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Abstract. The study of resonant dielectric nanostructures with a high refractive index is a new research
direction in the nanoscale optics and metamaterial-inspired nanophotonics. Because of the unique
optically induced electric and magnetic Mie resonances, high-index nanoscale structures are expected to
complement or even replace different plasmonic components in a range of potential applications. We
study a strong coupling between modes of a single subwavelength high-index dielectric resonator and
analyze the mode transformation and Fano resonances when the resonator’s aspect ratio varies. We
demonstrate that strong mode coupling results in resonances with high-quality factors, which are related
to the physics of bound states in the continuum when the radiative losses are almost suppressed due to
the Friedrich–Wintgen scenario of destructive interference. We explain the physics of these states in
terms of multipole decomposition, and show that their appearance is accompanied by a drastic change in
the far-field radiation pattern. We reveal a fundamental link between the formation of the high-quality
resonances and peculiarities of the Fano parameter in the scattering cross-section spectra. Our
theoretical findings are confirmed by microwave experiments for the scattering of high-index cylindrical
resonators with a tunable aspect ratio. The proposed mechanism of the strong mode coupling in single
subwavelength high-index resonators accompanied by resonances with high-quality factors helps to
extend substantially functionalities of all-dielectric nanophotonics, which opens horizons for active and
passive nanoscale metadevices.
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1 Introduction
The physics of resonant structures with a strong mode coupling
is of fundamental importance, and is responsible for a variety of
interesting phenomena governing both transport and localiza-
tion of waves. The modes supported by traditional resonators
and microcavities1 exist due to the reflection of waves from
the resonator’s boundaries under the conditions of constructive
interference. To achieve high values for the resonator’s quality
factor (Q-factor), one can improve reflectivity, whether by using
metals,2,3 photonic bandgap structures,4 or the total internal reflec-
tion at glancing angles of incidence in whispering-gallery-mode

(WGM) resonators.5 Such physical mechanisms require
large-sized cavities with a complex design. A more attractive
way to confine light is to use destructive interference in the re-
gime of strong mode coupling.6–8 This mechanism is related to
the physics of bound states in the continuum (BIC).9 It was first
proposed in quantum mechanics by Friedrich andWintgen10 and
then was extended to acoustics11–13 and electrodynamics.14,15

A true optical BIC is a mathematical abstraction, as its realiza-
tion demands either infinite size of the structure or zero (or in-
finite) permittivity.16–18 However, the BIC-inspired mechanism
of light localization makes possible realization of high-Q states
in photonic crystal cavities and slabs,15,17,19 coupled waveguide
arrays,20–22 dielectric gratings,14 core–shell spherical particles,18 di-
electric resonators,23–26 and hybrid plasmonic-photonic systems.27*Address all correspondence to Yuri S. Kivshar, E-mail: ysk@internode.on.net
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By definition, theQ-factor of a true BIC is infinite. Hence, in
the wave scattering, BIC manifests itself as a “collapse” of the
Fano resonance when the width of the resonance vanishes and
the Fano feature disappears from the scattering spectrum.28,29 In
practice, both Q-factor and the width of the Fano resonance at
the frequency of BIC remain finite because of absorption, finite-
size samples, roughness, and other imperfections.30 Remarkably,
in terms of the scattering matrix, BIC corresponds to merging of
a pole and a zero of the scattering operator on the real axis.31 The
properties of the Fano resonances in the systems with BICs have
been considered in several studies.15,17,18

A conventional device supporting light localization via
a BIC-inspired mechanism is based on periodic photonic
structures17 or chains of scatterers.32 For these structures, strong
localization can be achieved only for a large number of scatter-
ers because it is governed by their mutual interference. Other
implementations of BICs in photonic structures were presented
in Refs. 18 and 25. In the former work (Ref. 18), the design is
based on a metallic box with a single dielectric scatterer inside.
Although the conditions of true BICs can be achieved here by
imitating periodic boundary conditions for such a unit cell, the

structure is not subwavelength, and it demands using metallic
components. The latter work (Ref. 25) describes a single scat-
terer, but it employs near-zero refraction index constituents that
require large scales of the structure,33 especially, at optical
frequencies. Recently, BIC-inspired supercavity modes in the
subwavelength dielectric resonators without singular permittiv-
ity values were proposed theoretically.8 However, the coexist-
ence of the Fano resonance as the effect of weak coupling
and strong mode coupling underlying BIC is a vital problem
of modern photonics.

In this paper, we demonstrate, both theoretically and exper-
imentally, strong light localization and existence of quasi-BICs
in the simplest object—a single homogeneous cylindrical sub-
wavelength dielectric resonator in free space. We show that
quasi-BICs appear in accord with the Friedrich–Wintgen inter-
ference mechanism because of strong coupling between Mie-
like and Fabry–Perot-like modes. We develop an analytical
approach to describe light scattering by finite-size dielectric res-
onators and reveal close relationships between the peculiarities
of quasi-BICs and the critical behavior of the Fano asymmetry
parameter in the strong coupling regime. We show that the Fano
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Fig. 1 Strong coupling of modes in a dielectric resonator. (a) TE- and TM-polarized waves incident
on a dielectric cylindrical resonator with permittivity ε1 ¼ 80, radius r , and length l placed in vac-
uum (ε2 ¼ 1). (b) Distribution of the electric field amplitude jE j for the Mie-like mode TE1,1;0 (point
A) and Fabry–Perot-like mode TM1,1;1 (point B). (c) and (d) Dependencies of the total SCS of the
cylinder σ normalized to the projected cross-section S ¼ 2r l on the aspect ratio of the cylinder and
frequency rω∕c ¼ 2πr∕λ for TM and TE-polarized incident waves, respectively. The calculations
are carried out with the step of r∕l ¼ 0.003. In panels (c) and (d), the regions of the most pro-
nounced avoided crossing are marked by red circles.
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asymmetry parameter becomes singular at the frequency of the
quasi-BIC, and it vanishes when the mode becomes almost dark
for far-field excitation. We derive an exact form of coupling co-
efficients between modes and corresponding Rabi frequencies.
We analyze effects of material losses and reveal that the mode
coupling remains strong even for highly absorptive resonators.
Our findings make evident the counterintuitive fact that even a
subwavelength dielectric resonator could provide strong light
localization.

2 Results

2.1 Interplay of Mie and Fabry–Perot Modes

We start our study with numerical simulations of the scattering
cross-section (SCS) σ of a finite dielectric cylinder with permit-
tivity ε1 ¼ 80, radius r, and length l placed in vacuum (ε2 ¼ 1),
as shown in Fig. 1(a). The spectra are calculated by using the
CSTMicrowave Studio software and T-matrix computations.34,35

The electric field of the incident wave is assumed to be
perpendicular to the axis of the cylinder [see Fig. 1(a)]. To com-
pare σ for cylinders with different aspect ratios, we normalize
σ by the projected cross section of the resonator, S ¼ 2rl. The
maps of the normalized SCS σ∕S calculated for cylinders with
different aspect ratios r∕l excited by TM and TE-polarized
waves are shown in Figs. 1(c) and 1(d), respectively.
According to the standard nomenclature (see, e.g., Ref. 36),
we denote the modes of a cylindrical resonator as TEn;k;p
and TMn;k;p, where n; k; p are the indices denoting the azimu-
thal, radial, and axial wavenumbers, respectively. Generally
speaking, distinguishing between TEn;k;p and TMn;k;p modes
for a cylinder of a finite length is justified only for n ¼ 0.
For other cases, the polarization is hybrid.37 In the case of ar-
bitrary n; k; p, the mode polarization is mixed. Thus, under
the terms “TE” or “TM,” we further imply the dominant polari-
zation of the modes.

The low-frequency spectrum of the dielectric cylinder under
consideration consists of three types of modes. The modes with
the axial index p ¼ 0 and azimuthal index n ¼ 0,1 demonstrate
a low-frequency shift with changing r∕l. They are formed
mainly due to reflection from a side wall of the cylinder, and
they could be associated with the Mie resonances of an infinite
cylinder [see Figs. 1(a) and 2(a)]. The modes with the indices
p > 0 and n ¼ 0,1 demonstrate a strong shift to higher frequen-
cies with increasing aspect ratio of r∕l. They are formed mainly
due to reflection from the faces of the cylinder, and they could
be associated with the Fabry–Perot modes [see Figs. 1(a) and
2(a)]. The modes with the azimuthal index n ¼ 2,3; ::. are
formed due to the wave incident on the side wall of the cylinder
at the angles bigger than the total internal reflection angle,
which is about 6.4 deg for ε1 ¼ 80. Therefore, they are close
in nature to the whispering gallery modes [see Fig. 2(a)] and
their high Q-factor is explained by total internal reflection
but not by destructive interference as we have for quasi-BIC.
The properties of WGMs are well studied (see, e.g., Refs. 5,
38, and 39); we focus on the Mie-like (TE1,1;0) and Fabry–
Perot-like (TM1,1;1) modes. Their electric field distributions
are shown in Fig. 1(b).

In quantum mechanics, in the simplest case, the system with
light–matter interaction is described by a sum of Hamiltonian
without interaction Ĥ0 and an interaction potential V̂ (see,
e.g., Ref. 40). The diagonal components of V̂ are responsible
for the energy shift, and the off-diagonal components are

responsible for the coupling. The interaction results in a mixing
of the light and matter states and in appearance of an avoided
resonance crossing—the characteristic feature of the strong cou-
pling regime.41

In electromagnetism, due to the fact that a resonator is an
open system, description of the interaction between the modes
becomes more complicated. There are two main approaches de-
scribing the interaction between the modes in an open system.
The first one considers an open system (dielectric cylindrical
resonator in our case) as a closed system with nonradiating
modes jφai and jφbi interacting with a continuum of the radi-
ation modes outside of the resonator in accord with the
Friedrich–Wintgen mechanism10 [Fig. 2(b)]. The difficulty of
this method is to correctly define the basis of the nonradiating
modes and their coupling constants with the radiation con-
tinuum. In the second approach, the resonator is primordially
considered as an open non-Hermitian system, characterized
by a complex eigenfrequency spectrum. In this approach,
a small change of the resonator shape could be described as
a perturbation δεðrÞ playing a role of the interaction potential
V̂ between modes jφai and jφbi (see Refs. 6 and 42). In our
case, a perturbation δεðrÞ is responsible for change in the aspect
ratio of the cylindrical resonator [Fig. 2(c)]. This method is well
developed for quantum mechanics and electrodynamics.43–47 It
allows one to find the spectrum, eigenmodes, and interaction
constants straightforwardly from the Maxwell’s equations
(see Appendix B).

(a)

(b)

(c)

Fig. 2 Modes of a dielectric resonator and models of their cou-
pling. (a) Classification of eigenmodes of a dielectric resonator.
(b) Friedrich–Wintgen approach describing an open cylindrical
resonator as a closed resonator and a radiation continuum.
Eigenmodes of the resonator interact via the radiation continuum.
(c) Non-Hermitian approach describing an open cylindrical reso-
nator by a complex spectrum of eigenfrequencies. Eigenmodes
of the resonator interact via perturbation δεðrÞ responsible for
change in the resonator aspect ratio.
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For the cylindrical resonator, the strong coupling between the
Mie-like and Fabry–Perot-like modes is clearly manifested in
the map of the SCS as avoided resonance crossing points
[Figs. 1(c) and 1(d)]. The most pronounced regions of the
avoided resonance crossing are marked by red ellipses in
Fig. 1(d). More detailed analysis shows that in the vicinity of
the avoided resonance crossing, the Q-factor of one of the
coupled modes becomes very high, which corresponds to the
appearance of a quasi-BIC. The dramatic increase in the Q-fac-
tor is a result of destructive interference between the modes with
similar radiation patterns in the far field.

2.2 Analysis of the Fano Parameter

The scattering of light by high-index dielectric particles is gov-
erned by the Mie resonances of the structure. In the case of
highly symmetric geometries, such as infinite rods,48,49 spheres,50

or core–shell particles,51 it has been shown by means of the Mie
theory that the SCS represents a series of Fano resonances
where each resonance can be described by the Fano formula.52,53

For other designs of resonators, e.g., finite dielectric cylinders,
analytical Mie solution does not exist because the variables of
the Maxwell’s equations are not separable. However, descrip-
tion of the SCS by the Fano formula is still convenient but,
in general, Fano parameters are introduced phenomenologically.
The most challenging problem is the determination of exact
expressions for Fano parameters in a concise and clear form.
It is worth mentioning that the Fano formula for resonators
with complicated geometries can be obtained but for special
assumptions.54

In this paper, we derive an elegant analytical solution for the
finite-size cylinder scattering problem by proving rigorously
that SCS of a lossless dielectric cylinder irradiated by a plane
wave represents the conventional Fano formula. By this ap-
proach, we investigate the strong coupling between Mie-like
and Fabry–Perot-like modes and reveal the relationship between
the peculiarities of the mode spectra, particularly, emergence of
quasi-BICs, and the singularities of Fano parameters.

We assume harmonic time dependence of the incident field in
the form Eince−iωt and determine SCS through the extinction
cross section, which for the lossless case can be calculated using
the optical theorem.55 The main idea of our approach is the ex-
pansion of scattered field amplitude into the sum of independent
terms, where each term corresponds to an eigenmode of the cyl-
inder. This becomes possible by applying the recently developed
procedure of the resonant-state expansion that allows for rigor-
ous characterization of eigenmode spectrum of open optical
resonators.56 The cylinder eigenmodes (or resonant states) are
treated as self-standing resonator excitations with a complex
spectrum describing both the resonant frequencies ω0 and damp-
ing rates γ. Our straightforward but cumbersome calculations
(see Supplementary Materials) show that the frequency depend-
ence of the SCS could be rigorously described by the Fano for-
mula and the Fano parameters could be expressed analytically
through the material and geometrical parameters of the cavity:

σðωÞ ¼ c2

ω2jEincj2
�

A
1þ q2

ðqþ ΩÞ2
1þΩ2

þ IbgðωÞ
�
; (1)

A ¼ cjκj2∕2γ; (2)

q ¼ − cot Δ; (3)

Δ ¼ argðκÞ; (4)

where Ω ¼ ðω − ω0Þ∕γ is the relative frequency detuning, q is
the Fano asymmetry parameter, A is the smooth amplitude of the
peak, Δ is the resonant phase, and Ibg is the background contri-
bution describing the nonresonant scattering terms. For ω in the
vicinity of one of the eigenfrequencies ω0 − iγ, frequency
dispersion of Fano parameters can be neglected. The key param-
eter of the model, which determines both q and A, is the coupling
coefficient between the electric field of the resonant state Ers and
of the incident field Einc:

κ ¼ −ω2
0

c2

Z
cylinder

drðε1 − ε2ÞErsðrÞ · Eincðω0; rÞ: (5)

The developed approach allows for investigation of the evolution
of the Fano parameters of coupled modes in a parametric space
(for different aspect ratios of the cylinder). As an example, we
apply it to study the coupling between TE1,1;0 and TM1,1;1
modes, of which the SCS spectrum in the vicinity of the avoided
resonance crossing is shown in Fig. 3(a). The calculated reso-
nance positions,Q-factor, and Fano parameters A and q together
with results of extraction of the same data by numerical fitting of
the SCS to the Fano formula are shown in Figs. 3(b)–3(e).

Analysis of Fig. 3 reveals strong correlation between the evo-
lution of Fano parameters and the quality factor of the high-
frequency band. Foremost, q tends to infinity exactly at
r∕l ¼ 0.543, where the quasi-BIC with high Q-factor emerges.
Next, at r∕l ¼ 0.59, where the SCS shows a narrow deep with
a symmetric quasi-Lorentzian antiresonance and q ¼ 0, the
peak amplitude A decreases dramatically to a negligible but
nonzero value. This means that mode excitation from the far
field is strongly suppressed so the mode becomes almost dark.
Importantly, we can claim that a quasi-BIC with high Q-factor
and a dark mode with vanishing intensity manifest themselves at
different values of the aspect ratio. This counterintuitive result
shows that quasi-BIC differs substantially from a true BIC sup-
ported by unbound structures, which is always a dark mode.
Although true BICs are invisible in the scattering spectrum,
quasi-BICs can be tracked easily by controlling peak shapes
in the SCS.

To gain deeper insight into a link between formation of
quasi-BIC and peculiarities of Fano parameters in SCS spectra,
we consider the radiation losses as a perturbation. This approach
is natural and justified as we are working in the vicinity of
quasi-BIC, where radiation losses are strongly suppressed.
Remarkably, nonperturbative extension of this method is devel-
oped in Ref. 57. In general, radiation continuum represents a set
of independent channels that we label by α. For a single reso-
nator, the independent channels can be attributed to the spherical
multipoles. The details of the multipole analysis of quasi-BICs
are provided in Sec. 2.3. The coupling amplitude Dα between
the resonant state and the radiation continuum mode Eα is given
by (see Supplementary Materials)

Dα ¼ −ω2
0

c2

Z
cylinder

drðε1 − ε2ÞErsðrÞ · Eαðω0; rÞ: (6)
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According to the reciprocity theorem, the same amplitudes
Dα determine coupling with the incident field.58 Following
the perturbation theory, we represent each resonant state Ers

as the sum of a closed resonator mode Eð0Þ and first-order cor-
rection iδE responsible for the radiation. Therefore, the cou-
pling constant can be also expanded as Dα ¼ Dð0Þ

α þ iδDα.
The inverse radiation lifetime γ of the resonant state can be cal-
culated as the sum of radiation losses into all radiation channels
(like the Fermi’s golden rule in quantum mechanics):

2γ ¼ c
X
α

jDαj2: (7)

Furthermore, the coupling coefficient κ between the resonant
state and the incident field [see Eq. (5)] can be decomposed
into a series of independent contributions of all channels [see
Supplementary Materials). For most of the eigenmodes, their
radiation is mainly determined by a single dominant channel,
which we denote as Dmain. The remaining small amount of
power goes via other channels, which we denote as
Dother ¼

P0
α Dα [see Fig. 4(a)]. The sum is taken over all radi-

ation channels except the main one. In these notations, the criti-
cal behavior of the Fano asymmetry parameter q is determined
by the following simple conditions:

δDmain þ δDother ¼ 0; q → ∞; (8)

Dð0Þ
main þDð0Þ

other ¼ 0; q ¼ 0: (9)

Inspection of Eqs. (7)–(9) reveals the crucial role of the main
channel in both the formation of high-Q modes and critical
behavior of q. If radiation to the main channel is completely

suppressed [Dð0Þ
main þ δDmain ¼ 0], we get a quasi-BIC, charac-

terized by minimal radiation losses. However, the Fano asym-
metry parameter q tends to infinity not exactly at quasi-BIC, but
very close to it when the conditions of Eq. (8) are fulfilled. The
dark mode (q ¼ 0) is formed under the conditions of Eq. (9)
when the radiation into the main and the rest channels compen-
sates each other in the first approximation.

For deeper understanding, we focus on the particular exam-
ple and investigate the evolution of coupling coefficients Dα for
the high-frequency band of the avoided resonance crossing be-
tween TE1,1;0 and TM1,1;1 modes. In this case, the main channel
represents electric dipole radiation and other channels are domi-
nated by the magnetic quadrupole radiation. The comparison of
the evolution of the inverse radiation lifetime γ, phase Δ, and the
amplitudes Dð0Þ and δD for different channels with respect to
r∕l is shown in Figs. 4(b)–4(e), respectively.

Figures 4(d) and 4(e) show that the radiation to the main
channel is suppressed by virtue of coupling between TE1,1;0
and TM1,1;1 modes, and it completely vanishes at r∕l ¼
0.543 where the quasi-BIC emerges. Importantly, in this regime

δDmain nulls simultaneously with Dð0Þ
main as both of them are pro-

portional to the rate of radiation into the main channel. Under

further change in the aspect ratio r∕l, the amplitudes Dð0Þ
main and

δDmain become negative and continue to decrease. At
r∕l ¼ 0.546, the perturbation δDmain compensates δDother,
and q goes to infinity [Eq. (8)]. For further increase in the aspect

ratio, the unperturbed amplitude Dð0Þ
other of the nondominant

channels becomes exactly opposite to Dð0Þ
main at r∕l ¼ 0.575.

Thus, conditions of Eq. (9) are satisfied and q ¼ 0.
Therefore, the quasi-BIC and dark modes did not appear at
the same value of the aspect ratio because of the contribution
of other nondominant channels of radiation losses.

(a) (b)

(c)

(d)

(e)

Fig. 3 Avoided resonance crossing, Q-factor, and Fano resonance. (a) Spectra of the normalized
total SCS of the cylinder resonator as a function of its aspect ratio r∕l in the region of the avoided
resonance crossing between the modes TE1,1;0 and TM1,1;1. (b) Peak positions for the low- and
high-frequency modes in the spectra. (c) and (d) Evolution of the quality-factor Q, the peak am-
plitude A [see Eq. (2)], and the Fano asymmetry parameter q [see Eq. (3)] for the high-frequency
mode.
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2.3 Multipole Analysis

To gain deeper insight into the physics of quasi-BIC in a single
resonator, we illustrate cancelation of its radiation losses
through the dominant channel in term of multipoles. The far
field of a single resonator could be expanded into a multipole
series of vector spherical harmonics. Each harmonic plays a role
as an independent radiation channel. One-to-one correspon-
dence between eigenmodes and spherical multipoles can be es-
tablished only for spherical resonators. Any mode of other

resonators is always contributed by the infinite number of multi-
poles. However, in this infinite series it is possible to distinguish
the dominant term (dominant channel) making the main contri-
bution to the radiated power.

It is possible to show using the group symmetry analysis that
for the mode TM1,1;1 the main contribution to the radiation en-
ergy is given by electric dipole moment and the remaining part
of the energy is mainly radiated through the magnetic quadru-
pole moment. For the aspect ratio r∕l of the quasi-BIC, radiation
through the dipole channel becomes negligible, the dominant
radiation channel is the magnetic quadrupole [see Fig. 5(a)]
and the radiation pattern changes dramatically [see Fig. 5(b)].
It is possible to show that all other quasi-BICs demonstrate
similar behavior in far field.59 Therefore, quasi-BICs in single
resonators are manifested not only in the scattering spectra as
a singularity of the Fano asymmetry parameter but also in
the far field, since the radiation pattern changes dramatically.

2.4 Two-Band Model of Strong Mode Coupling

In this section, we discuss the mechanism of strong coupling
between modes in a cylindrical resonator and the reason for
complete suppression of radiation to the main channel. As
shown in the previous section, mode coupling is realized not
in real but in parametric space. This means that the cylinder as-
pect ratio represents the parameter determining the strength of
interaction between modes. Therefore, coupling between the
modes is governed by the perturbation of cylinder permittivity
[see Fig. 2(c)].

Generally, this perturbation mixes all resonant states of
the cylinder. New resonant states of the perturbed resonator
can be found by means of the resonant-state expansion (see
Appendix B), which is a special rigorous technique that allows
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Fig. 5 Multipole decomposition for TM1,1;1 mode. (a) Contribution
of the electric dipole and magnetic quadrupole to the radiated
power of TM1,1;1 mode. (b) Far-field radiation patterns of TM1,1;1

mode for different aspect ratios. Panel B corresponds to the
quasi-BIC.

(a)

(b)

(c)

(d)

(e)

Fig. 4 Relationship between Fano parameter and Q-factor.
(a) Artistic view of the open resonator which radiates into the
main open channel Dmain and other minor channels Dother.
(b) Dependence of the inverse radiation lifetime γ on the cylinder
aspect ratio for the high-frequency mode (see Fig. 3).
(c) Dependence of the phase shift Δ on the aspect ratio r∕l .
(d) Dependence of the zero-order radiation amplitudes D

ð0Þ
main

and D
ð0Þ
other on the aspect ratio r∕l . (e) Dependence of the first-or-

der corrections to the radiation amplitudes, δDmain and δDother on
the aspect ratio r∕l .
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for careful investigation of the spectrum of open systems.
However, in the vicinity of an avoided resonance crossing
the interaction between modes involves only two of them.
Therefore, the general form of the resonant-state expansion
can be reduced to a two-band model.

We start from the two of uncoupled cylinder eigenfunctions
jφai and jφbi with eigenfrequencies ωa − iγa and ωb − iγb, re-
spectively. They undergo strong coupling and the perturbed ei-
genfunction with eigenfrequency ω represents their linear
combination jφi ¼ Cajφai þ Cbjφbi, where coefficients Ca;b
are, in general, complex. The two-band model can be written
as a generalized eigenvalue problem:56

�
ωa − iγa 0

0 ωb − iγb

��
Ca

Cb

�
¼ ω

�
1þ Vaa Vab

Vba 1þ Vbb

��
Ca

Cb

�
:

(10)

Here the perturbation is determined by the symmetric matrix
with complex-valued elements that make the problem
non-Hermitian:

Vij ¼
1

2

Z
drδεðrÞEi

rsðrÞ · Ej
rsðrÞ; i; j ¼ a; b: (11)

Figure 6 shows perfect coincidence of the exact dispersion of
two coupled modes and the two-band model results. Since
both modes possess sufficiently low radiative losses, when
we change cylinder aspect ratio they couple predominantly
in the near-field region inside the resonator. Therefore, when
the coupling is maximal, the coefficients become Ca ¼ 1,
Cb ¼ �1 for low- and high-frequency modes in Fig. 6, respec-
tively. We recall that jφai and jφbi are characterized by
similar far-field patterns, as they have the same mode of
symmetry with respect to azimuthal direction and inversion
symmetry of structure (see Appendix B). This means that
far-field distribution of radiation of the high-frequency mode
in the strong coupling regime is almost suppressed, i.e.,
½jφbi − jφai�jr→∞ ≃ 0. Therefore, the radiation to the main
channel for this value of r∕l becomes completely forbidden,
which explains the formation of high-Q quasi-BIC mode and
the dark mode discussed in the previous section.

The conventional method to characterize strength of mode
coupling is the Rabi frequency ΩR, which is a half of minimal
distance between the dispersion curves of coupled modes (see
Fig. 6). For the two resonances to be spectrally separable, the
minimum mode-splitting needs to be greater than the sum of the
half linewidths of the modes, which is a necessary condition to
observe strong coupling.60 For the avoided resonance crossing
under consideration ΩRr∕c ¼ 0.018, which is 35 times higher
than the sum of the half linewidths, and which clearly manifests
the strong coupling of modes.

2.5 Effect of Material Losses

For the cylindrical resonator analyzed above, we neglect the
material losses and take into account only the radiative ones.
Here, we analyze the effect of material losses on the quality fac-
tor of quasi-BIC and on the conditions of strong coupling.
Figure 7(a) shows the dependence of the total quality factor
Q on the aspect ratio for the high-frequency mode in the vicinity
of the avoided crossing regime between the modes TE1,1;0 and
TM1,1;1 at different material loss level. One can see that the Q-
factor strongly depends on the material losses and could be sub-
stantially decreased. In the presence of material losses, the total
Qtot factor could be estimated as

Q−1
tot ¼ Q−1

rad þQ−1
mat; (12)

Fig. 6 Two-band approximation of strong mode coupling.
Comparison of the exact solution and approximate two-band
model of strong coupling between the modes TE1,1;0 and TM1,1;1.
Green dashed lines are visual guides.

(a)

(b)

Fig. 7 Effect of material losses on the regime of strong coupling
and quasi-BIC. (a) Dependence of the total quality-factor Q
on the aspect ratio for various levels of material losses.
(b) Dependence of Rabi frequency and sum of half linewidths
of the coupled modes on the level of material losses. Insets visu-
alize the ratio between ΩR and linewidths. Here, γþ and γ− are the
damping rates of the modes of the diagonalized Hamiltonian
[Eq. (10)].
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where Qrad and Qmat are responsible for the radiative and
material losses, respectively. Therefore, the results obtained
for the lossless cavity are justified and Qtot ≈Qrad if the radia-
tive losses are dominant (Qrad > Qmat).

Since material losses decrease the Q-factor, they affect the
strength of mode coupling as well. Figure 7(b) shows how
the Rabi frequency ΩR and the sum of the half linewidths
change depending on the level of material losses. The strong
coupling regime breaks when the resonance becomes spectrally
inseparable, which is realized for Im ε ¼ 6. Therefore, even for
relative high absorption the strong coupling can be realized,
which is extremely useful for the experimental measurements
described in the next section.

2.6 Experimental Results

Finally, we perform the experimental study to demonstrate the
existence of the avoided crossing regime between the TE1,1;0
and TM1,1;1 resonances in the microwave frequency range. In
the experiment, the plastic cylindrical vessel filled with water
is placed in the middle between two antennas. The aspect ratio
of the cylindrical resonator is defined by the amount of water. A
photo of the experimental setup is shown in Fig. 8(a) (see
Appendix A for details). The resonator is excited by TE polar-
ized electromagnetic wave incident perpendicular to the cylin-
der axis z [see Fig. 8(a)]. The measured dependence of the SCS
of the cylindrical resonator on its aspect ratio is shown in
Fig. 8(b). The results of the numerical simulations taking into
account the losses in water are shown in Fig. 8(c). One can see
that the experimental positions of the resonances are in a good
agreement with the real part of eigenfrequencies (marked by
white circles) calculated using the resonant-state expansion
method (see Appendix B for details). In spite of losses in water,
which broaden the resonances, the avoided crossing regime be-
tween the TE1,1;0 and TM1,1;1 modes and suppression of SCS
clearly manifest themselves for the aspect ratio in the range
of 0.5 < r∕l < 0.6. Discrepancies between the measured and
calculated maps of SCS could be explained by an imperfect
plane wave radiated by a horn antenna and parasitic scattering

from the auxiliary equipment (holder of the resonator and plastic
cylindrical vessel).

3 Discussion
As we mentioned above, a true BIC is mathematical abstraction
and it is not practically implementable. However for periodic
photonic structures with large numbers of periods, the radiation
of high-Q states could be almost suppressed, being much less
than other loss mechanisms in the system. Such states are closest
to the true BICs. Here, we demonstrate that the radiation losses
can be substantially suppressed, being much smaller than other
losses, via a BIC-inspired mechanism even in a single isolated
resonator. Therefore, BIC in a finite size periodic structure and
quasi-BIC in a single resonator could be indistinguishable in
practice if their radiation losses will be strongly suppressed.
We believe that the proposed concept of quasi-BIC in a single
resonator is more favorable for compact nanophotonic applica-
tions and more easily implementable than other designs.

The developed theory predicts that the shape and amplitude
of the SCS spectra represent an unambiguous indicator of the
quasi-BIC. Namely, both regimes of q ¼ 0 and q → ∞ describe
important features inherent to a true BIC. The latter condition
q → ∞ practically coincides with the emergence of a quasi-
BIC. Therefore, a quasi-BIC could be recognized in the exper-
imental spectra by the naked eye since the asymmetry of the
Fano resonance is easily distinguishable without fitting.

The difference in the aspect ratios corresponding to quasi-
BIC and singularity of q is determined by the magnitude of
radiation losses to nondominant channels. The difference be-
comes negligible with an increase in the permittivity of the res-
onator. Even for high-index dielectric nanostructures in the
visible and near-IR ranges, i.e., ε ∼ 10 to 12, the relative differ-
ence between aspect ratios corresponding to the singular q and
the maximal Q-factor is <5%. The predicted strong coupling
regime and peculiarities of the Fano parameters could be ob-
served in a wide spectral range from the visible to centimeter
wavelengths. These results lift the veil on the nature of
quasi-BICs in single resonators and emphasize the profound
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Fig. 8 Experimental results. (a) Experimental setup for the measurement of SCS spectra of the
cylindrical resonator filled with water depending on its aspect ratio r∕l and frequency ωr∕c.
(b) Measured SCS map demonstrating the avoided crossing regime between TE1,1;0 and
TM1,1;1 resonances. The circles are the real part of eigenfrequencies obtained from the reso-
nant-state expansion method for a dielectric cylinder with the permittivity ε1 ¼ 80 embedded in
air (ε2 ¼ 1). (c) Calculated SCS map of the cylindrical resonator filled with water depending on
the frequency ωr∕c and aspect ratio r∕l . The frequency dispersion of the water permittivity is taken
from Ref. 61.
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relationship between the shape of Fano peak and emergence of
bound states in the continuum.

Remarkably, for BICs in periodic photonic structures, the
nondominant channels are absent because the radiation con-
tinuum is discretized.32 Thus, the leaky modes interact with only
one channel, which in the simplest case represents the zero-or-
der diffraction.62 Therefore, leaky states can transform to true
BICs, when the radiation to the main channel is completely for-
bidden. Since for true BIC, the system of Eqs. (8) and (9) is
satisfied simultaneously, the Fano parameter q becomes ill-
defined, which corresponds to the collapse of Fano resonance.
Furthermore, true BIC is always a dark mode, which can be
easily understood from energy consumption arguments—BIC
does not radiate at all, thus we are not able to pump it. But
for finite-size dielectric cylinders, the collapse of Fano reso-
nance is not manifested; instead of this, Fano parameter mono-
tonically evolves as the cylinder aspect ratio changes and
consistently passes the values q ¼ �∞ and q ¼ 0, where the
mode exhibits features of a true BIC state.

Recently, the study of resonant dielectric nanostructures has
been established as a research direction in modern nanoscale
optics and metamaterial-inspired nanophotonics due to their op-
tically induced electric and magnetic Mie resonances.63,64

However, the Q-factor of Mie resonances is about ten times far-
ther from the values achieved in WGM resonators, photonic
crystals, or Bragg cavities. The proposed mechanism of strong
mode coupling in single high-index dielectric resonators accom-
panied by the emergence of quasi-BIC helps to substantially ex-
tend functionality of all-dielectric nanophotonics. This opens
new horizons for active and passive nanoscale metadevices in-
cluding low-threshold nanolasers, biosensors, on-chip paramet-
ric amplifiers, and nanophotonics quantum circuits.

4 Conclusion
We have demonstrated that a subwavelength homogeneous di-
electric resonator can support strongly interacting modes. We
have shown that the strong coupling regime is accompanied
by the formation of a quasi-BIC when the radiative losses
are almost suppressed due to the Friedrich–Wintgen destructive
interference. The analysis of the SCS reveals an abrupt change
in the Fano asymmetry parameter from minus to plus infinity in
the vicinity of quasi-BICs. Therefore, the quasi-BIC manifests
itself in scattering spectra by the symmetric Lorentzian shape.
Appearance of quasi-BIC is accompanied by drastic change of
far-field radiation pattern explained by suppression of the radi-
ation through the dominant multipole. This singularity could be
used as an indication of quasi-BIC. In contrast to true BIC, the
Fano resonance feature for quasi-BIC does not vanish com-
pletely, since it is not completely decoupled from the radiation
continuum. We have confirmed our theoretical results in a mi-
crowave experiment using a cylindrical resonator filled with
water. Our results open new horizons for active and passive op-
tical nanodevices including efficient biosensors, low threshold
nanolasers, perfect filters, waveguides, and nanoantennas.

5 Appendix A: Experimental Approach
The sample used for the experimental study of SCS is a hollow
plastic cylinder opened from the top with the radius of
r ¼ 20.25 mm and height of l ¼ 160 mm. The thickness of
the cylinder wall is w ¼ 1.5 mm. As a dielectric material to fill
the cylinder, we employed a distilled water that is characterized

by permittivity of ε1 ≈ 80 at room temperature.61 Forward scat-
tering measurements were performed in an anechoic chamber.65

A pair of wideband horn antennas (TRIM 0.75 to 18 GHz; DR)
were positioned facing each other at a distance of 4 m with the
sample placed at the midpoint; see Fig. 8(a). The measurement
used a two ports vector network analyzer (VNA; Agilent
E8362C) transmitting a continuous wave. The first antenna
was connected to the first port of the VNA and provided a near
plane-wave excitation in the frequency range of 0.8 to 5 GHz.
The second horn antenna connected to the second port of the
VNA was employed as a receiver. The frequency range of
0.8 to 5 GHz was swept using 10,001 frequency points.
Eight such sweeps were averaged for each of the sample mea-
surement, background measurement, and calibration measure-
ment. Calibration measurements were performed using a
metal sphere with the radius of 7.5 mm. During the sample mea-
surements, we added the water to the cylinder changing its as-
pect ratio r∕l from 0.125 to 2.5 with the average step of
0.01. The optical theorem was used to calculate the SCS
from the imaginary part of the measured forward scattering
amplitude.66 To suppress the effects of multiple reflections be-
tween the sample and the antennas, the postprocessing of mea-
sured data by means of time-domain gating was employed.67

6 Appendix B: Analytical Model
We calculate the spectrum of complex eigenfrequencies of a di-
electric cylindrical resonator by applying the rigorous perturba-
tive method, the resonant-state expansion.44 We expand the
fields Ej ðj ¼ n; k; pÞ of eigenmodes of the cylindrical resona-

tor over the eigenfunctions Eð0Þ
α of a homogeneous dielectric

sphere with the same value of permittivity as for the cylindrical
resonator,

Ej ¼
X
α

bjαE
ð0Þ
α ; (13)

where Eð0Þ
α satisfies the Maxwell’s equations with boundary

conditions of outgoing waves:

∇ × ∇ × Eð0Þ
α ¼ εðrÞω

2
α

c2
Eð0Þ
α : (14)

Resonant states Ej satisfy the perturbed equation

∇ × ∇ × Ej ¼ ½εðrÞ þ δεðrÞ�Ω
2
j

c2
Ej; (15)

where δεðrÞ is a perturbation that transforms a sphere into an
inscribed cylinder.

The problem is non-Hermitian because of outgoing boundary
conditions. Therefore, the eigenvectors grow exponentially at
large distances, and their proper normalization deviates from
the standard Hermitian anzatz.44 However, Eð0Þ

α forms a com-
plete set inside the region of a dielectric sphere and we use them
as a basis.

The problem is reduced to the matrix equation44

1

ωα

X
β

ðδαβ þ VαβÞbjβ ¼
1

Ωj
bjα; (16)
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with the elements of the perturbation matrix Vαβ as defined in
Eq. (11). We should note that here the operator V̂ is responsible
for the transformation of the sphere into the cylinder. Thus, this
operator V̂ differs from those defined in Figs. 2(b) and 2(c).

The resonant-state expansion represents a generalization of
the Brillouin–Wigner perturbation theory for non-Hermitian
systems.46 Therefore, numerical accuracy is determined by
the size of the basis set N. We choose the basis in such
a way that for a given orbital number l, azimuthal number n,
and parity, we select all resonant states with frequencies lying
inside the circle jωR∕cj < 10, where R is the radius of the
sphere that describes the cylinder. We consider l < 80, which
results in N ¼ 1035 that is enough to achieve 99.9% accuracy
for calculation of real part of frequencies. Since the perturbation
Vαβ conserves the axial symmetry and mirror (z → −z) sym-
metry, we study problem for each azimuthal index n and each
parity independently.

The dependence of the complex spectrum of eigenmodes
with azimuthal indices n ¼ 0;�1, which are even with respect
to up-down reflection symmetry, versus the cylinder aspect ratio
r∕l, is shown in Fig. 9 by dotted lines. Dot sizes are proportional
to the Q-factor. We can clearly observe multiple avoided reso-
nance crossings between modes with the same azimuthal num-
ber. In the vicinity of an avoided crossing point, the Q-factor of
one of the coupled modes dramatically increases, which con-
firms the results of SCS calculations [see Figs. 1(c) and 3(c)].

In the high-frequency region, the behavior of interaction be-
tween modes becomes more complicated, e.g., Q-factors of
some of n ¼ �1 modes remain high in a broad range of param-
eters x and r∕l, as shown in Fig. 9. We explain this phenomenon
as strong coupling between three and more eigenmodes with
complex spectrum. This broadband high-Q regime will be
the subject of our further investigations. In this article, we re-
strict our studies to the mechanism of strong coupling between
two eigenmodes, because it illustrates the basic peculiarities of
spectrum of subwavelength dielectric resonators.
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