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Prigogine’s ideas of systems far from equilibrium
and self-organization [1,2] deeply influenced physics
and soliton science in particular. It allowed us to
extend the notion of solitons from purely integrable
cases to the concept of dissipative solitons. The
latter are qualitatively different from the solitons in
integrable and Hamiltonian systems. The variety of
their forms is huge. We consider here only one recent
example — dissipative solitons with extreme spikes
(DSES). We found that DSES exist in large regions
of the parameter space of the complex cubic-quintic
Ginzburg-Landau equation. A continuous variation
of any of its parameters results in a rich structure of
bifurcations.

1. Introduction

The dissipative soliton (DS) concept is a fundamental
extension of that for solitons in conservative and
integrable systems [3]. It incorporates ideas from three
major sources, viz. standard soliton theory developed
since the 1960s, notions from nonlinear dynamics
theory and Prigogine’s ideas [1,2] of systems far from
equilibrium and self-organization [4] (see Fig.1(a)). These
are basically the three sources and the three constituent
parts of this novel paradigm. From the standard soliton
theory, it takes the notion of the balance between
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dissipative soliton also requires balance between gain and loss. The latter is necessary for solitons
to be robust objects. Even the slightest imbalance will result in the solution either growing
indefinitely, if gain prevails, or disappearing completely in case of an excess of losses. Thus,
instead of a single balance, we have to consider a composite balance between several physical
phenomena [3-5] (see Fig.1(b)).
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Figure 1. (a) Three sources and constituent parts of the concept of dissipative solitons [4]. (b) Composite balance as a
condition for dissipative soliton existence [5]

Another essential part of the DS concept is Prigogine’s theory of systems far from equilibrium
[1,2]. It tells us that solitons are self-organized formations requiring a continuous supply of energy
or matter or both [6]. As soon as that supply finishes, the dissipative soliton ceases to exist. In
simple terms, self-organization means that for a given set of external parameters, certain initial
conditions converge to a stable localized solution of the system. Thus, the final state is determined
by the physical laws and not by the initial condition. For infinite-dimensional dynamical systems,
this stable solution can be very complicated. It is not necessarily a smooth function with a
single maximum and exponentially decaying tails. Moreover, there can be several stable solutions
existing for the same set of parameters. This can even happen in the case of a relatively simple
equation like the complex cubic-quintic Ginzburg-Landau equation. The majority of processes
in nature are governed by far more complicated dynamics. Thus, stationary solutions of these
systems can be considerably more involved.

In optics, pulse solutions of lasers systems and cavities [] constitute the most typical example
of dissipative solitons. The complexity of the balance discussed above leads to a large variety
of soliton profiles [7]. These include common bell-shaped solitons [8,9], flat top solitons [10],
creeping solitons [11] and many other nontrivial forms [12-14]. Moreover, DS can evolve on
propagation changing shape periodically, chaotically or lead to the formation of rogue waves
[15,16].

One of the most unusual DS dynamics found recently is the appearance of sharp peaks on top
of a more stable wider soliton [17] that serves as a background. These sharp peaks are localized
in both the transversal and the longitudinal directions. Sharp peaks may appear regularly or
chaotically [18]. In the latter case, they are known as spiny solitons [19]. Remarkably, these types
of solitons, that we name dissipative solitons with extreme spikes (DSES), are not something
exceptional. They do exist in several unconnected regions in the parameter space of the complex
cubic-quintic Ginzburg-Landau equation (CGLE). Therefore, if they are a common type of CGLE
solutions, they deserve further theoretical and experimental studies. Experimental studies require
high-resolution measurements to resolve the narrow spikes of these solutions. In principle, the
new solutions can be related to noise-like pulses [19]. Noise-like pulses have been studied

10000000 V 008 "H "SUBLL lud B10'BulysgndAlaioosiesol-els)



extensively [20-26] and they can serve as a bridge connecting theoretical and experimental studies
on the subject of DSESs.

In contrast to solitons of Hamiltonian systems [3,27], dissipative solitons do exist no matter
whether the average dispersion in the cavity is normal, anomalous or zero. Dispersion can have
any sign for the total balance to remain effective for forming a localized solution. Generally,
anomalous dispersion provides easier conditions for this balance because it is matched with
the balance achieved for Hamiltonian solitons. Accordingly, the soliton temporal profile and
spectrum are often close to sech-functions. On the other hand, when dealing with normal
dispersion cavities, we may expect more exotic solutions [28-30]. The normal dispersion, as
we know, is preferential when pulses with higher energy are needed [30-32]. The transition
between the anomalous and normal dispersion and its effect on soliton formation is an interesting
phenomenon that deserves further studies.

The study of extreme pulses in optics [33-36] is a very hot topic nowadays. These pulses with
unexpectedly high amplitude appear normally in a chaotic wave field. Its study may help to
understand the phenomenon of extremes as a general concept that could be applied to other
fields in physics including rogue waves in the oceans [37-39]. The latter are usually associated
with dangers that ocean waves may represent. In contrast, extreme pulses in optics are safe to
operate with. Moreover, they can be useful in applications providing ways for increasing the
amplitude and the energy of the pulses. However, in order to do this, a better understanding of
extreme pulses should be reached.

2. Model

One of the most efficient techniques in modeling passively mode-locked lasers is the master
equation approach [40]. This equation normally takes one or another form of the complex cubic-
quintic Ginzburg-Landau equation [41,42]. The CGLE has solutions with unusual properties, such
as exploding and pulsating solitons [43], creeping solitons [11], chaotic solitons [7], dissipative
soliton pairs [44], dissipative rogue waves [15,16], dissipative soliton resonances [45], and
even spiny solitons [19]. Many of its predictions have been later observed experimentally
[8,10,12-14,29,30,46-48], thus proving the fruitfulness of the approach. The cubic-quintic complex
Ginzburg-Landau equation that we are dealing with reads [5,49]:

i + %wtt + [+ vl =0 +de [p* ¢ + B +ip ]t .

For passively mode-locked lasers, t is the normalized time in a frame of reference moving with
the group velocity, v is the complex envelope of the optical field and z is the propagation distance
along the unfolded cavity. The meaning of the equation parameters on the left hand side is the
following: D denotes the cavity dispersion, being anomalous when D > 0 and normal if D <0,
and v is the quintic refractive index coefficient. The coefficients of the dissipative terms, written
on the right-hand-side of the equation, are the following: § denotes linear gain/loss, S is the gain
bandwidth coefficient, and € and p are the cubic and quintic gain/loss coefficients, respectively.

Several types of periodic solutions to this equation with unusual behaviors have been obtained
in the anomalous dispersion regime [43]. These solutions experienced periodic changes mainly
in their width, while keeping almost constant their peak amplitude. In contrast, the solutions
presented here change its peak amplitudes rather than its width. These amplitude variations
are extreme. In fact, this specific type of evolution with sharp peaks requires a special care in
numerical procedures.

3. Pulsating solitons with extreme spikes

Extreme pulsations, observed firstly in the normal dispersion regime, are characterized by narrow
spikes developed on top of a roughly stationary soliton that serves as pedestal supporting these
peaks. In order to characterize these solutions, we use two pulse parameters: the energy, Q(z), and
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the peak amplitude, [1)|ycqk(2). They are defined as Q(z) = J'iooo [(z, t)\zdt7 and [ peqr(2) =
maz|(t, z)|, Vt. These two functions depend only on z. For periodically pulsating solutions, the
maximum and the minimum of these functions are denoted by Q z,,, and |4 pr,, Tespectively.
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Figure 2. (a) The maximal, s, (dashed curves) and minimal, Q,, (dotted curves) soliton energy vs the cavity
dispersion, D. The red curves are for u = —0.001, the blue ones for x = —0.0025 and the green for © = —0.003.
The values of other equation parameters are shown inside the figure. (b) The maximal (dashed curves) and minimal
(dotted curves) soliton peak amplitude vs D for the same cases.

Fig.2(a) shows the dependence of the calculated maximum (dashed lines) and minimum
(dotted lines) of the energy, @, on the cavity dispersion. Parameters of the CGLE are taken to
be:e=1,6=—-0.1, v =0.1, 8 = 0.3, while for the gain saturation, ;, we took three different values
—0.001, —0.0025 and —0.003. These three values provide different bifurcation patterns. When
= —0.001 (red curves), there are three different families of pulsating solutions separated by
smaller regions where no localized solutions exist. The amplitudes of the energy oscillations Q(z)
for these three families differ considerably. The maximum energy is above 100 for the left hand
side curve (when D is close to —1) while it is below 20 for the right hand side curve (when
D > —0.5). When p = —0.0025 there are only two families of solutions. Moreover, their regions of
existence overlap. There is a small region of D-values around D ~ —0.6 with bistability. Finally,
when p = —0.003, there is only one continuous curve for each of the values @ and Qps. This
means that only one branch of solitons exists in the whole interval of D-values of interest.

Figure 3. Evolution of (a) the energy, Q, and (b) the peak amplitude for a few periods of extreme pulse oscillations when
p=—0.001, and D is either 1 or —1. In each panel, the red curve is for the anomalous case (positive D), and the blue
curve is for the normal dispersion case (negative D). The two green regions mark the evolution shown in Fig.4 and Fig.5.
The first (left) green region is for positive D and the second (right) green region is for negative D.

For D greater than —0.4, the Q7 ,,,-curves for all three values of i nearly coincide. Moreover,
these curves hardly change with D. They also exhibit a much smaller energy variation from
minimum to maximum giving the impression that the pulsations are not as extreme as for the
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cases around D = —1. However, this impression fades away when we turn our attention to
the amplitude of pulsations. The maximal, |¢|5;, and minimal, |¢|m, peak amplitudes for the
same interval of D-values and same equation parameters are shown in Fig.2(b). They differ
considerably (nearly 10 times) even in the case of anomalous dispersion as it can be seen from
this figure. In this region of dispersion, the amplitude of the oscillations steadily increases with
D. As the energy hardly changes, we can conclude that the spike on top of the pulse becomes
narrower as D increases. For positive D, the change of . from —0.001 to —0.003 hardly influences
the solution, whereas it had a crucial influence for negative D.
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Figure 4. (a) Extreme pulse evolution for the normal dispersion case. This plot is for the r.h.s. green regions shown in
Figs.3(a) and 3(b). The panels b) and c) are false color plots of the amplitude and phase of the same data.

The extremity of the pulsations is best visible in the evolution plots along the z-axis. The
periodic evolution of the energy, @, is shown in Fig.3(a) while the evolution of the peak amplitude
is shown in Fig.3(b). For this demonstration, we have chosen p = —0.001 and two values of D at
the opposite ends of the dispersion interval, D =1 (red solid curves) and D = —1 (blue dotted
curves). We can see, from Figs.3(a) and 3(b), that the period of oscillations is long in the case of
normal dispersion. The solution remains in the form of a low amplitude pedestal soliton for most
of the period with the spike occupying a small part of the period. On the contrary, the period
becomes shorter in the case of anomalous dispersion so that the duration of the spikes is now
comparable to the period. The energy, Q, oscillates with stronger magnitude when D = —1. These
oscillations are almost ten times smaller when D = +1. However, the oscillations of the peak
amplitude in the two cases are comparable as can be seen from Fig.3(b).

3D-plots of the pulse evolution around an extreme peak are shown in Fig.4 for the case of
normal dispersion and in Fig.5 for the anomalous dispersion case. Each plot shows the evolution
within the z-interval highlighted by the green shaded rectangles in Figs.3(a) and 3(b). The panel
(a) in each figure is the amplitude profile of the pulse in the (¢, z)-plane while the panels (b) and (c)
show false-color plots of the pulse amplitude and phase respectively on the same (¢, z)-plane. For
D =1 (anomalous dispersion case), the extreme peak is much narrower and significantly shorter
than in the case of normal dispersion. This becomes clear if we look at the different scales used in
the two figures both in ¢t and z directions. The phase shows a more complicated structure in the
normal dispersion case, which is related to a more involved spectrum.

4. Bifurcation diagrams

DSES solutions occupy a significant region in the space of parameters of the CGLE. We can
vary any of the CGLE parameters in relatively wide intervals and the solutions still have their
distinctive features. In the previous section, we studied the influence of D on the DSES. Now
we shall illustrate the enormity of the size of the area of existence of DSESs, by changing e and
3. Each of these parameters can be changed in relatively wide intervals and the solutions stay
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Figure 5. a) Extreme pulse evolution for the anomalous dispersion case. This plot is for the I.h.s. green regions shown in
Figs.3(a) and 3(b). The panels b) and c) are the false color plots of the amplitude and the phase of the same data.

in the form of DSESs. Of course, the particular shape of these DSESs changes with the change
of the equation parameters. Moreover, their dynamics may change from periodic pulsations
to other types of evolution including chaotic behavior. Qualitative changes take the form of
bifurcations. There are many bifurcations in each interval that we considered. In the simplest
case, a bifurcation is a transition from a stationary solution to a pulsating solution of DSES type.
The most standard DSES exhibits one single centered spike per period. But, changing a parameter
these pulsating solutions transform into more complicated DSES with several spikes per period
or with asymmetric profiles.

14 T T T T T 40 T T
[ £ (@) 1 r @"’
10 / - 30 - -
R 1 . i
= - "; B - -
o [ 2~ B=0.3, 3=-0.1 1 o [ 803,601 |
¥ ==0.001,v=0.1 ] Ay n=-0.001,v=0.01 ]
P, D=l 1 - D=1 1
2 B i “m“mm«/’“‘:“’%x% " | 10 D I | N s 7
02 0.6 1 02 0.4 0.6

€ €

Figure 6. Two bifurcation diagrams obtained when ¢ is varied [50]. The plot in (a) shows the maxima and minima of the
energy Q. It starts with e = 0.23 where Q sy = Q. This corresponds to a stationary soliton without spikes. The first
bifurcation at € = 0.25 leads to a pulsating soliton with a single spike per period. The bifurcation at e ~ 0.3 leads to a
pulsating soliton with two spikes per period. These return back to pulsations with a single spike per period at € =~ 0.4. The
second diagram (b) shows only maxima of . The central part between the two inflection points correspond to asymmetric
DSESs.

The above mentioned types of solutions have been obtained by varying, for instance, the
parameter e in the CGLE. Figure.6(a) shows a typical bifurcation diagram obtained this way. The
upper (red) curve describes the maxima of energy while the lower (blue) curve corresponds to the
minima. The region 0.3 < e < 0.4 corresponds to double spike generation per period. The splitting
of the curves on the diagram demonstrates two different values of energy of the two spikes. The
areas beyond this interval correspond to solutions having a single spike in each period. In the
interval [0.23, 0.25], maxima and minima of solitons merge into a single curve. This means that
the pulsating DSES is transformed into a stationary soliton without spikes. At values of e smaller
than 0.23, soliton solutions become unstable and vanish on propagation.
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Changing for instance the value of v, the bifurcation diagram may become more involved as
Fig.6(b) shows. Here for the sake of clarity only maxima of @ are shown. The inflection point
at e~ 0.55 corresponds to symmetry breaking. Below this point DSES solutions lose temporal
symmetry and start to move. The bifurcation at e ~ 0.48 corresponds to a transition to solitons
with two spikes per period. Further reduction of e below ~ 0.36 switches to a chaotic dynamics.
Non-moving DSES with one spike per period are restored at e~ 0.25. These are asymmetric
solutions with the profile inverted after every period. Below the inflection point, at ¢ = 0.24, the
DSES fully recover their temporal symmetry. For € less than 0.215, the solution is transformed into
a stationary soliton. A typical example of asymmetric DSES with two spikes per period is shown
in Fig.7(a). This plot shows explicitly the asymmetry and the motion of the soliton with spikes.
The velocity of motion is fixed once the equation parameters are fixed. The soliton is asymmetric
in two ways. Firstly, the “mother” soliton is asymmetric. Secondly, the location of the spikes is
asymmetric relative to the “mother" soliton. The evolution of the peak amplitude for this solution
is shown in Fig.7(b) while the evolution of the energy is shown in Fig.7(c).

The main difference from the case shown in Fig.5 is the higher modulation depth. Namely, the
extreme amplitudes here are much higher than in Fig.5 and much higher than the amplitude of
the “mother" soliton.

An important observation is that the interval of DSES existence here is also very large. It
extends from e = 0.215 to € > 0.6. This is a very large interval for the cubic gain term.
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Figure 7. Moving DSES with two spikes per period [50]. (a) False color plot of the amplitude on the (t, z)-plane. (b)
Evolution of the peak amplitude. (c) Evolution of the energy Q. Parameters of the CGLE are given in the panel (c).

Next, we took v =0.01 and varied 8 keeping all other parameters fixed. The corresponding
bifurcation diagram is shown in Fig.8(a). We have changed S below the original point 0.3 up to
0.15 and above it up to 0.65. This whole interval contains DSES solutions. As before, for the sake
of clarity and in order to keep high resolution along the vertical scale only the maxima of energy
are shown. This diagram shows a rich bifurcation structure of solutions. The yellow region of (a)
is further magnified in (b). This part of the diagram shows that the two main spikes experience a
sequence of period doubling bifurcations before entering a region of chaotic dynamics. In order
to reveal the nature of the solutions that correspond to each branch of the diagram, we present
one example for each branch in Fig.9. They show the evolution of the peak amplitude. The points
of 3 that are chosen as representative of the type of solutions of the corresponding branch are
shown by blue dashed vertical lines. A small region around 3 = 0.33 shows up hysteresis with
the corresponding bistability. The second solution in the bistability region is represented by blue
points.

The case 3 = 0.18 corresponds to a periodic solution with two spikes per period. The case 5 =
0.2is also a pulsating solution but the period of pulsations takes chaotic values. Thus, the solution
is now chaotic but remains to be a single soliton. The case 8 = 0.4 corresponds to a pulsating
DSES with 4 extreme spikes per period. This is clear both from the bifurcation diagram in Fig.8
and from the evolution curve in Fig.9. At § = 0.47, after another bifurcation, the solution returns
to a periodic one with two extreme spikes per period. Two other cases 5= 0.505 and 5 =0.52
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Figure 8. (a) Bifurcation diagram with 3 as the variable parameter [50]. The part of the diagram highlighted in yellow is
magnified in (b).

correspond to pulsating solutions with one extreme peak per period. Although they look similar,
these two solutions belong to different branches. This can be seen from the bifurcation curve
in Fig.8. There is an inflection point on the curve located between the two cases at 3~ 0.51. It
separates oscillating DSESs from symmetric ones with zero velocity. The period of oscillating
solutions is twice the period of the curve Q(z) seen in Fig.9. Similar inflection points can be seen
on other bifurcation diagrams.
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Figure 9. Evolution of the peak amplitude for the six cases (a-f) marked in Fig.8 by blue dashed vertical lines [50]. Each
panel has a different vertical length but the same scale.

The most striking feature of the diagram in Fig.8 is the multiplicity of bifurcations that takes
place in a relatively narrow range of parameter change. This fact confirms that the CGLE has a
myriad of different types of solutions. There are periodic and chaotic solutions in this region. The
chaotic region can be entered through a sequence of period doubling bifurcations. This sequence
can be seen in the region 0.216 < 8 < 0.231. Other routes to chaos also exist at around 3 = 0.201.
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5. Conclusions

The appearance of extreme spikes on top of wider dissipative solitons is a striking phenomenon
that deserves further studies both theoretical and experimental. Extreme spikes can appear
regularly [17] or chaotically [18]. In the latter case, they can be considered as rogue waves [19].
Extreme spikes can appear for a wide range of the system parameters. This range of parameters
includes continuous change of the dispersion parameter of the cavity from normal to anomalous.
Remarkably, the anomalous dispersion case provides considerably sharper spikes than the normal
dispersion one. When building lasers generating ultra-short pulses, this can be considered as an
advantage.

Spikes occupy significant volumes of the parameter space of the complex cubic-quintic
Ginzburg-Landau equation. Variation of any of the five parameters in this space results in a rich
structure of bifurcations. Bifurcation diagrams reveal periodic and chaotic dynamics of DSES.
Periodic solutions may have one or several pairs of spikes per period. They can be centered in
t, oscillating around a fixed ¢, moving with a fixed or variable velocity, and even along a zigzag
trajectory. Transition between them can take the form of bifurcations.
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