
Proceedings of Machine Learning Research 103:364–366, 2019 ISIPTA 2019

Imprecise Compositional Data Analysis: Alternative Statistical Methods

Michael Smithson MICHAEL.SMITHSON@ANU.EDU.AU

Research School of Psychology, The Australian National University, Canberra, Australia

Abstract
This paper briefly describes statistical methods for
analyzing imprecise compositional data that might be
elicited from approximate measurement or from expert
judgments. Two alternative approaches are discussed:
Log-ratio transforms and probability-ratio transforms.
The first is well-established and the second is under
development by the author. The primary focus in this
paper is on generalized linear models for predicting
imprecise compositional data.
Keywords: compositional data, imprecise data, beta
distribution, cdf-quantile distribution, general linear
model, copula

1. Introduction

Data that must sum to a constant value are known as “com-
positional”, and coherent probability assignments are a
typical example. Given a composition consisting of K parts,
suppose that we have N collections of points in the K-
simplex, 0 ≤ π

( ji)
ki ≤ 1, for k = 1, . . . ,K and i = 1, . . . ,N,

such that for each i they sum to 1 across the k. For the ith

collection, there are Ji points, indexed by the bracketed ji
superscript. These collections may have been derived from
credal sets, coherent lower and/or upper previsions, or sets
of desirable gambles.

For the most part, this paper will set aside the details of
these collections. Instead, our main topic is how to con-
nect these collections with regression or generalized linear
models (GLMs) that treat them as dependent variables. We
further assume that the modeler has a set of covariates
(whether continuous or categorical) to be used as predictors
in such a GLM.

Although methods for statistical analysis of precise com-
positional data are well-established, their application to
imprecise compositional data does not seem to have been
developed. This short paper initiates investigations into
this application. There are two well-established approaches
to modeling compositional data: Dirichlet regression and
log-ratio regression. A third, probability-ratio regression, is
under development by the author. We will focus primarily
on comparing the log-ratio transforms and probability-ratio
transforms because these approaches are directly related.
The primary focus in this paper is on generalized linear
models for predicting imprecise compositional data.

2. Log-Ratio Transform Method

The log-ratio transform method [1] maps data from the sim-
plex to an unrestricted vector space, via the logit transform
of odds-ratios. For instance, suppose the Kth composition
part is the part of the composition against which we would
like to compare the other parts. Then Aitchison’s “additive
log-ratio” transform would yield

η
( ji)
ki = log

((
π
( ji)
ki

1−π
( ji)
ki

)/(
π
( ji)
Ki

1−π
( ji)
Ki

))
, (1)

for k = 1, . . . ,K −1.

The η
( ji)
ki are considered as continuous random variables

on the real line, and therefore may be analysed with ap-
propriate statistical methods for such variables, such as
multi-level linear regression with multivariate Gaussian
errors. Predictors in these regression models may be in-
troduced at either the collection level, the compositional
part level, or even at the ji level (e.g., for distinguishing
between lower and upper probabilities).

The log-ratio framework enjoys several attractive prop-
erties that account for its popularity. Chief among these are
subcompositional coherence and permutation invariance.
Subcompositional coherence means that the inferential out-
comes of an analysis of any subcomposition should remain
the same for that analysis in the entire composition. Per-
mutation invariance guarantees that outcomes remain the
same regardless of the ordering of the components in a
composition.

Although it is straightforward to use, the log-ratio frame-
work has important limitations. First, it is unable to ex-
tend to non-Gaussian distributions without adding more
parameters (e.g., via skew-normal distributions). Second,
dispersion is routinely ignored in the log-ratio framework,
despite its obvious relevance to doubly-bounded and sum-
constrained random variables. Third, the logit transform is
unsuited for dealing with zeroes or ones in the data. The
popular approach of adding a small constant to the zeroes
or subtracting it from the ones introduces difficulties re-
garding the arbitrary choice of its magnitude and sensitivity
to that choice.
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3. Probability-Ratio Transform Method

The limitations imposed by the assumption of multivariate
normality, on the other hand, motivate us to seek alterna-
tives to the log-ratio transform. We therefore now consider
probability-ratios. Rather than taking logs of relative odds,
we take the corresponding relative probabilities and model
them. Turning once again to our example with the Kth

category as the base, the relevant probability ratios are

ν
( ji)
ki = π

( ji)
ki

/(
π
( ji)
ki +π

( ji)
Ki

)
, (2)

for k = 1, . . . ,K −1. Any of the log-ratio transforms has a
probability-ratio analogue, so this approach inherits both
subcompositional coherence and permutation invariance.
Moreover, the probability-ratio approach includes struc-
tures not found in the log-ratio literature, such as the stick-
breaking construction (See [6] for a demonstration). It is
less clear at the present stage of development whether
distance-based techniques (e.g., certain types of cluster
analysis) employed in the log-ratio framework translate
into the probability-ratio framework. Smithson (2019) iden-
tifies conditions under which Euclidean distances in the
unit hypercube between probability-ratios do not have the
same rank-order as their log-ratio Euclidean distance coun-
terparts.

The ν
( ji)
ki may be modeled using any distribution whose

support is the open unit interval (0,1). Many flexible two-
parameter distributions are available, such as the beta dis-
tribution and the CDF-quantile family [7]. GLMs may be
constructed following the same structure as presented in [7],
although these are not GLMs in the formal sense because
the distributions employed here are not members of the ex-
ponential family. In fact, if necessary, a different marginal
distribution can be specified for each probability-ratio com-
ponent. Note that all of this added flexibility in the marginal
distribution models is achieved with the same number of
parameters as in the log-ratio setup, i.e., two-parameter
marginal distributions and the same regression models. Fur-
thermore, the inclusion of the CDF-quantile distribution
family enables flexible quantile regression models that are
unavailable in the log-ratio framework.

Dispersion typically is not modeled with covariates in
the log-ratio literature, although this could be done with
a bit of extra work. However, explicit dispersion submod-
els are readily accommodated in both beta-distribution [8]
and CDF-quantile distribution regression models [7]. Pre-
liminary work using real data-sets has already indicated
that modeling dispersion adds important insights to com-
positional data analysis and can correct location model
misspecification [6].

The dependency structure may be modeled via random-
effects models for the marginal parameters [9]. Alterna-
tively, the dependency structure can be modeled with
copulae or copula vines [5]. The conventional two-stage

maximum-likelihood estimation procedure for this enables
the marginal distributions to be modeled separately from
the dependency structure.

Finally, the zeroes problem can be dealt with via hurdle
models (in the log-ratio as well as probability-ratio setting).
Shou and Smithson [5] have implemented hurdle models in
their cdfquantreg package. Given that the beta regression
GLM and many of the CDF-quantile distributions’ GLMs
use link functions that are defined only on (0,1), a hurdle
model rather than a zero-inflated model is technically the
relevant alternative.

4. Dirichlet Methods

Dirichlet regression models are a natural and popular choice
for modeling compositional data [4]. These models have
two main limitations. First, the Dirichlet distribution’s
marginal distributions are beta distributions sharing the
same precision parameter, so all parts of the composition
must have the same submodel for their precisions. This
limits its ability to model multivariate heteroskedasticity.
On the other hand, a probability-ratio model with beta
marginals can incorporate a unique precision submodel for
each marginal distribution. Second, a single Dirichlet dis-
tribution can model only negative associations among the
variables. Although this restriction may be relaxed when
covariates are modeled or other kinds of mixture models
are employed [3], the probability-ratio approach does not
have this limitation even for the single-distribution case.

Promising imprecise Dirichlet process models [2] have
been developed and applied to non-parametric Bayesian
versions of hypothesis tests such as Wilcoxon tests. A sys-
tematic comparison between log-ratio, probability-ratio,
and imprecise Dirichlet approaches to modeling imprecise
compositional data has yet to be completed and so is be-
yond the scope of this paper.

In conclusion, we have briefly surveyed practical statisti-
cal methods for analyzing the kinds of imprecise compo-
sitional data that may arise from measurement or expert
judgments, focusing on two related methods: The well-
established log-ratio approach, and a new “probability ra-
tio” approach. Much remains to be done in evaluating their
respective merits, for instance their relative sensitivities
to noise or other sources of imprecision. The probability-
ratio approach shows promise in overcoming some of the
limitations of the log-ratio method, and both methods can
complement one another.
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