
Request-BasedGossipingwithoutDeadlocks ?

Ji Liu, Shaoshuai Mou, A. StephenMorse, Brian D. O. Anderson, Changbin Yu

Abstract

By the distributed averaging problem is meant the problem of computing the average value of a set of numbers possessed by
the agents in a distributed network using only communication between neighboring agents. Gossiping is a well-known approach
to the problem which seeks to iteratively arrive at a solution by allowing each agent to interchange information with at most
one neighbor at each iterative step. Crafting a gossiping protocol which accomplishes this is challenging because gossiping is
an inherently collaborative process which can lead to deadlocks unless careful precautions are taken to ensure that it does not.
Many gossiping protocols are request-based which means simply that a gossip between two agents will occur whenever one
of the two agents accepts a request to gossip placed by the other. In this paper, we present three deterministic request-based
protocols. We show by example that the first can deadlock. The second is guaranteed to avoid deadlocks by exploiting the
idea of local ordering together with the notion of an agent’s neighbor queue; the protocol requires the simplest queue updates,
which provides an in-depth understanding of how local ordering and queue updates avoid deadlocks. It is shown that a third
protocol which uses a slightly more complicated queue update rule can lead to significantly faster convergence; a worst case
bound on convergence rate is provided.

1 Introduction

Over the past decade, there has been considerable inter-
est in developing algorithms for distributed computation
and decision making among the members of a group of
sensors or mobile autonomous agents via local interac-
tions. Probably the most notable among these are those
algorithms intended to cause such a group to reach a
consensus in a distributed manner [4, 8, 13].

We are interested in distributed averaging, a particu-
lar type of consensus process which has received much
attention recently [15]. A typical distributed averaging
process deals with a network of n > 1 agents and the
constraint that each agent i is able to communicate
only with certain other agents called agent i’s neigh-
bors. Neighbor relationships are conveniently character-
ized by a simple, undirected, connected graph A in which

? Proofs of some results in this paper are not included due
to space limitations and can be found in [11]. This paper was
not presented at any IFAC meeting. Preliminary versions of
this paper have appeared in the Proceedings of the 50th and
51st IEEE Conference on Decision and Control [7, 10].
1 J. Liu is with the Coordinated Science Labora-
tory, University of Illinois at Urbana-Champaign, USA
(jiliu@illinois.edu). S. Mou is with Purdue University,
USA (mous@purdue.edu). A. S. Morse is with Yale Univer-
sity, USA (as.morse@yale.edu). B. D. O. Anderson and
C. Yu are with the Australian National University and
National ICT Australia Ltd., Australia ({brian.anderson,
brad.yu}@anu.edu.au). C. Yu is also with Shandong Com-
puter Science Center, Jinan, China.

vertices correspond to agents and edges indicate neigh-
bor relationships. Thus the neighbors of an agent i have
the same labels as the vertices in A which are adjacent
to vertex i. Initially, each agent i has or acquires a real
number yi which might be a measured temperature or
something similar. The distributed averaging problem is
to devise an algorithm which will enable each agent to
compute the average yavg = 1

n

∑n
i=1 yi using informa-

tion received only from its neighbors.

There are three important approaches to the distributed
averaging problem: linear iterations [15], gossiping [2],
and double linear iterations [6] (which are also known
as push-sum algorithms [5], weighted gossip [1], and ra-
tio consensus [3]). Double linear iterations are specifi-
cally tailored to the case in which unidirectional com-
munications exist; they can solve the problem when A is
directed, strongly connected, but under the assumption
that each agent is aware of the number of its out-going
neighbors. Both linear iterations and gossiping work for
the case in which all communications between neighbors
are bidirectional; in this case, double linear iterations
have the disadvantage that they require updating and
transmission of an additional variable for each agent.

Linear iterations are a well studied approach to the prob-
lem in which each agent communicates with all of its
neighbors on each iteration, and thus are sometimes
called broadcast algorithms. It is clear that broadcast
algorithms typically require a lot of transmissions be-
tween neighbors per unit time, which may not be pos-
sible to secure in some applications, particularly when

Preprint submitted to Automatica 1 January 2018

communication cost is an important issue on each itera-
tion. For example, fewer transmissions per iteration can
increase the time interval between any two successive
recharges of a sensor, and improve the security of the
network by reducing the opportunities of being hacked
or eavesdropped.

Gossiping is an alternative approach to the distributed
averaging problem which does not involve broadcasting.
An important rule of gossiping is that each agent is al-
lowed to gossip with at most one neighbor at one time.
This is the reason why gossiping algorithms do not in-
volve broadcasting. Thus gossiping algorithms have the
potential to require less transmissions per iteration than
broadcast algorithms. Moreover, the peer-to-peer nature
of gossiping simplifies the implementation of algorithms
and reduces computation complexity on each agent. As
a trade-off, one would not expect gossiping algorithms
to converge as fast as broadcast algorithms.

Most existing gossiping algorithms are probabilistic in
the sense that the actual sequence of gossip pairs which
occurs during a specific gossip process is determined
probabilistically [2]. Recently, deterministic gossiping
has received some attention [9]. Probabilistic gossiping
algorithms aim at achieving consensus asymptotically
with probability one, whereas deterministic gossiping
algorithms are intended to guarantee that under all
conditions, a consensus will be achieved asymptotically.
Both approaches have merit. The probabilistic approach
is easier both in terms of algorithm development and
convergence analysis. The deterministic approach forces
one to consider worst case scenarios and has the poten-
tial of yielding algorithms which may outperform those
obtained using the probabilistic approach. For example,
the deterministic approach rules out the possibility of
deadlocks which may occur in probabilistic gossiping
algorithms.

Crafting a deterministic protocol is challenging because
gossiping is an inherently collaborative process which
can lead to deadlocks unless careful precautions are
taken to ensure that it does not. The global order-
ing [12], centralized scheduling [9], and broadcasting [14]
are the existing ways to avoid deadlocks. Both global
ordering and centralized scheduling require a degree of
network-wide coordination and broadcasting requires
each agent to obtain the values of all of its neighbors’
“gossip variables” at each clock time, which may not be
possible to secure in some applications.

The contribution of this paper is to present determin-
istic gossiping protocols which do not utilize global or-
dering, centralized scheduling, or broadcasting and are
guaranteed to solve the distributed averaging problem.
Three gossiping protocols are considered in the paper.
We show by example that the first can deadlock. After
minor modifications, a second protocol is obtained. The
second protocol is guaranteed to avoid deadlocks, which

requires the simplest queue updates and thus provides an
in-depth understanding of how local ordering and queue
updates avoid deadlocks. It is shown both by analysis
and computer studies that a third protocol which uses
a slightly more complicated queue update rule can lead
to significantly faster convergence.

The material in this paper was partially presented in
[7, 10], but this paper presents a more comprehensive
treatment of the work. Specifically, the paper provides
proofs for Theorems 2, 4, Proposition 3, Lemmas 1, 2,
and establishes an additional result Proposition 1, which
were not included in [7,10]. Note that Protocol III in the
paper was briefly outlined in [9], but without a proof of
correctness.

2 Gossiping

Consider a group of n > 1 agents labeled 1 to n. 2 Each
agent i has control over a real-valued scalar quantity
xi called agent i’s gossip variable whose value xi(t) at
time t represents agent i’s estimate of yavg at that time.
A gossip between agents i and j, written (i, j), occurs
at time t if the values of both agents’ variables at time
t+ 1 equal the average of their values at time t. In other
words, xi(t+ 1) = xj(t+ 1) = 1

2 (xi(t) + xj(t)). If agent
i does not gossip at time t, its gossip variable does not
change; thus in this case xi(t+1) = xi(t). Generally not
every pair of agents is allowed to gossip. The edges of
a simple, undirected, connected graph A specify which
pairs of agents are allowed to gossip. In other words, a
gossip between agents i and j is allowable if (i, j) is an
edge inA. We sometimes callA an allowable gossip graph.

An important rule of gossiping is that in a gossiping
process, each agent is allowed to gossip with at most one
of its neighbors at one time. This rule does not preclude
the possibility of two or more pairs of agents gossiping
at the same time, provided that the pairs have no agent
in common. To be more precise, two gossip pairs (i, j)
and (k,m) are noninteracting if neither i nor j equals
either k or m. When multiple noninteracting pairs of
allowable gossips occur simultaneously, the simultaneous
occurrence of all such gossips is called a multi-gossip.

Gossiping processes can be modeled by a discrete-time
linear system of the form

x(t+ 1) = M(t)x(t), t = 0, 1, 2, . . . (1)

where x ∈ IRn is a state vector of gossiping variables
and M(t) is a matrix characterizing how x changes as
the result of the gossips which take place at time t. If a

2 The purpose of labeling of the agents is only for conve-
nience. We do not require a global labeling of the agents in
the network. We only assume that each agent can identify
and differentiate between its neighbors.

2

single pair of agents i and j gossip at time t ≥ 0, then
M(t) = Pij where Pij is the n × n matrix for which
pii = pij = pji = pjj = 1

2 , pkk = 1, k 6∈ {i, j}, and all
remaining entries equal 0. We call suchPij a single-gossip
primitive gossip matrix. For convenience, we include in
the set of primitive gossip matrices, the n × n identity
matrix I; the identity matrix can be thought of as the
update matrix to model the case in which no gossips
occur at time t. If a multi-gossip occurs at time t, then
as a consequence of non-interaction, M(t) is simply the
product of the single-gossip primitive gossip matrices
corresponding to the individual gossips comprising the
multi-gossip; moreover, the primitive gossip matrices in
the product commute with each other and thus any given
permutation of the single-gossip primitive matrices in
the product determines the same matrixP . We callP the
primitive gossip matrix determined by the multi-gossip
under consideration.

We will see that for any gossiping process determined by
the protocols presented in this paper, the update matrix
M(t) in (1) also depends on the state x(t) and thus

x(t+ 1) = M(x(t), t)x(t), t = 0, 1, 2, . . .

while each M(x(t), t) is still a primitive gossip matrix.
Therefore, the system to be studied is essentially nonlin-
ear, which is a significant difference from those in [2,12].
This difference also makes the protocol design and anal-
ysis more challenging than probabilistic protocols.

2.1 Generalized Gossiping

Although in this paper we shall be interested in gossiping
protocols which stipulate that each agent is allowed to
gossip with at most one of its neighbors at one time, as
we shall see later, there is value in taking the time here
to generalize the idea.

We call a subset L of m > 1 agent a neighborhood if the
corresponding vertices in A form a clique. 3 We say that
the agents with labels in L perform a gossip of order m
at time t if each updates its gossip variable to the aver-
age of all; that is, if xi(t+ 1) = 1

m

∑
j∈L xj(t), i ∈ L. A

generalized gossip is a gossip of any order. A gossip with-
out the modifier “generalized”, will continue to mean a
gossip of order 2. A generalized multi-gossip at time t is
a finite set of generalized gossips with disjoint neighbor-
hoods which occur simultaneously at time t.

It is worth emphasizing that the concepts of general-
ized gossips and multi-gossips are introduced only for
the purpose of analysis. Generalized gossips and multi-
gossips do not occur in any gossiping sequence gener-
ated by the protocols presented in this paper. But the

3 A clique in an undirected graph is a subset of the vertices
such that every two distinct vertices are adjacent.

effect of “virtual gossips” generated by the protocols in
this paper is the same as the occurrence of generalized
(multi-)gossips; see §2.2 for detailed explanation.

The idea of a primitive gossip matrix extends naturally
to generalized gossips. In particular, we associate with
a neighborhood L the n × n doubly stochastic matrix
PL where pjk = 1

m+1 , j, k ∈ L, pjj = 1, j 6∈ L, and
0s elsewhere. We call PL the primitive gossip matrix
determined by L. By the graph induced by PL, writ-
ten GL, we mean the spanning subgraph of A whose
edge set is all edges in A which are incident on ver-
tices with labels which are both in L. More generally,
if L1,L2, . . . ,Lk are k disjoint neighborhoods, the
matrix PL1

PL2
· · ·PLk

is the primitive gossip matrix
determined by L1,L2, . . . ,Lk and the graph induced
by PL1

PL2
· · ·PLk

is the union of the induced graphs
GLi

, i ∈ {1, 2, . . . , k}. Note that the matrices in the
product PL1PL2 · · ·PLk

commute because the Li are
disjoint so the order of the matrices in the product is
not important for the definition to make sense. Note
also that there are only finitely many primitive gossip
matrices associated with A.

2.2 Gossiping Sequences

Let γ1, γ2, . . . be an infinite sequence of multi-gossips
corresponding to some or all of the edges in A. Corre-
sponding to such a sequence is a sequence of primitive
gossip matricesQ1, Q2, . . . whereQi is the primitive gos-
sip matrices of the ith multi-gossip in the sequence. For
given x(0), such a gossiping matrix sequence generates
the sequence of vectors

x(t) = QtQt−1 · · ·Q1x(0), t > 0 (2)

which we call a gossiping sequence. We have purposely
restricted this definition of a gossiping sequence to multi-
gossip sequences, as opposed to generalized multi-gossip
sequences, since we will only be dealing with algorithms
involving multi-gossips. Our reason for considering gen-
eralized multi-gossips will become clear in a moment.

As will soon be obvious, the matrices Qi in (2) are not
necessarily the only primitive gossip matrices for which
(2) holds. This non-uniqueness can play a crucial rule in
understanding certain gossip protocols which are not lin-
ear iterations. To understand why this is so, let us agree
to say that the transition x(τ) 7−→ x(τ + 1) contains
a virtual gossip if there is a neighborhood L for which
xi(τ) = xj(τ), i, j ∈ L. We say that agent i has gossiped
virtually with agent j at time t, if i and j are both labels
in L. Thus while we are only interested in algorithms in
which an agent may gossip with at most one neighbor at
any one time, for such algorithms there may be times at
which virtual gossips occur between an agent and one or
more of its neighbors. Suppose that for some time τ < t,
the transition x(τ) 7−→ x(τ + 1) contains such a virtual

3

gossip and let PL denote the primitive gossip matrix de-
termined byL. Then clearlyPLx(τ) = x(τ) which means
that the matrix Qτ+1 in the product QtQt−1 · · ·Q1 can
be replaced by the matrix Qτ+1PL without changing
the validity of (2). Moreover Qτ+1PL will be a primitive
gossip matrix if the neighborhoods which define Qτ+1

are disjoint with L. The importance of this elementary
observation is simply this. Without taking into account
virtual gossips in equations such as (2), it may in some
cases to be impossible to conclude that the matrix prod-
uct QtQt−1 · · ·Q1 converges as t→∞ even though the
gossip sequence x(1), x(2), . . . does. Later in this paper
we will describe a gossip protocol for which this is true.

Prompted by the preceding, let us agree to say that a
gossiping sequence satisfying (2) is consistent with a se-
quence of primitive gossip matrices P1, P2, . . . if

x(t) = PtPt−1 · · ·P1x(0), t > 0 (3)

It is obvious that if the sequence x(t), t ≥ 0 is consistent
with the sequence P1, P2, . . . and the latter converges,
then so does the former. Given a gossip vector sequence,
our task then is to find, if possible, a consistent, primitive
gossip matrix sequence which is also convergent.

As we have already noted, A has associated with it a
finite family of primitive gossip matrices and each prim-
itive gossip matrix induces a spanning subgraph of A.
It follows that any finite sequence of primitive gossip
matrix P1, P2, . . . , Pk induces a spanning subgraph of A
whose edge set is the union of the edge sets of the graphs
induced by all of the Pi. We say that the primitive gossip
matrix sequence P1, P2, . . . , Pk is complete if the graph
the sequence induces is a connected spanning subgraph
of A. An infinite sequence of primitive gossip matrices
P1, P2, . . . is repetitively complete with period T , if each
successive subsequence of length T in the sequence is
complete. A gossiping sequence x(t), t > 0 is repetitively
complete with period T , if there is a consistent sequence
of primitive gossip matrices which is repetitively com-
plete with period T . The importance of repetitive com-
pleteness is as follows.

Theorem 1 (Theorem 1 in [9]) Suppose that P1, P2, . . .
is an infinite sequence of primitive gossip matrices which
is repetitively complete with period T . There exists a real
nonnegative number λ < 1, depending only on T and the
Pt, for which limt→∞ PtPt−1 · · ·P1x(0) = yavg1 as fast
as λt converges to zero.

3 Request-Based Gossiping

Request-based gossiping is a gossiping process in which
a gossip occurs between two agents whenever one of the
two accepts a request to gossip placed by the other. The
aim of this section is to design deterministic request-
based gossiping protocols which can solve the distributed

averaging problem. The design of such deterministic pro-
tocols is more complicated than probabilistic ones since
a deterministic protocol must rule out the possibility of
deadlocks whereas in a probabilistic protocol, deadlocks
are allowed to occur as long as their probability goes to
zero as time goes to infinity. In the cases when an agent
who has placed a request to gossip, at the same time re-
ceives a request to gossip from another agent, conflicts
leading to deadlocks can arise. It is challenging to de-
vise deterministic protocols which resolve such conflicts
while at the same time ensuring exponential convergence
of the gossiping process generated by the protocols.

From time to time, an agent may have more than one
neighbor to which it is able to make a request to gossip
with. Also from time to time, an agent may receive more
than one request to gossip from its neighbors. While in
such situations decisions about who to place a request
with or whose request to accept can be randomized, in
this paper we will examine only completely determinis-
tic strategies. To do this we will assume that each agent
orders all its neighbors according to some priorities so
when a choice occurs among neighbors, the agent will
always choose the one with highest priority. The sim-
ple example in [9] illustrates that fixed priorities can
be problematic (see Protocol I in [9] and the example
which follows). The global ordering [12] and central-
ized scheduling [9] are the two ways in the literature
to overcome them. Both global ordering and centralized
scheduling require certain degree of network-wide coor-
dination which may not be possible to secure in some
applications. In what follows we take an alternative ap-
proach which is fully distributed.

In the light of Theorem 1, we are interested in devising
gossiping protocols which generate repetitively complete
gossip sequences. Towards this end, let us agree to say
that an agent i has completed a round of gossiping after
it has gossiped with each of its neighbors at least once.
Thus the finite sequence of primitive gossiping matrices
corresponding to a finite sequence of multi-gossips for
the entire group of n agents which has occurred over an
interval of length T , will be complete if each agent in
the group completes a round of gossiping over the same
interval. In §3.2, the concept of a round of gossiping will
be generalized by taking into account virtual gossips.

For the protocols which follow it will be necessary for
each agent i to keep track of where it is in a particular
round. To do this, agent i makes use of a recursively
updated neighbor queue qi(t) where qi(·) is a function
from T to the set of all possible lists of the ni labels in
Ni, the neighbor set of agent i. Roughly speaking, qi(t)
is a list of the labels of the neighbors of agent i which
defines the queue of neighbors at time t which are in line
to gossip with agent i.

In a recent doctoral thesis [14], a clever gossiping pro-
tocol is proposed which does not require the distinct

4

neighbor event times assumption. The protocol avoids
deadlocks and achieves consensus exponentially fast. A
disadvantage of the protocol in [14] is that it requires
each agent to obtain the values of all of its neighbors’
gossip variables at each clock time. By exploiting one
of the key ideas in [14] together with the notion of an
agent’s neighbor queue qi(t) defined earlier, it is pos-
sible to obtain a gossiping protocol which also avoids
deadlocks and achieves consensus exponentially fast but
without requiring each agent to obtain the values of all
of its neighbors’ gossip variables at each iteration.

In the sequel, we will outline a gossiping algorithm in
which at time t, each agent i has a single preferred neigh-
bor whose label i∗(t) is in the front of queue qi(t). At
time t each agent i transmits to its preferred neighbor
its label i and the current value of its gossip variable
xi(t). Agent i then transmits the current value of its gos-
sip variable to those agents which have agent i as their
preferred neighbor; these neighbors plus neighbor i∗(t)
are agent i’s receivers at time t. They are the neighbors
of agent i who know the current gossip value of agent
i. Agent i is presumed to have placed a request to gos-
sip with its preferred neighbor i∗(t) if xi(t) > xi∗(t)(t);
agent i is a requester of agent i∗(t) whenever this is so.
While an agent i has exactly one preferred neighbor, it
may at the same time have anywhere from zero to ni re-
questers, where ni is the number of neighbors of agent i.

3.1 A Raw Model

Protocol I: Between clock times t and t+ 1 each agent
i performs the steps enumerated below in the order indi-
cated. Although the agents’ actions need not be precisely
synchronized, it is understood that for each k ∈ {1, 2, 3}
all agents complete step k before any embark on step
k + 1.

(1) 1st Transmission: Agent i sends its gossip vari-
able value xi(t) to its current preferred neighbor.
At the same time agent i receives the gossip values
from all of those neighbors which have agent i as
their current preferred neighbor.

(2) 2nd Transmission: Agent i sends its current gos-
sip value xi(t) to those neighbors which have agent
i as their current preferred neighbor.

(3) Acceptances:
(a) If agent i has not placed a request to gossip but

has received at least one request to gossip, then
agent i sends an acceptance to that particular
requesting neighbor whose label is closest to the
front of the queue qi(t).

(b) If agent i has either placed a request to gossip
or has not received any requests to gossip, then
agent i does not send out an acceptance.

(4) Gossip variable and queue updates:
(a) If agent i sends an acceptance to or receives an

acceptance from neighbor j, then agent i gossips

with neighbor j by setting xi(t+1) =
xi(t)+xj(t)

2 .
Agent i updates its queue by moving j from its
current positions in qi(t) to the end of the queue.

(b) If agent i has not sent out an acceptance nor
received one, then agent i does not update the
value of xi(t). In addition, qi(t) is not updated
except when agent i’s gossip value equals that
of its current preferred neighbor. In this special
case agent i moves the label i∗(t) from the front
to the end of the queue.

It is possible show that this protocol ensures that at
each time t, either xi(t) = xi∗(t)(t) for some agent i or a
gossip must take place between two agents whose gossip
variables have different values. But the example in [7]
shows that this strategy will not necessarily lead to a
consensus (see Section III in [7]).

3.2 A Corrected Protocol

It is possible to guarantee an exponentially fast consen-
sus under all conditions by slightly modifying Protocol
I. The modification will be made in step 3 of Protocol I,
thereby resulting in Protocol II. Comparing Protocol I
and Protocol II which follows, the difference between the
two only lies in the cases when an agent i whose gossip
variable value at time t equals that of its current pre-
ferred neighbor i∗(t), at the same time receives one or
more requests to gossip. Under Protocol I, agent i gos-
sips with that requesting neighbor whose label is closest
to the front of its neighbor queue at time t; the label
i∗(t) will still be in the front of the queue at time t+ 1.
Under Protocol II, agent i ignores all incoming requests
to gossip at time t and moves the label i∗(t) from the
front to the end of the queue.

Protocol II: Between clock times t and t+1 each agent
i performs the steps enumerated below in the order indi-
cated. Although the agents’ actions need not be precisely
synchronized, it is understood that for each k ∈ {1, 2, 3}
all agents complete step k before any embark on step
k + 1.

(1) Same as Protocol I
(2) Same as Protocol I
(3) Acceptances:

(a) If xi(t) < xi∗(t)(t) and agent i has received at
least one request to gossip, then agent i sends an
acceptance to that particular requesting neigh-
bor whose label is closest to the front of the queue
qi(t).

(b) If xi(t) ≥ xi∗(t)(t) or agent i has not received
any request to gossip, then agent i does not send
out an acceptance.

(4) Same as Protocol I

It is possible to show that Protocol II is deadlock free.

5

Proposition 1 Suppose that all n agents follow Protocol
II. Then a gossip must take place within every 2d time
steps, where d is the maximum vertex degree of A.

It is also possible to show that every sequence of gossip
vectors generated by Protocol II converges to the desired
limit point exponentially fast.

Theorem 2 Suppose that all n agents follow Protocol II.
Then there is a finite time T , not depending on the values
of gossip variables, such that every sequence of gossip
vectors x(t), t > 0 generated by Protocol II is repetitively
complete with period no greater than T .

From Theorem 1, Protocol II can solve the distributed
averaging problem for all initial conditions.

A worst case bound of T has so far eluded us except for
the special case when A is a tree (see Theorem 3 in [11]).

3.3 An Accelerated Protocol

Note that step 4 of Protocol II stipulates that agent i
must update its queue whenever its current gossip value
equals that of its current preferred neighbor. We say
that agent i gossips virtually with neighbor j at time t if
i∗(t) = j and the current gossip values of both agents are
the same. It is worth noting that when agent i gossips
virtually with neighbor j, j may not gossip virtually with
i. Also note that each agent can gossip virtually with at
most one neighbor at one clock time. If an agent gossips
virtually with its current preferred neighbor, it does not
gossip with any other neighbor. Thus each agent can
gossip or virtually gossip with at most one neighbor at
one clock time. If agent i gossips or gossips virtually with
neighbor j at time t, then agent i updates its neighbor
queue by moving the label j from its current position in
qi(t) to the end of the queue.

An important rule of gossiping is that during a gossip-
ing process each agent is allowed to gossip with at most
one of its neighbors at one clock time. There is no such
restriction on virtual gossips. Thus to improve the con-
vergence rate of the protocol in the preceding section, a
natural idea is to let each agent gossip virtually with as
many as neighbors as possible at the same time.

Protocol III: Between clock times t and t + 1 each
agent i performs the steps enumerated below in the or-
der indicated. Although the agents’ actions need not be
precisely synchronized, it is understood that for each
k ∈ {1, 2, 3} all agents complete step k before any em-
bark on step k + 1.

(1) Same as Protocol I
(2) Same as Protocol I
(3) Same as Protocol II
(4) Gossip variable and queue updates:

(a) If agent i either sends an acceptance to or
receives an acceptance from neighbor j, then
agent i gossips with neighbor j by setting

xi(t+1) =
xi(t)+xj(t)

2 .Agent i updates its queue
by moving j and the labels of all of its current
receivers k, if any, for which xk(t) = xi(t) from
their current positions in qi(t) to the end of the
queue while maintaining their relative order.

(b) If agent i has not sent out an acceptance nor
received one, then agent i does not update the
value of xi(t). In addition, qi(t) is not updated
except when agent i’s gossip value equals that
of at least one of its current receivers. In this
special case agent i moves the labels of all of
its current receivers k for which xk(t) = xi(t)
from their current positions in qi(t) to the end
of the queue, while maintaining their relative
order.

Protocol III is expected to solve the distributed averag-
ing problem faster than Protocol II since Protocol III
allows agents to “gossip virtually” with more than one
neighbors at one time while Protocol II dose not. Faster
convergence of Protocol III was illustrated in [7] by sim-
ulation (see Section V in [7]).

It is also possible to derive a worst case bound on the
convergence rate of Protocol III for general allowable
gossip graphs.

Theorem 3 Suppose that all n agents follow Protocol
III. Then for any connected allowable gossip graph A,
every sequence of gossip vectors x(t), t > 0 generated by
Protocol III is repetitively complete with period no greater
than the number of edges of A.

From Theorem 1, Protocol III can solve the distributed
averaging problem for all initial conditions.

To prove Theorem 3, we need to generalize slightly a
few ideas. First note that step 4 of the protocol stipu-
lates that agent i must update its queue whenever its
current gossip value equals that of on of its neighbors.
We say that agent i gossips virtually with neighbor j at
time t if the current gossip values of both agents are the
same. Note that while an agent can gossip with at most
one agent at time t, it can gossip virtually with as many
as ni at the same time. We say that an agent has com-
pleted a round of gossiping after it has gossiped or vir-
tually gossiped with each neighbor in Ni at least once.
Thus the finite sequence of primitive gossiping matrices
corresponding to a finite sequence of multi-gossips and
virtual multi-gossips for the entire group which has oc-
curred over an interval of length T , will be complete if
over the same period each agent in the group completes
a round. Thus Theorem 3 will be true if every agent com-
pletes a round in a number of iterations no larger than
the number of edges of A. The following proposition as-
serts that this is in fact the case.

6

Proposition 2 Letm be the number of edges in A. Then
within m iterations every agent will have gossiped or vir-
tually gossiped at least once with each of its neighbors.

To prove this proposition we will make use of the follow-
ing two lemmas.

Lemma 1 Suppose that all n agents follow Protocol III.
Then at each time t, at least one gossip or virtual gossip
must occur.

Lemma 2 Let t be fixed and suppose that G is a span-
ning subgraph of A with at least one edge. For each i ∈
{1, 2, . . . , n} write Ni for the set of labels of the vertices
adjacent to vertex i in A and Mi for the set of labels of
the vertices adjacent to vertex i in G. Let Ni −Mi de-
note the complement ofMi in Ni. Suppose that for each
i ∈ {1, 2, . . . , n}, each label inMi, if any, is closer to the
front of qi(t) than are all the labels in Ni −Mi. Then
there must be an edge (i, j) within G such that at time t,
neighboring agents i and j either gossip or gossip virtu-
ally.

We will prove lemma 2 first. To begin, let us note that
at each time t, each label i ∈ {1, 2, . . . , n} uniquely de-
termines a sequence of labels

[i]t = {i1, i2, . . . , im(t)}

such that i1 = i, ij+1 = i∗j (t) for all j ∈ {1, 2, . . . ,m(t)−
1}, i1, i2, . . . , im(t)−1 are distinct, and im(t) = ik for some
k ∈ {1, 2, . . . ,m(t) − 2}. We call [i]t the sequence of
queue leaders generated by i at time t. Note that m(t)
is a positive integer depending on time t and always
satisfies the inequalities 2 ≤ m(t)− 1 ≤ δ+ 1 where δ is
the length of the longest path of A. We will sometimes
simply write [i]t = {i1, i2, . . . , im} for convenience with
the understanding that m depends on time t. The set of
all possible sequences of queue leaders generated by i is
a finite set because the number of agents in the group is
finite.

Proof of Lemma 2: Let J denote the set of labels of
all agents i for which Mi is nonempty. Since G has at
least one edge, J is nonempty. Fix i ∈ J . We claim
that i∗(t) must be in Mi. If it were not, it would have
to be further back in qi(t) than the labels in Mi and
this would contradict the fact that i∗(t) is in the front of
qi(t). Therefore i∗(t) ∈ Mi. This implies that (i, i∗(t))
is an edge in G. HenceMi∗(t) must be nonempty so i∗(t)
must also be in J . From this it follows that for each
i ∈ J , all of the labels in [i]t are also in J .

To proceed, suppose that xi(t) = xi∗(t)(t) for some i ∈
J . Then agent i has not placed a request. If agent i
receives a request, then agent i must send an accep-
tance because of 3a and then gossip because of 4a. On
the other hand, if agent i has not received a request,

then agent i must gossip virtually because of 4b. Thus
if xi(t) = xi∗(t)(t) for some i ∈ J , either a gossip or vir-
tual gossip will have taken place between two neighbor-
ing agents with an edge in G. To complete the proof it is
thus enough to consider the case when xi(t) 6= xi∗(t)(t)
for all i ∈ J . We claim that under this condition at
least one agent with label i ∈ J , must place a request
to gossip. To prove that this is so, suppose the con-
trary. Then there is no agent with a label in J which
is a requester so xi(t) < xi∗(t)(t) for all i ∈ J . In par-
ticular xi1(t) < xi2(t) < . . . < xik(t) < xi∗

k
where

{i1, i2, . . . , iw} = [i]t and k is the largest integer greater
than 1 for which the labels i1, i2, . . . , ik are all in J .
Since the labels in [i]t are all in J , it must be that
k = w so xi1(t) < xi2(t) < . . . < xiw(t) < xi∗w(t). But
i∗w(t) must equal some integer ij ∈ {i1, i2, . . . , iw−1} so
xiw(t) < xij (t). This is impossible because j < w. There-
fore at least one agent with a label in J must place a
request to gossip.

To complete the proof it is enough to show that among
the agents with labels inJ who receive requests to gossip
at time t, at least one agent - say agent k - does not
place a request to gossip. For if agent k does not place a
request, then agent k must gossip with that agent with
label closest to the front of qk(t) who placed a request
to gossip with agent k at time t.

To prove that at least one agent receiving a gossip re-
quest at time t does not place a request to gossip at
time t, assume the contrary. Therefore suppose that ev-
ery agent receiving a request to gossip a time t, also
places a request to gossip at time t. Let i be the label
of any agent receiving a request to gossip at time t and
let {i1, i2, . . . , iw} = [i]t. Since agent i1 = i and i re-
ceives a request to gossip, it also must place a request
to gossip. Hence agent i2 must receive a request to gos-
sip. Therefore agent i2 must place a request to gossip at
time t. By this reasoning one concludes that all of the
agents with labels i1, i2, . . . , iw place requests to gossip
at time t. This implies that xi1(t) > xi2(t) > . . . >
xiw(t) > xi∗w(t)(t). But i∗w(t) must equal some integer
ij ∈ {i1, i2, . . . , iw−1}. This means that xiw(t) > xij (t)
with is impossible because j < w. Therefore at least
one agent which has received a request to gossip has not
placed a request to gossip.

It is worth noting that if G has s connected components,
each with positive minimum degree, then there must be
an edge (ai, bi) within each component for which neigh-
boring agents ai and bi either gossip or gossip virtually
at time t. This can be proved using an argument similar
to the argument use to prove Lemma 2.

Proof of Lemma 1: We claim that A satisfies the hy-
potheses of Lemma 2. Note first that by assumption A
is a connected graph with at least two vertices. Thus A
has at least one edge. Next observe that when G = A,

7

we haveMi = Ni, i ∈ {1, 2, . . . , n}. Clearly A automat-
ically satisfies hypotheses of Lemma 2. Hence Lemma 1
is true.

It can be seen that Lemma 1 is a special case of Lemma 2.
We are now in a position to prove Proposition 2 using
the two lemmas.

Proof of Proposition 2: See the proof of Proposition
2 in [10].

Both analytical results and computer studies show that
a slightly more complicated queue update rule can lead
to significantly faster convergence.

3.3.1 Convergence Rate

Theorems 1 and 3 imply that every sequence of gossip
vectors generated by Protocol III converges to the de-
sired limit point exponentially fast at a rate no worse
that some finite number λ < 1 which depends only on
A. In the sequel, we will derive a worst case bound of λ.

It is useful to think of a gossiping process in geometric
terms. Associate with agent i’s current gossip variable
xi, a corresponding point xi on the real line which we
will henceforth refer to as agent i’s current position. For
agents i and j to gossip then means simply that each
moves to the midpoint between the two. We would like
to have a way to keep track of the entire group’s progress
in reaching a consensus. Towards this end, let us agree
to call a nonnegative valued function V : IRn → IR,
an indicator if V (t) = 0 just in case all agents are at
the same position at time t. In the sequel, we will be
concerned exclusively with indicators comprised of sums
of distances between pairs of points, and for now we will
assume that the specific pairs of points in question do
not change with iterations. To be more precise, let E be
a given subset of {1, 2, . . . , n}×{1, 2, . . . , n}; we say that
a function V : IRn → [0,∞) of the form

V (t) =
∑

(i,j)∈E

|xi(t)− xj(t)| (4)

is an indicator function if V (t) = 0 implies that all the xi
have the same value at time t. There is a natural way to
associate with any such an indicator a simple, undirected
graph. Specifically, the graph of V , written GV , is a that
graph on n vertices, which has an edge (i, j) just in case
the distance between points i and j is one of the terms
in the sum comprising V .

Suppose that agents i and j gossip at time t. Let us say
that an indicator V is instantaneous if there is a positive
number λ such that

V (t+ 1)− V (t) ≤ −λ|xi(t)− xj(t)| (5)

Thus if V is instantaneous, there is a definite decrease
in its value whenever any allowable pair of agents not
initially in the same position, gossip.

Proposition 3 A necessary and sufficient condition for
V to be an instantaneous indicator is that A ⊂ GV and
for each edge (i, k) of GV for which (i, j) is an edge of A,
(j, k) is an edge of GV .

The proof of this proposition depends on the following
result.

Lemma 3 Suppose that agents i and j gossip at time t.
Let k be different than i and j. Then |xi(t+1)−xk(t+1)|+
|xk(t+ 1)−xj(t+ 1)| ≤ |xi(t)−xk(t)|+ |xk(t)−xj(t)|.

Proof of Proposition 3: Suppose that V is an indicator
with the properties that A ⊂ GV and each edge (i, k)
of GV for which (i, j) is an edge of A, (j, k) is an edge
of GV . Suppose that agents i and j gossip in which case
(i, j) is an edge of A and thus GV . Let (m, k) be any edge
in GV . If {i, j} and {m, k} are disjoint sets, the distance
between agentsm and k does not change with the gossip.
If {i, j} and {m, k} are not disjoint sets, then without
loss of generality we can take m = i. Thus by hypothesis
both (i, k) and (j, k) are edges in GV . But by Lemma
3 the sum of the distance between agent k and agent i
and the distance between agent k and agent j does not
increase after the gossip. Since this is true for all edges
in GV with the exception of (i, j), it must be true that
(5) holds with λ = 1. Therefore V is instantaneous. The
simple proof of the necessity part of this proposition is
omitted.

Theorem 4 V is instantaneous if and only if GV is com-
plete.

Proof of Theorem 4: Suppose that (i, j) is not an
edge in GV . Since A is connected, there must be a
path from i to j in A and thus GV . Suppose that
there are other k > 0 vertices in the path. Then the
path consists of k + 1 edges which are denoted by
(i, v1), (v1, v2), . . . , (vk−1, vk), (vk, j). Since (i, v1) is in
GV and (v1, v2) is in A, then by Proposition 3, (i, v2)
is in GV . Similarly, since (i, v2) is in GV and (v2, v3) is
in A, then (i, v3) is also in GV . By repeating this argu-
ment, one reaches the conclusion that (i, j) is an edge
of GV , which is a contradiction. Thus GV must be a
complete graph.

By Theorem 4, it is clear that the desired instantaneous
indicator must be in the form of

V (t) =
∑

(i,j)∈A

|xi(t)− xj(t)|

where A = {1, 2, . . . , n} × {1, 2, . . . , n}.

8

Lemma 4 (see Lemma 2 in [12]) Suppose that since time
t0, each agent has gossiped or virtually gossiped at least
once with each of its neighbors within T iterations. Then
V (t0 + T) ≤

(
1− 4

n2

)
V (t0).

Let m be the number of edges of A. Since every sequence
of gossip vectors generated by Protocol III is repetitively
complete with period no greater than m (by Theorem
3), it follows from Lemma 4 that for any time t, there
holds V (t+m) ≤

(
1− 4

n2

)
V (t). We are thus led to the

following result.

Theorem 5 Suppose that all n agents follow Protocol
III. Then every sequence of gossip vectors x(t), t > 0
generated converges to the desired limit point exponen-

tially fast at a rate no worse than
(
1− 4

n2

) 1
m where m is

the number of edges of A.

4 Concluding Remarks

One of the problems with the idea of gossiping, which
apparently is not widely appreciated, is that it is diffi-
cult to devise provably correct gossiping protocols which
are guaranteed to avoid deadlocks without making re-
strictive assumptions. The research in this paper and
in [12, 14] contributes to our understanding of this is-
sue and how to deal with it. For the protocols presented
in this paper, it is assumed that the communication be-
tween agents is delay-free. Analysis of the effect of trans-
mission delays is a subject for future research.

Acknowledgements

The work of Liu, Mou and Morse was supported by
the US Army Research Office, the US Air Force Office
of Scientific Research, and the National Science Foun-
dation. The work of Anderson was supported by the
Australian Research Council’s Discovery Project DP-
110100538 and the National ICT AustraliaVNICTA.
NICTA is funded by the Australian Government as
represented by the Department of Broadband, Commu-
nications and the Digital Economy and the Australian
Research Council through the ICT Centre of Excellence
program. The work of Yu was supported by the Aus-
tralian Research Council through a Queen Elizabeth II
Fellowship and DP-110100538 and by the Overseas Ex-
pert Program of Shandong Province, China. The work
of Anderson and Yu was also supported by the U.S. Air
Force Research laboratory Grant FA2386-10-1-4102.

References

[1] F. Bénézit, V. Blondel, P. Thiran, J. N. Tsitsiklis, and
M. Vetterli. Weighted gossip: distributed averaging using
non-doubly stochastic matrices. In Proc. IEEE Int. Symp.
Inform. Theory, pages 1753–1757, 2010.

[2] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized
gossip algorithms. IEEE Trans. Inf. Theory, 52(6):2508–
2530, 2006.

[3] A. D. Domı́nguez-Garćıa, S. T. Cady, and C. N.
Hadjicostis. Decentralized optimal dispatch of distributed
energy resources. In Proc. 51st IEEE Conf. Decision Control,
pages 3688–3693, 2012.

[4] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of
groups of mobile autonomous agents using nearest neighbor
rules. IEEE Trans. Autom. Control, 48(6):988–1001, 2003.

[5] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based
computation of aggregate information. In Proc. 44th Annu.
IEEE Symp. Found. Comput. Sci., pages 482–491, 2003.

[6] J. Liu and A. S. Morse. Asynchronous distributed averaging
using double linear iterations. In Proc. Am. Control Conf.,
pages 6620–6625, 2012.

[7] J. Liu and A. S. Morse. Revisiting request-based gossiping:
the effects of queue updates on convergence time. In Proc.
51st IEEE Conf. Decision Control, pages 3985–3990, 2012.

[8] J. Liu, A. S. Morse, A. Nedić, and T. Başar. Internal stability
of linear consensus processes. In Proc. 53rd IEEE Conf.
Decision Control, pages 922–927, 2014.

[9] J. Liu, S. Mou, A. S. Morse, B. D. O. Anderson, and C. Yu.
Deterministic gossiping. Proc. IEEE, 99(9):1505–1524, 2011.

[10] J. Liu, S. Mou, A. S. Morse, B. D. O. Anderson, and C. Yu.
Request-based gossiping. In Proc. 50th IEEE Conf. Decision
Control, pages 1968–1973, 2011.

[11] J. Liu, S. Mou, A. S. Morse, B. D. O. Anderson, and
C. Yu. Request-based gossiping without deadlocks. 2016.
arXiv:1612.08463 [math.OC].

[12] M. Mehyar, D. Spanos, J. Pongsajapan, S. H. Low,
and R. M. Murray. Asynchronous distributed averaging
on communication networks. IEEE/ACM Trans. Netw.,
15(3):512–520, 2007.

[13] R. Olfati-Saber and R. M. Murray. Consensus seeking in
networks of agents with switching topology and time-delays.
IEEE Trans. Autom. Control, 49(9):1520–1533, 2004.

[14] A. Olshevsky. Efficient Information Aggregation Strategies
for Distributed Control and Signal Processing. PhD thesis,
Department of Electrical Engineering and Computer Science,
MIT, 2010.

[15] L. Xiao and S. Boyd. Fast linear iterations for distributed
averaging. Syst. Control Lett., 53(1):65–78, 2004.

9

