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We present the infinite hierarchy of Sasa-Satsuma evolution equations. The corresponding Lax

pairs are given, thus proving its integrability. The lowest order member of this hierarchy is the non-

linear Schr€odinger equation, while the next one is the Sasa-Satsuma equation that includes third-

order terms. Up to sixth-order terms of the hierarchy are given in explicit form, while the provided

recurrence relation allows one to explicitly write all higher-order terms. The whole hierarchy can

be combined into a single general equation. Each term in this equation contains a real independent

coefficient that provides the possibility of adapting the equation to practical needs. A few examples

of exact solutions of this general equation with an infinite number of terms are also given explicitly.

Published by AIP Publishing. https://doi.org/10.1063/1.5030604

The Sasa-Satsuma equation (SSE) belongs to a family of

integrable evolution equations that is known to have soli-

ton and rogue wave solutions. It is an extension of the

well-known nonlinear Schr€odinger equation that has

been supplemented with terms responsible for third-

order dispersion and higher-order nonlinear effects. The

additional terms in this extension are chosen in a specific

way, in order to ensure integrability of the resulting evo-

lution equation. This extension is unique and also well-

known.

However, what is presently unknown is the fact that

the SSE can be further extended with additional higher-

order terms in such a way that integrability of the result-

ing more general equation is still retained. Here, we

show, for the first time, that such a generalized SSE can

have an infinite number of higher-order terms and that

this more general equation is also integrable. Moreover,

the additions contain free real parameters that can make

the generalized SSE a versatile tool for the study of soli-

tons and rogue waves. We present basic solutions for the

solitary and rogue waves for this equation with an infinite

number of terms and for any combination of the free

parameters. We also explain why the generalized fourth-

order Sasa-Satsuma equation was missed in the previous

literature.

I. INTRODUCTION

The nonlinear Schr€odinger equation (NLSE) is one of

the basic models of nonlinear wave propagation in optical

fibers,1 water waves,2,3 and generally in nonlinear dispersive

media.4,5 This equation and its variations have been instru-

mental in describing phenomena of temporal and spatial soli-

ton propagation,5 their interactions,6 modulation instability,7

periodic and localized breathers,8–11 supercontinuum radia-

tion,12 Fermi-Pasta-Ulam Recurrence,13 Bose-Einstein con-

densates,14–16 and rogue waves.17–22 While being universal

in covering such a diverse range of phenomena in physics,

this equation is not a panacea for all problems. Though it

correctly describes the basic features of wave dynamics, the

finer details may be left unexplained when using the equation

in its original form. In order to increase the accuracy of

modelling, the NLSE has to be extended to include addi-

tional terms23 that are responsible for higher-order disper-

sion24 and nonlinear effects such as self-steepening and

self-frequency shift.25 These terms are important in the

description of higher-amplitude waves26,27 and shorter dura-

tion pulses.28

However, dealing with modified equations, while gain-

ing in accuracy, we lose in terms of simplicity and integrabil-

ity of the NLSE. The main problem with the NLSE

extensions is the loss of integrability when the coefficients of

additional terms are arbitrary. Then, the initial value problem

cannot be solved analytically and each case requires numeri-

cal modelling. Fortunately, integrability is restored for spe-

cial choices of the coefficients in the higher-order terms. For

extensions including third-order terms, the choice of the

coefficients that admit integrability is well-known. These

cases include the Hirota29 equation and Sasa-Satsuma equa-

tion (SSE).30 However, the next step of such extensions is

still not completely classified. For the branch of extensions

that includes the Hirota equation, higher-order evolution

equations are known. These include the fourth-order

Lakshmanan-Porsezian-Daniel (LPD) equation31 and a fifth-

order equation.32 Moreover, the whole infinite hierarchy of

extensions and their soliton and rogue wave solutions have

been presented explicitly in Refs. 33 and 34. However, for

the branch of higher-order equations that include the SSE as

a particular case, the fourth- and other higher-order exten-

sions are presently unknown. We fill this gap in current

knowledge of higher-order integrable equations in the pre-

sent work.

Higher-order equations not only serve for improving the

accuracy of the NLSE. They are independently important for

a description of other physical phenomena such as thea)Electronic mail: bandelow@wias-berlin.de
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dynamics of the Heisenberg spin chain.35 Each integrable

evolution equation is not just a special isolated case or a

mathematical curiosity. Solutions can be analytically pre-

sented around the integrable cases in approximate forms,

thus extending the range of their applicability.36 Thus, add-

ing new equations to the family of integrable equations

should be considered as adding significantly more power to

our ability to do accurate mathematical modelling of physi-

cal phenomena.

To be specific, the major step forward made in the pre-

sent work is presenting a new infinite hierarchy of evolution

equations in the form

iwt þ a2S2 wðx; tÞ½ � � ia3S3 wðx; tÞ½ � þ a4S4 wðx; tÞ½ �
� ia5S5 wðx; tÞ½ � þ a6S6 wðx; tÞ½ � � ia7S7 wðx; tÞ½ �
þa8S8 wðx; tÞ½ � � � � � ¼ 0; (1)

where Sj are the functionals of the order j for the envelope

function w(x, t) and aj are the arbitrary real coefficients. All

functionals Sj are given below in explicit form and we stress

that the coefficients aj are not small parameters. They are

finite real numbers, thus making our approach far from being

just another perturbation analysis. The allowance of variabil-

ity of the coefficients aj makes the hierarchy of Eq. (1) an

infinitely variable integrable evolution equation for a variety

of applications that describe soliton and rogue wave phe-

nomena. It includes, as particular cases, the NLSE, mKdV,

and SSE, thus linking the hierarchy (1) to these well known

evolution equations.

More specifically, the lowest order functional S2[w(x, t)]
in Eq. (1) is given by

S2 wðx; tÞ½ � ¼ wxx þ 4jwj2w; (2)

while

S3 wðx; tÞ½ � ¼ wxxx þ 3ðjwj2Þxwþ 6jwj2wx: (3)

Thus, when all aj are zero except for the a2, the hierarchy (1)

is simply the NLSE. When, further, a3 is nonzero and a2 ¼ 1
2
,

we have the SSE

iwt þ
wxx

2
þ 2jwj2w ¼ ia3 wxxx þ 3ðjwj2Þxwþ 6jwj2wx

h i
:

(4)

All further extensions from fourth-order and higher and the

recurrent relations for obtaining them are presented in this

work. In particular, we show that

S4 wðx; tÞ½ � ¼ wxxxx þ 6�wxxw
2 þ 24jwj4w

þ 12jwxj
2wþ 14jwj2wxx þ 8�ww2

x ; (5)

and

S5 wðx; tÞ½ � ¼ wxxxxx þ 80jwj4wx þ 5w2 �wxxx

þ 25wðjwxj
2Þx þ 40jwj2w2 �wx

þ 20jwxj
2wx þ 15jwj2wxxx þ 30�wwxwxx; (6)

where �w denotes the complex conjugate of w, and

S6 wðx; tÞ½ � ¼ wxxxxxx þ 55w3ð�wxÞ
2 þ 45w2

x
�wxx þ 32wwx

�wxxx

þ 43�wwxwxxx þ 37w�wxwxxx þ 175jwj2 �ww2
x

þ 53jwxxj
2wþ 31�ww2

xx þ 20jwj2wxxxx

þ 160jwj6wþ 110�ww3 �wxx þ 330jwwxj
2w

þ 170jwj4wxx þ 8w2 �wxxxx þ 95jwxj
2wxx: (7)

The expressions for S7[w(x, t)] and higher are too cum-

bersome to be given here, but our technique is straightfor-

ward, allowing one to write them explicitly for any order j.
These expressions are different from those for the NLSE

hierarchy given in Ref. 34. They comprise a different hierar-

chy of integrable equations. The reason is that the Lax pairs

for these equations involve 3� 3 matrices rather than 2� 2

for the Hirota branch. As a result, the solutions of the SSE

hierarchy are significantly more involved than those found in

Ref. 34. Such complexity starts right from the lowest order

equation of the hierarchy which is the SSE.30,37–42 As a

result of this complexity, the solutions of the SSE are also

highly nontrivial. Both soliton solutions37–39 and rogue wave

solutions43 have much more complicated structures than the

corresponding solutions for the NLSE or Hirota equations.

They involve more parameters in the solutions that allow us

to describe more complicated profiles. Due to this complex-

ity, only first-order solutions have been derived so far. Also

due to this complexity, the SSE is an equation for which the

higher-order hierarchy was unknown until now.

Physically, the difference between the two models

seems to have its origin in the fact that phase and group

velocities of waves in the case of the SSE do not coincide,44

which significantly distorts the shape of the solitons in com-

parison with the NLSE solutions. In particular, the SSE has

single-soliton solutions that have no analogs in the NLSE

case. In addition to the common bell-shaped solitons, it has

soliton solutions with two maxima30 and even with multiple

maxima.39 Moreover, the SSE has soliton solutions with

complex oscillating patterns in the (x, t)-plane.38 Solutions

become even more complicated when they contain a back-

ground in the form of a plane wave.40 Clearly, these com-

plexities accumulate when dealing with the higher-order

equations of the SSE hierarchy.

II. LAX-PAIR FORMULATION

Nonlinear evolution equations that arise from various

branches of wave physics are formally integrable if they

admit the zero-curvature representation

Ut � Vx þ U;V½ � ¼ 0: (8)

Given a properly chosen isospectral problem

/x ¼ UðkÞ/; (9)

with k being the spectral parameter for which kt¼ 0, one can

relate it to a hierarchy of nonlinear evolution equations

Ut � Vn
x þ U;Vn½ � ¼ 0: (10)

In this context, the choice of U serves as a seed, from which

the hierarchy {Vn} can be derived. For each stage n of the
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hierarchy, there is an independent Hamiltonian flow given by

Utn ¼ Vn
x � U;Vn½ �: (11)

Here, we are specifically interested in the hierarchy associated with the Sasa-Satsuma equation, where U and V are 3� 3

matrices. Note that the hierarchy of Manakov equations

iut þ uxx þ 2ðjuj2 þ jvj2Þu ¼ 0;

ivt þ vxx þ 2ðjuj2 þ jvj2Þv ¼ 0;
(12)

which requires the 3� 3 matrices,45 can also be considered in the same way.46 This set of equations is associated with the fol-

lowing 3� 3 matrix spectral problem:

/x ¼ U/; / ¼
/1

/2

/3

0
@

1
A; U ¼

�k u w
v k 0

r 0 k

0
@

1
A: (13)

This formulation is rather general and admits two special reductions. One of them is the coupled modified Korteweg-de Vries

hierarchy which corresponds to the choice of v¼ u and r¼w. Another one is the Sasa-Satsuma hierarchy with the choice of

w¼ v and r¼ u. This latter case is addressed in the present work.

Thus, given the spectral problem (13), we seek a hierarchy Vn which solves Eq. (11). In order to find it, we expand the

matrix elements of Vn in a polynomial

Vn
ij ¼

Xn

k¼0

vk
ijk

n�k; with vk
ij ¼ vk

ijðx; tÞ; (14)

and V11¼ –(V22þV33). Inserting (14) into (10), we obtain, for n¼ 1

0 ut wt

vt 0 0

rt 0 0

0
B@

1
CA� @x

v1
11 v1

12 v1
13

v1
21 v1

22 v1
23

v1
31 v1

32 v1
33

0
B@

1
CA� k@x

v0
11 v0

12 v0
13

v0
21 v0

22 v0
23

v0
31 v0

32 v0
33

0
B@

1
CA� 2k2

0 v0
12 v0

13

�v0
21 0 0

�v0
31 0 0

0
B@

1
CA

þ k

uv0
21 þ v0

31w� vv0
12 � rv0

13 uð2v0
22 þ v0

33Þ þ v0
32w� 2v1

12 uv0
23 � 2v1

13 þ ðv0
22 þ 2v0

33Þw
2v1

21 � rv0
23 � vð2v0

22 þ v0
33Þ vv0

12 � uv0
21 vv0

13 � v0
21w

2v1
31 � vv0

32 � rðv0
22 þ 2v0

33Þ rv0
12 � uv0

31 rv0
13 � v0

31w

0
B@

1
CA

þ
uv1

21 þ wv1
31 � vv1

12 � rwv1
13 uð2v1

22 þ v1
33Þ þ wv1

32 uv1
23 þ wðv1

22 þ 2v1
33Þ

�vð2v1
22 þ v1

33Þ � rv1
23 vv1

12 � uv1
21 vv1

13 � wv1
21

�vv1
32 � rðv1

22 þ 2v1
33Þ rv1

12 � uv1
31 rv1

13 � wv1
31

0
B@

1
CA ¼ 0:

Apparently, the functions v0
12 ¼ v0

13 ¼ v0
21 ¼ v0

31 ¼ 0 are zeros together with their derivatives. Then, the above system reduces to

0 ut wt

vt 0 0

rt 0 0

0
B@

1
CA� @x

v1
11 v1

12 v1
13

v1
21 v1

22 v1
23

v1
31 v1

32 v1
33

0
B@

1
CA� k@x

v0
11 0 0

0 v0
22 v0

23

0 v0
32 v0

33

0
B@

1
CA

þk

0 uð2v0
22 þ v0

33Þ þ v0
32w� 2v1

12 uv0
23 � 2v1

13 þ ðv0
22 þ 2v0

33Þw
2v1

21 � rv0
23 � vð2v0

22 þ v0
33Þ 0 0

2v1
31 � vv0

32 � rðv0
22 þ 2v0

33Þ 0 0

0
B@

1
CA

þ
uv1

21 þ wv1
31 � vv1

12 � rwv1
13 uð2v1

22 þ v1
33Þ þ wv1

32 uv1
23 þ wðv1

22 þ 2v1
33Þ

�vð2v1
22 þ v1

33Þ � rv1
23 vv1

12 � uv1
21 vv1

13 � wv1
21

�vv1
32 � rðv1

22 þ 2v1
33Þ rv1

12 � uv1
31 rv1

13 � wv1
31

0
B@

1
CA ¼ 0:

Moreover, the following elements v0
23 ¼ c1; v0

32 ¼ c2; v0
22 ¼ c3; v0

33 ¼ c4, and v0
11 ¼ �ðc1 þ c4Þ are constants. Then, we

have, in particular,

0 uð2c3 þ c4Þ þ c2w� 2v1
12 uc1 � 2v1

13 þ ðc3 þ 2c4Þw
2v1

21 � rc1 � vð2c3 þ c4Þ 0 0

2v1
31 � vc2 � rðc3 þ 2c4Þ 0 0

0
@

1
A ¼ 0; (15)
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and, as a consequence

v1
12 ¼

wc2 þ uð2c3 þ c4Þ
2

; v1
21 ¼

rc1 þ vð3c3 þ c4Þ
2

; v1
13 ¼

uc1 þ wðc3 þ 2c4Þ
2

; v1
31 ¼

vc2 þ rðc3 þ 2c4Þ
2

:

In the next step, we solve the remaining equation

0 ut wt

vt 0 0

rt 0 0

0
B@

1
CA� @x

v1
11 v1

12 v1
13

v1
21 v1

22 v1
23

v1
31 v1

32 v1
33

0
B@

1
CAþ

�ðv1
22 þ v1

33Þ uð2v1
22 þ v1

33Þ þ wv1
32 uv1

23 þ wðv1
22 þ 2v1

33Þ
�vð2v1

22 þ v1
33Þ � rv1

23 vv1
12 � uv1

21 vv1
13 � wv1

21

�vv1
32 � rðv1

22 þ 2v1
33Þ rv1

12 � uv1
31 rv1

13 � wv1
31

0
B@

1
CA ¼ 0;

for v1
23; v

1
32; v

1
22; v

1
33, which gives

v1
23 ¼ @�1 vv1

13 � wv1
21

� �
; v1

32 ¼ @�1 rv1
12 � uv1

31

� �
; v1

22 ¼ @�1 vv1
12 � uv1

21

� �
; v1

33 ¼ @�1 rv1
13 � wv1

31

� �
: (16)

For brevity, we have introduced the notation @¼ @x and the corresponding integral operator @�1, such that

@@�1 ¼ @�1@ ¼ 1. The 4 remaining equations are the desired integro-differential equations for u, v, r, w in the lowest rank of

the infinite Manakov hierarchy

ut ¼ c2wx þ ð2c3 þ c4Þux þ w@�1 c2uv� rðc2wþ ðc3 � c4ÞuÞ½ � þ u@�1ðc1ru� c2vwÞ; (17)

wt ¼ c1ux þ ðc3 þ 2c4Þwx � u@�1 c1uv� wðc1r þ ðc3 � c4ÞvÞ½ � þ w@�1ðc2vw� c1ruÞ; (18)

vt ¼ c1rx þ ð2c3 þ c4Þvx þ r@�1 c1uv� wðc1r þ ðc3 � c4ÞvÞ½ � þ v@�1ðc2vw� c1ruÞ; (19)

rt ¼ c2vx þ ðc3 þ 2c4Þrx � v@�1 c2uv� rðc2wþ ðc3 � c4ÞuÞ½ � þ r@�1ðc1ru� c2vwÞ: (20)

Based on this set of equations, we can find the coefficients

vn
ijðx; tÞ and the desired integro-differential equations relative

to u, v, r, and w. This can be done step-by-step for the higher

orders n> 1. This procedure would be straightforward but

becomes increasingly involved as n increases. However,

there are ways to simplify the derivations. In order to illus-

trate the idea, let us start with the Manakov case.

III. RECURSIVE RELATIONS FOR CONSTRUCTION OF
THE HIERARCHY

Our straightforward method can be cast in a more com-

pact notation. Given the spectral problem (13), we seek a

hierarchy Vn which solves Eq. (11). The problem (11) can be

cast as a problem for two 4-vectors, G and H, relative to four

independent functions u, v, w, and r46

H ¼

V12

V21

V13

V31

0
BBBB@

1
CCCCA ¼

H1

H2

H3

H4

0
BBBB@

1
CCCCA; G ¼

V23

V32

V22

V33

0
BBBB@

1
CCCCA ¼

G1

G2

G3

G4

0
BBBB@

1
CCCCA: (21)

We keep in mind that

Tr V½ � ¼ 0; i:e: V11 ¼ �ðV22 þ V33Þ:

Let us also define 3 matrices

K1 ¼

0 �w �2u �u

r 0 2v v

�u 0 �w �2w

0 v r 2r

0
BBBB@

1
CCCCA;

K2 ¼

0 w �v 0

�r 0 0 u

�v u 0 0

0 0 �r w

0
BBBB@

1
CCCCA;

J ¼ 2

�1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 1

0
BBBB@

1
CCCCA;

with

J�1 ¼ 1

4
J:

Then, the set of equations for H and G are

@H þ K1G ¼ kJH; (22)

@Gþ K2H ¼ 0: (23)

Together with @tU¼ kJH, this set is equivalent to (11).46 As

before, we expand the matrix elements of Vn in a polynomial
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(14) which allows us to present the 4-vectors, G and H, in

the following form:

H ¼
Xn

k¼0

hkkn�k; G ¼
Xn

k¼0

gkkn�k; (24)

with the 4-vectors, hk ¼ hkðx; tÞ and gk ¼ gkðx; tÞ

hk ¼

hk
1

hk
2

hk
3

hk
4

0
BBBB@

1
CCCCA ¼

vk
12ðx; tÞ

vk
21ðx; tÞ

vk
13ðx; tÞ

vk
31ðx; tÞ

0
BBBB@

1
CCCCA; (25)

gk ¼

gk
1

gk
2

gk
3

gk
4

0
BBBB@

1
CCCCA ¼

vk
23ðx; tÞ

vk
32ðx; tÞ

vk
22ðx; tÞ

vk
33ðx; tÞ

0
BBBB@

1
CCCCA: (26)

For n¼ 1, we get from (22) and (23)

@h1 þ K1g1 þ k @h0 þ K1g0 � Jh1
� �

¼ k2Jh0; (27)

k @g0 þ K2h0
� �

þ @g1 þ K2h1
� �

¼ 0: (28)

It follows, from the r.h.s. of (27) that h0¼ 0, and hence @h0

¼ 0. With this condition, we get from (28) that @g0¼ 0.

Consequently, g0 ¼ ðc1; c2; c3; c4ÞT ¼ const: In turn, we get

from (27) that h1 ¼ J�1K1g0, and, again, from (28) g1

¼ �@�1K2h1. The remaining equation

@t0ðu; v;w; rÞ
T ¼ @h1 þ K1g1

¼ @J�1K1g0 � K1@
�1K2J�1K1g0 (29)

is then the lowest order equation in the Manakov hierarchy.

Writing each of the equations individually, we arrive to

exactly the same set as (17–20).

All higher orders n> 1 can be obtained successively by

the following procedure. First, from (22), / k : @hn þ K1gn

¼ Jhnþ1, we advance h one step in n

hnþ1 ¼ J�1 @hn þ K1gnð Þ: (30)

Second, from (23), @gnþ1 þ K2hnþ1 ¼ 0, we advance one

step in g

gnþ1 ¼ �@�1ðK2hnþ1Þ: (31)

This determines the remaining coefficients of the next order

(nþ 1). Finally, with these coefficients, we obtain from (22),

/ k0 the equations for the next order (nþ 1) of the Manakov

hierarchy

@tnðu; v;w; rÞ
T ¼ @hnþ1 þ K1gnþ1: (32)

The validity of (32) can be checked using the compatibility

condition (11).

Now, the r.h.s. of Eq. (32) can be used for obtaining the

next order of h

hnþ2 ¼ J�1 @hnþ1 þ K1gnþ1
� �

; (33)

which is the same as Eq. (30) for n ! nþ 1. The procedure

can be repeated indefinitely. This recursive scheme creates

the infinite hierarchy of integrable equations for the general

Manakov system.

With this general idea, we can reformulate the hierarchy

in an even more compact form. Let us denote

Qn ¼ @hnþ1 þ K1gnþ1; (34)

such that Eq. (32) becomes

@tnðu; v;w; rÞ
T ¼ Qn: (35)

Expressions for the next order then become

hnþ1 ¼ J�1Qn; gnþ1 ¼ �@�1ðK2J�1QnÞ; (36)

and, finally, the closed form of the recursive expression is

Qnþ1 ¼ @ J�1Qn
� �

� K1@
�1ðK2J�1QnÞ: (37)

This allows us to calculate directly the desired integro-

differential equations Qnþ1 for the next level of hierarchy

from the previous one. As it can be seen from Eq. (37), at

each iteration, the first term in the r.h.s. increases the order

of derivatives by one, whereas the second term increases the

order of nonlinearity by two. This general rule allows us to

predict the form of the higher-order terms for any n.

It would be instructive to write in detail the recursive

equations for the second order. Namely, for the order n¼ 2,

we have

ut ¼ �
w

ðx

1

I1
1dzþ

ðx

1

I 1
2dzþ 2u

ðx

1

I 1
3dzþ U

4
;

wt ¼ �
w

ðx

1

I2
1dzþ 2w

ðx

1

I 2
2dzþ u

ðx

1

I 2
3dzþW

4
;

vt ¼
v
ðx

1

I3
1dzþ 2v

ðx

1

I 3
2dzþ r

ðx

1

I 3
3dzþ V

4
;

rt ¼
v
ðx

1

I4
1dzþ r

ðx

1

I 4
2dzþ 2r

ðx

1

I 4
3dzþR

4
;

where

I1
1 ¼ rð2uð�2F1ðzÞ þ c7 � c8Þ þ 2wF2ðzÞ � c2wz � ð2c3 þ c4ÞuzÞ � uð2vF2ðzÞ þ c2vz þ ðc3 þ 2c4ÞrzÞ;
I1

2 ¼ rð2uF3ðzÞ � c1uz � ðc3 þ 2c4ÞwzÞ � wð2vF2ðzÞ þ c2vz þ ðc3 þ 2c4ÞrzÞ;
I1

3 ¼ vð2wF2ðzÞ � c2wz � ð2c3 þ c4ÞuzÞ � uð2rF3ðzÞ þ c1rz þ ð2c3 þ c4ÞvzÞ;

053108-5 Bandelow et al. Chaos 28, 053108 (2018)



I 2
1 ¼ vð2wF2ðzÞ � c2wz � ð2c3 þ c4ÞuzÞ � uð2rF3ðzÞ þ c1rz þ ð2c3 þ c4ÞvzÞ;

I 2
2 ¼ rð2uF3ðzÞ � c1uz � ðc3 þ 2c4ÞwzÞ � wð2vF2ðxÞ þ c2vz þ ðc3 þ 2c4ÞrzÞ;

I 2
3 ¼ 4vwF1ðzÞ þ 2ðuv� rwÞF3ðzÞ � c1ðrzwþ uzvÞ � ðc3 þ 2c4Þvwz � ð2c3 þ c4Þvzwþ 2ðc8 � c7Þvw;

I 3
1 ¼ rð2uF3ðzÞ � c1uz � ðc3 þ 2c4ÞwzÞ � wð2vF2ðzÞ þ c2vz þ ðc3 þ 2c4ÞrzÞ;

I 3
2 ¼ vð2wF2ðzÞ � c2wz � ð2c3 þ c4ÞuzÞ � uð2rF3ðzÞ þ c1rz þ ð2c3 þ c4ÞvzÞ;

I 3
3 ¼ 4vwF1ðzÞ þ 2ðuv� rwÞF3ðzÞ � c1ðrzwþ uzvÞ � ðc3 þ 2c4Þvwz � ð2c3 þ c4Þvzwþ 2ðc10 � c7Þvw;

I 4
1 ¼ rð2uð�2F1ðzÞ þ c7 � c10Þ þ 2wF2ðzÞ � c2wz � ð2c3 þ c4ÞuzÞ � uð2vF2ðzÞ þ c2vz þ ðc3 þ 2c4ÞrzÞ;

I 4
2 ¼ vð2wF2ðzÞ � c2wz � ð2c3 þ c4ÞuzÞ � uð2rF3ðzÞ þ c1rz þ ð2c3 þ c4ÞvzÞ;

I 4
3 ¼ rð2uF3ðzÞ � c1uz � ðc3 þ 2c4ÞwzÞ � wð2vF2ðzÞ þ c2vz þ ðc3 þ 2c4ÞrzÞ;

U ¼ 4ð2c11 þ c12Þu� c0urwþ 4c10wþ 2uxðF1ðxÞ � 2c7 � c8Þ þ c1ru2 � 2wxF2ðxÞ � c2rw2 þ c2wxx þ ð2c3 þ c4Þuxx;

W ¼ 4ðc11 þ 2c12Þwþ 4c9uþ c0uvw� 2wx F1ðxÞ þ c7 þ 2c8ð Þ � 2uxF3ðxÞ þ c1uxx � c1u2vþ c2vw2 þ ðc3 þ 2c4Þwxx;

V ¼ 8c2v
2wþ 4ð2c11 þ c12Þvþ 4c10r � c0vwr � 2vx F1ðxÞ � 2c7 � c10ð Þ þ 2rxF3ðxÞ þ c1rxx � c1r2wþ ð2c3 þ c4Þvxx;

R ¼ �4c10vþ c0ruvþ 4ðc11 þ 2c12Þr þ 2rx F1ðxÞ þ c7 þ 2c10ð Þ þ c1r2uþ 2vxF2ðxÞ � c2uv2 þ c2vxx þ ðc3 þ 2c4Þrxx:

The above set of equations contains, among others, the

original Manakov system (12). In order to show this, we set

c3 ¼ c4 ¼ i 4
3
, and all other constants ci¼ 0. As a result, we

obtain

�iut ¼ �uxx þ 2ðuvþ rwÞu;
�ivt ¼ vxx � 2ðuvþ rwÞv;
�iwt ¼ �wxx þ 2ðuvþ rwÞw;
�irt ¼ rxx � 2ðuvþ rwÞr:

Identifying then v ¼ �u and r ¼ �w and setting x ! ix, we

obtain

iut þ uxx þ 2ðjuj2 þ jwj2Þu ¼ 0;

iwt þ wxx þ 2ðjuj2 þ jwj2Þw ¼ 0;

which coincides with the original Manakov system (12) after

renaming w(x, t) to v(x, t).
The results for the next order n¼ 3 include two special

cases:

(1) The coupled modified Korteweg-de Vries equations

ut ¼ �uxxx þ 6u2ux þ 3v2ux þ 3uvvx;

vt ¼ �vxxx þ 6v2vx þ 3u2vx þ 3uvux: (38)

This is obtained by choosing v ¼ u, r ¼ w, and setting

c3 ¼ c4 ¼ 8
3
, and all other constants ci ¼ 0.

(2) The Sasa-Satsuma equation is obtained by choosing

w ¼ v and r ¼ u. Namely, if we set c3 ¼ c4 ¼ 8
3
�, and all

other constants ci ¼ 0, we first obtain

@tu ¼ � �3uð3vux þ uvxÞ þ uxxxð Þ;
@tv ¼ � �3vð3uvx þ vuxÞ þ vxxxð Þ;

which can be rewritten as

@tu ¼ � �3uðuvÞx � 6uvux þ uxxx

� �
;

@tv ¼ � �3vðuvÞx � 6uvvx þ vxxx

� �
:

If we replace now t! it and x! ix, set v ¼ �u and w¼ u, we

get the Sasa-Satsuma equation in the complex modified KdV

(cmKdV) form30,47

wt þ �ðwxxx þ 6jwj2wx þ 3wjw2jxÞ ¼ 0: (39)

Setting �¼�a3 gives the standard form of Eq. (3), i.e.,

wt – a3S3¼ 0.

IV. SASA-SATSUMA HIERARCHY

Now, we are in a position to obtain the whole Sasa-

Satsuma hierarchy that starts with Eq. (39) by choosing w¼ v
and r¼ u and using the techniques described in Sec. III.

A. Level 1

We set c3¼ c4, and c1¼ c2¼ c5¼ c6¼ c7¼ c8¼ 0. For

the Sasa-Satsuma equation, which appears on level 3, we

choose c4 ¼ 8
3
�. On level 1, we obtain the uncoupled linear

equations

@tu ¼ 4�ux; @tv ¼ 4�vx: (40)

B. Level 2

On level 2, we obtain the second order equations

@tu ¼ c10vþ 3c12uþ 8�ðuvÞu� 2�uxx; (41)

@tv ¼ �c10u� 3c12v� 8�ðuvÞvþ 2�vxx; (42)

in addition to

�@tu ¼ c10vþ 3c12uþ 8�ðuvÞu� 2�uxx; (43)

�@tv ¼ �c10u� 3c12v� 8�ðuvÞvþ 2�vxx: (44)
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The second pair can be understood as the complex conjugate of the first pair of equations, once we replace t! it and x! ix and

set v ¼ �u. Moreover, once we choose c10¼ c12¼ 0, these equations are reduced to the NLSE (2), i.e., iwtþ a2S2¼ 0 with a2¼ 2�.

C. Level 3

On level 3, we obtain the SSE, which has been discussed already in the end of Sec. III

@tu ¼ � �3uð3vux þ uvxÞ þ uxxx½ �; (45)

@tv ¼ � �3vð3uvx þ vuxÞ þ vxxx½ �: (46)

D. Level 4

On level 4, we obtain the set of 4th order equations

@tu ¼ c18vþ 3c20uþ 6�uuxvx þ 7�uxxuvþ 4�ðuxÞ2vþ 3�u2vxx � 12�ðuvÞ2u� �
2

uxxxx; (47)

@tv ¼ �c18u� 3c20v� 6�vuxvx � 7�uvvxx � 4�uðvxÞ2 � 3�uxxv
2 þ 12�ðuvÞ2vþ �

2
vxxxx; (48)

�@tu ¼ c18vþ 3c20uþ 6�uuxvx þ 7�uxxuvþ 4�ðuxÞ2vþ 3�u2vxx � 12�ðuvÞ2u� �
2

uxxxx; (49)

�@tv ¼ �c18u� 3c20v� 6�vuxvx � 7�uvvxx � 4�uðvxÞ2 � 3�uxxv
2 þ 12�ðuvÞ2vþ �

2
vxxxx: (50)

The second pair can be understood as the complex conjugate of the first pair of equations, once we replace t! it and x! ix
and set v ¼ �u.

For the higher-order equations in this hierarchy, we set c18¼ c20¼ 0. The resulting equation for the 4th level of the hierar-

chy is then

@tw ¼ �i� 6wjwxj
2 þ 7jwj2wxx þ 4ðwxÞ

2 �wþ3w2 �wxx þ 12jwj4wþ 1

2
wxxxx

� �
; (51)

where we replaced u by w. Taking �¼�2a4, this provides Eq. (5), i.e., iwtþ a4S4¼ 0.

E. Level 5

On level 5, we obtain the set of 5th order equations

@tu ¼
1

4
�ðuxxxxx þ 80ðuvÞ2ux � 5u2vxxx � 25uðvxuxÞx þ 40u3vvx � 20u2

xvx � 15uvuxxx � 30vuxuxxÞ;

@tv ¼
1

4
�ðvxxxxx þ 80ðuvÞ2vx � 5v2uxxx � 25vðvxuxÞx þ 40uv3ux � 20uxv

2
x � 15uvvxxx � 30uvxvxxÞ:

Again, if we replace t! it and x! ix and set v ¼ �u, we obtain

@tu ¼
1

4
�ð80juj4ux þ 5u2vxxx þ 25ujuxj2x þ 40juj2u2vx þ 20juxj2ux þ 15juj2uxxx þ 30vuxuxx þ uxxxxxÞ;

@tv ¼
1

4
�ð80juj4vx þ 5v2uxxx þ 25vjuxj2x þ 40juj2v2ux þ 20juxj2vx þ 15juj2vxxx þ 30uvxvxx þ vxxxxxÞ;

which finally reduces to the equation for the 5th level of the SSE hierarchy

@tw ¼
1

4
�ðwxxxxx þ 80jwj4wx þ 5w2 �wxxx þ 25ðjwxj

2Þxwþ 40jwj2w2 �wx þ 20jwxj
2wx þ 15jwj2wxxx þ 30�wwxwxxÞ; (52)

where we replaced u by w. Taking �¼ 4a5, this provides Eq. (6), i.e., wt – a5S5¼ 0.

F. Level 6

On level 6, we obtain the set of 6th order equations

@tu ¼
�

8
ð�uxxxxxx þ 8u2vxxxx þ 20uvuxxxx þ 37uvxuxxx þ 32uuxvxxx þ 43vuxuxxx � 170ðuvÞ2uxx þ 53uuxxvxx

þ 45u2
xvxx þ 31vu2

xx þ 95uxvxuxx � 110u3vvxx � 330u2vuxvx � 175uv2u2
x � 55u3v2

x þ 160u4v3Þ;
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@tv ¼ �
�

8
ð�vxxxxxx þ 8v2uxxxx þ 20uvvxxxx þ 37vuxvxxx þ 32vuxxxvx þ 43uvxvxxx � 170ðuvÞ2vxx þ 53vuxxvxx þ 45v2

xuxx

þ31uv2
xx þ 95uxvxvxx � 110uuxxv

3 � 330uuxvxv
2 � 175u2vv2

x � 55u2
xv

3 þ 160u3v4Þ:

If we replace, as before, t! it and x! ix and set v ¼ �u, we obtain

@tu ¼ �i
�

8
ðuxxxxxx þ 8u2vxxxx þ 20juj2uxxxx þ 37uvxuxxx þ 32uuxvxxx þ 43vuxuxxx þ 170juj4uxx þ 53ujuxxj2 þ 45u2

xvxx

þ31vu2
xx þ 95juxj2uxx þ 110juj2u2vxx þ 330juj2ujuxj2 þ 175juj2vu2

x þ 55u3v2
x þ 160juj6uÞ;

@tv ¼ i
�

8
ðvxxxxxx þ 8v2uxxxx þ 20juj2vxxxx þ 37vuxvxxx þ 32vvxuxxx þ 43uvxvxxx þ 170juj4vxx þ 53vjuxxj2 þ 45v2

xuxx

þ31uv2
xx þ 95juxj2vxx þ 110juj2v2uxx þ 330juj2vjuxj2 þ 175juj2uv2

x þ 55v3u2
x þ 160juj6uÞ:

Apparently, the 2nd equation is the complex conjugate of the first one, such that we finally obtain the equation for the 6th level

of the SSE hierarchy

@tw ¼ �i
�

8
ðwxxxxxx þ 8w2 �wxxxx þ 20jwj2wxxxx þ 37w�wxwxxx þ 32wwx

�wxxx þ 43�wwxwxxx þ 170jwj4wxx þ 53wjwxxj
2

þ45w2
x
�wxx þ 31�ww2

xx þ 95jwxj
2wxx þ 110jwj2w2 �wxx þ 330jwj2wjwxj

2 þ 175jwj2 �ww2
x þ 55w3 �w

2

x þ 160jwj6wÞ; (53)

where w¼ u. Taking �¼�8a6, this provides Eq. (7), i.e.,

iwtþ a6S6¼ 0.

This process can be continued indefinitely, producing at

each step the next functional of the SSE hierarchy. We

restrict ourselves to giving the explicit expressions for the

first 6 orders, as further extensions become increasingly cum-

bersome, although the whole procedure is straightforward.

V. BASIC SOLUTIONS

Finding solutions of the SSE is a complex task which

has not been completely resolved, although the problem has

been addressed in many previous works.37–43 This is related

to both soliton and rogue wave solutions. Naturally, solving

the SSE hierarchy is a much more involved issue. This will

require future efforts of many researchers. However, the sim-

plest solutions can be found with relative ease. Some exam-

ples are presented below.

A. Basic “sech” solutions for hierarchy containing
odd terms only

Since the coefficients a2nþ1 are arbitrary, we can set the

coefficient of the highest derivative to be unity in the deriva-

tions, and we still have an arbitrary real scaling factor on x.

We consider real functions to start with and thus deal basi-

cally with the mKdV hierarchy. So

ut �
X1
n¼1

ða2nþ1S2nþ1Þ ¼ 0:

Taking u to be real in Eq. (3) gives

ut � a3ðuxxx þ 12u2uxÞ ¼ 0: (54)

The basic soliton solution of the SSE (54) is

u ¼ gffiffiffi
2
p sech gðxþ a3g2tÞ

� �
: (55)

Here, a3g2 represents a velocity. The solution (55) is real,

and in this case the SSE and its basic solution are the same

as the “standard” mKdV, ut – a3(uxxxþ 6u2ux)¼ 0, apart

from a scaling of
ffiffiffi
2
p

on x. We expect this form to be valid

for all odd-numbered functionals in the set. If u(x, t) is an

mKdV solution, then overall scaling shows that u0 ¼
quðqx; q3tÞ is also a solution for real q, so we could just set

g¼ 1 in the above, without loss of generality. For a general

odd order equation, we have

u2nþ1 ¼
gffiffiffi
2
p sech gðxþ a2nþ1g2ntÞ

� �
; (56)

for n¼ 1, 2, 3, …Thus, the scaling, x ! gx and

a2nþ1t! a2nþ1g2nþ1t, with overall multiplication by g, is

similar to that for the NLSE hierarchy.34

B. Polynomial and periodic solutions

The basic polynomial solution of ut – a3S3¼ 0, with

background set to �1, is

u3 ¼
4

1þ 8ðxþ 12a3tÞ2
� 1: (57)

The periodic solution is

u3 ¼
k2

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� k2
p

cos
ffiffiffi
2
p

kðv3tþ xÞ
� �� 1; (58)

where v3 ¼ �2a3ðk2 � 6Þ and jkj < 2.
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The 5th order equation will have solutions of the same

form with different coefficients. We now consider

ut � a5S5 ¼ 0

from Eq. (6) with real w¼ u. We get

S5 ¼ uxxxxx þ 20uxxxu2 þ 120uxu4 þ 80uuxuxx þ 20u3
x ; (59)

which agrees with the real solutions of Eq. (52). This is the

same as the first higher order mKdV equation.48 This applies

for all odd order equations and clarifies the fact that the SSE

hierarchy is a form of “complexification” of the mKdV

hierarchy.

The basic polynomial solution, with background set to

�1, is

u5 ¼
4

1þ 8ðxþ 120a5tÞ2
� 1; (60)

while the periodic solution is

u5 ¼
k2

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� k2
p

cos
ffiffiffi
2
p

kðv5tþ xÞ
� �� 1; (61)

where v5 ¼ 4a5ðk4 � 10k2 þ 30Þ and jkj < 2.

The 7th order functional is

S7 ¼ uxxxxxxxþ 28uðuxxxxxuþ 2uxuxxxxÞ
þ112 uuxuxxxxþðuuxxþ u2

xÞuxxx

� �
þ 84uxxð2uuxxxþ uxuxxÞ

þ140uxðuxuxxxþ 2u2
xxÞþ 280u3ðuuxxxþ 40uxuxxÞ

þ560uxu2ð2uuxxþ 3u2
xÞþ 1120u6ux: (62)

The equation of 7th order has solutions of the same form as

above but with different coefficients. Instead of presenting it,

let us turn our attention to the general case.

C. Solutions of composite equations with many
functionals

We can now include more than one functional at a time.

Namely, for the equation

ut � a3S3 � a5S5 � a7S7 � � � � ¼ 0;

we have the soliton solution

us ¼
gffiffiffi
2
p sech gðxþ stÞ½ �; (63)

with s ¼
P1
n¼1

a2nþ1g2n, and the polynomial solution

upoly ¼
4

1þ 8ðxþ vatÞ2
� 1; (64)

with va ¼ 4ð3a3 þ 30a5 þ 280a7 þ 2520a9 þ � � �Þ. For the

infinite hierarchy

va ¼
X1
n¼1

2n

ðn!Þ2
ð2nþ 1Þ!a2nþ1:

The periodic solution in this case is

uper ¼
k2

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� k2
p

cos
ffiffiffi
2
p

kðvpertþ xÞ
h i� 1; (65)

where

vper ¼ �2a3ðk2 � 6Þ þ 4a5ðk4 � 10k2 þ 30Þ
�8a7ðk6 � 14k4 þ 70k2 � 140Þ
þ16a9ðk8 � 18k6 þ 126k4 � 420k2 þ 630Þ � � � � ;

with jkj < 2. Again, these solutions apply to the equations up

to infinite order, with just the velocity coefficients changing.

These coefficients can be written as a summation of the formP1
n¼1ða2nþ1cnÞ. Thus, for the infinite hierarchy

vper ¼
X1
n¼1

2nð2nþ 1Þ!
ðn!Þ2

a2nþ1 2F1 1;�n;
3

2
;
k2

4

	 

;

where 2F1ð…Þ is the hypergeometric function.

D. Rogue wave solutions

We have recently shown that the mKdV equation has

rogue wave solutions with parameters similar to the rogue

wave solutions of the NLSE.49 For each of these solutions,

the central rogue wave has the same amplitude as that of the

corresponding rogue-wave of the NLSE, but it is located on

top of a soliton. The central part generally has a close resem-

blance to the shape of an NLSE rogue wave.

Solutions with similar features can be derived for the

SSE. Namely,

urw
3 ¼ 1þ 12

N3

D3

; (66)

where

N3 ¼ 3� 16ðx� 12a3tÞ 4ðx� 12a3tÞ3 þ 3ðx� 44a3tÞ
h i

;

and

D3¼512x6þ192x4þ216x2þ9�192a3tð192x4�16x2þ51Þx
þ2ð24a3tÞ2 960x4�240x2þ139ð Þ�32ð24a3tÞ3

�ð40x2�9Þxþ4ð24a3tÞ4ð120x2�13Þ
þ3ð48a3tÞ5ð2a3t�xÞ:

The central amplitude is obviously 5, matching the ampli-

tude of the second order NLSE rogue wave. Here, we restrict

ourselves to this example, although it can be extended to

higher-order solutions of this equation as well as to those

that cover the higher order equations of the SSE hierarchy.

VI. EARLIER PAINLEV�E RESULTS

The Sasa-Satsuma hierarchy has been missed in the pre-

vious studies for a relatively simple reason. Painlev�e analysis

for fourth order equations was given earlier in Ref. 35. These

equations take the form
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iut þ K2 þ c1L4 ¼ 0;

where c1 is a constant, K2 is the nonlinear Schr€odinger func-

tional, and L4 is similar to K4 in Ref. 34

K4 ¼ 2�uxxu2 þ 6ujuj4 þ 4juxj2uþ 8juj2uxx þ 6�uu2
x þ uxxxx;

(67)

apart from the point that the fixed coefficients are replaced

by 5 parameters. This would appear to include the functional

S4 in Eq. (5), but it does not, because the authors have

imposed physical constraints (to study the Heisenberg spin

magnet) on the parameters, so that each of the 5 parameters

is written in terms of a single parameter, viz.,
c2

c1
. The

Painlev�e singularity structure analysis carried out then shows

that the only value giving integrability is
c2

c1
¼ � 5

2
, corre-

sponding to K4 above. Indeed, iutþ a2K2þ a4K4¼ 0 is usu-

ally called the LPD equation, whether a2 is zero or not.

Beyond the basic NLS itself, it forms the first even higher-

order equation in the NLS hierarchy. However, even allow-

ing for a scaling factor a, there is no combination of a; c2

c1

n o
which allows Eq. (5) to be represented in the form used in

Ref. 35, and so it is not included in the set studied there. As

such, the existence of the integrable equation iutþ a4S4¼ 0,

with S4 from Eq. (5), is not contradicted by singularity

analysis.

VII. CONCLUSIONS

In this work, we have found the infinite Sasa-Satsuma

hierarchy of integrable equations. This new hierarchy signifi-

cantly expands the family of integrable equations related to

the NLSE. We have no doubt that this set is not less impor-

tant than the infinite NLSE hierarchy presented earlier. It

was missing from the previous works for the reasons

explained in Sec. VI. Clearly, every single addition of a

physically relevant integrable equation to the collection of

known cases significantly enriches our ability to mathemati-

cally describe complicated evolution problems. Our new

hierarchy contains an infinite number of equations with free

variable parameters. We stress that the parameters do not

need to be small, whereas they must be small for perturba-

tion techniques. They are finite, and their presence allows

that these equations can be adjusted to practical applications

as closely as possible.

Moreover, we have presented the lowest-order operators

of this hierarchy in explicit form, allowing us to deal with

individual equations of the hierarchy using relatively simple

common tools. Explicit forms simplify the handling of these

equations without the excessive complexities of other mathe-

matical formulations.

Of course, solving these equations is another matter.

Finding solutions of these equations is a difficult task. As the

original Sasa-Satsuma equation has much more involved sol-

utions than the NLSE, the solutions of this hierarchy can

also be highly complicated. Nevertheless, some solutions of

the whole infinite hierarchy can even be written in explicit

form. We provided a few simple examples demonstrating

this. More complex solutions need more effort to derive, but

the task can be done due to the integrability of the hierarchy.

We have also shown that this hierarchy is closely related

to the hierarchy of mKdV equations. This way, the intercon-

nections between various cases can be established. One clear

advantage of having a new hierarchy is the following. Having

integrable cases as reference equations, we can construct

approximations around them, thus significantly increasing the

set of cases that can be treated analytically. Even if some par-

ticular equation does not describe a certain application accu-

rately, it can be made close to it using approximations around

the integrable case. Thus, step-by-step, more practical prob-

lems of interest can be solved using the closest integrable

equation and its approximations.

To conclude, we believe that the hierarchy of equations

that we have found here is not the last one. Even more

involved hierarchies based on NLSE may be constructed in

future. This is just a question of time.
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