik (ω) = 4

3
π2αa2

0ω|Dik|2. (7)

Here α is the fine-structure constant and a0 is the Bohr radius.
The analogous expression with a noncorrelated matrix element
dik gives the value which we refer to as the Hartree-Fock
approximation.

B. Lowest-order perturbation theory

Even though Eq. (5) can be solved numerically to a sufficient
accuracy, we provide a simplified treatment which is less
accurate but much more physically transparent. In the case of a
weak intershell correlation, which is typically the case between
the inner and outer shells, the correlated matrix element of the
inner shell photoionization on the right-hand side of Eq. (5) can
be approximated by its uncorrelated value, and the exchange
part of the Coulomb interaction can be dropped, hence

Dik (ω) = dik + 2

3

∑∫
p

djpUik,jp

ω + εj − εp + iδ
≡ dik + �dik. (8)

We further rewrite the correlation-induced part of the dipole
matrix of the outer shell as

�dik = 4
∞∑

p=1

ap

ω + εj − εp

+
∫ ∞

0
dε

a(ε)

ω + εj − ε + iδ
, (9)
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where we introduce ap ≡ (2/3)djpUik,jp and its continuous
spectrum counterpart a(ε) for brevity of notation. We split the
principal value and the singular part of the integral∫ ∞

0

a(ε) dε

ω + εj − ε + iδ
=P

∫ ∞

0

a(ε) dε

ω + εj − ε
− iπa(ωik + εj ),

(10)

where ωik = εk − εi is the energy of the outer shell transition.
Near the inner shell threshold, ω + εj = 0, the principal
value integral is logarithmically divergent at the lower limit.
However, this divergence is compensated for by the infinite
part of the discrete sum. Indeed, because of the continuity of
the oscillator strength across the ionization threshold,

lim
ap

εp+1 − εp

∣∣∣
p→∞

= a(ε = 0),

and then absorb an infinite part of the sum into the integral,

�dik =
N�1∑
p=1

ap

ω + εj − εp

+
∫ ∞

�<0
dε

a(ε)

ω + εj − ε + iδ

−iπa(ωik + εj ), (11)

where we introduced a shift of the threshold by a small
quantity �. The remaining finite sum on the right-hand side of
Eq. (11) describes the series of the autoionizing states below
the threshold. We omit this region from our consideration and
concentrate on the above-threshold ionization. After the diver-
gence in the principal value of the integral term is isolated and
removed, the small regular part can be ignored in comparison
with the direct photoionization matrix element because of the
weakness of the correlation. With this in mind, we write the
dipole matrix element of the outer shell photoionization near
the inner shell threshold as

Dik = dik − i(2/3)πdjpUik,jp,

arg Dik = − arctan
2

3

πdjpUik,jp

dik

, (12)

where the continuous states in both transitions are bound by the
energy conservation εk − εi = εp − εj . Equation (12) gives
the lowest-order perturbation theory (LOPT) estimate for the
correlation-induced phase of the ionization amplitude.

C. Relativistic extension

The relativistic photoionization theory should take into
account the spin-orbit splitting of atomic shells. The relativistic
counterpart of the RPAE, the relativistic random phase approx-
imation (RRPA), considers a one-electron transition from an
initial state characterized by the quantum numbers n ljm to
a final continuum state k̂ l̄ j̄ m̄. The relativistic counterpart of
Eq. (3) is the electric dipole amplitude which, for a linearly
polarized light, is given by Eqs. (7) and (8) of [16]:

T 1ν
nljm =

∑
κ̄m̄

C
jm̄

l,m̄−ν, 1
2 ν

Ylm̄−ν (k̂)(−1)2j̄+j+1−m̄

×
(

j̄ 1 j

−m̄ 0 m

)
i1−l̄ eiδκ̄ 〈ā‖Q(1)

1 ‖a〉. (13)

Here and below we use the notation κ = ∓(j + 1
2 ) for

j = l ± 1
2 , ν = ±1/2 is the photoelectron spin polarization,

the C’s are the Clebsch-Gordon coefficients, and the Y ’s
are the spherical harmonics. We will also use an asterisk for
the lower j component of a spin-orbit doublet, j = l − 1

2 ,
e.g., np1/2 ≡ np∗. The reduced matrix element of the spherical
tensor between the initial state a = (nκ ) and a final state
ā = (ε, κ̄ ) is obtained from a solution of the set of the integral
RRPA equations similar to the RPAE Eq. (5). For the brevity
of notation, we absorb the phase factor into the reduced matrix
element

Dlj→l̄j̄ = i1−l̄ eiδκ̄ 〈ā‖Q(λ)
J ‖a〉. (14)

In the polarization axis direction k̂‖ẑ, only the axial, Yl0,
components of the spherical harmonics in Eq. (13) are nonzero,
so only terms with m = ν = ±1/2 survive. Due to the axial
symmetry, then, the final result does not depend on the sign
of the spin and the angular momentum projections. The
expressions below show the axial components of the relativistic
ionization amplitudes for the ns, np, and nd initial states,

T (1)
ns1/2

= − 1

3
√

2
Y10Dns1/2→εp1/2 − 1

3
Y10Dns1/2→εp3/2 ,

T (1)
np1/2

= 1√
15

Y20Dnp1/2→εd3/2 + 1√
6
Y00Dnp1/2→εs1/2 ,

T (1)
np3/2

= 1√
6
Y00Dnp3/2→εs1/2 − 1

5
√

6
Y20Dnp3/2→εd3/2

−1

5

√
3

2
Y20Dnp3/2→εd5/2 ,

T
(1)
nd3/2

= − 1

3
√

2
Y10Dnd3/2→εp1/2 + 1

3

√
1

10
Y10Dnd3/2→εp3/2

+
√

3

70
Y30Dnd3/2→εf5/2 ,

T
(1)
nd5/2

= 1√
15

Y10Dnd5/2→εp3/2 − 1

7
√

10
Y30Dnd5/2→εf5/2

−
√

2

7
Y30Dnd5/2→εf7/2 , (15)

where the spherical harmonics in Eq. (15) are taken in the ẑ

direction, i.e., θ = 0. The complete set of amplitudes for an
arbitrary direction, including the off-axial terms, is given in
[16,17].

D. Time delay

Each amplitude in Eq. (15) is associated with its own Wigner
time delay defined as

τnlj = dηnlj

dε
, ηnlj = tan−1

[
ImT

(1)
nlj (k̂‖ẑ)

ReT (1)
nlj (k̂‖ẑ)

]
, ε = k2/2.

(16)

In the case when spin-orbit components are not resolved as in
light atoms, the average time delay should be evaluated as a
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weighted average [18]

τ̄nl =
∑

j τnlj σnlj∑
j σnlj

. (17)

In a weakly relativistic limit, it tends to its nonrelativistic
counterpart

τnl = ∂ arg fnl (k̂‖ẑ)

∂ε
, (18)

where the amplitude fnl (k̂) is given by Eq. (3). We also note
that the photoelectron in each partial wave has its own group
delay which can be calculated as

τnlj→εl̄ j̄ = ∂ arg Dnlj→εl̄ j̄

∂ε
. (19)

Because individual partial waves are not presently resolved
experimentally, it is the time delay (16) that is of our prime
interest. It is instructive, nevertheless, to analyze the group
delays in various individual photoelectron channels and to see
how they combine to form the group delay for a particular
relativistic subshell nlj or, equivalently, nl and nl∗.

III. RESULTS AND DISCUSSION

In the following we consider several typical examples of
outer shell photoionization near inner shell thresholds: Ne 2p

photoionization near the 1s threshold, Ar 3s and 2p photoion-
ization near the 2p∗ threshold and Kr 3d photoionization near
the 2p and 2p∗ thresholds.

A. Neon 2 p photoionization near the 1s threshold

To elucidate the role of the intershell correlation in the
valence shell photoionization of neon, we carry out two sets
of RRPA calculations. In one calculation, we use the complete
set of 9 relativistic coupled channels:

1s1/2 → εp1/2, εp3/2,

2s1/2 → εp1/2, εp3/2,

2p∗ ≡ 2p1/2 → εs1/2, εd3/2,

2p ≡ 2p3/2 → εs1/2, εd3/2, εd5/2.

In a second truncated 7-channel calculation, the transitions
from the K shell 1s1/2 → εp1/2, εp3/2 are omitted. In the
complete RPAE calculation, we include all four nonrelativistic
channels: 1s → εp, 2s → εp, and 2p → εs, d. By making a
comparison between the results of the complete and truncated
calculations, we clearly identify the effect of the inner channel
openings on the cross section and time delay of the outer shells.

Results of these calculations are displayed in Fig. 1 where
we show the partial 2p photoionization cross section as a
function of the excess energy near the 1s threshold. We
observe that the truncated RRPA calculation is smooth across
the threshold whereas the full calculation is broken by a
series of autoionizing resonances below the threshold, while
above the threshold, the cross section is a smooth function
again, deviating insignificantly from the truncated result by
about 10%.

Simultaneously, however, the intershell correlation affects
the phase of the 2p photoionization amplitude in a very
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FIG. 1. Photoionization cross section of the 2p shell of Ne near
the 1s threshold as a function of the excess energy, the energy with
respect to the 1s threshold. The complete 9-channel and the truncated
7-channel RRPA calculations are shown with the (red) dots and solid
line, respectively. The 4-channel RPAE calculation from [15] is shown
with filled triangles.

significant way. This phase above the 1s threshold is shown
in the top panel of Fig. 2, as a function of the excess energy,
with logarithmic energy scale for clarity. Here the complete
9-channel RRPA result varies quite considerably whereas
the corresponding 7-channel RRPA phase is essentially flat.
The 9-channel RRPA phase variation is also very close to the
LOPT prediction. In other words, without coupling with the
1s channels, the phase of the 2p photoionization amplitude is
nearly zero and hardly varies with energy; with the coupling,
the phase is significant, and varies considerably with energy.

In the middle panel of Fig. 2, the phase is converted to
the Wigner time delay using Eq. (16). The 2p1/2 and 2p3/2

components of the time delay are indistinguishable on the scale
of the figure. For a better differentiation accuracy in the vicinity
of the threshold, the 9-channel RRPA phase is fitted with the
exponential-polynomial ansatz

φ(E[eV]) = exp[−bE](a0 + a1E + a2E
2) (20)

and the time delay at the threshold is expressed as

τ (E = 0)[as] = (−ba0 + a1) × 2 Ry × 24.2(as). (21)

For the 2p shell of Ne this expression returns τ2p1/2 (E = 0) =
8.37 as and τ2p3/2 (E = 0) = 8.34 as. Note that, owing to the
approximate nature of the extrapolation process, subattosecond
differences are not considered to be physically meaningful.
The time delay in the truncated 7-channel RRPA calculation is
virtually zero on the scale of the figure. Hence, all the observed
time delay in the complete RRPA calculation is due to the
1s/2p interchannel correlation. In the bottom panel of Fig. 1,
the time delay is shown on the linear photon energy scale.
We see that the rise of the time delay near the threshold is
rather steep and the precise value at the threshold is difficult to
determine.

013420-4



INTERSHELL-CORRELATION-INDUCED TIME DELAY IN … PHYSICAL REVIEW A 98, 013420 (2018)

-0.3

-0.2

-0.1

 0

 0.1  1  10  100

2p
 p

ha
se

 (r
ad

)

RRPA 9ch
7ch
φ(E)

LOPT

 0

 2

 4

 6

 8

 10

 0.1  1  10  100

2p
 ti

m
e 

de
la

y 
(a

s)

Excess energy  (eV)

RRPA 9ch
7ch

φ’(E)

 0

 2

 4

 6

 8

 10

 850  900  950

2p
 ti

m
e 

de
la

y 
(a

s)

Photon  energy  (eV)

1s threshold        
RRPA 9ch

7ch
φ’(E)

FIG. 2. Top: Phase of the 2p photoionization amplitude of Ne
near the 1s threshold from the complete 9-channel RRPA calculation
is shown with (red) filled circles while its analytic fit with Eq. (20),
φ(E), is shown with (red) solid line. The same phase from a truncated
7-channel RRPA calculation is shown with triangles. The LOPT
calculation is displayed with open (blue) circles joined by the solid
line to guide the eye. Middle: Phase of the photoionization amplitude,
converted to the Wigner time delay using Eq. (16), and displayed with
the same symbols. Bottom: Same as middle but on a linear photon
energy scale.

The threshold group delays in various photoelectron partial
waves are tabulated in Table I. The log scale results refer
to Eq. (21) while the linear scale results are obtained by
estimating the threshold intercept. Both sets of results are
quite close. We note that the s wave has negative group
delay whereas the d-waves have positive time delay. This sign
inversion follows from the (−1)�max rule since �max = 1 for the
p → s transition and �max = 2 for p → d. As the d waves are

TABLE I. Photoelectron group delays (19) and Wigner time
delays (16) of the 2p1/2 and 2p3/2 shells of Ne at the 1s threshold,
in attoseconds, from the full 9-channel RRPA calculation. The Dirac-
Fock EDF and experimental Eexp [20] threshold energies are displayed.

Channel Delay (as)

Energy scale Log Linear

Ne 1s threshold
EDF = 893 eV
Eexp = 870 eV

2p∗ ≡ 2p1/2 → εd3/2 9.28 9.00
2p1/2 → εs1/2 −5.77 −5.87
2p1/28 total 8.37

2p3/2 → εd3/2 9.20 8.88
2p3/2 → εd5/2 9.31 9.06
2p3/2 → εs1/2 −5.85 −5.97
2p3/2 total 8.34

strongly dominant due to the Fano propensity rule [19], the net
Wigner time delay for the 2p1/2 and 2p3/2 subshells is close
to that of the photoelectron group delay in the d partial waves
because the corresponding terms are dominant in the subshell
photoionization amplitudes (15).

The negative phase, decreasing in magnitude with excess
energy, which is converted to a positive time delay as shown
in Fig. 2, can be understood from the LOPT equation (12). We
see that the sign of the correlation-induced phase depends on
the sign of the three matrix elements: the two dipole matrices
in the outer dik and inner djp channels and the Coulomb
interaction Uik,jp. In the present case we consider the strongest
outer channel 2p → εd and correlate it with the inner channel
1s → εp. The corresponding dipole matrix elements near the
1s threshold are exhibited in Fig. 3. From this figure we observe
that d2p→εd > 0 while d1s→εp < 0. The sign of these matrix
elements is determined by the angular factor in Eq. (4):

l̂ l̂i

(
l 1 li

0 0 0

)
≡ l̂max(−1)lmax , lmax = max(l, li ). (22)
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FIG. 3. Dipole matrix elements d1sεp and d2pεd for the inner and
outer ionization channels in Ne, shown as (red) filled circles and
(purple) open squares, respectively. The Coulomb interaction matrix
U1sεp,2pεd (multiplied by 10) is shown as (blue) asterisks.
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FIG. 4. Photoionization cross section of the 3s shell of Ar near
the 2p∗ threshold as a function of the excess energy. The complete 16-
channel and the truncated 14- and 11-channel RRPA calculations are
shown as (red) dots, (blue) asterisks, and open squares, respectively.

Indeed, the radial integral in Eq. (4), which contains the
nodeless orbitals 1s and 2p, is always positive near the
threshold. The angular part of the Coulomb matrix is given
by the product of the angular parts of the dipole matrices
of the interacting channels (see Eq. (8) in [14]). Hence the
Coulomb interaction matrix U1sεp,2pεd is also negative near the
threshold. Therefore both the numerator and the denominator
in the LOPT expression for the phase (12) are positive and
given the minus sign before the ratio the phase itself is negative.
While the matrices d2p→εd and U1sεp,2pεd are rather flat, the
dipole matrix d1s→εp is noticeably decreasing away from the
threshold. Hence the LOPT phase is decreasing in magnitude
also. The corresponding time delay is positive and diminishes
rapidly as the excess energy grows.

B. Argon near the 2 p∗ threshold

The complete RRPA calculation on argon contains 16
relativistic channels:

1s1/2 → εp1/2, εp3/2,

2s1/2 → εp1/2, εp3/2,

2p∗ ≡ 2p1/2 → εs1/2, εd3/2,

2p ≡ 2p3/2 → εs1/2, εd3/2, εd5/2,

3s1/2 → εp1/2, εp3/2,

3p∗ ≡ 3p1/2 → εs1/2, εd3/2,

3p ≡ 3p3/2 → εs1/2, εd3/2, εd5/2.

In a truncated 14-channel calculation, the 2p∗ ionization chan-
nels are removed to demonstrate clearly the inner threshold
effect. In the further trimmed 11-channel calculation, the
2p ionization channels are dropped. In the RPAE calcula-
tion, we include 6 nonrelativistic channels: 2s → εp, 2p →
εs, d, 3s → εp, 3p → εs, d.
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FIG. 5. Top: Phase of the 3s photoionization amplitude of Ar
near the 2p∗ threshold from the 16-, 14-, and 11-channel RRPA
calculations, shown as (red) filled circles, (blue) asterisks, and open
squares. The analytic fit using Eq. (20) is shown with similarly colored
solid lines. The LOPT calculation is displayed as (blue) open circles.
Middle: Analytic fit to the phase of the photoionization amplitude,
converted to Wigner time delay using Eq. (1). Bottom: Time delay
from the 16-channel RRPA calculation shown on a linear photon
energy scale.

1. 3s photoionization

Results of these calculations for the 3s cross section near
the 2p∗ threshold are shown in Fig. 4. In the complete RRPA
calculation, a smooth cross section is interrupted by a series
of autoionizing resonances below the threshold (not fully re-
solved in the figure). In a truncated 14-channel calculation, the
resonant region is located below the 2p threshold. In a further
truncated 11-channel RRPA calculation, all the resonances are
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U3sεp,2pεd (multiplied by 30) is shown as (blue) asterisks.

removed and the cross section is smooth across the threshold
region.

In the top panel of Fig. 5 we show the phase of the 3s

photoionization amplitude from the 16-, 14-, and 11-channel
RRPA calculations and the LOPT value from Eq. (12). The
RRPA phases are fitted with the ansatz (20) and differentiated
analytically to produce the time delays shown in the middle
panel of the figure. The 3s time delay near the 2p threshold is
negative. The threshold values are −19.7 as, −9.4 as, and −1.9
as in the complete and the two truncated RRPA calculations,
respectively. Thus by removing the intershell correlation of the
subvalence 3s shell with the inner 2p and 2p∗ shells, the time
delay is significantly reduced. To highlight the utility of the
analytical interpolation and differentiation, we show the raw
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−0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.1  1  10

3p
 p

ha
se

 (r
ad

)

RRPA 16ch
3p1/2−>d 3/2
3p1/2−>s1/2

all

−20

−10

 0

 0.1  1  10

3p
 ti

m
e 

de
la

y 
(a

s)

Excess energy E (eV)

RRPA 16ch
3p1/2−>d 3/2
3p1/2−>s1/2

all

FIG. 8. Top: Phase of the various 3p1/2 photoionization ampli-
tudes of Ar near the 2p∗ threshold: 3p1/2 → εd3/2, (red) filled circles;
3p1/2 → εs1/2, (blue) asterisks; sum over all final channels, open
squares. The analytic fit using Eq. (20) is shown with similarly colored
solid lines. Bottom: Analytic fit to the phase of the photoionization
amplitudes, converted to the group delay (19) and Wigner time
delay (1).

numerical data of the 3s time delay in the bottom panel on the
linear photon energy scale from which estimating the value at
the threshold results in a greater numerical noise.

The energy variation of the LOPT phase, Eq. (12), near the
threshold is very similar to the complete RRPA calculation.
To elucidate the sign of the LOPT phase and its energy
dependence, we examine the inner and outer transitions along
with their Coulomb interaction. The corresponding dipole
matrix elements are exhibited in Fig. 6. We see that the signs of
the inner and outer dipole matrix elements are now inverted as
compared with the case of Ne shown in Fig. 3. The outer dipole
matrix element d3s→εp < 0 while the inner matrix element
d2p→εd > 0, as prescribed by the signs of their respective
angular factors, Eq. (22). As the Coulomb matrix element
is positive in this case, the LOPT phase is positive also and
is rapidly decreasing away from the threshold. This behavior
produces a large negative time delay at the inner shell threshold.

2. 3 p photoionization

The photoionization cross section of the valence 3p shell
near the 2p∗ threshold is shown in Fig. 7. Unlike the threshold
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FIG. 9. Upper left: Phase of the various 3d3/2 photoionization amplitudes of Kr near the 2p1/2 threshold: 3d3/2 → εp1/2, (red) filled circles;
3d3/2 → εp3/2, (blue) asterisks; 3d3/2 → εf5/2, triangles; and the 3d3/2 amplitude summed over all final channels, open squares. Upper right:
Analytic fit using Eq. (20) shown with similarly colored solid lines and open squares for the 3d3/2 Wigner time delay. Bottom left: The same
as above, but for 3d5/2 → εp3/2, (red) filled circles; 3d3/2 → εf5/2, (blue) asterisks; 3d5/2 → εf7/2, triangles; and the summed 3d5/2 amplitude,
open squares. Bottom right: Analytic fit using Eq. (20) shown with the similarly colored solid lines and open squares for the 3d5/2 Wigner time
delay.

behavior of the 2p cross section near the 1s threshold in Ne
(Fig. 1) and the 3s cross section near the 2p∗ threshold in

TABLE II. Photoelectron group delays (19) and Wigner time
delays (16) of the 3s and 3p shells of Ar at the 2p∗ threshold
from the full 16-channel RRPA calculation. The Dirac-Fock EDF and
experimental Eexp [20] threshold energies are displayed.

Channel Delay (as)

Energy scale Log Linear

Ar 2p∗ threshold
EDF = 262 eV
Eexp = 250 eV

3p1/2 → εd3/2 2.8 2.8
3p1/2 → εs1/2 −20.2 −24.1
3p1/2 total −3.5

3p3/2 → εd3/2 10.0 12.7
3p3/2 → εd5/2 10.0 12.7
3p3/2 → εs1/2 −17.8 −21
3p3/2 total 1.7

3s1/2 → εp1/2 −18.3 −16.6
3s1/2 → εp3/2 −20.3 −14.9
3s1/2 total −19.7

Ar (Fig. 4), the variation of the 3p cross section above the
2p∗ threshold is rather small when the number of coupled
channels of the RRPA calculation changes. This insensitivity
of the cross section to the intershell correlation is reflected in
the threshold behavior of the time delay which is exhibited
in Fig. 8.

The phases in the individual photoelectron partial waves and
the net phase of the photoionization amplitude for the 3p1/2

subshell of Ar are depicted in the top panel of Fig. 8 as functions
of the photoelectron energy. These phases, when converted to
the photoelectron group delays (19) and the net Wigner time
delay (16), are displayed in the bottom panel of this figure. As
in the case of the Ne 2p shell, the group delay is negative for
the s continuum and positive for the d continuum.

Unlike in the Ne 2p shell, where the d waves dominate the
Wigner time delay, various continua compensate for each other
in the case of Ar 3p1/2. While the threshold group delay is large
and negative for the εs continuum, it is small and positive for
the εd continuum and small and negative for the net Wigner
time delay. The corresponding values of the group and Wigner
time delays at the threshold are given in Table II. Reading these
values we observe that a small effect of intershell correlation
on the photoionization cross section is commensurate with a
similarly insignificant effect of the correlation on the Wigner
time delay.
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TABLE III. Photoelectron group delays and Wigner time delays of the 3d and 3d∗ shells of Kr at the 2p and 2p∗ thresholds. The Dirac-Fock
EDF and experimental Eexp [20] threshold energies are shown.

Channel Delay (as) Channel Delay (as)

Energy scale Log Lin Energy scale Log Lin

2p∗ threshold 2p threshold
EDF = 1765 eV EDF = 1711 eV
Eexp = 1730 eV Eexp = 1678 eV

3d3/2 → εp1/2 −14.80 −13.95 3d3/2 → εp1/2 −31.63 −28.19
3d3/2 → εp3/2 −36.15 −34.28 3d3/2 → εp3/2 −13.80 −11.80
3d3/2 → εf5/2 3.93 3.75 3d3/2 → εf5/2 27.56 25.87
3d3/2 total 0.29 3d3/2 total 17.86

3d5/2 → εp3/2 −14.5 −13.58 3d5/2 → εp3/2 −33.14 −29.64
3d5/2 → εf5/2 9.10 8.92 3d5/2 → εf5/2 19.49 17.69
3d5/2 → εf7/2 16.18 16.45 3d5/2 → εf7/2 17.77 16.72
3d5/2 total 10.84 3d5/2 total 9.35

C. Krypton

3d shell near the 2p and 2p* thresholds

Photoionization of the 3d shell of Kr near the 2p and 2p∗
thresholds is remarkable as it displays the largest photoelectron
group delays and the net Wigner time delays among all the
noble gas atoms from Ne to Xe in the present study. Examples
of the photoionization phase and its energy derivatives for
the 3d3/2 and 3d5/2 subshells of Kr near the 2p∗ threshold
are shown in Fig. 9. The corresponding threshold time delays
and their counterparts near the 2p threshold are collected in
Table III. We see that some group delays are as large as 30
as and the Wigner time delay of the 3d∗ shell near the 2p

threshold is close to 20 as. This result is quite remarkable as a
large atomic time delay is predicted at photon energies in the
hard x-ray regime. This delay results entirely from intershell
correlation and is not caused by the Coulomb drag that affects
slow photoelectrons near their ionization threshold [15].

The compilation of the threshold time delays in Kr is
shown in Table IV where it is seen that shells other than 3d

display modest time delays, not exceeding 10 as. The respective

TABLE IV. Wigner time delays of various shells of Kr at several
inner-shell thresholds.

Time delay (as)

Threshold 1s1/2 2p1/2 2p3/2

EDF (eV) 14413 1765 1711
Eexp (eV) 14326 1730 1678
Shell
4p3/2 2.02 3.28 1.65
4p1/2 2.26 −1.58 5.36
3d5/2 6.87 10.84 9.35
3d3/2 7.04 0.29 17.86
3p3/2 2.90 3.18 0.99
3p1/2 3.07 −2.40 5.35
2p3/2 3.07 8.35
2p1/2 2.95

threshold time delays in Xe (not shown) are significantly
smaller. Even the 3d delays in Xe are only of the order of
a few attoseconds.

IV. SUMMARY AND CONCLUSIONS

In this work, we have demonstrated that the Wigner time
delay of outer atomic shells is affected, sometimes quite
strongly, by correlation in the form of interchannel coupling
with inner shell photoionization channels in the vicinity of
inner shell thresholds. The phenomenology of this effect is
quite rich. The jumps of the time delay near threshold can
be quite small or quite large (as large as 36 as). In addition,
the jumps due to interchannel coupling can be positive or
negative. In other words, time delays that are so far above
thresholds that they would have ordinarily gone to essentially
zero can be reactivated to significant values near the inner
shell thresholds owing to many-body interactions. Threshold
time delay chronoscopy [21], thus, can be a significant tool in
studying these correlation phenomena.

The results presented here provide a road map for exper-
imental investigation of this phenomenology which can be
implemented using recently developed technology. Attosecond
streaking measurements can be expanded at present to the soft-
x-ray water window [8]. We hope that with a rapid development
of this technique, the most significant effects predicted here
will be within the experimental reach in the near future. In
addition, we have a good mathematical model for the signs
and magnitudes of the various induced time delays, but not a
good quantitative physical understanding of the phenomenon;
but we hope these results will stimulate others to provide a
physical model.
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