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ABSTRACT

On Quantum Effects of Vector Potentials and Generalizations of Functional Analysis

by Ismael Lucas de Paiva

This is a dissertation in two parts. In the first one, the Aharonov-Bohm effect is investigated.

It is shown that solenoids (or flux lines) can be seen as barriers for quantum charges. In

particular, a charge can be trapped in a sector of a long cavity by two flux lines. Also, grids of

flux lines can approximate the force associated with continuous two-dimensional distributions

of magnetic fields. More, if it is assumed that the lines can be as close to each other as

desirable, it is explained how the classical magnetic force can emerge from the Aharonov-

Bohm effect. Continuing, the quantization of the source of the magnetic field, and not just

of the degrees of freedom of the particle interacting with it, is considered. Special attention

is given to the cases where the source has a relatively small spreading and is post-selected.

As it will be discussed, in those cases, the weak value plays a role in the determination

of the effective vector potential “experienced” by the particle. In the second part of this

work, notions from functional analysis are extended to Banach algebras and completions of

Grassmann algebras. A notion of analyticity is given to the functions of a single Banach

algebra variable. This notion allows the introduction of holomorphic polynomials, power

series, and rational functions. With that, the analogous of Hilbert spaces of power series

are also considered. Finally, closures of Grassmann algebras with respect to the 1 and the

2-norms are explored. The analogous of the complex analysis in the open disk or a half-plane

(usually referred to as Schur analysis) is presented in the 1-norm closure. Also, a Wiener-like

algebra, interpolation problems, and a process known as the Schur algorithm are studied in

this setting. Now, an inner product between two elements can be introduced in the 2-norm

closure, revealing similarities between this space and the non-commutative Fock-Bargamann-

Segal space. It is, then, defined a class of stochastic processes. To conclude, the derivatives

of these processes are analyzed in an analogous of the space of stochastic distributions.
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1 Introduction

This dissertation is divided into two parts. In the first part, it is studied some results

involving a quantum particle in the presence of a magnetic field, but never in direct contact

with it.

A better comprehension of electromagnetism was an essential factor in the revolution that

started in physics during the past century. This revolution gave rise to two theories that

completely shifted the understanding of the foundation of the physical world: the theory of

relativity and the theory of quantum mechanics.

The former emerged from the studies of the apparent necessity of an absolute reference frame

in the study of electromagnetism. While the equations of motion in Newtonian mechanics

are invariant under Galilean transformation, Maxwell’s equations, which are the basis of

electromagnetism, are not. It was, then, conjectured that there existed a medium called

ether, which was believed to be everywhere in the universe and would serve as an absolute

system of reference where Maxwell’s equations assumed their well-known forms. However,

the Michelson-Morley experiment, which was an interference experiment meant to detect

differences in the speed of light in systems moving with respect to the ether, did not return the

expected results. It seemed, some thought, that the ether was an elastic solid. Lord Kelvin,

for instance, thought that “we may simply deny the scholastic axiom that two portions of

matter cannot jointly occupy the same space, and may assert, as an admissible hypothesis,

that ether does occupy the same space as ponderable matter, and that ether is not displaced

by ponderable bodies moving through space occupied by ether” [1].

In parallel with that, Voight [2], in 1887, and Lorentz [3], in 1904, considered a transformation

that consisted in a way to change the system of coordinates for which Maxwell’s equations

are invariant. There is a very radical idea that is implied by this transformation: the speed

of light is the same in every inertial system of reference. Moreover, because of that, the
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coordinates of space and time are always mixed in a change of referential. Even though

these ideas were, in a sense, already present in the works of Voight and Lorentz, they only

got their due attention with one of the two seminal publications in 1905 by Albert Einstein

[4], where he went straight to the crux of the problem. This new theory led to necessary

corrections to the Newtonian mechanics since the Galilean transform had to be replaced by

the new transform introduced by Voight and Lorentz, named Lorentz transform by Poincaré

[5], who likely was unaware of Voight’s work.

Quantum theory, on the other hand, can be traced back to 1900, when Plank, continuing

his studies on the black body radiation, was led to the quantization of the energy exchange

between a cavity and an electromagnetic field within it [6]. In 1905, in his other seminal

article published that year, Einstein introduced the idea that electromagnetic radiation is

always quantized to explain the photoelectric effect [7]. Inspired by these results, Bohr

presented, in 1913, his model for a hydrogen atom [8], in which electrons had discrete levels

of energy.

Later, in 1925, Heisenberg published a seminal article where he proposed a theory where the

coordinates of position and the momentum of electrons in atoms were non-commuting phys-

ical quantities [9]. Following that, Dirac developed an algebraic formulation that provided a

formal framework for the commutativity law [10]. Also, Born and Jordan further developed

this theory in Ref. [11] and in a follow up article with Heisenberg [12]. The celebrated

Heisenberg commutation relation was published in 1927 [13].

Moreover, in 1926, Pauli used Heisenberg’s matrix mechanics to compute the spectrum and

the Stark effect for a hydrogen atom [14]. However, the computation of the spectrum of

more generic systems was overly complicated in this theory — at that time, physicists were

not familiar with matrix algebra.

In parallel with Heisenberg’s theory, a wave mechanics theory was also being developed.
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In 1923, de Broglie used the idea that electromagnetic waves were quantized, together with

Eintein’s formula E = mc2, which was also published in 1905 [15], to suggest that corpuscular

objects, i.e., masses, should also have a wavelength associated with them [16]. Motivated by

it, in 1926, Schrödinger developed his acclaimed equation to describe the dynamics of such

waves [17], now called wave functions. Also, still in 1926, Born introduced the probabilistic

interpretation for the wave function [12]. The theory emerging from these ideas was broadly

diffused in the physics community since it required a mathematical knowledge that was more

familiar to physicists: linear partial differential equations.

Finally, Schrödinger himself noticed that matrix and wave mechanics were mathematically

equivalent [18]. His work was followed by further analysis from Dirac [19, 20], Jordan [21–23],

and von Neumann [24].

It would still take some time until the first discussions about a quantum charge having its

dynamics affected by a magnetic field in a region it never enters. In a talk to a physical society

meeting in Danzig in 1939, Franz discussed that the interference of an electron traveling in

a region with magnetic depends on the total magnetic flux enclosed by it [25]. However, it

is not clear if it was discussed the possibility of having the electron still being affected by

the field without directly interacting with it [26].

Later, in 1949, Ehrenberg and Siday, in the context of the theory of refraction of electron

rays, concluded that a magnetic flux, even if isolated, would affect the dynamics of a charge

encircling it [27]. Their result went unnoticed — perhaps because it did not seem a general

effect. In fact, their practical problem was the development of a magnetic lens for a beta

spectrometer, and they concluded that “[o]ne might therefore expect wave-optical phenomena

to arise which are due to the presence of a magnetic field but not due to the magnetic field

itself, i.e., which arise whilst the rays are in field-free regions of space.” Finally, unaware

of the Ehrenberg and Siday’s article, Aharonov and Bohm published their seminal work in

3



1959 [28]. Besides also introducing an electric version of it, they went straight to the crux

of the problem, making the fundamental character of the result evident. With that, their

work got traction since its publication. The effect, which is known as the Aharonov-Bohm

(AB) effect, was observed experimentally [29–32], and it has been the subject of a vast study

in the literature [32–53]. Also, a version of the effect for neutral particles with a magnetic

moment, usually referred to as the Aharonov-Casher effect, was introduced [54]. Moreover,

the effect still suscitates debates about its non-local nature [55–65].

Here, new consequences of the AB effect are presented. One of them, which can also be

found in Refs. [66, 67], shows that solenoids (or flux lines) can be seen as barriers for

quantum charges. In particular, two flux lines can trap a particle in a sector of a long

cavity. Moreover, grids of flux lines can approximate the force associated with continuous

two-dimensional distributions of magnetic fields. More, assuming the lines can be as close

to each other as desirable, it is explained how the classical magnetic force can emerge from

the AB effect.

Furthermore, as can also be seen in Ref. [68], the effect is considered in the presence of

a quantized source of magnetic fields. When the source is post-selected, the weak value,

as it will be studied, plays a role in the determination of the effective vector potential

“experienced” by the particle.

In the second part of this dissertation, a variety of results from functional analysis, operator

theory, and the theory of stochastic distributions is extended to a Banach algebra (BA)

with an involution and completions of Grassmann algebras (GAs). A structure underlying

most of this study is the concept of a Hilbert space (HS) of power series. HSs appeared

as generalizations of finite-dimensional linear spaces. They were the result of a shift in the

view of sequences — and, later, of functions — that arose in the study of linear integral

equations. Instead of being seen as isolate objects, they started being analyzed as elements

4



of a space. Part of the origin of HSs can be associated with Hilbert’s study of linear integral

equations in a series of six papers published by him between 1904 and 1910, and composed

his acclaimed book from 1912 [69].

In parallel to his work, Lebesgue introduced his notorious integral in 1904 [70]. The connec-

tion with HSs appeared in 1907 with Schmidt and Fréchet showing that the space of square

summable functions, which is associated with a particular type of Lebesgue integration, had

a geometry similar to HSs. Following that, Riesz showed that, in fact, there exists a one-to-

one correspondence between HSs of sequences and Lebesgue square measurable functions,

which allowed Fréchet and Fisher to show that these functions form a complete metric space.

More, Fréchet introduced an integral formula for the action of continuous linear functional on

elements of these metric spaces [71]. Also, Fréchet [72] and Riesz [73] introduced important

properties of the dual of HSs with what is now known as the Riesz representation theorem

and, in 1908, Schmidt proved a type of spectral theorem [74]. Moreover, existing results by

Bessel, Fourier, and Parseval were translated into this new framework.

The first complete formal treatment of HSs was presented by von Neumann. He, then,

together with Hilbert and Nordheim, applied this formalism to quantum mechanics in 1928

[75]. After that, other applications in physics (including in classical mechanics) and in other

areas (like signal processing) were found [76, 77]. Finally, it should also be mentioned that

the name Hilbert space was only introduced by von Neumann in 1930 [78].

The HSs of interest here are HSs of power series. In particular, it is studied the Hardy space,

formally introduced by Riesz in 1923 [79], but named by him after Hardy because, in 1915,

Hardy had worked on the functions he was considering [80]. Another HS of power series

of interest is the Fock-Bargmann-Segal space, which was introduced by Fock in 1932 [81] as

the completion of a direct sum of HSs in the study of identical quantum particles. Later,

Bargmann [82], in 1961, and Segal [83], in 1963, presented a HS of power series isomorphic
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to the Fock space. Finally, a space introduced by Drury [84], which had its importance

highlighted by Arveson [85], often referred to as the Drury-Arveson space, is also considered

in this work.

These and other HSs of power series were extended from a single complex variable to more

general settings, like several complex variables, upper triangular operators, quaternions, and

bi-complex numbers. They have been a source of new problems and methods [86–91]. Here,

as already mentioned, some results on the extension of these spaces to BAs and completions

of GAs are presented.

In the extension to BAs, which is a work originally presented in Ref. [92], a notion of

analyticity is given to functions of a single variable in this setting, which, later, allows the

introduction of the analogous of HSs of power series. Now, in the case of GAs, their closure

with respect to the 1 and the 2-norms are considered. The 1-norm closure was studied in

Ref. [93]. The convergence of power series and interpolation problems are investigated in this

setting. The space of functions of a single complex variable with image in the closure of the

Grassmann algebra with respect to the 2-closure, however, presents a structure similar to the

non-commutative FBS space. A class of stochastic processes, which includes the analogous

of the fractional Brownian motion, is defined and studied here, as done in Ref. [94].

This work is structured as follows. Chapter 2 briefly introduces some basic concepts from

quantum mechanics and electromagnetism. This provides some tools for the presentation of

the AB effect. Also, some results associated with it are reviewed.

Chapter 3 discusses a peculiar consequence of the AB effect: flux lines introduce a field-

free force on quantum charges that can emulate continuous two-dimensional magnetic fields.

This result is explored, leading to the obtainment of topological bound states and to the

approximation of Landau levels. It is also discussed a semi-classical theory where grids of

flux lines can be seen as the source of the classical magnetic force, at least for two-dimensional
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fields.

Chapter 4 consider a case where the AB effect happens in the presence of quantized sources

of magnetic fields. For that, a study on the quantization of sources is presented. Weak

interactions between the source and the charge are of particular interest, and, because of it,

the concepts of weak measurements and weak values are reviewed. Finally, it is shown how

the effective vector potential “experienced” by the particle is complex-valued.

Chapter 5 starts the mathematical explorations of this work. A notion of derivative analo-

gous to the one presented by Fueter for functions of a single quaternionic variable is extended

to the case where the variable takes value in a BA that satisfies a minimum set of properties.

With this result, holomorphic polynomials, power series, and rational functions are intro-

duced. This, in turn, allows the study of Banach modules of holomorphic power series, the

counterpart of HSs of power series in this context.

Finally, Chapter 6 considers various analysis problems in completions of GAs with respect

to the 1 and the 2-norm. The analogous of the complex analysis in the open disk or a half-

plane, often referred to as Schur analysis, is presented in the 1-norm closure. In particular,

a Wiener-like algebra, which plays a role of the analogous of the Hardy space, is considered.

Also, interpolation problems and a process called Schur algorithm are studied in this setting.

In the 2-norm closure, it is noted that the inner product between two elements can be

introduced, revealing similarities between this space and the non-commutative FBS space.

It is, then, defined a class of stochastic processes. The derivatives of these processes are

analyzed in a space analogous to the space of stochastic distributions.

It should be noted that, rather than including a chapter with final remarks, it was chosen

to incorporate a discussion section at the end of every chapter that introduces a result that

is a product of the studies for this dissertation.
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2 Some Lessons from the Aharonov-Bohm
Effect

As mentioned in the introduction, the Aharonov-Bohm (AB) effect is a vastly studied phe-

nomenon, which has led to the development of many theoretical and experimental tools

and numerous surprising consequences. This chapter presents an explanation of the effect

and reviews some results that will be useful for the next two chapters. To start, a brief

introduction to some basic concepts and definitions in quantum mechanics is given.

2.1 Preliminaries

A closed quantum system is represented by a vector, denoted by |ψ〉, in a complex Hilbert

space (HS) H. Its adjoint is denoted by 〈ψ| = (|ψ〉)†. Physical quantities that can be

associated with the system and measured are given by self-adjoint operators acting on H.

They are often referred to as observables.

The spectral theorem assures that there exists an orthogonal basis {|o〉} such that a self-

adjoint operator O can be written as a diagonal operator

O =

∫
o|o〉〈o|do. (2.1)

The elements |o〉 are called the eigenvectors (or eigenstates) of O and o are the (real) eigen-

values associated with them

If H admits a discrete basis, Eq. (2.1) becomes a sum of the type

O =
N−1∑
k=0

ok|ok〉〈ok|, (2.2)
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where N is the dimension of H, which can be infinite. Also, the norm of the vectors of

interest is always one, i.e.,

〈ψ|ψ〉 = 1, (2.3)

where 〈·|·〉 denotes the inner product in H. The reason is that there exists a probabilistic

interpretation of the state, given by the Born rule: if the observable O is measured and the

state of the system is |ψ〉, the probability of finding the system in the state |ok〉 is give by

|〈ok|ψ〉|2. Observe that the absolute value is necessary because 〈ok|ψ〉, called the amplitude

of probability, is, in general, a complex number. Moreover, with the choice associated with

Eq. (2.3), the quantum states are defined up to a global phase. Then, two normal vectors

in a complex HS represent the same quantum state if they differ by a global phase. Also,

note that

〈oj |ok〉 = δjk, (2.4)

where δjk is the Kronecker delta. The change on the state that describes the system from

|ψ〉 =
∑
k ψk|ok〉 to |ok〉 is what is often referred to as the collapse of the state caused by the

measurement of O. Furthermore, the average over repeated measurements of an observable

O over a system in the state |ψ〉 results in the expected value 〈O〉 of O, which is given by

〈O〉 = 〈ψ|O|ψ〉 =
∑
j,k

okψjψk〈oj |ok〉 =
∑
k

okψkψk. (2.5)

Similar results hold in the case where the HS has a continuous basis. However, the relation

between two elements of a basis is

〈o|o′〉 = δ(o− o′), (2.6)
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where δ(o− o′) is the Dirac delta. Also, the expected value of 〈O〉 becomes

〈O〉 = 〈ψ|O|ψ〉 =

∫
oψ(x)ψk(x)dx. (2.7)

The position (operator X) and the momentum (operator P ) of a quantum particle are given

by a vector in a continuous HS. Then, if the position of a system is described by the state |ψ〉,

the wave function ψ(x) = 〈x|ψ〉 describes the probability amplitude of finding the particle

at a certain position x. Observe that ψ̂(p) = 〈p|ψ〉 can also be defined. In fact, ψ̂(p) is the

Fourier transform of ψ(x). Also, X and P satisfy the well-known canonical commutation

relation

[X,P ] ≡ XP − PX = i~I, (2.8)

where I is the identity operator.

The composition of quantum systems is given by the tensor product. Then, if a state |ψ〉

belongs to H1 and a state |ϕ〉 belongs to H2, their joint state is

|Θ〉 = |ψ〉 ⊗ |ϕ〉 ∈ H1 ⊗H2. (2.9)

A state that can be written in this form is called a product or a separable state. However, a

general state of H1 ⊗H2 is written as

|Γ〉 =

∫∫
γ(r, s)|r〉 ⊗ |s〉 dr ds, (2.10)

where |r〉 denotes a basis of H1 and |s〉 denotes a basis of H2. If a state |Γ〉 cannot be written

as a pure state, each of its parts is called an entangled or a non-separable state. In this case,

the state associated with each system can be written with the definition of a partial trace,
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i.e., the state of system 1 is a partial trace of |Γ〉〈Γ| over the system 2

ρ1 ≡ Tr2|Γ〉〈Γ|

≡
∫∫∫∫

γ(r′, s′)γ(r, s)|r〉〈r′|Tr
(
|s〉〈s′|

)
ds ds′ dr dr′

=

∫∫∫∫
γ(r′, s′)γ(r, s)|r〉〈r′|〈s′|s〉 ds ds′ dr dr′

=

∫∫∫
γ(r′, s)γ(r, s)|r〉〈r′| ds dr dr′.

(2.11)

Similarly, the state of system 2 is

ρ2 ≡ Tr1|Γ〉〈Γ| =
∫∫∫

γ(r, s′)γ(r, s)|s〉〈s′| ds ds′ dr. (2.12)

Observe that, in this case, the states are no longer vectors inH1 andH2. They are operators,

called density matrices, acting on those spaces. Although this is the most general form to

represent a system, most of the time only vectors in HSs are considered here.

The dynamics of quantum systems is governed by Hamiltonians. The Schrödinger equation

states that a Hamiltonian H is the generator of translations in time of the a state |ψ(t0)〉 =

|ψ〉, i.e.,

i~
∂

∂t
|ψ(t)〉 = H|ψ(t)〉. (2.13)

This means that there exists an unitary U such that

i~
∂

∂t
U(t; t0)|ψ〉 = HU(t; t0)|ψ〉 ⇒ i~

∂

∂t
U = HU. (2.14)

In general, the Hamiltonian is a function of time and Eq. (2.14) has to be carefully evaluated.

However, in cases where H(t) commutes with H(t′) for every t and t′, Eq. (2.14) leads to

U(t; t0) = e−
∫ t
to
H(t′)dt′/~. (2.15)
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A common type of Hamiltonian is

H =
1

2m
P 2 + V ( ~X, t), (2.16)

where V is an scalar potential, the canonical momentum ~P is the “vector of operators”

(Px, Py, Pz), and ~X = (X, Y, Z). In this case, the Schrödinger equation for a state |ψ(t)〉 in

the position basis is

i~
∂ψ

∂t
(~x, t) = − ~2

2m
∇2ψ(~x, t) + V (~x, t)ψ(~x, t), (2.17)

where it was used the fact that

~P = −i~~∇. (2.18)

Observe that, because systems are, in general, entangled, the dynamics of an individual

system is not always unitary. Here, however, this matter is not looked into.

Besides the Schrödinger picture, there is another way to consider dynamics in quantum me-

chanics, which is given by the Heisenberg picture. In this perspective, even though quantum

states still identifies a system, they do not evolve. What evolves are their properties, i.e.,

the observables. The dynamics of the observables are governed by the Heisenberg equation

d

dt
O(t) =

i

~
[H,O(t)] +

∂O

∂t
(t). (2.19)

Most of the systems considered here are in the presence of an electromagnetic field. Because

of it, instead of the Hamiltonian in Eq. (2.16), their dynamics are governed by

H =
1

2m

(
P − q ~A( ~X, t)

)2
+ qVq( ~X, t) + V ( ~X, t), (2.20)

where ~A is the vector potential and Vq is the scalar potential. These potentials are such that
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the electric field is

~E = −∂
~A

∂t
− ~∇Vq (2.21)

and the magnetic field is

~B = ~∇× ~A. (2.22)

Because the potentials are defined as a way to mathematically “reconstruct” the fields ~E and

~B, it can be seen from Eqs. (2.21) and Eq. (2.22) that there is not a unique way to define

~A and Vq. In fact, if Λ is a function of the position coordinates and time, the potentials

~A′ = ~A+ ~∇Λ (2.23)

and

V ′q = Vq −
∂Λ

∂t
(2.24)

are associated with the same electromagnetic field. The change from the potentials ~A and

Vq to ~A′ and V ′q is called a gauge transformation. Also, Λ is associated with a gauge choice.

To conclude this section, it should be noted that, in quantum mechanics, the gauge invariance

implies that, given the unitary

U = eiqΛ( ~X,t)/~, (2.25)

the Hamiltonian in Eq. (2.20) is physically equivalent to the Hamiltonian

H ′ = UHU† − q∂Λ

∂t
( ~X, t), (2.26)

as can be checked by direct computation and observing that Eq. (2.8) implies that

[
~P , f( ~X)

]
= i~~∇Λ( ~X). (2.27)
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With that set, the AB effect and its consequences can finally be studied.

2.2 Aharonov-Bohm Effect

In classical physics, the dynamics of a particle with charge q is only affected by a magnetic

field which it directly interacts with it, i.e., if it travels in a region where the magnetic field is

non-zero. However, in quantum mechanics, this is not always the case. If a charge encircles

a region in space that contains a magnetic field, it accumulates a quantum phase that is

proportional to the magnetic flux inside the region enclosed by its trajectory, regardless of

whether there was any magnetic field on the trajectory of the particle. This is the (magnetic)

AB effect, which was introduced in 1959 by Aharonov and Bohm [28].

The way this effect is usually presented is by considering a charge encircling a solenoid whose

axis lies in the z axis, as represented by Fig. 2.1. For simplicity, the solenoid is taken to

be infinitely thin — in which case it will be referred to as a flux line. Also, the particle is

assumed to travel in the xy plane on the superposition

|Ψ〉 =
1√
2

(|ψL〉+ |ψR〉) , (2.28)

where |ψL〉 is a packet that passes to the left and |ψR〉 is a packet that passes to the right of

the flux line. This superposition can be achieved, for instance, with the use of a double-slit.

The Hamiltonian of the particle can be written as

H =
1

2m

(
~P − q ~A(

~~X)
)2
, (2.29)

where ~P = Pxx̂+ Pyŷ and ~X = Xx̂+ Y ŷ.

To obtain the solution of this Hamiltonian, let the states |ψ0
L〉 and |ψ0

R〉 be the solutions of
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Figure 2.1: Illustration of an experiment that verifies the AB effect. A charge travels in
a superposition of a state |ψL〉 traveling to the left and a state |ψR〉 traveling to the right
of the solenoid (blue object), as represented by the red paths. This causes a shift in the
interference pattern proportional to the magnetic flux inside the solenoid.

the case where there is no magnetic field in the flux lines, i.e.,

H0 =
1

2m
P 2. (2.30)

Then, following a procedure introduced by Dirac [95], it can be obtained that, after encircling

the flux line,

|ψL〉 = e
iq
∫
γL

~A·d`/~|ψ0
L〉 (2.31)

and

|ψR〉 = e
iq
∫
γR

~A·d`/~|ψ0
L〉, (2.32)

where γL and γR are, respectively, the trajectory of the center of |ψL〉 and |ψR〉. Then,

because quantum states are equivalent up to a global phase,

∫
γR

~A · d`−
∫
γL

~A · d` =

∮
~A · d`, (2.33)
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and the magnetic flux ΦB inside the region enclosed by the charge is

ΦB =

∮
~A · d`, (2.34)

the state of the system after it encircles the flux line is

|Ψ〉 =
1√
2

(
|ψ0
L〉+ eiϕAB |ψ0

R〉
)
, (2.35)

where

ϕAB ≡
qΦB
~

mod 2π (2.36)

is the quantum phase accumulated by the charge, usually called the AB phase. The state in

Eq. (2.35) should be compared to

|Ψ0〉 =
1√
2

(
|ψ0
L〉+ |ψ0

R〉
)
, (2.37)

which is the final state of the system that undergoes a regular double-slit experiment. Then,

if an interference pattern is obtained from a double-slit experiment without a flux line, this

pattern will be shifted by an amount determined by the AB phase if the same experiment is

performed with a flux line placed in between the slits.

Finally, observe that, since a phase has a periodicity of 2π, the AB phase contains just the

modular part of qΦB/~. Thus, the magnetic flux

Φ0 ≡
2π~
q
, (2.38)

called a fluxon, creates an equivalence relation for which two congruent magnetic fluxes

modulo Φ0 give rise to the same AB phase.
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2.3 Modular Variables

Consider a particle in the superposition

|ψ〉 =
1√
2

(
|ψ1〉+ eiα|ψ2〉

)
, (2.39)

where ψ1(x) ≡ 〈x|ψ1〉 and ψ2(x) ≡ 〈x|ψ2〉 are wave packets, i.e., wave functions localized in

a certain interval, with the same profile, meaning that, up to a shift in their domain, they

are represented by the same function. The question that will be addressed now concerns

the detection of the relative phase α between ψ1 and ψ2. It is know that this phase can

be observed by interference experiments, i.e., the phase can be detected when there is an

overlap between the two wave packets. Nevertheless, it can be asked whether there exists an

observable capable of detecting α when ψ1 and ψ2 do not overlap.

In principle, it seems that such an operator does not exist. The reason is that it would have

to be written as a linear combination of powers of the operators of position and momentum.

However, for every n,m ∈ N0,

〈XnPm〉 =

∫
ψ(x)XnPmψ(x)dx

=
1

2

(∫
ψ1(x)XnPmψ1(x)dx+

∫
ψ2(x)XnPmψ2(x)dx

)
,

(2.40)

where it was used the fact that, because ψ1 and ψ2 do not overlap,

eiα
∫
ψ1(x)XnPmψ2(x)dx = e−iα

∫
ψ2(x)XnPmψ1(x)dx = 0. (2.41)

Therefore, 〈XnPm〉 does not depend on α for every n,m ∈ N0.

However, suppose that the center of the packets are separated by a distance L, i.e., ψ1(x) =

ψ2(x− L) or ψ1(x) = ψ2(x+ L). Also, consider the operator eiPL/~, which is the operator
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of translations by L — more precisely, for any function f that admits a Fourier transform,

eiPL/~f(x) = eiPL/~
(

1√
2π~

∫
f̂(p)eipx/~dp

)
=

1√
2π~

∫
f̂(p)eip(x+L)/~dp

= f(x+ L),

(2.42)

where f̂ is the Fourier transform of f . Then,

〈eiPL/~〉 =

∫
ψ(x)eiPL/~dx

=
1

2

(
eiα
∫
ψ1(x)ψ2(x+ L)dx+ e−iα

∫
ψ2(x)ψ1(x+ L)dx

)
=

1

2
eα

(2.43)

if ψ1(x) = ψ2(x + L). Hence, this operator is capable of detecting the phase α. Moreover,

while eiPL/~ is not Hermitian and, thus, it is not an observable, the operators

cos

(
PL

~

)
=
eiPL/~ + e−iPL/~

2
(2.44)

and

sin

(
PL

~

)
=
eiPL/~ − e−iPL/~

2i
(2.45)

are, and they can also detect α. In fact, 〈cos(PL/~)〉 = (cosα)/2 and 〈sin(PL/~)〉 =

(sinα)/2. Then, it is possible, in principle, to construct observables capable of detecting the

relative phase of two non-overlapping wave packets.

It should be noticed that only the value

Pmod ≡ Pmod
2π~
L

(2.46)
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Figure 2.2: Quantum charge q (yellow cloud) sent through a lattice of flux lines (blue dots),
each carrying a magnetic flux ΦB . Low-energy particles are reflected. The gray lines are
just horizontal lines that cross the lattice in the midpoint between two flux lines and are not
part of the configuration of the system.

is relevant for eiPL/~ and any other operator derived from it. The operator Pmod is called

the modular momentum of the charge and it is a type of modular variable — a concept

introduced in 1969 by Aharonov, Pendleton and Petersen [96], and further developed after

that [58, 97–100]. Modular variables of position and energy can be also defined [58].

Before proceeding, observe that, from Eq. (2.46), it can be introduced a Hermitian operator

N such that

P =
2π~
L
N + Pmod. (2.47)

As an application of this concept, consider the scenario represented in Fig. 2.2 of a charge

traveling towards a lattice, which coincides with the y axis, of impenetrable lines spaced by

a length L. Then, the Hamiltonian of the particle can be written as

H =
1

2m

(
P 2
x + P 2

y

)
+ V (X, Y ), (2.48)
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where V is a potential associated with lattice. Observe that V (x, y) = 0 for every x 6= 0.

Moreover, it is periodic in y when x = 0. Using the Heisenberg equation of motion, it can,

then, be observed that, for x 6= 0,

d

dt
Py =

i

~
[
H,Py

]
= 0, (2.49)

i.e., there is no change in the momentum Py. The same can be said about Px. Now, at

x = 0,
[
H,Py

]
6= 0, which implies that Py is, in general, not conserved. However,

d

dt
ei(Py)modL/~ =

i

~

[
H, eiPyL/~

]
=
i

~

[
V (Y ), eiPyL/~

]
=
i

~
(V (Y )− V (Y + L)) ei(Py)modL/~,

(2.50)

where V (y) ≡ V (0, y). Because of the periodicity of V (y), the term between parenthesis

in the last part of Eq. (2.50) vanishes, i.e., there is no change in the modular momentum

(Py)mod. Thus, from Eq. (2.47), it can be concluded that the momentum Py of the particle

can only change by multiples of 2π~/L during its interaction with the lattice, i.e.,

∆py =
2πn~
L

, (2.51)

where n ∈ Z.

To verify this result, observe that, if the lattice is sufficiently heavy and the initial wave

length of the charge is λ, the total momentum p = 2π~/λ of the particle should also be

unchanged. Then, while crossing the lattice, the charge is scattered by angles θn such that

sin θn =
∆py
p

=
nλ

L
, (2.52)
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which is the well-known expression for the discrete scattering angles in a diffraction experi-

ment.

Now, suppose that each line on the lattice carries a magnetic flux ΦB . Then, because of the

AB effect, the angles in Eq. (2.52) are shifted by angles θ′n such that

sin θ′n =
∆py
p

=

(
n+

qΦB
2π~

)
λ

L
. (2.53)

This implies that the change in the y direction of the momentum is

∆py = p sin θ′n =

(
2πn+

qΦB
~

)
~
L
, (2.54)

i.e., the modular momentum in the y direction is not conserved, differently from the scenario

without a magnetic flux on the lines. In fact, there is a change in modular momentum given

by

(py)mod =
qΦB
L

. (2.55)

It should be noticed that the value of the modular momentum in Eq. (2.55) refers to the

kinematic momentum, i.e., the product of the mass of the particle by its velocity, in oppo-

sition to the canonical momentum, which is the canonical conjugated of the position. This

distinction is important because, although both momenta coincide when the Hamiltonian is

the one in Eq. (2.48), the two concepts diverge when the charge’s dynamics is governed, for

instance, by the Hamiltonian in Eq. (2.29).

2.4 Instantaneous Change in the Transverse Velocity

The discussion at the end of the previous section suggests that there is a sudden change in

the velocity of charges when the line connecting two wave packets crosses a flux line carrying
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a magnetic flux ΦB . As shown in Ref. [57], this is, in fact, the case.

To see that, assume that a particle with charge q is prepared in the state

Ψ0(x, y) =
1√
2

(
ψ(x, y) + ψ(x+ Lx, y + Ly)

)
, (2.56)

where ψ is a wave packet and ~L = Lxx̂ + Lyŷ is the separation between the centers of the

wave packets. Suppose the packets evolve in time without changing the distance L = |~L|

between them until the particle crosses a flux line placed at the origin of the coordinate

system, meaning that the line that connects the centers of both wave packets crosses the

flux line. Also, let the Hamiltonian that governs the dynamics of the charge be

H =
1

2m

[
(Px − qAx(x, y))2 +

(
Py − qAy(x, y)

)2]
, (2.57)

where ~A = Axx̂+ Ayŷ is the vector potential associated with the flux line.

In this case, the modular velocity ~vmod of the particle can be defined, and it is such that

m~vmod ≡
(
~P − q ~A

)
mod

2π~
L
. (2.58)

Furthermore, the modular velocity umod in the direction that connects the packets satisfies

mumod ≡
(
~P − q ~A

)
·
~L

L
mod

2π~
L
. (2.59)

Also, preparing for the results that will be presented next, observe that, for every holomorphic
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function f and unitary U ,

f(U† ~P · ~LU) =
∞∑
n=0

(
U† ~P · ~LU

)n
fn

=
∞∑
n=0

U†
(
~P · ~L

)n
Ufn

= U†f(~P · ~L)U.

(2.60)

Then, letting f(~P · ~L) = ei
~P ·~L/~ and U = e

−iq
∫
γ(~r)

~A·d~̀/~
, and noting that

e
iq
∫
γ(~r)

~A·d~̀/~ (~P · ~L) e−iq ∫γ(~r) ~A·d~̀/~ =
(
~P − q ~A(~r)

)
· ~L/~, (2.61)

it can be concluded that

e
i
(
~P−q ~A(~r)

)
·~L/~

= e
iq
(∫
γ(~r)

~A·d~̀−
∫
γ(~r+~L)

~A·d~̀
)
/~
ei
~P ·~L/~ = e

iq
∫
τ(~r)

~A·d~̀/~
ei
~P ·~L/~, (2.62)

where γ is an arbitrary path and τ is a segment of line with length L that goes from the

center of packet 2 to the center of packet 1.

Now, suppose the flux line carries zero magnetic flux and denote the state of the charge at

an instant of time t by

Ψ0(~r, t) =
1√
2

(Ψ1(~r, t) + Ψ2(~r, t)) . (2.63)

In this case, there is no change in modular velocity. However, if the flux line carries a

magnetic flux ΦB , its state Ψ as a function of position and time can be written as

Ψ(~r, t) =
1√
2

(
e
iq
∫
γ1

~A·d~̀/~
Ψ1(~r, t) + e

iq
∫
γ2

~A·d~̀/~
Ψ2(~r, t)

)
, (2.64)

where γ1 refers to the trajectory of the center of packet 1 and γ2 refers to the trajectory of
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the center of packet 2. With help of Eq. (2.62), this implies that

〈eimumodL/~〉 =

∫∫
Ψ(~r, t)e

iq
∫
τ(~r)

~A·d~̀/~
ei
~P ·~L/~Ψ(~r, t) dx dy

=
1

2
e
iq
∮
γ
~A·d~̀/~

∫∫
Ψ1(~r, t)Ψ2(~r + ~L, t) dx dy

=
1

2
e
iq
∮
γ
~A·d~̀/~

=
1

2
eiqΦenc/~,

(2.65)

where Φenc is the total magnetic flux enclosed by the closed path. In Eq. (2.65), the Stokes’

theorem and the fact that

∫
γ1

~A · d~̀−
∫
γ2

~A · d~̀−
∫
τ(~r)

~A · d~̀=

∮
γ

~A · d~̀ (2.66)

were used. To see that Eq. (2.66) holds, it should be observe that, to be prepared in the

superposition of packets given by Eq. (2.56), the charge must have started localized in a

certain region. Then, γ1 and γ2 start at the same point.

Finally, because Eq. (2.65) implies that the modular velocity only changes with a variation in

the magnetic flux inside the area “covered” by the packets, there is an instantaneous change

in the modular velocity umod when the line that connects the center of the two packets crosses

the flux line. Before and after that, there should be no change to the modular velocity.

It should be noticed that this result depends on the fact that the wave packets satisfies the

property of being the translation of each other in a Cartesian system of coordinates. In a

general case, the analysis of how the modular velocity changes is more complicated.

To conclude, the fact that the AB effect can be seen as a change in the distribution of the

velocity of a charge suggests that there may be a force acting on the particle. In fact, forces

associated with the AB effect were previously discussed in Refs. [56, 101–103]. This aspect

will be further investigated in Chapter 3.
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2.5 Nodal Lines

A quantum particle confined to a finite region of space behaves drastically different from a

classical particle. In particular, its energy becomes quantized. In fact, consider the problem

known as the infinite well, which was likely [104] introduced by Mott [105] in 1930, and is

typically one of the first examples presented in an introductory course on quantum mechanics.

It consists of a particle confined in a region |x| < `/2, ` > 0, by the potential

V (x) =

 0 if |x| < `/2

∞ if |x| ≥ `/2
. (2.67)

In this case, the solutions of the Schrödinger equation vanish outside the region with zero

potential. Moreover, inside the well, the eigensolutions of the Schrödinger equation are

ϑn(x) =

√
2

`
sin

[
nπ

(
x

`
+

1

2

)]
, (2.68)

for every n ∈ N. Moreover, their associated energy is

En =
n2π2~2

2m`2
. (2.69)

The quantization of energy is a general result of the confinement of quantum particles that,

then, holds not only for one-dimensional cases.

Here, following Refs. [47, 55], it is studied how the presence of a flux line affects the eigen-

states of two-dimensional cavities. For that, consider a cavity with an impenetrable flux

line on its interior. First, suppose there is no magnetic field traveling through the flux line.

Then, the Hamiltonian of a free particle inside the cavity is given by Eq. (2.30), with the

consideration that, besides being zero outside the cavity, the state that describes the particle
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should also vanish at the flux line. Now, any eigenfunction ψ0 of such a Hamitonian, i.e.,

H0ψ0 = Eψ0, (2.70)

can be assumed to be a real function without loss of generality. Then, if the flux line carries

a magnetic flux ΦB , which is associated with a vector potential ~A, the Hamiltonian of the

cavity becomes the one given by Eq. (2.29). Moreover, if the wave function ψ of a charge is

an eigenfunction of such a Hamiltonian, it satisfies

Hψ = Eψ. (2.71)

With a similar approached used for Eqs. (2.31) and (2.32), it can be shown that there exists

an eigenfunction ψ0 of H0 such that

ψ = ψ0e
iq
∫
γ
~A·d~̀/~

, (2.72)

where γ denotes a path. In this case, Eq. (2.72) can be seen as generating a complex

continuation rule of ψ0. In general, these extensions determine a Riemann surface [106, 107].

The rule in this case is

ψ(~rγ) = ψ0(~r)eiWγϕAB , (2.73)

where the winding number of γ, Wγ , is such that [108]

∮
γ

~A · d~̀= WγΦB . (2.74)

Eq. (2.73) should be read as a relation between the end points of a closed path γ in real

space that starts in ~r and finishes in ~rγ in the Riemann surface.

In order to obtain a single-valued function, a sheet of such a manifold may be chosen. This
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choice, however, introduces a discontinuity in the wave function in an arbitrary location.

Nonetheless, it should be noticed that this discontinuity is only in the system’s phase. This

approach of making ψ single-valued can be intuitively seen as an imposition of a periodic

boundary condition on ψ0. With this view, instead of solving Eq. (2.29) for ψ, one solves

Eq. (2.30) for ψ0 with the extra condition that, in polar coordinates (ρ, θ),

ψ0(ρ, θ + 2π) = e−iϕABψ0(ρ, θ). (2.75)

This is physically relevant because it implies that the absolute value of the wave function

and, also, its probability density are independent of the choice of sheet.

Now, assume the flux line inside the cavity carries a half-integer fluxon, also called a semi-

fluxon, i.e., ΦB = Φ0/2. This particular value is interesting because it makes the extension

rule given by Eq. (2.73) real since ϕAB = π and, then, eiϕAB = −1. As a result, ψ can be

taken to be real.

Furthermore, because ψ changes its sign in a path which encircles a semifluxon, it must

be zero somewhere in the path, regardless of the shape of the cavity. Therefore, by the

continuity of the surface determined by ψ (or the continuity of its probability distribution

in case a sheet is chosen), there must exist a nodal curve, i.e., a curve where ψ vanishes,

starting at the flux line and finishing at the boundary of the cavity — or the position of

another flux line carrying a semifluxon [47, 55].

It should be noted that linear combinations of eigenstates also possess nodal curves. More-

over, nodal curves of eigenstates become straight lines according to the symmetry of the

cavity.

To summarize and illustrate the main points of the discussion presented here, consider a

circular cavity of unit radius with a semifluxon at its center. In this case, the ground state
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Figure 2.3: Representation of the real ground state of a circular cavity with a flux line
carrying a semifluxon on its center. The three-dimensional plot on the left is the real Riemann
surface associated with the “multivalued” wave function of Eq. (2.73) for ϕ = π. The color
map defined on it associates colors to the magnitudes of ψ. This allows the drawing of the
heat map of any arbitrarily chosen sheet of that surface, as represented on the right.

of the cavity when ~A = 0 is

ψ0(~r) = J1(ar), (2.76)

where r is the radial coordinate, J1 is the Bessel function of the first kind and parameter

1, and a ≈ 3.83 is the smallest positive zero of J1. Then, when the flux line is carrying a

semifluxon, the real ground state can be expressed as

ψ(~r) = ψ0(r) cos(θ/2), (2.77)

where θ is the angular coordinate. Note that ψ is a “multivalued function”. On the left-hand

side of Fig. 2.3, the Riemann surface associated with ψ is represented, while the heat map

of any arbitrary choice of sheet is represented on the right-hand side. Observe the nodal line

induced by the flux line.

To conclude, it is worth mentioning that nodal curves appear in a variety of topological
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systems, not only in systems with flux lines. Recently, special attention has been dedicated

to them, and they have been realized in multiple physical configurations [109–116].

2.6 Equivalence Principle

The AB effect has an impact that goes beyond the study of electromagnetic systems. As

an example of it, it will be shown, following Ref. [117], that it requires an extension of the

classical equivalence principle in quantum physics.

The equivalence principle states that inertial and gravitational mass are equivalent. However,

another way of seeing it is by stating that pseudo-forces that arise in non-inertial frames can

be canceled by other forces and, then, physical systems in the non-inertial frames behave as

if they were in an inertial frame.

Now, consider a laboratory given by a narrow ring with an inner radius R1 and an outer

radius R2, as represented by Fig. 2.4. Also, assume the lab is rotating with angular velocity

ω and, to simplify the discussion, let all particles inside the lab have the same ratio of charge

over mass. Moreover, it should be noticed that the disc with radius R1 is massive.

Because of its rotation, the lab experiences two pseudo-forces, namely the centrifugal and the

Coriolis force. Then, a quantum physicist, Alice, and a classical physicist, Bob, can detect

that the lab is a non-inertial frame. However, suppose that another physicist, Charlie, decides

to trick Alice and Bob. For that, Charlie observes that the Coriolis force ~FC acting on an

object with mass m and velocity (measured in the lab) ~v can be written as ~FC = m~v × ~C,

where ~C is the field associated with ~FC . Moreover, ~C satisfies

~∇ · ~C = 0, (2.78)

which implies that ~FC is given by a field that is the rotation of a vector potential ~VC . Also,
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Figure 2.4: Representation of a laboratory given by a narrow ring. (a) A classical physicist,
Bob, and a quantum physicist, Alice, can verify whether the laboratory (pink region) is
spinning or not. (b) However, when an electromagnetic field (blue region) is added to cancel
the non-inertial forces associated with the spinning inside the laboratory, Bob can no longer
know he is not in an inertial frame. (c) Nonetheless, Alice can detect the spinning with a
particle in a superposition (yellow clouds) encircling the disk internal to the laboratory (gray
area), where the forces were not canceled by the electromagnetic field, which causes a shift
in the interference pattern proportional to the angular velocity of the disk.

if ~Fc is the centrifugal force,

~∇× ~Fc = 0, (2.79)

i.e., ~Fc can be written as the gradient of a scalar potential. Therefore, there exists a parallel

between the centrifugal and the Coriolis forces with electromagnetic forces.

Charlie, then, decides to apply an electromagnetic field inside the lab in order to remove the

pseudo-forces. Because of this, Bob is not able to detect that the lab is a non-inertial frame.

In fact, any experiment he performs with classical particles will give results that correspond

to measurements made in inertial systems.

Nevertheless, because of the AB effect, Alice can conduct an interference experiment with a

quantum particle and detect that the lab is rotating. The reason is that, although Charlie

canceled the pseudo-forces inside the lab, these pseudo-forces were not canceled in the interior

of the disk with radius R1. Then, if a quantum particle encircles the disk in a superposition

of packets traveling in the clockwise and counterclockwise directions, the interference pattern
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detected by Alice will be shifted by a phase proportional to

m

∮
~VC · d~̀= m

∫
D1

~C · d~S = 2πmR2
1ω, (2.80)

where D1 is the disk with radius R1.

The scenario considered here shows that the equivalence principle needs to be modified in

quantum physics, and this is an example of how the implications of the AB effect can reach

areas that go beyond the dynamics of quantum charges.
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3 Magnetic Forces from the
Aharonov-Bohm Effect

As discussed in the previous chapter, a force can be associated with the Aharonov-Bohm

(AB) effect, even though it does not result from a local interaction between the charge and

the magnetic field. In this chapter, the main results from Refs. [66, 67] are presented,

showing that such a force corresponds, in a certain sense, to a magnetic force.

Specifically, it is discussed how an infinite lattice of flux lines acts as an energy barrier

for quantum charges and that two flux lines can be used to confine low-energy charges in

a sector of a long cavity. More generally, it is shown that grids of flux lines can emulate

continuous two-dimensional magnetic fields. This allows the obtaining of the Landau levels

in a uniform grid of flux lines. This result also suggests a semi-classical model where the

force associated with a grid of flux lines can be seen as quantum counterparts of forces from

classical continuous two-dimensional magnetic fields.

3.1 Continuous Magnetic Fields in Classical Physics

In this section, a simple example of a magnetic field as an energy barrier in classical physics

is presented. This example will be further explored in the context of quantum mechanics in

the next two sections.

Consider a (penetrable) wall parallel to the y axis with a uniform magnetic field ~B = Bẑ

and a point particle with mass m and charge q traveling in the x direction, as represented

in Fig. 3.1. Moreover, let ΦB = BLw be the magnetic flux associated with any arbitrary

region with length L and width w. When the particle is inside the wall, a force ~F = ~v × ~B,

where ~v is the particle’s velocity, acts on it. Then, using Newton’s second law, it can be
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Figure 3.1: Classical charges (yellow dots) traveling towards a uniform magnetic field wall

(blue region) given by ~B = Bẑ and such that any rectangular region with length L and
width w encloses a flux ΦB = BLw. Their trajectories are represented in red. In (a) and
(b), low-energy particles cannot cross the wall, while a high-energy particle is scattered by it
in (c). In general, if a particle passes through the wall, its transverse kinematic momentum
is changed by −qΦB/L.

checked that the charge is deflected by the field into a circular arc of radius

R =
mvw

|qφB |
, (3.1)

where

φB =
ΦB
L

(3.2)

is the magnetic flux per unit of transverse length. Then, if the speed v = ‖~v‖ of the particle

is such that R < w, i.e., if the magnitude of the particle’s kinematic momentum px = mv is

such that

px < |qφB | , (3.3)

the particle is reflected by the wall.

Note that, here, and everywhere in the present chapter, there is no bound on the z component

of the charge’s kinematic momentum (or on the energy associated with it), i.e., it can be

arbitrarily large and remain conserved without affecting the results.
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Now, if the width w of the wall is reduced, while the magnitude of the field B is simulta-

neously increased in a way that φB remains constant, the maximum speed v for which a

given charge is reflected by the wall remains unchanged. This continues to hold even in the

limit w → 0, i.e., when the magnetic field wall becomes widthless. Therefore, the barrier is

characterized entirely by the magnetic flux per unit of length φB associated with the wall.

Furthermore, Eq. (3.1) is valid even if the particle is incident at an arbitrary angle in the

xy plane, as represented in Fig. 3.1(c). Then, it can be checked with a simple geometric

analysis that, in general, the wall reflects all those charges if 2R < w, i.e., if their planar

kinematic momentum mv =
√
p2
x + p2

y is such that

√
p2
x + p2

y <
|qφB |

2
. (3.4)

Finally, if the charge crosses the wall in a time interval ∆t, the change in transverse kinematic

momentum is

∆py = −qB
∫

∆t
vx(t)dt = −qBw = −qφB , (3.5)

i.e., the change in the transverse kinematic momentum is independent of the angle of in-

cidence and the velocity of the particle. It can also be verified that, when the charge is

reflected, there is no change in the magnitude of its transverse kinematic momentum after

the interaction with the wall: the angle of incidence equals the angle of reflection.

3.2 Continuous magnetic fields in quantum mechanics

In this section, the direct quantum analog of the result from the previous section will be

investigated. For simplicity, only the infinite widthless magnetic wall will be considered.

First, the reference frame is such that the wall is placed on the y-axis, and the particle starts
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on the left-hand side. A possible choice of vector potential for this scenario is

~A = φBΘ(x)ŷ, (3.6)

where Θ is the Heaviside step function, i.e.,

Θ(x) =

 0 if x < 0

1 if x ≥ 0
. (3.7)

In this gauge, the Hamiltonian of the system can be written as

H =
1

2m

[
P 2
x +

(
Py − qφBΘ(X)

)2]
, (3.8)

which implies that the initial average energy of the charge can be computed as

〈E〉i =
1

2m

(
〈P 2
x 〉i + 〈P 2

y 〉i
)

(3.9)

and its final average energy, in case it crosses the lattice, is

〈E〉f =
1

2m

(
〈P 2
x 〉f + 〈P 2

y 〉f + q2φ2
B − 2qφB〈Py〉f

)
=

1

2m

(
〈P 2
x 〉f + 〈P 2

y 〉i + q2φ2
B − 2qφB〈Py〉i

)
,

(3.10)

where it was used the fact that the canonical transverse momentum is conserved, i.e., 〈Py〉i =

〈Py〉f and 〈P 2
y 〉i = 〈P 2

y 〉f , which follows from
[
H,Py

]
= 0.

To avoid possible confusion due to the asymmetry in ~A, note that, if the particle had started

on the right-hand side, its initial kinematic momentum would be given by mvy = Py − qφB .

Then, if the particle started with zero transverse kinematic momentum, for instance, its

initial canonical transverse momentum would be such that 〈Py〉i = qφB . Again, the canonical
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momentum would be conserved, which implies that the particle’s final transverse kinematic

momentum after it crossed the wall would be, on average, qφB . This verifies the symmetry

of rotation of the xy plane by 180◦, which justifies the restriction to particles starting on the

left-hand side of the wall.

With the requirement of change in the average transverse kinematic momentum, it is possible

to conclude that a charge cannot completely cross the wall whenever 〈E〉i < 〈E〉f,min. To

be precise, higher-energy components of the wave packet associated with the charge pass

through the wall, while lower-energy components are reflected. Generally, the probability of

finding the particle goes to zero in the far-field on the side opposite to the one it started.

Then, if the particle is incident with average (canonical and kinematic) momentum 〈Px〉i

in the x axis and 〈Py〉i in the y axis, its minimum average energy after crossing the wall is

obtained when 〈Px〉f → 0, and it cannot completely pass it if

〈P 2
x 〉i < q2φ2

B − 2qφB〈Py〉i. (3.11)

It follows that, if the particle is perpendicularly incident, i.e., 〈Py〉i = 0, the above condition

becomes

〈Px〉i < |qφB | , (3.12)

where it was used the fact that 〈P 2
x 〉 ≥ 〈Px〉2. Observe that Eq. (3.12) is analogous to

Eq. (3.3). Moreover, if 〈Py〉i 6= 0, Eq. (3.11) only admits solution if its right-hand side is

positive, i.e., if
∣∣〈Py〉i∣∣ < |qφB | /2, then, the condition for a charge to be at least partially

reflected by the wall, regardless of the angle of incidence, is

√
〈Px〉2i + 〈Py〉2i <

|qφB |
2

, (3.13)

which is analogous to Eq. (3.4).
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3.3 Emulating Continuous Magnetic Fields with Distributions of
Flux Lines

In this section, the widthless magnetic wall is replaced by flux lines — or infinitely thin

solenoids. In two dimensions, these lines are point objects. Without loss of generality, the

magnetic flux on each line is assumed to be positive. This can always be achieved with a

rotation of the referential system. Also, recall that the influence of each flux line in the

dynamics of quantum charges is invariant under the addition of a fluxon, i.e., the magnetic

flux Φ0 defined in Eq. (2.38). Because of this, the magnetic fluxes can be taken to be limited

to the interval [0,Φ0).

The continuous magnetic wall is replaced with a lattice of flux lines with spacing L, with

each line carrying a magnetic flux ΦB , as represented in Fig. 2.2. As discussed in the

previous chapter, an incident charge represented by a plane wave has the modular part of its

transverse kinematic momentum changed according to Eq. (2.55). What is most important

for the present analysis is the fact that this implies that there is a minimum change in

the transverse kinematic momentum of the charge, which is given by
∣∣∆py∣∣min = |qφB | if

ΦB ≤ Φ0/2, and 2π~/L − qφB if ΦB > Φ0/2. Observe that the latter corresponds to the

minimum deflection if −Φ0/2 < ΦB < 0. Because of this extra symmetry, hereby, only

magnetic fluxes in the interval (0,Φ0/2] are considered.

Let the charge start with average kinematic momentum pi = p
(i)
x x̂+ p

(i)
y ŷ. Then, if p

(i)
y = 0,

the particle acquires a transverse kinematic momentum of at least −qφB . Therefore, if

p
(i)
x < |qφB | (Eq. (3.3)) is satisfied, the charge is reflected. Moreover, if p

(i)
y 6= 0, its

transverse kinematic momentum can, in principle, decrease in magnitude after it crosses the

lattice. However, if
∣∣∣p(i)
y

∣∣∣ < ∣∣∆py∣∣min /2, the magnitude of the final transverse kinematic

momentum of the particle cannot be smaller than
∣∣∣∣∣∣p(i)

y

∣∣∣− ∣∣∆py∣∣min

∣∣∣, which is still greater

than
∣∣∣p(i)
y

∣∣∣. In other words, if Eq. (3.4) is satisfied, the charge must bounce off the lattice of
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flux lines. In conclusion, the lattice constitutes an energy barrier similar to the continuous

magnetic wall. Interestingly, Eq. (3.4) does not depend explicitly on ~. However, because

ΦB is upper-bounded by Φ0 = 2π~/q, for any fixed lattice spacing L, φB = ΦB/L→ 0 when

~ → 0. However, L can be adjusted so that L → 0 and φB is constant in that limit. This

shows that, in specially designed configurations, consequences of the AB effect can still hold

in the classical limit.

3.4 Topological Bound States

In this section, it is shown that flux lines can be used to create bound states. However, to

continue the parallel between discrete and continuous distribution of fields, the cases with

continuous magnetic fields are considered first.

In classical physics, it was studied in Section 3.1 that widthless magnetic walls behave like

mirrors for low-energy charges. If the wall is placed inside a long rectangular cavity, as

represented in Fig. 3.2(a), it continues to behave like a mirror. Furthermore, if a low-energy

charge is placed between two of those walls, independently of how close they are from each

other, it remains trapped in that region, as shown in Fig. 3.2(b).

A similar result holds in a quantum treatment of the problem. An argument close to the

one presented in Section 3.2 can be given. For that, consider a quantum charge traveling

towards a magnetic wall, as represented in Fig. 3.2(c). Choosing a gauge for which the

vector potential inside the cavity is written as Eq. (3.6), it is possible to conclude that

there should be an increase in the particle’s average kinematic energy associated with the y

direction after it completely crosses the wall. Then, if its initial average energy is sufficiently

small, the charge is at least partially reflected.

Now, a quantum charge can also be trapped by two walls of magnetic field, as illustrated
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Figure 3.2: Representation of particles inside a cavity. A Classical particle (yellow dot) can
be (a) reflected trapped and (b) trapped by magnetic walls (blue lines). The red curves
represent the particle’s trajectory. For a quantum charge q (yellow cloud) inside a cavity,
the magnetic walls also (c) work as an energy barrier, and (d) can trap the particle. This
effect persists in the quantum case even if the wall is replaced by a flux line (blue dot), as
shown in (g) and (h). In particular, if the flux line carries a semifluxon, nodal lines are
induced in the wave functions of charges, as illustrated by the green lines in (e) and (f).

in Fig. 3.2(d). As discussed in Section 2.5, the energy of a quantum particle confined to

a cavity becomes quantized. There, the case of an infinite well was given as an example.

The rectangular cavity of interest here is a two-dimensional version of that problem. In fact,

because the Schrödinger equation becomes separable, the solution to this problem is similar

to the one-dimensional case. The overall eigenstates are products of the eigenstates of each

dimension and their energies are the sum of the energy associated with each direction.

While these ideas did not play a role in the discussion of the scenario represented in Fig.

3.2(c), they are fundamental in the case where a particle is confined by two magnetic walls

inside a long rectangular cavity. In fact, letting L be the width of the cavity and D be

the distance between the walls, the minimum average energy of a particle that starts in the
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region between the walls must have at least an average energy of

〈E〉i,min =
π2~2

2mL2
+

π2~2

2mD2
, (3.14)

i.e., the minimum energy of a particle inside a two-dimensional box with lengths D and L.

Moreover, the amount of average energy necessary for a charge to completely cross one of

the walls is greater than or equal to

〈E〉f,min =
π2~2

2mL2
+
q2φ2

B

2m
. (3.15)

Hence, if |qφB | > π~/D, i.e., if the separation D between the walls is such that

D >
π~
|qφB |

, (3.16)

it is possible to have a low energy particle that stays (at least partially) trapped in the

region between the two walls. Observe that, in general, the particle will have a non-trivial

dynamics inside the region between the walls. In any case, the result just presented implies

that the walls create bound states inside the cavity. Moreover, different from the classical

case, there is a minimum distance between the walls required for the possibility of having a

particle confined by them. However, in the classical limit, i.e., when ~→ 0, the value of this

minimum distance goes to zero.

Finally, the case where the magnetic walls are replaced by flux lines, which is the main focus

of this section, is now considered. Once again, consider a rectangular cavity with width L

equipped with two flux lines placed with a distance D from each other on the long symmetry

axis of the cavity, as shown in Fig. 3.2(e). Then, the following question can be asked: do the

flux lines work similarly to the walls of magnetic field just considered? Or, more specifically,

do they create bound states inside the cavity?
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To approach this problem, first consider flux lines carrying a semifluxon each, i.e., a magnetic

flux given by ΦB = Φ0/2. This simplifies the analysis because, as studied in Section 2.5,

semifluxons induce nodal lines in the wave function of charges. In this particular configu-

ration, the symmetry of the problem implies that the nodal lines associated with the flux

lines for eigenstates of the cavity should be as illustrated by the green lines in Figs. 3.2(e)

or 3.2(f). To see that, note that the Hamiltonian of the cavity remains physically invariant

if the cavity is rotated by 180◦ about its long axis of symmetry. The difference between

the two configurations (the original and the rotated one) is the direction of the semifluxon.

Then, the flux lines differ by an entire fluxon Φ0, which does not affect any physical system.

A charge whose wave function is a packet moving towards the right-hand side, initially

confined in the sector delimited by the two flux lines, and given by a product state ψ = ψxψy,

with

ψy =

√
2

L
cos
(πy
L

)
, (3.17)

has a minimum average energy 〈E〉i,min given by Eq. (3.14).

In this setup, the eigenstates that contribute to the eigendecomposition of the particle must

be the ones whose nodal lines are in the configuration shown in Fig. 3.2(f). Thus, a charge

that completely escapes the region between the flux lines will present a nodal line at the

center of the y direction. Then, the state with minimum average energy after a particle

completely escapes the flux lines corresponds to the first excited state of the y direction, i.e.,

〈E〉f,min =
2π2~2

mL2
. (3.18)

As a consequence, if the charge starts with average energy smaller than this value, which

may be the case if

π2~2

2mL2
+

π2~2

2mD2
<

2π2~2

mL2
⇒ D >

1√
3
L, (3.19)
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it cannot completely leave the region. Even if parts of its original wave function associated

with higher energies move past the flux lines, parts of it bounce back. This remaining part

remains trapped in the region between the flux lines and, therefore, is given by a linear

combination of eigenstates with nodal lines outside the region between the flux lines. Thus,

there exist eigenstates with low energy associated with the configuration presented in Fig.

3.2(f) that are mostly confined in sector delimited by the flux lines.

This result is valid even if the cavity is infinitely long, i.e., if an open wave-guide is considered.

Moreover, even though the confinement of these systems depends on the geometry of the

cavity (it must be relatively narrow, for instance), they would not exist if it was not for the

AB effect. Because of this, they are called topological bound states.

Also, the continuity of the probability density associated with the wave function implies that

the topological bound states have tails outside the region between the flux lines. However,

position measurements of topologically bounded charges must reveal, with substantial prob-

ability, that they are in the region between the solenoids, and the charge should not be found

in the far (outer) field.

Now, what happens if each flux line carries a magnetic flux ΦB different from a semifluxon?

To answer this question, consider the cavity of Fig. 3.2(g) with a single flux line carrying a

magnetic flux ΦB placed, say, at the origin of a frame of reference whose x axis is parallel to

the long symmetry axis of the cavity. Assume the cavity has a long extension to the left and

the right of the flux line. Like in the case with semifluxons, let the charge start in a separable

state ψ = ψxψy, where ψy is given by Eq. (3.17) and ψx is a state with low average energy

in the direction of motion.

If ΦB = 0, ψ returns to its initial shape after the packet has completely passed the flux

line. Now, if ΦB = ε� 1, then ψ is slightly disturbed as the charge passes it, since it must

present a phase discontinuity after the charge completely encircles the flux line. To treat the
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problem, consider a gauge for which the vector potential ~A associated with the flux line is

given by

~A(x, y) = ΦBΘ(x)δ(y)ŷ. (3.20)

Then, after crossing the flux line, ψ turns into ψ′, which must have a phase discontinuity

at y = 0. Since the magnetic flux is considered to be sufficiently small, ψ′ ≈ ψ and, while

ψ′y ≈ ψy, ψ′y has a phase discontinuity of ε at y = 0. To see that this phase discontinuity

implies that the flux line creates an energy barrier, observe that the change in the average

energy associated with the y direction can be approximated as

∆〈E〉 ≈ 1

2m
lim
γ→0

∫ γ

−γ
ψ∗y
(
Py − qεδ(y)

)2
ψy dy

=
1

2m
ε2q2 lim

γ→0

∫ γ

−γ
δ(y)2

∣∣ψy∣∣2 dy.

(3.21)

Because ψy was already prepared with the minimum possible energy in the y direction, this

change of energy necessarily implies an increase in the average energy associated with that

direction. As a result, as long as the initial average energy of ψx is smaller than a certain

threshold, the charge is at least partially reflected by the flux line.

The problem, now, becomes the quantification of the minimum amount of extra energy

associated with ψ′y after the particle crosses the flux line. For that, consider, once more,

the lattice of flux lines represented in Fig. 2.2 and let the initial state of the charge be

ψ = ψxψy, where ψy is given by Eq. (3.17), which has lines of zeros at y = nL+L/2, evenly

spaced between the fluxes of the lattice, as represented by the gray lines in Fig. 2.2. For

the incoming particle, the dynamics will be unchanged if infinite cavity walls (not magnetic)

are added along the nodal lines, to the left of the lattice. Now, when the particle passes

the flux lines, these walls end, and the dynamics goes back to the case of free diffraction,

where Eq. (2.55) applies. Moreover, adding in the cavity walls on the right-hand side of the

lattice to the initial Hamiltonian can only increase the minimum energy associated with the
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y direction. In other words, the free case gives a lower bound on the energy for the stacked

cavities case. Hence, it is possible to conclude that the energy increase associated with ψy

after the charge crosses the flux line corresponds to at least the amount q2φ2
B/2m. Thus,

low-energy particles cannot cross the flux line.

With this in mind, consider a cavity with two flux lines separated by a distance D. If a

charge starts in the region between the fluxes, the minimum amount of average energy it

can have is given by Eq. (3.14). After crossing the flux line, the charge’s minimum amount

of average energy is expressed in Eq. (3.15). As with the case of two magnetic walls inside

a cavity, it can be concluded that, if Eq. (3.16) is satisfied, there exist topological bound

states in the sector of the cavity delimited by the flux lines.

Finally, observe that, if each wall has a magnetic flux greater than a semifluxon (i.e., Φ0/2),

then it should be replaced by multiple flux lines, instead of a single one. In any case, the

results discussed here should still hold.

3.5 Landau Levels

So far, in this chapter, the region with magnetic field was taken to be widthless. But this

was done merely for convenience. In fact, as it will be shown in this section, the effects of

two-dimensional magnetic fields can be emulated by two-dimensional grids of flux lines. In

particular, approximations of the Landau levels will be obtained in the presence of a uniform

two-dimensional grid of flux lines.

In classical physics, a classical charge inside a region with a uniform magnetic field travels

in a circular motion. In quantum mechanics, these circular orbits are also present in the

dynamics of charges. However, they are quantized, and each level of energy is called a

Landau level. To see that, consider a particle in a uniform magnetic field ~B = Bẑ. Then,
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in the gauge known as the Landau gauge, for which the vector potential is ~A = Bx, the

Hamiltonian of the particle is given by

H =
1

2m

[
P 2
x +

(
Py − qBX

)2]2
. (3.22)

Because
[
H,Py

]
= 0, the transverse momentum can be replaced by its eigenstate ~ky. With

that, the Hamiltonian is simplified to

H =
1

2m

[
P 2
x +

(
~ky − qBX

)2]2
, (3.23)

which can be identified as the Hamiltonian of the one-dimensional harmonic oscillator. Har-

monic oscillators play a fundamental role in the study of systems near their equilibrium.

Also, they correspond to a one-dimensional projection of two-dimensional circular motions.

The fact that Eq. (3.23) is the Hamiltonian of a harmonic oscillator indicates that the par-

ticle travels on a circular orbit, although the asymmetry of the chosen gauge does not seem

to corroborate with this conclusion at first glance. However, a more careful analysis with,

for instance, the choice of the symmetric gauge ( ~A = (−yx̂+xŷ)B/2) can reveal the circular

characteristic of the solution.

The idea, now, is to show that an approximation of the Landau levels can be obtained

with the use of flux lines. To see that, consider a region with constant magnetic field

~B = Bẑ. Also, let this region be divided into squares with length L, each with a flux

ΦB = BL2 < Φ0/2 — or a magnetic flux per unit of transverse length φB = B/L. Now,

replace each square by a flux line with magnetic flux ΦB . Then, it is still possible to obtain

the Landau levels with this two-dimensional square grid of flux lines with spacing L. In the
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singular gauge, the Hamiltonian of a charge can be written as

H =
1

2m

P 2
x +

Py − q ∑
n,s∈Z

Ans(X, Y )

2
 , (3.24)

where Ans(X, Y ) = ΦBΘ(X−nL)δ(Y −sL) is the vector potential associated with each flux

line. The solutions of this Hamiltonian cannot be easily found. However, the Hamiltonian

can be simplified by using the fact that, for each vertical layer, the average effect of the flux

lines is a change of qφB in vertical momentum. Hence, Eq. (3.24) can be approximated as

H =
1

2m

P 2
x +

Py − qφB∑
n∈Z

Θ(X − nL)

2
 . (3.25)

Now, because the new expression for the Hamiltonian commutes with the canonical trans-

verse momentum Py, it is possible to replace this operator by its eigenvalue ~ky. Then,

H =
1

2m

P 2
x +

~ky − qφB
∑
n∈Z

Θ(X − nL)

2
 . (3.26)

One can easily see that the Hamiltonian in Eq. (3.26) is formally an approximation of the

one-dimensional harmonic oscillator. In fact, if L � 1, the term φB
∑
n∈Z Θ(X − nL) can

be approximated as BX. This shows that, indeed, the Landau levels can be recovered with

the use of a two-dimensional grid of flux lines.

3.6 Semi-Classical Toy Model

Recall that the magnetic flux ΦB associated with a flux line vanishes in the classical limit.

However, this does not necessarily imply that φB also vanishes. Indeed, as it will be discussed

in this section, it is possible to take the distance L between the flux lines to zero in the
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Figure 3.3: Schematic representation of a semi-classical theory where a region with an ar-
bitrary continuous distribution of magnetic field in the z direction that does not depend
on the z coordinate (blue region) is replaced by a discrete distribution of flux lines (blue
dots). The region can be split into infinitesimal areas, each with constant magnetic fields,
as represented in the rectangular zoomed-in cut-away section. These infinitesimal areas can
be replaced by a grid of flux lines, as shown in the elliptical zoomed-in cut-away section.
The charge (yellow object) is assumed to have a spread much smaller than the infinitesimal
areas.

classical limit in a way that keeps φB constant. In this case, the minimum deflection does

not vanish. It seems, then, that the AB effect generates a classical force.

In fact, under certain seemingly reasonable assumptions, the classical magnetic force in an

arbitrary continuous field ~B(x, y) = Bz(x, y)ẑ can be seen as arising from the topological AB

force. To show this, the magnetic field has to be first broken up into differential rectangles

of area dx · dy, each with flux dΦB = Bz(x, y)dxdy, as illustrated in Fig. 3.3. Then, the

uniform magnetic field Bz in the differential region dx · dy is replaced by an M ×N grid of

lines with fluxes dΦB/MN .

Now, consider a quantum charge q spread over a region much smaller than dx · dy (but large

enough to be diffracted by some of the flux lines) and incident on one of the infinitesimal

cells with average velocity

~v = vxx̂+ vyŷ + vz ẑ. (3.27)

Also, assume that the AB force acts on the wave function of the particle when it is crossing
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the lattice, which is consistent with the discussion in Section 2.4. Then, neglecting the terms

with ~ in Eq. (2.54), which vanish in the classical limit, the change in kinematic momentum

per vertical layer of N flux lines in the y direction amounts to −qBz(x, y)dx/M . Similarly,

the change in kinematic momentum in the x direction per horizontal layer of M flux lines is

qBz(x, y)dy/N . Then, if the center of the charge spread crossed n1 ≤ N vertical layers and

n2 ≤ M horizontal layers while passing over the dx · dy infinitesimal cell, the total change

in kinematic momentum can be approximated as

d~p = dpxx̂+ dpyŷ

≈ qBz(x, y)
n1

M
dy x̂− qBz(x, y)

n2

N
dx ŷ.

(3.28)

Noticing that the particle’s average velocity is kept approximately constant in each infinites-

imal cell, i.e., vx ≈ (n2/N)(dx/dt) and vy ≈ (n1/M)(dy/dt), where dt is the amount of time

the center of the charge’s distribution remains in the cell, a simple application of the chain

rule gives

~F =
dpx
dt

x̂+
dpy
dt
ŷ = qBzvyx̂− qBzvxŷ, (3.29)

which correspond to

~F = q~v × ~B. (3.30)

Finally, taking the classical limit where the particle spread reduces to zero, ~v becomes the

classical velocity, and ~ goes to zero, the classical force ~F experienced by a point charge q

in a magnetic field ~B arises purely from the topological AB force.

3.7 Discussion

The results discussed in this chapter show a certain equivalence between the quantum and

the classical treatment of the dynamics of charges in the presence of continuous magnetic
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fields. This, on itself, is a manifestation of how special magnetic fields are. To evidence it, it

is interesting to compare the magnetic wall with a usual potential barrier. First, recall that,

even though the energy barrier associated with the magnetic walls is, in general, dependent

on the angle of incidence, there exists a value (|qφB |/2) for which any low-energy charge

is reflected by the wall. For simplicity, take that value as the value of the energy barrier

imposed by the wall. In that case, if the wall was replaced by a scalar potential given by

V (x) =
qφB

2
δ(x), (3.31)

or even by

V (x) =

 0 if x < 0 or x ≥ w

|qφB |
2 if 0 ≤ x < w

, (3.32)

the potential wall would behave like a mirror for low-energy charges for particles only in

the classical treatment of the problem. For quantum systems, those scalar barriers are not

enough to reflect low-energy particles. This is because of a phenomenon known as quantum

tunneling, discovered in 1927 by Hund [118].

The idea of this phenomenon is that, even though the particle does not have enough energy

to overcome the barrier, slowly it starts “leaking” on the other side. Therefore, the particle

can be found in the far-field. The potential barriers only reflect low-energy particles in the

limit where w →∞, i.e., when the potential is uniformly applied everywhere on the opposite

side of incidence of the particle.

Besides this perspective on magnetic fields, the results presented in this chapter also show

that the AB effect enables the construction of energy barriers with lattices of flux lines. For

magnetic fluxes between zero and Φ0/2 = π~/q, these lattices and thin continuous magnetic

walls behave alike. Their similarity, however, vanishes outside that interval because of the

periodicity discussed in Section 3.2. Nonetheless, this is not a significant limitation of our
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results. In fact, if a magnetic wall has a flux ΦB > Φ0/2 associated to any L, there is a

length L′ < L such that the magnetic flux Φ′B associated with a region of that length is

Φ′B < Φ0. Thus, in general, any widthless uniform magnetic wall with φB can be replaced

by a lattice of flux lines with Φ′B = φBL
′ ≤ Φ0/2 = π~/q, where L′ is the spacing of the

lattice.

Additionally, it was discussed how these results could be extended to the case where the

magnetic walls have some width, and the lattices are two-dimensional grids of flux lines.

In particular, in Section 3.5, it was shown how approximations of Landau levels could be

obtained with distributions of flux lines.

It is important to note that, before this work, Andrei Shelankov studied wave functions with

finite width in the presence of flux lines using paraxial analysis and obtained some of the

results presented here [119, 120]. However, this work not only uses a more straightforward

approach to generalize Shelankov’s results, but also introduces new ideas, like the topological

bound states, for instance.

Finally, the basic scheme for a semi-classical theory presented in Section 3.6 suggests that

the AB effect in quantum mechanics may be the fundamental source of the classical magnetic

force. Further developments of this semi-classical model where the spread of the particle is

introduced as a free parameter are necessary to shed more light on this quantum-to-classical

transition.
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4 Complex Vector Potentials in Pre and
Post-Selected Systems

Up until now, the AB effect has been considered in scenarios where the source of the elec-

tromagnetic field is not quantized. This chapter, however, presents the results from Ref.

[68], which studies quantum charges encircling a quantized magnetic flux. It is shown that

the state of the particle after it surrounds a flux with small uncertainty is approximately

the final state of a particle enclosing a region with the average magnetic flux. Furthermore,

it is proved that, if a post-selection of the magnetic flux is considered, the magnetic vector

potential is, in general, complex-valued.

4.1 Weak Measurements and Weak Values

As already mentioned, if a property O of a system in a state |ψ〉 is measured, the system

will be found in an eigenstate |o〉 of O with probability given by

p(o) = |〈o|ψ〉|2. (4.1)

However, for a measurement to happen, a measurement device has to interact with the

system of interest, and the result is, then, read from the device (which is also called the

pointer). Thus, the measurement of the system is made indirectly.

The model of how the interaction between the device and the system takes place was intro-

duced by von Neumann [24]. He considered the following interaction Hamiltonian

Hint(t) = h(t)O ⊗ P, (4.2)
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where O is the observable of interest (that acts in the Hilbert space (HS) Hs of the system),

P is the momentum operator that acts in the HS Hd of the device, and h is a function of

time that is non-zero from t0 to t1, the interval of time where the measurement takes place.

The interest here is on interactions that happen fast enough when compared to the evolution

of the system and the apparatus. In this case, Hint is the effective Hamiltonian during the

measurement. These are called impulsive measurements. Hence, the unitary evolution is

U(t; t0) = e
−i
∫ t
t0
Hint(t

′)dt′/~
. (4.3)

To see how the device ends up with information about the system, let the initial state of the

device be

|ξ〉 =

∫
ξ(x)|x〉dx. (4.4)

Moreover, let the initial state of the system be

|ψ〉 =

∫
ψ(o)|o〉do, (4.5)

where |o〉 are eigenstates of the observable O. Then, writing Ψ(t0)〉 = |ξ〉 ⊗ |ψ〉,

|Ψ(t)〉 =

∫∫
ψ(o)ξ(x)U(t; t0) [|o〉 ⊗ |x〉] do dx

=

∫∫
ψ(o)ξ(x)|o〉 ⊗ e−i

∫ t
t0
h(t′)oP dt′/~|x〉 do dx

(4.6)

and, in particular,

|Ψ(t1)〉 =

∫∫
ψ(o)ξ(x)|o〉 ⊗ |x+ go〉 do dx

=

∫∫
ψ(o)ξ(x− go)|o〉 ⊗ |x〉 do dx,

(4.7)

where g ≡
∫ t1
t0
h(t) dt.
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More generally, in the Heisenberg picture,

I ⊗X(t) = U†(t) (I ⊗X(t0)U(t; t0) = I ⊗X(t0)−
∫ t

t0

h(t′) dt′O(t0)⊗ I. (4.8)

Hence,

〈X(t1)〉 = 〈X(t0)〉 − g〈O(t0)〉, (4.9)

where it was used that

[X, f(P )] = i~
∂F

∂P
(P ), (4.10)

which follows from Eq. (2.8). Eq. (4.9) shows that, in the average over many trials of the

experiment, the measurement device is shifted by an amount that is proportional to the

average of the observable of the measured system. While Eq. (4.9) also holds for density

matrices, for simplicity, only pure initial states are considered hereby.

It can be observed that the constant g is associated with how well separated the eigenvalues

of the observable will be in the reading of the device, i.e., how well the device can resolve the

observable O. If g is large enough, the measurement is sharp, and the experimentalist has

high confidence about the state of the system of interest after the measurement is complete.

However, if g is small enough, the measurement will not provide enough information for the

experimentalist to know with high certainty the state of the system of interest.

It turns out that, while a large g can highly disturb the system, the case of a sufficiently

small g keeps the system relatively intact. If fact, from Eq. (4.7), it holds that the state of

the system after the interaction with the device is

ρs = Trd|Ψ(t1)〉〈Ψ(t1)|

=

∫∫∫∫
ψ(o)ψ(o′)ξ(x)ξ(x′)〈x′ + go′|x+ go〉|o〉〈o′| do do′ dx dx′

=

∫∫∫
ψ(o)ψ(o′)ξ(x)ξ(x− g(o− o′))|o〉〈o′| do do′ dx.

(4.11)
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Now, assuming ξ is analytic,

ξ(x− g(o− o′)) ≈ ξ(x)− g(o− o′)dξ
dx

(x) (4.12)

as long as |g(o− o′)| � 1 for every o and o′ such that ψ(o) 6= 0 and ψ(o′) 6= 0. In this case,

ρs ≈
∫∫∫

ψ(o)ψ(o′)ξ(x)ξ(x)|o〉〈o′| do do′ dx

=

∫∫
ψ(o)ψ(o′)|o〉〈o′| do do′

= |ψ〉〈ψ|.

(4.13)

This means that the final state is almost a product state if g is much smaller than the

inverse of the spreading of the measured system. In particular, the measured system remains

approximately unchanged. This is called a weak measurement. With that, the case where

the system is highly disrupted is, then, called a strong measurement.

Furthermore, in a weak measurement,

|g(o− o′)| � ~⇒ |g(o− 〈O〉)| � ~⇒ e−ig(o−〈O〉)⊗P/~ ≈ Id (4.14)

for every o and o′ such that ψ(o) 6= 0 and ψ(o′) 6= 0, and the final state of the joint system

is such that

|Ψ(t1)〉 =

∫∫
ψ(o)ξ(x)|o〉 ⊗ e−igoP/~|x〉 do dx

=

∫∫
ψ(o)ξ(x)|o〉 ⊗ e−ig〈O〉P/~e−ig(o−〈O〉)P/~|x〉 do dx

≈
∫∫

ψ(o)ξ(x)|o〉 ⊗ e−ig〈O〉P/~|x〉 do dx

= |ψ〉 ⊗
∫
ξ(x− g〈O〉)|x〉 dx,

(4.15)

i.e., the measurement device is shifted by an amount proportional to 〈O〉.
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Figure 4.1: Effect of measurements in the measurement device. The initial distribution of
the measurement device (pink area) is a Gaussian with zero mean and a standard deviation
of σ = 0.4. The purple curve represents its distribution after the measurement is complete.
It should be noticed that weak measurements (small g) almost does not disturb the device,
while strong measurements (large g) drastically changes its distribution.

As an example, consider the case where the initial state of the device is a Gaussian centered

at the origin, i.e.,

ξ(x) =
1

σ
√

2π
exp

[
−1

2

(x
σ

)2
]
. (4.16)

Also, suppose the system of interest is a qubit, i.e., a quantum system associated with a

complex HS Hs with dimension 2, in the state

|ψ〉 =
1√
3
|0〉+

√
2

3
|1〉, (4.17)

where |0〉 and |1〉 are an orthonormal basis of Hs. Moreover, consider the measurement of

an observable σz such that σz|0〉 = |0〉 and σz|1〉 = −1. Thus, Eq. (4.7) becomes

|Ψ(t1)〉 =
1√
3
|0〉 ⊗

(∫
ξ(x− g)|x〉 dx

)
+

√
2

3
|1〉 ⊗

(∫
ξ(x+ g)|x〉 dx

)
. (4.18)
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Since the final state of the device ρd can be computed as ρd = Trs|Ψ(t1)〉〈Ψ(t1)|, the final

probability distribution of it is

|ξ|2(x) = 〈x|ρd|x〉 =
1

6σ2π
e
−
(
x−g
σ

)2
+

1

3σ2π
e
−
(
x+g
σ

)2
. (4.19)

This state is compared with the initial state of the device (the square of Eq. (4.16)) in Fig.

4.1 for various choices of g and σ = 0.4. It should be noticed that, for weak measurements,

as a result of the measured system remaining approximately undisturbed, the probability

distribution of the pointer is also kept almost unchanged. This implies that little information

can be extracted from a single measurement since the device does not have enough resolution

to give a precision of how much its average was shifted. However, observe that repetitions of

the measurement effectively decrease the variance associated with the pointer, allowing the

shift in the average to be detectable.

Now, weak measurements are often considered in scenarios where the system of interest is

post-selected. This means that, after the interaction with the device, the measured system

continues its evolution until it is strongly measured and “collapses” in a state

|ϕ〉 =

∫
ϕ(o)|o〉 do, (4.20)

which is assumed to be non-orthogonal to |ψ〉, i.e., 〈ϕ|ψ〉 6= 0. When the post-selection is

made, the small entanglement between the system and the device that conducted the weak
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measurement is destroyed. In this case, the final state of the device is

(〈ϕ| ⊗ Ip)|Ψ(t1)〉 =

∫∫
ψ(o)ϕ(o)ξ(x)e−ig〈O〉P/~e−ig(o−〈O〉)P/~|x〉 do dx

≈
∫∫

ψ(o)ϕ(o)ξ(x)e−ig〈O〉P/~
(
Id − i

g(o− 〈O〉)P
~

)
|x〉 do dx

=

(∫
ψ(o)ϕ(o) do

)∫
ξ(x)e−ig〈O〉P/~

(
Id + i

g〈O〉P
~

)
|x〉 dx

− g

~
〈ϕ|ψ〉

∫
ξ(x)e−ig〈O〉P/~

(∫
oψ(o)ϕ(o)

〈ϕ|ψ〉
do

)
P |x〉 dx.

(4.21)

Observe that

〈O〉w ≡
∫
oψ(o)ϕ(o)

〈ϕ|ψ〉
do =

〈ϕ|O|ψ〉
〈ϕ|ψ〉

(4.22)

depends only on the measured system. This quantity, which was introduced in 1988 by

Aharonov, Albert, and Vaidman in Ref. [121], is called the weak value (WV) of the operator

O. It should be noticed that, differently from the expected value 〈O〉, the WV is, in general,

a complex number.

Now, assuming |g(〈O〉w − 〈O〉)| � ~ and recognizing

〈ϕ|ψ〉 =

∫
ψ(o)ϕ(o) do, (4.23)

it holds that

(〈ϕ| ⊗ Ip)|Ψ(t1)〉 ≈ 〈ϕ|ψ〉
∫
ξ(x)e−ig〈O〉P/~

(
Id − i

g(〈O〉w − 〈O〉)P
~

)
|x〉 dx

≈ 〈ϕ|ψ〉
∫
ξ(x)e−ig〈O〉wP/~|x〉 dx

= 〈ϕ|ψ〉
∫
ξ(x− gRe(〈O〉w))egIm(〈O〉w)P/~|x〉 dx.

(4.24)

Therefore, the measurement device is purely affected by the WV.

As an example, consider again the case where the initial states of the device and the system of
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Figure 4.2: Effect of post-selections in weak measurements. The initial distribution of the
measurement device (gray curve) is a Gaussian with zero mean and a standard deviation of
σ = 0.4. The weak measurement slightly changes the distribution of the device (pink area).
However, when considering post-selections of the measured system, the device’s distribution
is affected. The purple curves show the (unnormalized) probability distributions after two
different (and complementary) post-selections are made.

interest are given by Eqs. (4.16) and (4.17), respectively. Then, if the qubit is post-selected

in the state |0〉, Eq. (4.18) implies that the (unnormalized) final probability distribution of

the device is

|ξ|2(x) =
1

6σ2π
e
−
(
x−g
σ

)2
. (4.25)

This situation is represented in Fig. 4.2(a). Moreover, if the post-selection is made on the

state |1〉, the final (unnormalized) distribution of the device is

|ξ|2(x) =
1

3σ2π
e
−
(
x+g
σ

)2
, (4.26)

which is illustrated by Fig. 4.2(b).

As it can be observed, the distribution of the device is, in general, significantly changed

when considering weak measurements with post-selections. In fact, it can be shown from

the definition in Eq. (4.22) that the WV can assume any complex value. When it has an

imaginary part or its value goes outside the range of eigenvalues of the operator O, the WV

is said to be anomalous.

To conclude, it should be mentioned that WVs arose from the study of the two-state vector
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formalism of quantum mechanics, introduced by Aharonov, Bergmann, and Lebowitz [122]

in 1964. This formalism considers that the time asymmetry existing in the dynamics of

quantum systems due to the “collapse” of the wave function is the result of an incomplete

setting of boundary conditions. Specifically, it considers that the state that can be attributed

to a system in a certain instant of time does not depend only on how the system was prepared

(the pre-selection), but also on the state it will be measured in the future (the post-selection).

The idea is, then, that the post-selection travels backward in time and combines with the

pre-selection, which travels forward in time, to define the “reality” of the system at the

present [123–125].

Also, the research on WVs has become a rich area of study [126–142]. In particular, it

has uncovered many surprising effects in quantum theory [58, 143–147], besides shedding

some light in the understanding of problems that were already known [148–152], like the

interaction-free measurements [148, 153]. Also, anomalous WVs are proof of contextuality

[154, 155]. Finally, WVs inspired new type of quantum experiments [156–163].

4.2 Quantization of the Sources of Electromagnetic Fields

Classical or quantum treatments of electromagnetic systems are characterized for being gauge

invariant. It can be shown, however, that, when the source of electromagnetism is quantized,

a more careful analysis of the problem is required. This section presents the model introduced

in Ref. [164] and further studied in Ref. [165], which includes the quantization of the sources

of the field. Moreover, it discusses the delicate aspects of gauge transformations in this

context.

Consider an infinitely long cylindrical shell with radius a, rotational inertia Ic, and uniform

charge density σ rotating around its long axis of symmetry (which coincides with the z axis)

with angular velocity η̇, in a similar manner as the solenoid represented in Fig. 2.1. Such a
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cylinder generates a uniform magnetic field on its interior given by

~B = µ0ση̇aẑ. (4.27)

Outside of it, the magnetic field vanishes. Also, a uniformly charged wire is added in the z

axis to cancel the electric field on the exterior of the cylinder. With that, observe that this

cylinder behaves like a solenoid. Finally, consider a charge q with mass µ traveling outside

the cylinder in the xy plane, and let the coordinates of such a charge be given by (r, θ).

First, a classical treatment of the problem is given. For that, the joint system of the cylinder

and the charge has its dynamics described by the Lagrangian

L =
1

2
µṙ2 +

1

2
Idθ̇

2 +
1

2
Icη̇

2 + qτ η̇θ̇, (4.28)

where Iq = µr2 is the moment of inertia of the charge and τ is a constant associated with

the interaction between the cylinder and the particle. From the Lagrangian, the canonical

momentum with respect to each coordinate variable can be found. The canonical radial

momentum of the particle is

pr ≡
∂L
∂ṙ

= µṙ. (4.29)

Also, the canonical angular momentum of the charge is

pθ ≡
∂L
∂θ̇

= Iq θ̇ + qτ η̇. (4.30)

Furthermore, the canonical angular momentum of the cylinder is

pη ≡
∂L
∂η̇

= Icη̇ + qτ θ̇. (4.31)
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Solving for η̇ in Eq. (4.31) and replacing it in Eq. (4.30), it holds that

θ̇ =
pθ
I ′q
−
qτpη
I ′qIc

, (4.32)

where I ′q = Iq − q2τ2/Ic. Moreover,

η̇ =
pη
Ic
− qτpθ
I ′qIc

. (4.33)

The Hamiltonian of the system can, now, be derived with the Legendre transform. In fact,

neglecting terms with τ2/I2
c ,

H = prṙ + pθθ̇ + pηη̇ − L ≈
1

2µ
pr +

1

2I ′q

(
pθ −

qτ

Ic
pη

)2

+
1

2Ic
p2
η. (4.34)

Now, take the limit Ic � 1 such that η̇ ≈ τ/Ic is a finite constant K/2π. Then, I ′q ≈ Iq and

H ≈ 1

2µ
pr +

1

2Iq

(
pθ −

qK

2π
pη

)2

+
1

2Ic
p2
η. (4.35)

With that, the system can be quantized. The Hamiltonian associated with it is

H =
1

2µ
Pr +

1

2Iq

(
Pθ −

qK

2π
Pη

)2

+
1

2Ic
P 2
η , (4.36)

where Pr, Pθ and Pη are Hermitian operators canonical conjugated of the observable co-

ordinates R, Θ and E, respectively. Observe that each operator P acts on a different HS.

Furthermore, the “operator vector potential” associated with the cylinder is

~A =
K

2π
R−1Pη θ̂, (4.37)

i.e., it is given in the Coulomb gauge.
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Now, there is a subtlety involved in gauge transformations that arises when the transforma-

tion is a function of non-commuting observables. To see that, consider the case where the

total time derivative of the function f = −qτ η̇θ is added to the Lagrangian in Eq. (4.28).

The new Lagrangian is, then,

L′ =
1

2
µṙ2 +

1

2
Idθ̇

2 +
1

2
Icη̇

2 − qτ η̈θ, (4.38)

and it depends on the angular acceleration η̈ of the cylinder. A rigorous derivation of the

Hamiltonian associated with this Lagragian, and its respective quantization is presented

in Ref. [165]. Here, it should just be noticed that this gauge chance corresponds to the

application of the unitary transformation

U = e−iqKΘPη/2π~ (4.39)

to H in Eq. (4.36). Neglecting terms with q2K2Ic/4π
2 and using the canonical commutation

relation between Θ and PΘ,

U

(
Pθ −

qK

2π
Pη

)
≈ Pθ − i

qK

2π~
PθΘPη ⇒ U

(
Pθ −

qK

2π
Pη

)2

U† ≈ P 2
θ . (4.40)

Moreover, this operation translates the coordinate η in such a way that it becomes η′ =

η − qKθpη/2π. Thus, similarly to what was done in Eq. (2.26), the new Hamiltonian is

H ′ = UHU =
1

2µ
P 2
r +

1

Iq
P 2
θ +

1

2Ic
P 2
η′ (4.41)

since Pη′ = −i~∂/∂η′ is equivalent to Pη. Observe that, now, the coordinate of the cylinder

is η′. It can, then, be verified that

[
E′, Pθ

]
= −i qK

2π~
I, (4.42)

62



where I is the identity operator that acts in the HS space associated with the coordinates η′

and θ. This means that the usual canonical commutations (which, in particular, consider that

the cylinder’s and the charge’s observables commute with each other) do not hold anymore.

As stated in Ref. [165], this has a physical interpretation: a measurement of E′ introduces

an angular acceleration in the cylinder, which produces an electric field outside of it that

changes Pθ.

Therefore, although the Hamiltonian of any system can be quantized in an arbitrary gauge,

the quantization process is more delicate when the sources of the electromagnetic field are

involved, and the Coulomb gauge seems to be the most appropriate choice.

4.3 Complex Vector Potentials

In the problem studied in the previous section, assume the charge travels in a circular

trajectory with radius r and the inner evolution of the cylinder, i.e., P 2
η /2Ic is negligible. In

this case, the “operator vector potential” associated with the cylinder in the Coulomb gauge

is

~A(r) =
K

2πr
Pη θ̂. (4.43)

and the Hamiltonian in Eq. (4.36) can be written as

H =
1

2Iq

(
Pθ −

qK

2π
Pη

)2

. (4.44)

Also, denote by |m〉 the eigenstates of Pη such that

Pη|m〉 = m~|m〉 (4.45)
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for every m ∈ Z. Now, if the charge encloses the cylinder in the superpositon

|ψ0〉 =
1√
2

(|ψL〉+ |ψR〉) , (4.46)

where |ψL〉 represents a packet that passes to the left of the cylinder and |ψR〉, a packet

that travels to the right of it, as in Fig. 2.1, the state of the joint system after the particle

encircles the cylinder can be written as

|Λ〉 =
1√
2

(
|ψL〉+ eiqKm|ψR〉

)
⊗ |m〉. (4.47)

Thus, measurements of the position of the particle after the two wave packets recombine,

closing the loop around the cylinder, will reveal the shift in the interference pattern charac-

teristic of the AB effect. In this case, the effective vector potential has the standard classical

form

~A(r) =
Km~
2πr

θ̂. (4.48)

However, in general, the angular momentum of the cylinder can be prepared in a superpo-

sition of eigenstates of Pη, i.e., in a state

|ξ〉 =
∑
j∈Z

cj |mj〉, (4.49)

where the constants cj are such that
∑
j∈Z

∣∣cj∣∣2 = 1. Then, after the charge finishes the

loop, the state of the joint system is

|Λ〉 =
∑
j∈Z

cje
−iKqmj/2

√
2

(|ψL〉+ eiKqmj |ψR〉)⊗ |mj〉. (4.50)

In other words, the charge and the angular momentum of the cylinder become entangled.
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Then, averaging over the states of the cylinder, the final state of the charge after it closes

the loop around the cylinder is

ρ = Trc (|Λ〉〈Λ|)

=
1

2

[
|ψL〉〈ψL|+ |ψR〉〈ψR|+

∑
j∈Z

∣∣cj∣∣2 eiKqmj

 |ψR〉〈ψL|
+

∑
j∈Z

∣∣cj∣∣2 e−iKqmj

 |ψL〉〈ψR|
]
.

(4.51)

Because of the entanglement, the interference between |ψL〉 and |ψR〉 is, in general, destroyed.

Now, a particular scenario of interest is the case where the charge interacts weakly with the

vector potential ~A, i.e., when |Kq(mj −〈Pη〉)| � ~ for every j ∈ Z such that cj 6= 0. In this

case, ∑
j∈Z

∣∣cj∣∣2 eiKqmj = eiKq〈Pη〉/~
∑
j∈Z

∣∣cj∣∣2 eiKq(mj~−〈Pη〉/~)

≈ eiKq〈Pη〉/~.

(4.52)

Hence, the final state of the charge is

|ψ1〉 ≈
1√
2

(
|ψL〉+ eiKq〈Pη〉/~|ψR〉

)
(4.53)

and the effective vector potential in the Coulomb gauge is

~A(r) =
K

2πr
〈Pη〉θ̂. (4.54)

As a result, under the assumptions that |Kq(mj − 〈Pη〉)| � ~ for every j ∈ Z such that

cj 6= 0, the quantum treatment of the cylinder effectively produces the usual classical field

expected by the average over the quantum states of the cylinder.
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Now, suppose that, after the charge encircles it, the cylinder is post-selected in a state

|ϕ〉 =
∑
j∈Z

dj |mj〉 (4.55)

such that 〈ϕ|ξ〉 6= 0. From Eq. (4.50), it holds that the final state of the charge after the

post-selection of the cylinder is

|ψ2〉 =
C√

2

∑
j∈Z

cjdj

(
e−iKqmj/2|ψL〉+ eiKqmj/2|ψR〉

)
, (4.56)

where C = 1/
√∑

j∈Z |cjdj |2 is a normalization constant. If, in addition to letting |Kq(mj−

〈Pη〉)| � ~ for every j ∈ Z such that cj , dj 6= 0, it is also assumed that |Kq(〈Pη〉w −

〈Pη〉)/2| � ~, where 〈Pη〉w is the WV of Pη, it holds that

∑
j∈Z

cjdje
±iKqmj/2 ≈ e±iKq〈Pη〉/2~

∑
j∈Z

cjdj

[
1± iKq

2

(
mj −

〈Pη〉
~

)]

= e±iKq〈Pη〉/2~
∑
j∈Z

cjdj

[
1± iKq

2~
(
〈Pη〉w − 〈Pη〉

)]

≈ e±iKq〈Pη〉w/2~
∑
j∈Z

cjdj .

(4.57)

Then, the final state of the charge after the post-selection of the angular momentum of the

cylinder is given by

|ψ2〉 =
D√

2

(
|ψL〉+ eiKq〈Pη〉w/~|ψR〉

)
, (4.58)

where D is a normalization constant, which is necessary because, as mentioned in Section

4.1, 〈Pη〉w is, in general, a complex number. Also, the effective vector potential in this case

is

~A(r) =
K

2πr
〈Pη〉wθ̂. (4.59)
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It can, then, be concluded that in a system with pre and post-selection, the effective electro-

magnetic vector potential is, in general, complex-valued. However, it should be noticed that

the assumed conditions imply that the imaginary part of the vector potential, if it exists, is

relatively small.

Another interesting effect that can be observed is the continuous change of probability of

finding the charge on the left or the right arm of the loop. In fact, assuming the loop is a

circle centered at the cylinder, the “probability” of finding the particle on the left and the

right arm after each wave packet traveled an angle θ can be computed as

pL(θ) =
eaθ

eαθ + e−αθ
(4.60)

and

pR(θ) =
e−aθ

eαθ + e−αθ
, (4.61)

where a = KIm
(
〈Pη〉w

)
/π~ is a real number. By probability here, it is meant the square of

the magnitude of the amplitude. In other words, the amplitude of the charge’s state on each

arm changes continuously in magnitude while it encircles the cylinder. This counterintuitive

behavior results from the fact that, before the post-selection, there is a continuous increase

in the entanglement between the charge and the cylinder while the particle encircles the

cylinder — and, of course, this assumes that the charge is not observed in between the pre

and post-selection of the cylinder’s angular momentum. Nevertheless, weak measurements

of the position of the charge should reveal this surprising behavior.

4.4 Discussion

The results presented in this section shows that the vector potential can, in general, assume a

complex value. If that is the case, the charge seems to behave in a somewhat counterintuitive

way in the AB scenario, with a constant change in the magnitude of the amplitude on each
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arm.

It should be noted that, in the limits considered in Sections 4.2 and 4.3, the charged cylinder

can be taken to be a macroscopic object with the state of uncertain angular momentum

given by Eq. (4.49). Also, if its rotational inertia Ic is sufficiently high, it is possible to know

both the cylinder’s position and angular velocity with a relatively high degree of certainty

(since its angular velocity is given by the ratio Pη/Ic). As a result, such a cylinder qualifies

as a classical object.

Now, it is also possible to post-select the cylinder in a state |ϕ〉 such that the vector potential

in Eq. (4.59) is complex-valued. In this scenario, the complex vector potential is also a

classical object.

This seems to suggest a need for the generalization of the correspondence principle, which

refers to the connection between classical and quantum systems. The Ehrenfest theorem

is often seen as a mathematical basis for this principle. However, it accounts only for real

expectation values playing a role in classical physics. In fact, post-selections of quantum

systems, and the WVs associated with them, are typically not considered in the study of the

quantum-to-classical transition.

As shown here, nonetheless, even for macroscopic objects, complex WVs provide a more

detailed physical picture than the usual real expectation values. Furthermore, the present

results suggest that classical quantities (in the sense of quantities associated with macroscopic

objects) are, in general, complex-valued. Also, because complex WVs are proof of contex-

tuality, this work suggests that contextuality may play a role in the quantum-to-classical

transition.

Finally, it should be noted that, even though the example considered here presents a scenario

where the vector potential is complex, the same general derivation should hold for other

physical quantities of macroscopic objects, like position and momentum.
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5 Fueter Variables on Banach Algebras

In this chapter, the main results from Ref. [92] are presented. Specifically, a notion of

analyticity introduced by Fueter for functions of a quaternionic variable [166] is extended to

the functions of a single variable that takes value in a Banach algebra (BA) A.

For that, Fueter variables (FVs) are defined in Section 5.3. Continuing, the referred notion of

derivative of A-valued functions is presented, followed by Fueter expansions and the Gleason

problem, the theory of rational functions (RFs), and spaces of Fueter series, which include

the Fock-Bargmann-Segal and the Drury-Arveson spaces. Before that, a short discussion on

the extension of the notion of derivatives is presented.

5.1 Real Derivatives and Their Extension to Other Algebras

In real analysis, the derivative of a function f of a real variable x at a point x0 ∈ R is defined

as the limit

df

dx
(x0) ≡ lim

x→x0
f(x)− f(x0)

x− x0
∈ R (5.1)

whenever it exists. A clear necessary, but not sufficient, condition for this limit to exist in

a certain open set ΩR ⊂ R is that the function belongs to the set C0(ΩR) of continuous

functions in ΩR. Moreover, if the derivative of the function exists for every point in ΩR and

it is continuous, the function is said to belong to a subset C1(ΩR) of C0(ΩR).

Because the derivative of a function is itself a function, the same reasoning applied to f can

be iterated to df/dx and higher order derivatives. Then, in general, a function belongs to a

set Ck(ΩR), for some k ∈ N, if it admits at least k continuous derivatives. As an example

of a function that belongs to Ck(R) but does not belong Ck+1(R), consider the function
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f(x) = |x|k+1 for k = 2n, where n ∈ N. Its k-th derivative, given by

dkf

dxk
(x) = (k + 1)! |x|, (5.2)

is continuous but not differentiable at x = 0.

If a function admits infinite continuous derivatives, i.e., if it belongs to C∞(ΩR), it is called

a smooth function. Moreover, if a C∞(ΩR) function can be written as a convergent power

series in a neighborhood of x0 ∈ ΩR, the function is said to be analytic at x0.

These notions can be extended to functions f of a complex variable z. The direct analogous

of Eq. (5.1) for the definition of the derivative of f at a point z0 ∈ C is

df

dz
(z0) ≡ lim

z→z0
f(z)− f(z0)

z − z0
∈ C. (5.3)

Writing z = x+ iy, z0 = x0 + iy0, and

f(z) = u(x, y) + iv(x, y), (5.4)

where x, y, x0, y0 ∈ R, u and v are real functions, and i is the imaginary complex unit, it

can be shown that the limit in Eq. (5.3) exists if and only if u and v can be derived with

respect to each variable at least once at (x0, y0) and


∂u
∂x(x0, y0) = ∂v

∂y (x0, y0)

∂u
∂y (x0, y0) = −∂v∂x(x0, y0)

, (5.5)

which are known as the Cauchy-Riemann equations. Complex functions that are differen-

tiable at a point z0 ∈ ΩC ⊂ C are called holomorphic functions at z0. Also, a complex

function f is said to be analytic at a point z0 ∈ C ∈ ΩC if it can be written as a convergent
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power series in a neighborhood of z0 ∈ ΩC. A remarkable theorem in complex analysis states

a function is holomorphic if and only if it is analytic [167].

Although they are called Cauchy-Riemann equations, the expressions in Eq. (5.5) first

appeared in d’Alembert’s study of resistance of fluids in 1752 [168]. After Euler had already

connected those equations to analytic functions [167], Cauchy, in 1814, used the system in

Eq. (5.5) to create his theory of functions. Later, in 1851, Riemann studied this theory in

his Ph.D. dissertation [169].

While the extension of Eq. (5.1) to the complex case works, it fails for arbitrary algebras.

For instance, consider the case of the quaternions. Because of the lack of commutativity, the

extension of Eq. (5.1) can be written either as

lim
q→q0

(f(q)− f(q0)) (q − q0)−1 ∈ H (5.6)

or

lim
q→q0

(q − q0)−1 (f(q)− f(q0)) ∈ H, (5.7)

where, now, f is a function of the quaternionic variable q and q0 ∈ H. However, in either of

these cases, the derivative would only exist for linear functions, i.e., if a1, a2, b1, b2 ∈ H,

f(q) = a1q + b1 (5.8)

or

f(q) = qa2 + b2, (5.9)

respectively [170]. Therefore, if one wants to build a non-trivial analysis on the quaternions,

other definitions of derivatives have to be considered.

In Ref. [166], Fueter studied quaternionic-valued functions and introduced non-commuting
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hypercomplex variables that allowed power series expansion of hypercomplex functions. Such

variables are now known as FVs. They are defined in a more general context in Section 5.3,

right after the introduction of the BAs that are considered here.

5.2 The Algebra

The central object of study in most of this chapter are functions

f : A → A, (5.10)

where A is an arbitrary BA over the field K of the real or the complex numbers. First,

however, some definitions and notation are introduced.

Let a1, . . . , an ∈ A \ K be the generators of A that differ from the identity element of K,

i.e., from a0 ≡ 1. For simplicity, the number n of generators is assumed to be finite, but it

could, in principle, be taken to be infinity for all computations presented here. However, a

more careful analysis would be required because, for instance, the operator defined in Eq.

(5.19) would become a differential operator on infinitely many variables.

In some algebras, all “directions” are given by the elements ak, k ∈ Zn+1 ≡ {0, 1, . . . , n}. If

that is the case, there exist coefficients cjkl ∈ K, j, k, l ∈ Zn+1 such that

ajak =
n∑
l=0

cjklal (5.11)

for every j, k ∈ Z∗n+1 ≡ {1, . . . , n}. As an example, consider the quaternions. Denoting the

imaginary units of the quaternions by i, j and k, the product of two elements (say, ij) is

related to the third one (k in this case).

In other algebras, on the other hand, the product ajak might result in a new “direction.”
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An example of such algebras is the real ternary algebra, which is generated by the number 1

and an element e that is not real (nor complex). However, e2 gives a new direction in such

an algebra. The quaternions themselves can be seen as another example when the elements

1, i, and j are considered their generators. In this case, ij results in a new direction of the

algebra.

Then, in order to include algebrasA for which Eq. (5.11) does not necessarily hold, consider a

set of t-uples I associated with all linearly independent directions of the algebra. Specifically,

if, for a certain j and k, the product ajak results in a new direction, then (j, k) might be

an element of I and a(j,k) ≡ ajak. Note that, in some algebras, there might be multiple

ways to build I. For instance, if ajak = −akaj , as is the case of Clifford algebras, either

(j, k) or (k, j) should be part of I, but not both. In such case, if (j, k) ∈ I, akaj = −a(j,k).

Moreover, the direction a0 = 1 is not included in I.

For simplicity of notation, instead of referring to the set I directly, a map from it into Z∗m+1,

where m is the cardinality of I, is used. Hence, instead of considering indexes that take

value in I, they will take value in Z∗m+1. Moreover, to avoid confusion, we also denote

the “independent directions” of A by ek instead of ak. For instance, if the quaternions are

generated by a0 = 1, a1 = i, and a2 = j, then, in the notation that will be used hereby, one

must consider e0 = a0, e1 = a1, e2 = a2, and e3 = a1a2.

Therefore, with those definitions, the algebra A can be identified with the space Km+1 in

the following way

Km+1 ' A =

{
a =

m∑
k=0

akek

∣∣∣∣∣ a0, a1, . . . , am ∈ K

}
. (5.12)
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In particular, Eq. (5.11) can be rewritten as

ejek =
m∑
`=0

(χ`)jke`, (5.13)

where the matrices χ` belong to K(m+1)×(m+1) for every ` ∈ Km+1. The collection of these

matrices will be called the characteristic operators of the algebra A since they encode all

properties of the product of the algebra. Moreover, each matrix χ` can be seen as a metric

tensor-like object associated with the `-th direction of A. In fact, observe that, for any

a, b ∈ A, writing

ab =
m∑
`=0

c`e`, (5.14)

Eq. (5.13) leads to

c` =
m∑

j,k=1

aj(χ`)jkbk ≡ aχ`b (5.15)

for every ` ∈ Km+1.

Now, the BAs A of interest in this work are endowed with an involution, denoted by †, which

has the following properties:

� ∀a, b ∈ A, (ab)† = b†a†;

� ∀k ∈ K ⊂ A, kk† = k†k = |k|2.

Observe that, in general, aa† is not a real (nor a complex) number. In particular, aa† = a†a

does not always hold.

Continuing, because A is a BA, it has a norm N for which

N(ab) ≤ N(a)N(b), ∀a, b ∈ A. (5.16)

Such a norm may or may not be induced by the involution †. Nevertheless, it is assumed
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that N(a) = N(a†) for every a ∈ A.

Note that because K ⊂ A, N is also a norm in K. Therefore, without loss of generality, it

can be presumed that N(1) = 1. Then, generally, N(k) = |k|, where |k| denotes the usual

norm of k in C, which coincides with the norm of a real number if K = R. Moreover, it

follows that

N(ka) = |k|N(a) (5.17)

for every a ∈ A.

Now, introduced basic notations and definitions in the algebra A, it is possible to use Eq.

(5.12) to rewrite the functions f of the type given by Eq. (5.10) as

f : Km+1 → A. (5.18)

In particular, most of the focus here is on the subset of functions of the type given by

Eq. (5.18) that are K-analytic, i.e., functions that are real analytic if K = R or complex

holomorphic if K = C.

5.3 A General Principle

The ideas introduced by Fueter for the quaternions [166] were adapted by Malonek for

Clifford algebras [171, 172] and by other authors in other settings [173, 174]. These ideas

can be also extended to the BAs considered here. To start, it should be noticed that, because

of the identification between Km+1 and A presented in Eq. (5.12), it is possible to identify

f in Eq. (5.10) as an A-valued function of m+ 1 K-valued variables vk, k ∈ Zm+1.

Now, consider functions f of class C1 in an open set Ω ⊂ Km+1. Also, assume they lie in
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the kernel of the Cauchy-Fueter (CF) operator, defined as

D ≡ D0 +
m∑
k=1

ekDk, (5.19)

where

Dj ≡
∂

∂vj
(5.20)

for every j ∈ Zm+1, i.e., they satisfy

Df = 0. (5.21)

Such functions are called left D-hyperholomorphic or left monogenic [171]. The word left is

used because one can also consider functions f that belongs to the kernel of D when it acts

on f from the right. Here, because functions that satisfy Eq. (5.21) are the focus, the word

left will be omitted, and the functions are just called D-hyperholomorphic or monogenic.

However, observe that every result obtained from now on can be easily adapted for right

D-hyperholomorphic functions.

Then, denoting v = (v0, v1, · · · , vm) ∈ Km+1, it holds that

df

dt
(tv) =

m∑
k=0

vk
∂f

∂vk
(tv)

=
m∑
k=1

vk
∂f

∂vk
(tv)− v0

(
m∑
k=1

ek
∂f

∂vk
(tv)

)

=
m∑
k=1

(vk − ekv0)
∂f

∂vk
(tv)

(5.22)

and, then,

f(v)− f(0) =

∫ 1

0

d

dt
f(tv)dt =

m∑
k=1

(vk − ekv0)

∫ 1

0

∂f

∂vk
(tv)dt. (5.23)
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The functions

ζk(v) = vk − ekv0, k ∈ Z∗m+1, (5.24)

are called the FVs or total regular variables [175] associated with D.

More generally, for a fixed w ∈ Ω,

df

dt
(tv + (1− t)w) =

m∑
k=0

(vk − wk)
∂f

∂vk
(tv + (1− t)w)

=
m∑
k=1

(ζk(v)− ζk(w))
∂f

∂vk
(tv + (1− t)w)

(5.25)

holds for every v ∈ Ω. Therefore,

f(v)− f(w) =

∫ 1

0

d

dt
f(tv)dt =

m∑
k=1

(ζk(v)− ζk(w))

∫ 1

0

∂f

∂vk
(tv + (1− t)w)dt. (5.26)

Following Malonek’s approach for the Clifford algebra in Ref. [171], consider now ζ =

(ζ1, ζ2, · · · , ζm) and let H m be the set of all such vectors. Then, there is a one-to-one

correspondence between Km+1 and H m, namely

Km+1 'H m = {ζ = (ζ1, · · · , ζm) | ζk = vk − ekv0; v0, vk ∈ K} . (5.27)

Because of this correspondence, the notations f(v) and f(ζ) are used interchangeably. More-

over, ζ(w) will often be denoted as ξ ∈H m.

Observe that, although H m ⊂ Am, H m is not a submodule of Am. In fact, cζ only belongs

to H m for an arbitrary ζ ∈ H m if and only if c ∈ K. As a consequence, the product

of two D-hyperholomorphic functions is not always D-hyperholomorphic. For instance, if
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j, k ∈ Z∗m+1, it holds that

ζjζk = vjvk − ejv0vk − ekv0vj + ejekv
2
0 (5.28)

and, then,

D(ζjζk) =
[
ej , ek

]
v2

0, (5.29)

where
[
ej , ek

]
≡ ejek−ekej is the commutator of ej and ek. Because, in general,

[
ej , ek

]
6= 0,

the right-hand side of Eq. (5.29) does not always vanish.

However, it follows from Eq. (5.29) that

D(ζjζk + ζkζj) = 0. (5.30)

In general, as it will be seen in the next section, symmetrized products of FVs and, in

particular, powers of a single FV are D-hyperholomorphic.

Finally, the operator

(Rk(ξ)f)(ζ) ≡ (Rk(w)f)(v) ≡
∫ 1

0

∂f

∂vk
(tv + (1− t)w)dt, (5.31)

where w ∈ Ω is a fixed element, is called the backward-shift operator centered at w (or at ξ).

Using this definition, Eq. (5.26) can be rewritten as

f(v)− f(w) =
m∑
k=1

(ζk(v)− ζk(w))(Rk(w)f)(v). (5.32)

Furthermore, observe that

(Rk(w)f)(w) =
∂f

∂vk
(w). (5.33)

Then, if f belongs to C2(Ω), Rk(w)f(v) is D-hyperholomorphic. Generally, if f belongs to
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Cp(Ω) for some p ∈ N, the process given by Eq. (5.29) can be iterated p times, generating

the so-called Fueter polynomials, which are the subject of study of Section 5.5. In particular,

functions of class C∞(Ω) give origin to Fueter series, studied in Section 5.6.

5.4 Hyperholomorphicity of Functions from Km+1 into A

Following similar arguments of Ref. [171], it is now shown that functions of FVs admit a

notion of a derivative that, in a sense, generalizes the real and the complex cases defined in

Eqs. (5.1) and (5.3).

First, to set the framework, endow Am with the Hermitian form

[ζ, ξ]A ≡
m∑
k=1

ξ
†
kζk, (5.34)

which is, in general, A-valued. Moreover, defining

hk = (0, · · · , 0, 1, 0 · · · , 0) ∈H m, k ∈ Z∗m+1, (5.35)

and

h0 = − (e1, e2, · · · , em) ∈H m, (5.36)

it follows that an arbitrary element ζ ∈H m can be written as

ζ =
m∑
k=0

vkhk. (5.37)

Furthermore,

[ζ, hk]A = ζk (5.38)
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for every k ∈ Z∗m+1, and

[ζ, h0]A = −v0

m∑
k=1

e2
k −

m∑
k=1

vkek. (5.39)

Clearly, the set {hk}k∈Z∗m+1
is a canonical basis for Am. Then, motivated by it, the norm

in Am is defined as

‖ζ‖Am ≡

(
m∑
k=1

N([ζ, hk]A)2

)1/2

. (5.40)

Now, let L (Am,A) be the set of all left A-linear operators from Am into A. Then, if

L ∈ L , it holds that

L(au+ bv) = aL(u) + bL(v) (5.41)

for every a, b ∈ A and u, v ∈ Am. In particular, it follows that L ∈ L (H m,A) is A-linear

from the left if

L(aζ + bξ) = aL(ζ) + bL(ξ) (5.42)

and, moreover, there exist constants Ak ∈ A, k ∈ Z∗m+1, such that L is uniquely character-

ized by

L(ζ) = ζ1A1 + · · ·+ ζmAm. (5.43)

With that set, it is possible to introduce a generalization of real differentiation and complex

holomorphicity in the present setting. An A-valued function f is said to be (left) hyperholo-

morphic at a point ξ ∈ Ω ⊂H m if there exists a (left) A-linear map Lξ ∈ L (H m,A) such

that

lim
∆ζ→0

N
(
f(ξ + ∆ζ)− f(ξ)− Lξ(∆ζ)

)
‖∆ζ‖Am

= 0, (5.44)

in which case Lξ is the (left) derivative of f at ξ. The function is also said to be hyperholo-

morphic in the open set Ω if there exists an Lξ in Eq. (5.44) for every ξ ∈ Ω. This notion
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of derivative is called a Fréchet derivative.

Observe that, if f is hyperholomorphic, then its derivative at ξ, i.e., the linear map Lξ in

Eq. (5.44) is unique. In fact, Eqs. (5.43) and (5.44) imply that

f(ξ + ∆ζ)− f(ξ) = ∆ζ1A1 + · · ·+ ∆ζmAm + o(‖∆ζ‖Am), (5.45)

where

lim
∆ζ→0

o(‖∆ζ‖Am)

‖∆ζ‖Am
= 0. (5.46)

Then, assuming that f is a K-analytic function, i.e.,

f(ζ + ∆ζ)− f(ζ) = ∆f(ζ) = ∆v0
∂f

∂v0
+ ∆v1

∂f

∂v1
+ · · ·+ ∆vm

∂f

∂vm
+ o(|∆v|), (5.47)

with

lim
∆v→0

o(|∆v|)
|∆v|

= 0, (5.48)

it is possible to show that f is hyperholomorphic if and only if it is D-hyperholomorphic. In

fact, defining v0 ≡ ζ0 and writing

vk = ζ0ek + ζk k ∈ Z∗m+1, (5.49)

Eq. (5.47) leads to

∆f(ζ) = ∆ζ0

(
D0f +

m∑
k=1

ekDkf

)
+

m∑
k=1

∆ζkDkf + o(‖∆ζ‖Am)

= ∆ζ0Df + [∆ζ,∇v] f + o(‖∆ζ‖Am),

(5.50)

where ∇v ≡
∑m
k=1Dkhk. Comparing Eq. (5.50) with Eq. (5.43), one concludes that f is

hyperholomorphic if and only if Df = 0, i.e., if and only if f is D-hyperholomorphic.
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5.5 Fueter Polynomials

It is already established that FVs are hyperholomorphic. In general, however, their pointwise

product is not. Nevertheless, as it will be shown now, these variables generate hyperholo-

morphic polynomials, called Fueter polynomials, with the symmetrized product.

The symmetrized product of N elements a1, . . . , aN of an algebra A is defined as

a1 × a2 × · · · × aN =
1

N !

∑
σ∈SN

aσ(1)aσ(2) · · · aσ(N), (5.51)

where the sum is over the set SN of all permutations of N indexes. Observe that, in general,

the product × is non-associative, i.e.,

(a× b)× c 6= a× (b× c). (5.52)

Moreover, if A is commutative, the symmetrized product reduces to the regular product.

Furthermore, as pointed out by Malonek in Ref. [172], for every k ∈ N,

(a1 + · · ·+ aN )k =
∑

α∈NN0 ;
|α|=k

k!

α!
aα, (5.53)

where α = (α1, · · · , αN ) ∈ NN0 , α! = α1!α2! · · ·αN !, and aα = aα11 × · · · × a
αN
N .

With those definitions, the same method used in Refs. [166, 173, 176] can be applied to show

that, if α = (α1, · · · , αm) ∈ Nm0 , the symmetrized product of the terms ζ
αk
k , k ∈ Z∗m+1,

simply denoted by ζα, is hyperholomorphic. To start, rewrite ζα as

ζα =
1

|α|!
∑
σ∈S|α|

m∑
u=1

∑
k∈Z∗|α|+1;

σ(k)=u

ζσ(1) · · · ζσ(k−1)ζuζσ(k+1) · · · ζσ(|α|), (5.54)
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where |α| denotes the sum of the components of α. Then,

D(ζα) =
1

|α|!
∑
σ∈S|α|

m∑
u=1

∑
k∈Z∗|α|+1;

σ(k)=u

euζσ(1) · · · ζσ(k−1)ζσ(k+1) · · · ζσ(|α|)−

− 1

|α|!
∑
σ∈S|α|

m∑
u=1

∑
k∈Z∗|α|+1;

σ(k)=u

ζσ(1) · · · ζσ(k−1)euζσ(k+1) · · · ζσ(|α|).

(5.55)

Thus, because the sums in the previous equations over terms of the type

ζuζσ(1) · · · ζσ(k−1)ζσ(k+1) · · · ζσ(|α|) (5.56)

equals the sums over

ζσ(1) · · · ζσ(k−1)ζuζσ(k+1) · · · ζσ(|α|), (5.57)

it can be shown that

v0D(ζα) = 0. (5.58)

Finally, because v0 can be taken to be non-zero, Eq. (5.58) implies that D(ζα) = 0, i.e., ζα

is hyperholomorphic.

As a consequence, polynomials of FVs with the symmetrized product, i.e., linear combina-

tions of ζα with different α’s (and A-valued coefficients on the right-hand side of the powers)

are also hyperholomorphic. These polynomials are referred to as Fueter polynomials.

To conclude, observe that, in a sense, Fueter polynomials appear naturally as an expansion

of functions that admit many derivatives from repeated iterations of the backward-shift

operator. To see that, assume that f is at least of class C2(Ω) and observe thatRk(ξ)Rj(ξ) =

Rj(ξ)Rk(ξ) for every j, k ∈ Z∗m+1. Then, the application of Eq. (5.32) to (Rk(ξ)f)(ζ) leads
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to

f(ζ) = f(ξ) +
m∑
k=1

(ζk − ξk)
∂f

∂vk
(ξ)

+
1

2

m∑
j,k=1

[
(ζk − ξk)(ζj − ξj) + (ζj − ξj)(ζk − ξk)

]
(Rk(ξ)Rj(ξ)f)(ζ)

=
∑

α∈Nm0 ;
|α|<2

(ζ − ξ)α∂
|α|f
∂vα

(ξ) +
m∑

j,k=1

[
(ζk − ξk)× (ζj − ξj)

]
(Rk(ξ)Rj(ξ)f)(ζ)

=
∑

α∈Nm0 ;
|α|<2

(ζ − ξ)α∂
|α|f
∂vα

(ξ) +
∑

α∈Nm0 ;
|α|=2

(ζ − ξ)α(R(ξ)αf)(ζ).

(5.59)

More generally, recalling that ζ(w) = ξ and defining elements ιk ∈ Nm0 as

(ιk)j ≡ δjk, j, k ∈ Z∗m+1, (5.60)

observe that

Rk(ξ)(ζ − ξ)α =

∫ 1

0

∂(ζ − ξ)α

∂vk
(tv + (1− t)w)dt

=

∫ 1

0
αk(ζ(tv + (1− t)w)− ξ)α−ιkdt

=

∫ 1

0
αkt
|α|−1(ζ − ξ)α−ιk(v)dt

=
αk
|α|

(ζ − ξ)α−ιk

(5.61)

for every α such that αk 6= 0. Also, Rk(ξ)(ζ − ξ)α = 0 if αk = 0. Observe that Eq. (5.61)

justifies the name backward-shift operator given to Rk(ξ).

As a consequence, every function f of class Cp(Ω) can be written as

f(ζ) =
∑

α∈Nm0 ;
|α|<p

(ζ − ξ)α

|α|!
∂|α|f
∂vα

(ξ) +
∑

α∈Nm0 ;
|α|=p

(ζ − ξ)α(R(ξ)αf)(ζ). (5.62)
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5.6 Fueter Series and the Gleason Problem

This section focuses on the study of hyperholomorphic functions, i.e., functions which are

K-analytic and belong to the kernel of the CF operator, given by Eq. (5.19). After that, the

solution to a problem often referred to as the Gleason problem is studied.

To start, it is studied the convergence of infinite iterations of R(ξ) on a K-analytic function

f , i.e., the result of Eq. (5.62) in the limit p → ∞. Such a process leads, at least formally,

to the Fueter series

f(ζ) =
∑
α∈Nm0

(ζ − ξ)αfα(ξ), (5.63)

where

fα(ξ) ≡ 1

|α|!
∂|α|f
∂vα

(ξ). (5.64)

Then, it needs to be shown that the series in Eq. (5.63) converges in an open neighborhood

of ξ.

To do so, observe that, if a function f that takes value in Km+1 is K-analytic in a neighbor-

hood Ω(w) of a point w, then the power series

f(v) =
∑

α∈Nm+1
0

(v − w)αFα(w), (5.65)

where

Fα(w) ≡ 1

α!

∂|α|f
∂vα

(w), (5.66)

converges for every v ∈ Ω(w). In other words, there exist K, r1, · · · , rm > 0 such that

N(Fα) ≤ K

rα00 · · · r
αm
m
≡ K

rα
. (5.67)
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Observe that the coefficients fα and F(0,α) can have their norm compared. In fact, using

Eqs. (5.64) and (5.66), it can be derived that

N(fα) ≤ N(F(0,α)) (5.68)

for every α ∈ Nm0 .

Now, letting σ1, · · · , σm > 0 be such that σk < rk for all k ∈ Z∗m+1 and, again, denoting by

ξ the element in H m that corresponds to the point w ∈ Km+1, it is possible to define, in a

similar way done in Ref. [172], the set

Uξ(σ) =
{
ζ ∈H m

∣∣ N(ζk − ξk) ≤ σk, k ∈ Z∗m+1

}
⊂H m. (5.69)

If a function f given by Eq. (5.65) is hyperholomorphic in a neighborhood of w ∈ Km+1,

the Fueter series given by Eq. (5.63) converges absolutely for every ζ ∈ Uξ(σ). To prove

that, first observe that, while either Eq. (5.63) and

f(ζ) =
∞∑
k=0

∑
α∈Nm0 ;
|α|=k

(ζ − ξ)αfα(ξ) (5.70)

are, at least formally, possible representations of power series of functions of FVs, they

generally have different domains of convergence. This is the case, for instance, if A is a

Clifford algebra [177]. Nevertheless, in Uξ(σ), the two expressions, if individually convergent,

coincide. In fact,

N((ζ − ξ)α) ≤
m∏
k=1

N(ζk − ξk)αk ≤ σα < rα (5.71)

86



and, as a consequence,

N

 ∑
α∈Nm0

(ζ − ξ)αfα(ξ)

 ≤ ∑
α∈Nm0

σαN (fα(ξ)) ≤ K
∑
α∈Nm0

(σ
r

)α
<∞, (5.72)

where Eqs. (5.67) and (5.68) were used. Hence, Eq. (5.63) converges absolutely in the

domain Uξ(σ).

With the convergence of Fueter series of K-analytic functions proved, the Gleason problem

can be considered. First, the Cauchy-Kovalevskaya (CK) product, also known as convolution,

centered at ξ ∈H m is defined as

(ζ − ξ)αa�ξ (ζ − ξ)βb = (ζ − ξ)α+βab, (5.73)

where α, β ∈ Nm0 and a, b ∈ A. This product can be extended to power series. In fact,

remembering that ξ = ζ(w), let f be given by Eq. (5.63) and

g(ζ) =
∑
α∈Nm0

(ζ − ξ)αgα. (5.74)

Setting v0 = w0, power series in vk −wk, k ∈ Z∗m+1, for each function with coefficients in A

are obtained:

f(w0, v1, . . . , vm) =
∑
α∈Nm0

(v − w)αfα (5.75)

and

g(w0, v1, . . . , vm) =
∑
α∈Nm0

(v − w)αgα. (5.76)

Observe that, in those equations, the coefficients fα and gα commute with the variables.

Then,

f(w0, v1, . . . , vm)g(w0, v1, . . . , vm) =
∑
α∈Nm0

(v − w)αhα, (5.77)
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where

hα ≡
∑

γ∈Nm0 ;
α−γ≥0

fα−γgγ . (5.78)

With that, the CK product of two power series is defined as

(f �ξ g)(ζ) ≡
∑
α∈Nm0

(ζ − ξ)αhα. (5.79)

Moreover, if f(w) is invertible, there exist coefficients dα ∈ A for every α ∈ Nn0 such that,

in a neighborhood of w in Ω ⊂ Km, we have

(f(w0, v1, . . . , vn))−1 =
∑
α∈Nn0

(v − w)αdα. (5.80)

Then, the CK inverse of f can be defined as

f−�ξ(ζ) ≡
∑
α∈Nm0

(ζ − ξ)αdα. (5.81)

An important fact about the CK product that should be noted is that it dependents on

the center ξ. For instance, consider, in the quaternionic setting, where e1 = i, e2 = j, and

e3 = k, the polynomials p1(ζ) = ζ1k and p2(ζ) = ζ1i. Then, if ξ = 0, P = p1 �0 p2 = ζ2
1j.

However, if ξ = i, because p1(ζ) = (ζ1 − i)k − j and p2(ζ) = (ζ1 − i)i− 1, the result of the

CK product is

Q(ζ) = (p1 �i p2)(ζ) = (ζ1 − i)2j + j = ζ2
1j − 2ζ1k (5.82)

since ζ1 and i commute. Thus, P 6= Q, i.e., the CK products of p1 and p2 centered at the

origin and centered at i are different.
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Observe that it is also possible to define the right-hand side CK product as

(f �Rξ g)(z) ≡
∑
α∈Nm0

hα(ζ − ξ)α, (5.83)

where

f(ζ) =
∑
α∈Nm

fα(ζ − ξ)α, g(ζ) =
∑
α∈Nm0

gα(ζ − ξ)α (5.84)

and the coefficients hα are, once again, given by Eq. (5.78).

With that set, the Gleason problem can be finally presented. The problem was introduced

by Gleason in his studies of maximum ideals of a commutative BA [178]. He considered

the algebra of holomorphic functions in the open unit ball in Cn that can be continuously

extended to the boundary. Then, he proved that, if this algebra is finitely generated, the

maximum ideals of functions that are zero at the origin is generated by the coordinate

functions.

The problem of verifying if these ideals in algebras of holomorphic (and hyperholomorphic)

functions are generated by the coordinate functions became known as the Gleason problem,

and it was vastly studied in different frameworks. A version of this problem in the present

setting can be stated as a search for functions g1, · · · , gm such that a given hyperholomorphic

function f with domain Uξ(σ) can be written as

f(ζ)− f(ξ) =
m∑
k=1

(ζk − ξk)�ξ gk(ζ) (5.85)

for every ζ ∈ Uξ(σ).

Observe that, in principle, Eq. (5.32) is a solution to this problem if the CK product is

replaced by the pointwise product. The problem, however, is not formulated in terms of the

pointwise product because it has the disadvantage of, in general, not being hyperholomorphic.
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Nevertheless, Eq. (5.32) can be seen as a good starting point in the obtaining of a solution

to the problem. In fact, for every ζ such that v0 = w0, the CK product coincides with the

pointwise product. As a result, the following equation also holds

f(ζ)− f(ξ) =
m∑
k=1

(ζk − ξk)�ξ (Rk(ξ)f)(ζ). (5.86)

However, not all solutions to the Gleason problem are given by Eq. (5.86). To see that, let

G denote the space of functions f ∈ G for which there exist g1, g2, · · · , gm ∈ G that solve

the Gleason problem. The space G is said to be resolvent invariant. Moreover, let R be the

space of Rk(ξ)-invariant functions, called backward-shift invariant, i.e., the space for which

gk = Rk(ξ)f . Then, it can be proved that R $ G.

First, it is necessary to characterize the elements of G. For that, it will be assumed that G

is finite-dimensional. Also, let f ∈ G and G be a matrix-valued hyperholomorphic function

whose columns form a basis for G. Then, by definition, there exist a constant column matrix

η with entries in A such that f = Gη. Moreover, there exist functions g1, . . . , gm ∈ G such

that

f(ζ)− f(ξ) =
m∑
k=1

(ζk − ξk)�ξ gk(ζ). (5.87)

Finally, for every k ∈ Z∗m+1, there exist constant matrices Ak with entries in A such that

gk = GAkη. Hence, Eq. (5.87) can be rewritten as

(G(ζ)−G(ξ)) η = G(ζ)�ξ
m∑
k=1

(ζk − ξk)Akη, (5.88)

which implies that G is given by

G(ζ) = G(ξ)�ξ

(
I −

m∑
k=1

(ζk − ξk)Ak

)−�ξ
. (5.89)
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Now, letting f = Gη, where η is a constant column matrix with entries in A, it holds that

f(ζ)− f(ξ) = G(ξ)�ξ

(
I −

m∑
k=1

(ζk − ξk)Ak

)−�ξ
η −G(ξ)η

= G(ζ)�ξ

(
I −

(
I −

m∑
k=1

(ζk − ξk)Ak

))
η

=
m∑
k=1

(ζk − ξk)�ξ GAkη,

(5.90)

i.e., there exist functions gk = GAkη ∈ G which solves the Gleason problem for f .

Therefore, a function f belongs to a finite-dimensional resolvent invariant space G if and

only if it can be spanned by the columns of a matrix-valued function of the type given by

Eq. (5.89).

Finally, to see that solutions given by Eq. (5.86) are only a subset of G, observe that, because

a function f in R also belongs to G, f can be written as f = Gη, where G is of the form

given by Eq. (5.89) and η is a constant column matrix with entries in A. Moreover, since

gk = GAkη Rk(ξ)f ∈ G, as just seen, it holds that Rk(ξ)G = GAk. Furthermore, because

the operators Rk(ξ) commute, Rk(ξ)Rj(ξ)G = Rj(ξ)Rk(ξ)G. Then, AkAj = AjAk for

every j, k ∈ Z∗m+1.

This shows that functions in R are a particular type of functions in G for which all matrices

Ak commute. In fact, every function in G for which the matrices Ak commute belong to R.

To prove it, let f ∈ G be such that all matrices Ak in Eq. (5.89) commute. Let, moreover,

η be a constant column matrix with entries in A such that f = Gη. Then, observe that the

commutativity of the matrices Ak allows Eq. (5.89) to be rewritten as

G(ζ) =
∑
α∈Nm0

|α|!
α!

(ζ − ξ)αG(ξ)Aα, (5.91)
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where Aα = Aα11 Aα22 · · ·A
αm
m . Moreover, using Eq. (5.61),

(Rk(ξ)f)(ζ) =
∑

α∈Nm0 ;
α≥ιk

(|α| − 1)!

(α− ιk)!
(ζ − ξ)α−ιkG(ξ)Aαη

=
∑

α∈Nm0 ;
α≥ιk

(|α| − 1)!

(α− ιk)!
(ζ − ξ)α−ιkG(ξ)Aα−ιkAkη

= G(ζ)Akη

= gk(ζ).

(5.92)

In other words, a function belongs to R if and only if it is an element of G for which all

matrices Ak in Eq. (5.89) commute.

Before concluding, note that, if f ∈ G, there exists a constant column matrix η with entries

in A such that f = Gη, where G is given by Eq. (5.89). Moreover, f admits solutions to the

Gleason problem, which are given by gk = GAkη. Then,

f(ζ) = f(ξ) +G(ζ)�ξ
m∑
k=1

(ζk − ξk)Akη

= f(ξ) +G(ξ)�ξ

(
I −

m∑
k=1

(ζk − ξk)Ak

)−�ξ
�ξ

m∑
k=1

(ζk − ξk)Akη.

(5.93)

This equation characterizes a hyperholomorphic RF, the topic of the next section.

5.7 Hyperholomorphic Rational Functions

RFs, i.e., quotients of polynomials, of FVs are studied now. These functions play an im-

portant role in many areas, from mathematical analysis to signal processing. For instance,

because polynomials can be easily evaluated, RFs are widely used for approximation and

interpolation of functions in numerical analysis. Also, in the complex setting, these functions
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appear in the study of linear systems as the z-transform (or the Laplace transform) of the

impulse response of time-invariant systems is a RF.

The focus here is on RFs which are analytic in a neighborhood of a fixed ξ ∈ H m. From

the theory of linear systems, it is known that such RFs can be written as

R(ζ) = D + C �ξ

(
I −

m∑
k=1

(ζk − ξk)Ak

)−�ξ
�ξ

(
m∑
k=1

(ζk − ξk)Bk

)
, (5.94)

where Ak, Bk, C and D, for every k ∈ Z∗m+1, are matrices of appropriate sizes with entries

in A. Eq. (5.94) is called a realization of R, a notion that originated with the theory of

linear systems [179].

While Eq. (5.94) is clearly a ratio, with respect to the CK product, of Fueter polynomials,

it is still necessary to prove the converse, i.e., to show that every RF analytic at ξ admits a

realization of the type given by Eq. (5.94). For that, observe that the inverse of a function

that is invertible at ξ and whose realization is given by Eq. (5.94), with D invertible, admits

a realization of the form

R(ζ)−�ξ = D−1−D−1C�ξ

(
I −

m∑
k=1

(ζk − ξk)A�
k

)−�ξ
�ξ

(
m∑
k=1

(ζk − ξk)Bk

)
D−1, (5.95)

where

A�
k = Ak −BkD−1C. (5.96)

This can proved by writing

(
m∑
k=1

(ζk − ξk)Bk

)
D−1C =

m∑
k=1

(ζk − ξk)
(
Ak − A�

k

)
=

(
I −

m∑
k=1

(ζk − ξk)A�
k

)
−

(
I −

m∑
k=1

(ζk − ξk)Ak

) (5.97)
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and verifying that, indeed,

R(ζ)�ξ R(ζ)−1 = I. (5.98)

Now, if

Ru(ζ) = Du + Cu �ξ

(
INu −

m∑
k=1

(ζk − ξk)(Au)k

)−�ξ
�ξ

(
m∑
k=1

(ζk − ξk)(Bu)k

)
, (5.99)

for u = 1, 2, gives two realizations of RFs with compatible sizes, then, for k ∈ Z∗m+1, it can

be verified by direct computation that their product admits a realization given by Eq. (5.94)

with

Ak =

(A1)k (B1)kC2

0 (A2)k

 , Bk =

(B1)kD2

(B2)k

 ,

C =

(
C1 D1C2

)
, D = D1D2.

(5.100)

Moreover, their sum admits the realization

Ak =

(A1)k 0

0 (A2)k

 , Bk =

(B1)k

(B2)k

 ,

C =

(
C1 C2

)
, D = D1 +D2.

(5.101)

Thus, to show that any Fueter polynomial admits a realization, it suffices to prove that

constant terms and terms of the form (ζk − ξk)M , for every k ∈ Z∗m+1, admit realizations.

However, this is clear because

� a constant term corresponds to the realization where Aj = B = C = 0, for every

j ∈ Z∗m+1;

� the function (ζk − ξk)M corresponds to C = M , Aj = D = 0, Bj = δjkIN , for every
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j ∈ Z∗m+1.

Therefore, because every realization is a RF, as discussed, it can be said that a function R

of FVs analytic at ξ is rational if and only if it admits a realization, which is given by Eq.

(5.94).

Finally, to conclude, it can be shown that a function R of FVs analytic at the origin is

rational if and only if there exists a finite-dimensional resolvent-invariant space G such that

the Gleason problem is solvable for every f = Rη ∈ G, where η is a constant column matrix

with entries inA. In fact, one direction of this statement was already proven in the discussion

of Eq. (5.90), where it was shown that every f in a finite-dimensional G admits a realization.

For the converse, assume that R is given by Eq. (5.94) and that there exists η such that

f = Rη. Then,

f(ζ)− f(ξ) = C �ξ

(
I −

m∑
k=1

(ζk − ξk)Ak

)−�ξ
�ξ

(
m∑
k=1

(ζk − ξk)Bk

)
η. (5.102)

As a result,

gk = C �ξ

(
I −

m∑
k=1

(ζk − ξk)Ak

)−�ξ
Bkη (5.103)

solves the Gleason problem in a space G generated by the columns of a function given by

Eq. (5.89).

5.8 Banach Modules of Fueter Series

A fundamental aspect of functional analysis and operator theory is the study of positive ker-

nels and their associated reproducing kernel Hilbert spaces (HSs) of power series. However,

because the present work considers power series in BAs, the constructions that typically

lead to HSs in many settings give rise to Banach modules of Fueter series (BMFS). These
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modules are studied now.

For convenience, only Fueter series centered at the origin are considered hereby. However,

one can easily reproduce the results that are presented here for Fueter series centered at a

different point ξ. Moreover, because of this choice, the CK product is simply denoted by �

(instead of �0) and the backward-shift operator, by Rk (instead of Rk(0)).

To set the framework, let c = (cα)α∈Nm0 be a family of non-null real numbers. Also, let
◦
W (c) denote the module of functions f(ζ) =

∑
α∈Nm0 ζ

αfα with coefficients fα ∈ A such

that

‖f‖ ≡

 ∑
α∈Nm0

|cα|(N(fα))2

1/2

<∞. (5.104)

Observe that Eq. (5.104) defines a norm in
◦
W (c). In fact, for every a ∈ A,

‖af‖ =

 ∑
α∈Nm0

|cα|(N(afα))2

1/2

≤ N(a)‖f‖. (5.105)

However, if a is restricted to K, i.e., if a ∈ K ⊂ A,

‖af‖ = |a|‖f‖, (5.106)

where Eq. (5.17) was used. Moreover,

‖f‖ = 0⇒

 ∑
α∈Nm0

|cα|(N(fα))2

1/2

= 0

⇒ fα = 0,∀α ∈ Nm0

⇒ f = 0.

(5.107)
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Finally, if g(ζ) =
∑
α∈Nm0 ζ

αgα belongs to
◦
W (c),

‖f + g‖2 =
∑
α∈Nm0

|cα|(N(fα + gα))2

≤
∑
α∈Nm0

|cα| [N(fα) +N(gα)]2

≤
∑
α∈Nm0

|cα|
[
N(fα)2 + 2N(fα)N(gα) +N(gα)2

]
≤ ‖f‖2 + 2‖f‖ · ‖g‖+ ‖g‖2

≤ (‖f‖+ ‖g‖)2 .

(5.108)

Now, let f(ζ) =
∑
α∈Nm0 ζ

αfα and g(ζ) =
∑
α∈Nm0 ζ

αgα be two elements of
◦
W (c). Then,

the Hermitian form

[f, g] ≡
∑
α∈Nm0

cαg
†
αfα (5.109)

converges in A. In fact, using the Cauchy-Schwartz inequality,

N([f, g]) ≤
∑
α∈Nm0

|cα|N(fα)N(gα)

≤

 ∑
α∈Nm0

|cα|N(fα)2

1/2 ∑
α∈Nm0

|cα|N(gα)2

1/2

≤ ‖f‖ · ‖g‖.

(5.110)

In cases where the algebra A does not have zero divisors, the results presented by Paschke in

Ref. [180] are, then, valid in the context of the present section because the form defined in

Eq. (5.109) satisfies the conditions to be what is called an A-valued inner product. However,

the goal here is the study of a more generic scenario, where A is allowed to have zero divisors.
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With the Hermitian form defined in Eq. (5.109),
◦
W (c) admits the reproducing kernel

Kc(ζ, ξ) ≡
∑
α∈Nm0

ζα(ξα)†

cα
(5.111)

in an open neighborhood of the origin in H m defined by

Ω(c) =

ζ ∈H m

∣∣∣∣∣∣
∑
α∈Nm0

(N(ζ))2α

|cα|
<∞

 (5.112)

since

[f(·), Kc(·, ξ)b] =
∑
α∈Nm0

cα

(
b†
ξα

cα

)
fα = b†f(ξ). (5.113)

Now, it is important to note that, a priori, the module
◦
W (c) is not complete. However, by

a general theorem on metric spaces, it has a completion to a Banach space, which is unique

up to a metric space isometry – see, e.g., pages 54-58 of Ref. [181]. To see that, consider the

vector module of Cauchy sequences in
◦
W (c), and say that two of such sequences, say (fn)

and (gn), are equivalent if

lim
n→∞

‖fn − gn‖ = 0. (5.114)

It can be checked that this is indeed an equivalence relation. The quotient module associated

with it is denoted by CS. Like in the complex case, the formula

‖
∼
f ‖ = lim

n→∞
‖fn‖ (5.115)

where (fn) belongs to the equivalence class
∼
f , does not depend on the given representative

in the equivalence class, and defines a norm on CS. Then, it follows from Eqs. (5.109) and
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(5.113) that, for f ∈ CS, the limit

b†f(w) ≡ lim
n→∞

b†fn(w) (5.116)

exists in the topology of A and is independent of the given representative of the equivalence

class.

Finally, the representation of CS as a module of functions is denoted byW(c). It can verified

that the space W(c) endowed with the norm given by Eq. (5.115) is a Banach module, in

which
◦
W (c) is naturally embedded in a dense way. Moreover, Eq. (5.113) also holds in

W(c).

If for a certain algebra the form given by Eq. (5.109) is such that [f, f ] ≥ 0, i.e., it is

a positive real number, for every f in W(c), then W(c) is a Hilbert module. If, on the

other hand, [f, f ] is a real number for every f ∈ W(c) but it is not always positive for

every f , then W(c) is a Potryagin or a Krein module. For example, the Banach module

of power series associated with modules with positive coefficients cα when the algebra A is

the quaternionic algebra is a HS. In the case of split-quaternions, however, the analogous

module is a Pontryagin module.

This discussion can be extended by writing

[f, g] =
∑
α∈Nm0

cαg
†
αfα =

m∑
`=0

 ∑
α∈Nm0

cαg
†
αχ`fα

 e`, (5.117)

where the characteristic operators of the algebra A, defined in Eq. (5.15), have been used.

Then, the inner summation can be identified with K-valued inner product structures in
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certain spaces (denoted by K`(c)) with the following definition

〈f, g〉K`(c) ≡
∑
α∈Nm0

cαg
†
αχ`fα. (5.118)

Observe that each K`(c) constitutes, in general, a Hilbert or a Pontryagin space. What

determines if K`(c) ends up being a Hilbert or a Pontryagin space is the coefficients cα

together with the characteristic operator χ`. For more information on Pontryagin or Krein

spaces, see, e.g., Refs. [182–184].

An important characteristic of W(c) when it is endowed with the Hermitian form given by

Eq. (5.109) is that, if g ∈ W(c) is such that

[f, g] = 0 (5.119)

for every f ∈ W(c), then g = 0. In fact, for every α ∈ Nm0 ,

[ζα, g] = cαg
†
α. (5.120)

Because cα ∈ R is assumed to be non-zero, Eq. (5.119) implies that gα = 0 for every α,

i.e., g = 0. Similarly, it can be shown that, if f is fixed and Eq. (5.119) holds for every

g ∈ W(c), then f = 0.

Now that the module W(c) is introduced, the rest of this section focus on the study of

operators that act on it. First, let O be an operator in W(c) and assume that it admits an

adjoint, i.e., there exists an operator A characterized by

[Af, g] ≡ [f,Og] (5.121)

for every f, g ∈ W(c) for which the term on the right-hand side converges. Then, A is
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unique. In fact, suppose O admitted two adjoints, say A1 and A2. In this case,

[A1f − A2f, g] = [A1f, g]− [A2f, g] = [f,Og]− [f,Og] = 0. (5.122)

Therefore, following the discussion of Eq. (5.119), it can be concluded that

A1f − A2f = 0 (5.123)

for every f ∈ W(c), which implies that A1 = A2. Because the adjoint of an operator O is

unique, it will be denoted by A = O∗.

To address the question of whether an operator admits an adjoint in the first place, suppose

O is bounded in K`(c) for every ` ∈ Zm+1. Then, it is a result from complex analysis that,

in each K`(c), O admits an adjoint, i.e., there exists an operator A` such that

〈Of, g〉K`(c) = 〈f, A`g〉K`(c) . (5.124)

To show that the existence of such adjoints in every K`(c) implies the existence of an adjoint

in W(c), observe that

〈Of, g〉K`(c) = [χ`Of, g] (5.125)

and

〈f, A`g〉K`(c) = [χ`f, A`g] . (5.126)

These equations, together with Eq. (5.124), lead to

[χ`Of, g] =
[
f, χ∗`A`g

]
, (5.127)
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which, in turn, implies that

[Of, g] =

[
f,

(
m∑
k=0

e
†
`χ
∗
`A`

)
g

]
. (5.128)

Then, using the definition of the adjoint operator, it can be concluded that

O∗ =
m∑
k=0

e
†
`χ
∗
`A`. (5.129)

Therefore, it is proved that, if the operator O is bounded in every K`(c), it admits an adjoint

in W(c).

Before present specific examples of BMFS, the multiplication operator, which plays an im-

portant role in those modules, will be defined. For that, let Mζk , for every k ∈ Z∗m+1,

denote the CK multiplication operator by ζk, i.e., if f belongs to W(c), then

Mζkf ≡ ζk � f. (5.130)

More generally, if W(c) and W(d) are two BMFS, a multiplier Ms can be defined

Ms :W(c)→W(d)

Msf 7→ s� f,
(5.131)

where f ∈ W(c) and s� f ∈ W(d).

5.8.1 Fock-Bargmann-Segal Module

The Fock-Bargmann-Segal (FBS) module is the particular Banach module of Fueter series

W(c) for which

cα = α!. (5.132)
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Its reproducing kernel is, then, given by

Kc(ζ, ξ) =
∑
α∈Nm0

1

α!
ζα(ξα)† (5.133)

and it is endowed with the Hermitian form

[f, g] =
∑
α∈Nm0

α! g
†
αfα. (5.134)

One of the results that most characterizes the FBS module, at least in the algebras where

it was already studied, is the fact that the adjoint of the multiplication operator is the

derivative operator on it. In the present framework, if the derivative operator ∂k is taken to

be

∂kf ≡
∑
α∈Nm0

αkζ
α−ιkfα (5.135)

for every k ∈ Z∗m+1, this result also holds, i.e.,

[∂kf, g] =
[
f,Mζkg

]
(5.136)

for every f, g ∈ W(c). To prove that, let α, β ∈ Nm0 . Then,

[
∂kζ

α, ζβ
]

=
[
αkζ

α−ιk , ζβ
]

= (α− ιk)! αk δα−ιk,β

= α! δα,β+ιk

=
[
ζα, ζβ+ιk

]
.

(5.137)
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5.8.2 Drury-Arveson Module

The Drury-Arveson (DA) module, also known as the symmetric Fock module, is the partic-

ular case of a Banach module of Fueter series which has its coefficients cα given by

cα =
α!

|α|!
, (5.138)

i.e., the module W(c) with reproducing kernel

Kc(ζ, ξ) =
∑
α∈Nm0

|α|!
α!

ζα (ξα)† (5.139)

and Hermitian form

[f, g] =
∑
α∈Nm0

α!

|α|!
g
†
αfα. (5.140)

Because contractions are important players in the study of DA modules, the idea of a con-

tractive operator needs to be introduced in the present framework. First, observe that, in

A, a “natural” notion of non-negativity is given by

aa† � 0, (5.141)

for every a ∈ A. Note that such a definition does not always imply real non-negativity —

even if aa† is a real number. For example, aa† can be a negative real number in the setting

of the split-quaternions.

With Eq. (5.141), an operator O in W(c) is said to be a contraction if

[Of,Of ] � [f, f ] (5.142)

for every f ∈ W(c).
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One of the common characteristics of the DA modules already studied in the literature is

the fact that the multiplication operators are a contraction from the module into itself. This

is also the case here since, for every f ∈ W(c), it holds that

[
Mζkf,Mζkf

]
=
∑
α∈Nm0

[
ζα+ιkfα, ζ

α+ιkfα
]

=
∑
α∈Nm0

(α + ιk)!

(|α|+ 1)!
f
†
αfα

=
∑
α∈Nm0

αk + 1

|α|+ 1

(
cαf
†
αfα

)
.

(5.143)

Then, letting

dα =

√
cα(|α| − αk)

|α|+ 1
, (5.144)

it can be concluded that

[f, f ]−
[
Mζkf,Mζkf

]
=
∑
α∈Nm0

|α| − αk
|α|+ 1

cαf
†
αfα

=
∑
α∈Nm0

(dαfα)† (dαfα)

� 0.

(5.145)

Another important characteristic of DA modules is the fact that the multiplication and the

backward-shift operators are adjoints of each other. Again, this holds in the present setting,

as can be seen in a proof that is similar to the one presented for the quaternions in Ref.

[185]. In fact, for every f, g ∈ W(c) and α, β ∈ Nm0 such that αk ≥ 1,

[
Rkζα, ζβ

]
=

[
αk
|α|

ζα−ιk , ζβ
]

=
(β + ιk)!

(|β|+ 1)!
δα−ιk,β =

[
ζα, ζβ+ιk

]
=
[
ζα,Mζkζ

β
]

(5.146)
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for every k ∈ Z∗m+1. Finally, if β is such that βk = 0,

[
Rkζα, ζβ

]
= 0 =

[
ζα, ζβ+ιk

]
=
[
ζα,Mζkζ

β
]
. (5.147)

Before concluding, an important tool for interpolations in complex DA spaces, namely the

Blaschke factor, is introduced. For every ξ such that ‖ξ‖Am < 1, where the norm in Am is

defined in Eq. (5.40), the Blaschke factor Bξ is defined as

Bξ ≡ (1− ξξ∗)1/2 � (1− ζξ∗)−� � (ζ − ξ)(I − ξ∗ξ)−1/2, (5.148)

where

ξ∗ ≡



ξ
†
1

ξ
†
2
...

ξ
†
m


(5.149)

is the transpose of ξ = (ξ1 ξ2 · · · ξm).

Now, let C be the operator of evaluation at the origin, i.e., Cf = f(0) for every f ∈ W(c).

Thus, it holds that

I −
∑

k∈Z∗m+1

MζkM
∗
ζk

= C∗C. (5.150)

With that, the following identity holds in the DA module W(c):

I − BξB∗ξ = (1− ξξ∗)1/2
(
I −MζM∗ξ

)−1
C∗C

(
I −MζM∗ξ

)−∗
(1− ξξ∗)1/2, (5.151)

where Bξ is the operator of multiplication by the Blaschke factor. The proof follows the

one presented in Refs. [186] and [185]. First, observe that the operators I −MξM∗ξ and

I −M∗ξMξ are self-adjoint. Moreover, because ‖ξ‖Am < 1, they are also contractive. As
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a result, their square root (and the inverse of their square root) exist. Then, defining the

Halmos extension of −Mξ, as done in Ref. [187],

H ≡


(
I −MξM∗ξ

)−1/2
−Mξ

(
I −M∗ξMξ

)−1/2

−M∗ξ
(
I −MξM∗ξ

)−1/2 (
I −M∗ξMξ

)−1/2

 (5.152)

and setting

J =

 IW(c) 0

0 −IW(c)m

 , (5.153)

it holds that

HJH∗ = H∗JH = J. (5.154)

Then, using Eq. (5.150),

C∗C = I −MζM∗ζ

=
(
I Mζ

)
J

 I

Mζ


=
(
I Mζ

)
HJH∗

 I

Mζ


= (X1 X2) J

 X ∗1
X ∗2


= X1X ∗1 −X2X ∗2 ,

(5.155)

where

X1 =
(
I −MζM∗ξ

)(
I −MξM∗ξ

)−1/2
(5.156)

and

X2 =
(
Mζ −Mξ

) (
I −M∗ξMξ

)−1/2
. (5.157)
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5.9 Discussion

This chapter started with a short explanation of the problem of extending the notion of

derivatives to functions beyond functions of a complex variable. Nevertheless, following

an approach started by Fueter for functions of a quaternionic variable and generalized by

Malonek for functions of Clifford algebras, a derivative of functions of a single variable that

takes values in a BA A was constructed. This notion required the introduction of “special

directions” in A: the FVs. With those variables, hyperholomorphic polynomials and series

were constructed with the use of the symmetrized and the CK product.

An aspect of the CK product introduced here in a way that seems to never been done in

previous works and, then, requires further investigation is the fact that this product was

defined at an arbitrary center ξ ∈H m. Since the coefficients of the product of polynomials

and power series are defined from the center of this product, it can be said that the point

ξ determines the origin of the extension of the domain of functions from K to A. Then,

because, in general, different centers are associated with different functions, the extension

associated with them generates different mathematical structures. It would be interesting

to better understand these structures and to look for possible relations between them.

Besides that, some applications of Fueter series were also considered. Basic definitions and

results on the theory of RFs and realizations and BMFS were presented. These subjects

are fundamental players in the study of functional analysis, operator theory, and signal

processing. Because of it, in the complex setting, they are well-developed fields. Then, it

would be interesting to verify if some form of the known results from complex analysis holds

in the setting presented here.

Moreover, the spaces K`(c) and their inner product were introduced in Section 5.8. It seems

that a variety of characteristics of BMFS can be studied through them. This is a direction

that should be further explored. Because the spaces K`(c) take value in K, they might
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allow the “transference” of many results from the real and from the complex settings to the

framework introduced here.

Also, some examples of BMFS were given, namely the FBS and the DA modules. Again, the

two modules were already extensively studied in other settings, which means that there exists

a large number of results whose validity in the present framework needs to be verified. For

instance, in the complex case, the Blaschke factor and the correspondent counterpart of Eq.

(5.151) allow the study of interpolation problems in the DA space [186]. In other settings,

this line of research leads to unexpected conclusions. For instance, in the quaternionic case,

even the simplest interpolation problem of finding all functions f in the quaternionic DA

module such that f(a) = 0 involves an infinite number of interpolation conditions of the

form [185]

(f � ζα)(a) = 0 (5.158)

when α runs through N3
0. Similar problems also arise in the present setting and will be

addressed elsewhere.

Finally, it should be noticed that, although Fueter’s approach was extended here, this is not

the only possible notion that can be generalized from the complex case. For instance, in

2007, Gentili and Struppa introduced the idea of slice derivatives in the quaternionic setting

[188]. The advantage of their approach is the fact that the resultant power series does not

correspond to power series of special variables. Instead, they consist of powers of a variable

q ∈ H. Similar ideas may hold in the setting presented here if more restrictions are imposed

on it. This is another interesting research topic to be pursued in future works.
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6 Analysis in Generalized Grassmann
Algebras

This chapter presents the main results on analysis in closures of the Grassman algebra

introduced in Refs. [93, 94]. The Grassmann algebra (GA) was first formalized by Grassmann

in 1844 in a work that presented a formal framework for aspects of Cayley and Sylvester’s

theory of multivectors [189]. Analysis in this algebra only started in 1899 with Cartan

showing that the exterior algebra can be represented by it if the idea of derivatives by its

generators is introduced [190]. The first application of this algebra in physics appeared

in a work published by Martin in 1959, where the elements of the algebra were used in

the study of “classical versions” of physical functions for fermions and the obtainment of

their quantization through path integrals [191, 192]. Seven years later, this idea would be

used by Schwinger to extend his quantum field theory to fermions [193]. Moreover, in 1979,

Berezin independently started an extensive study of what is now known as supermathematics

[194, 195].

The chapter is divided into two parts. In the first one, which goes from Section 6.2 to

Section 6.9, the closure of the GA with respect to the 1-norm is studied. In this setting,

many important ideas from functional analysis are introduced, like the one-step extension

of Toeplitz matrices, rational functions (RFs), Schur functions, reproducing kernels, and

interpolation problems. In the second part, which starts in Section 6.10 and ends in Section

6.12, a class of stochastic processes is introduced for functions whose image lies in the closure

of the GA with respect to the 2-norm. Also, a framework is introduced where the derivative

of the stochastic variables can be studied as continuous functions. Finally, a discussion of

the chapter and an indication of future research directions are presented in the last section.

Before that, in the next section, basic results, definitions, and notations are introduced.
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6.1 Grassmann Algebra

The GA Λ is defined as the unital algebra over a field K generated by 1 and a countable set

of elements in, which do not belong to K, are linearly independent over K, and satisfy

inim + imin = 0, (6.1)

where n,m = 1, 2, . . .. While Eq. (6.1) holds for a variety of hypercomplex numbers [196],

the particularity of the generators of Λ is that Eq. (6.1) also holds for n = m, i.e.,

i2n = 0. (6.2)

Then, Λ has divisors of zero. Since K is often taken to be the field of the complex numbers,

it is assumed here that K = C.

The GA plays a fundamental role in supersymmetry and in quantum field theory, where it

allows the construction of path integrals for fermions [197]. Because of its importance to

supersymmetry, an element of Λ is commonly referred to as a supernumber.

In this work, if the GA has N generators in, it will be denoted by ΛN . Moreover, the union

of the algebras ΛN will be denoted by Λ, i.e., Λ ≡ ∪N∈NΛN , as illustrated in Fig. 6.1.

After this introductory section, closures of Λ, where the algebra has an infinite number of

generators, will be the main focus of the chapter.

To set the framework, I is defined to be the set of t-uples (a1, . . . , at) ∈ Nt, where t runs

through N and a1 < a2 < · · · < at. Whit that, iα ≡ ia1 · · · iat for any α = (a1, . . . , at) ∈ I.

Then, an element z ∈ Λ can be written as the finite sum

z = z0 +
∑
α∈I

zαiα, (6.3)
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Figure 6.1: Schematic representation of the increasing family of Grassmann algebras.

where the coefficients z0 and za1,...,ak are complex numbers.

The term that does not contain any Grassmann generator, z0, is called the body of the

number, and it is often denoted by zB . Meanwhile, zS = z− zB is said to be the soul of the

number [198]. As it will be discussed later in this section, it is possible to give a meaning to

the sum in Eq. (6.3) when it has an infinite number of terms.

Also, setting i0 ≡ 1, the set I can be extended by defining I0 ≡ {0} ∪ I. In this way, a

supernumber can be written in the more compact form

z =
∑
α∈I0

zαiα. (6.4)

Furthermore, if z =
∑
α∈I0 zαiα and w =

∑
β∈I0 wβiβ , their product can be written as

zw =
∑

α,β∈I0

zαwβiαiβ . (6.5)

Now, let α, β ∈ I and note that iαiβ = 0 when iα and iβ have a common factor iu, with

u ∈ N. Moreover, when iαiβ does not vanish, it might still not be an element of the set

{iα : α ∈ I}, since permutations might be necessary to obtain an element of that set.

However, because these permutations only introduce powers of negative one, there exists a
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uniquely defined γ ∈ I such that

iαiβ = (−1)σ(α,β)iγ , (6.6)

where σ(α, β) is the number of permutations necessary to “build” an element γ ∈ I from α

and β. If such a relation holds, it is defined that

α ∨ β ≡ γ (6.7)

and, therefore, iαiβ = (−1)σ(α,β)iα∨β .

To include the possibility of iαiβ = 0 in the definition of the operation ∨, it is defined that

α∨ β = ∅ if there exists no γ ∈ I0 such that Eq. (6.7) is satisfied. Then, the product of two

supernumbers is written as

iαiβ = (−1)σ(α,β)
∑
γ∈I0

δα∨β,γiγ , (6.8)

where δα∨β,γ is the Kronecker delta.

It should be noted that Λ is a Z2-graded algebra. The elements that commute with each

other are of the form

z = z0 +
∑
α∈I

τ(α)≡0 mod 2

zαiα, (6.9)

where τ(α) is the number of elements of α. Those supernumbers are called even supernumbers

and their set is denoted by Λeven. It is easy to verify that they commute with every element

of Λ and that they form a commutative subalgebra.
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On the other hand, the elements that anticommute with each other are of the type

z =
∑
α∈I

τ(α)≡1 mod 2

zαiα. (6.10)

They are known as odd supernumbers and do not form a subalgebra. In fact, it is an

immediate result that the product of two odd supernumbers is an even supernumber. The

set of odd supernumbers is denoted by Λodd.

Observe that, if v ∈ Λodd ⊂ Λ,

v2 =
1

2

∑
α,β∈I

τ(α),τ(β)≡1 mod 2

vαvβ
(
iαiβ + iβiα

)
= 0, (6.11)

i.e., the square of odd supernumbers vanish.

Also, let N ∈ N and consider N + 1 elements zn ∈ ΛN such that znB = 0 for every

n ∈ 1, . . . , N + 1. Then, it can be checked by direct computation that

N+1∏
n=1

zn = 0 (6.12)

and, in particular,

zN+1
S = 0 (6.13)

for every z = zB + zS ∈ ΛN . This result can be also given for a z ∈ Λ such that zB = 0. In

this case, there exists n = n(z) such that z ∈ Λn(z)−1 and, then, zn(z) = 0.

An important characteristic of the GA is that many of the properties of its elements depend

solely on the properties of its complex body. For instance, a supernumber in Λ is invertible

if and only if its body is different from zero. In fact, if z = zB + zS ∈ Λ, it holds that
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z
n(z)
S = 0. Then, if zB 6= 0, the inverse of z is given by

z−1 = z−1
B

n(z)∑
k=0

(
− zS
zB

)k
. (6.14)

Conversely, assuming z is invertible, let its inverse be w = wB + wS ∈ Λ. Then,

zw = 1⇒ zBwB = 1⇒ zB 6= 0. (6.15)

It is common to endow Λ with an involution † for which the conjugation of a supernumber

z given by Eq.(6.3) is

z† ≡ z0 +
∑
α∈I

(−1)π(α)zαiα, (6.16)

where π(α) = τ(α)(τ(α) − 1)/2. Observe that † can be characterized by the complex

conjugation of the coefficients zα, i
†
n = in, and (zw)† = w†z†.

Of course, this choice for an involution is arbitrary. In Ref. [94], other examples of involutions

in Λ are presented.

If z ∈ Λ is such that z† = z, it is said to be a real supernumber, or superreal; moreover, if

z† = −z, it is said to be an imaginary supernumber [198]. Note that a real supernumber

generally does not belong to R. For instance, i1 + i2 is a real supernumber.

With an involution defined, it is also possible to introduce the idea of a non-negative and

a non-positive supernumber. This is done by defining z ∈ Λ as a non-negative (resp. non-

positive) supernumber if there exists w ∈ Λ such that z = ww† (resp. z = −ww†), and

writing z � 0 (resp. z � 0). Observe that, with such a definition, only real supernumbers

can be classified as non-negative or non-positive.

Furthermore, if one requires invertibility from z, then w is invertible and z is called a positive

(resp. negative) supernumber, or superpositive (resp. supernegative), a property that is
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denoted by z � 0 (resp. z ≺ 0).

It is, then, clear that:

� z � 0⇔ zB > 0;

� z ≺ 0⇔ zB < 0;

� z � 0⇒ zB ≥ 0;

� z � 0⇒ zB ≤ 0.

With that, it can be shown that every positive supernumber in Λ has a square root, meaning

the analytic extension of the real square root to C\(−∞, 0]. To see that, let z = zB+zS ∈ Λ

be a positive supernumber, which means that zB > 0. Thus,

zB

(
1 +

zS
zB

)
(6.17)

and
√
z =
√
zB

√
1 +

zS
zB

=
√
zB

[
1−

∞∑
k=0

2

k + 1

(
2k

k

)(
− zS

4zB

)k+1
]
. (6.18)

Observe that the last sum converges because it has a finite number of non-zero elements.

Now, because the involution defined in the GA induces a modulus that is given either by

|z|2 = z†z or |z|2 = zz†, which, in general, is not a real number, the p-norm of a supernumber

is introduced. For this purpose, let p ≥ 1 be a real number and, then, define the p-norm of

a supernumber z ∈ Λ as

‖z‖p =

∑
α∈I0

|zα|p
1/p

, (6.19)

where | · | is the usual modulus of a complex number.
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It can be checked that, if p = 1,

‖zw‖1 ≤ ‖z‖1‖w‖1. (6.20)

Hence, Λ endowed with the 1-norm is a Banach algebra (BA). However, that is not the case

if p > 1, and the p-norm of a product is not necessarily bounded by the p norm of each of

its factors. In particular, when considering completions Λ(p) of Λ with respect to a p-norm,

the resultant set Λ(p) might not be an algebra.

This chapter will deal with this problem when Λ(2) is introduced in Section 6.10. Before

that, starting in the next section, the completion of Λ with respect to the 1-norm is studied.

6.2 1-Norm Completion of the Grassmann Algebra

From now until Section 6.9, it is studied the completion of Λ with respect to the 1-norm,

which is the particular case of the p-norm of a supernumber z defined in Eq. (6.19) with

p = 1, i.e.,

‖z‖1 =
∑
α∈I0

|zα|, (6.21)

where | · | is the usual modulus of a complex number. When this completion, which is

denoted by Λ(1), is endowed with the 1-norm, it becomes a complex vector space and has a

BA structure.

It should be mentioned that some aspects of Λ(1) were already considered in the literature

[199–204]. The present work, however, follows a different approach.

Like in Λ, an element z ∈ Λ(1) is invertible if and only if zB 6= 0. To prove it, first assume

z ∈ Λ(1)even
, which is a commutative BA. Then, let ϕ be a homomorphism between Λ(1)even

and C.
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It can be shown that ϕ(z) = zB . In fact, this follows from

ϕ(iα)2 = ϕ(i2α) = ϕ(0) = 0 (6.22)

and

ϕ(1) = 1. (6.23)

Therefore, by Gelfand′s theorem on invertibility in commutative BAs (see, e.g., Ref. [205]),

z is invertible if and only if ϕ(zB) 6= 0.

Now, in case z is not assumed to be an even supernumber, observe that, if z is invertible in

Λ(1), there exists w ∈ Λ(1) such that zw = wz = 1. In particular, zBwB = 1, which shows

that zB 6= 0. Conversely, without loss of generality, let z = 1 + u + v ∈ Λ(1), where u + v

is the soul of z, with u being its even part and v being the odd one. As already discussed,

1 + u is invertible. Then,

z = (1 + u)
[
1 + (1 + u)−1 v

]
(6.24)

is invertible if and only if q = 1 + (1 + u)−1 v is invertible. Note that qS ∈ Λ(1)odd
. Thus, to

complete the proof, it is left to show that an element z such that zS ∈ Λ(1)odd
is invertible

if zB 6= 0. To do so, let z = 1 + v, where v ∈ Λ(1)odd
. Observing that the calculation shown

in Eq. (6.11) is still valid in closures of Λ, it can be used that v2 = 0 and, then, it follows

that w = 1 − v is the inverse of z. This finishes the proof that invertibility in Λ(1) can be

reduced to invertibility of the body of the number.

With this result, it is possible to show that, while the soul of any supernumber in Λ is

nilpotent, the soul zS of any element of Λ(1) is quasi-nilpotent. In fact, the spectral radius

formula asserts that

lim
n→∞

‖znS‖
1/n
1 = sup {|x| | x ∈ ρ(zS)} , (6.25)
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where ρ(zS) is the spectral radius of zS , which can be determined by finding the values of

λ ∈ C for which zS − λ is non-invertible. But, as just seen, a supernumber is non-invertible

if and only if its body is non-invertible. Then,

ρ(zS) = 0, (6.26)

which implies that zS is quasi-nilpotent.

Now, let λ ∈ C be a complex variable and the complex power series

f(λ) =
∞∑
n=0

cnλ
n, cn ∈ C, (6.27)

be analytic in a neighborhood of the origin. Then, it follows directly from Eq. (6.26) that

f(zS) converges in Λ(1).

More generally, if f(λ) is a complex analytic function for λ ∈ Ω, then f(z) converges in Λ(1)

for every z such that zB ∈ Ω. It can be seen by writing

f(z) =
∞∑
n=0

f (n)(zB)

n!
znS . (6.28)

It should be noted that Eq. (6.28) often appears in the literature as a formal power series —

see, e.g., Ref. [198]. Here, however, a meaning is given to it as an infinite sum, in the sense

that it converges in Λ(1). Still on this discussion, a study of reproducing kernels associated

with this type of extension in topological algebras was recently introduced [206].

Finally, observe that because of the results just presented, it is possible to conclude that

many analytic functions can be extended to Λ(1). For example, if the square root of a

number is taken to be the analytic extension of the real square root to C \ (−∞, 0], then a

positive supernumber z admits a square root.

119



6.3 Matrix Algebra and Extension of Toeplitz Matrices

In this section, Toeplitz matrices taking values in Λ(1) are studied. A Toeplitz matrix is a

self-adjoint matrix with all elements of its main diagonal equal to each other. The aim here

is to solve an extension problem for such matrices, namely how to obtain a Toeplitz matrix

with a bigger size from a smaller one. The counterpart of this problem in the complex

domain appears as an important player in many areas, like signal and image processing,

system control, and in predictions of stationary processes of second order. Moreover, the

center of a one-step extension in the classical theory is related to the concept of maximum

entropy, and it is directly associated with the best estimation of parameters in stochastic

processes, making it relevant in the solution to the Yule-Walker equations [207].

Before introducing Toeplitz matrices in the GA, some basic definitions and results in the

theory of matrices with entries in Λ(1) are studied. To begin, the conjugation † presented

in Section 6.1 can be extended to matrices M over the module Λ
p×q
(1) . This is done in the

following way

M∗ = (m
†
kj). (6.29)

In particular,

(ML)∗ = L∗M∗ (6.30)

for matrices M and L of appropriate sizes.

Also, the norm of a matrix M = (mjk) ∈ Λ
p×q
(1) is defined as

‖M‖1 ≡
∑
j,k

‖mjk‖1. (6.31)

Now, in the algebra of complex matrices, if a matrix M ∈ Cp×p is regular, meaning that all

its main minor matrices are invertible, then M can be factorized as M = LDU , where D
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is a diagonal matrix composed by invertible supernumbers, and L and U are, respectively,

lower and upper-triangular matrices with main diagonals composed by ones. To see that a

similar result holds in this setting, let M =
(
mjk

)
∈ Λ

p×p
(1) be a matrix such that MB is

regular. Because of the regularity of MB , it can be assumed that (mkk)B > 0 for every

k ∈ {1, 2, . . . , p}, which implies that mkk is invertible. Thus,

M =

 m11 B

C E


=

 1 0

Cm−1
11 Ip−1


 m11 0

0 E − Cm−1
11 B


 1 m−1

11 B

0 Ip−1

 ,

(6.32)

where B, C, and E are block matrices. By successively repeating this process, it can, then,

be concluded that, if M is a matrix such that MB is regular, M = LDU .

Also, an invertible matrix M ∈ Λ
p×p
(1) has an invertible body. The result that was just

proved, however, enables the proof of the converse, i.e., if MB is invertible, M is invertible.

In fact, if MB is invertible, the body AB of A ≡ MM∗B is regular. Then, as it was just

discussed, A = LDU . Because any lower or upper-triangular matrix with main diagonal

composed by ones is invertible and D, which is composed of positive supernumbers, is also

invertible, it can be concluded that A is invertible. Then, M admits an inverse given by

M−1 = (MB)−∗A−1. Therefore, any matrix M ∈ Λ
p×p
(1) is invertible if and only if its body

is invertible.

Now, preparing for the extension of positivity to matrices of supernumbers, let M ∈ Λ
p×p
(1)

and c, d ∈ Λ
p×1
(1) . Then, it can be shown that

d∗Mc = 0 (6.33)
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for every c and d if and only if

c∗Mc = 0 (6.34)

for every c. First, it is clear that, if the condition given by Eq. (6.33) holds, Eq. (6.34) also

holds. To prove the converse, observe that, by the polarization identity,

d∗Mc =
1

4

3∑
k=0

(
c∗ + (−i)kd∗

)
M
(
c+ ikd

)
. (6.35)

Because, now, Eq. (6.34) is assumed to hold, each term of the sum in Eq. (6.35) vanishes

since they are of the type a∗Ma, where a ∈ Λ
p×1
(1) .

Finally, it can be also shown that M = 0 whenever the condition given by either Eq. (6.33)

or Eq. (6.34) holds. In fact, observe that, for the particular case where the j-th components

of d and c are dj = δjr and cj = δjs, for some r, s ∈ {1, . . . , p}, Eq. (6.33) becomes just

mrs = 0.

With that, a matrix M ∈ Λ
p×p
(1) is said to be a non-negative supermatrix (or simply super

non-negative) if

c∗Mc � 0 (6.36)

for every c ∈ Λ
p×1
(1) . Similarly, M is defined to be superpositive if

c∗Mc � 0 (6.37)

for every c ∈ Λ
p×1
(1) such that cB is not the null element.

With this definition, it follows that, if a supermatrix M ∈ Λ
p×p
(1) is non-negative, then it is

self-adjoint and its body is non-negative. To see that, starting by assuming that M ∈ Λ
p×p
(1)

is non-negative. Thus, Eq. (6.36) holds, which implies that c∗Mc is a real supernumber for
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every c ∈ Λ
p×1
(1) , i.e.,

c∗Mc = c∗M∗c⇒ c∗(M −M∗)c = 0. (6.38)

Then, M is self-adjoint, i.e., M∗ = M . Moreover, Eq. (6.34) implies that

c∗BMBcB ≥ 0, (6.39)

for every c ∈ Λ
p×1
(1) , which means that the body of M is non-negative.

Before introducing the problem of extension of Toeplitz matrices, one more result is pre-

sented. If M ∈ Λ
p×p
(1) , the following statements are equivalent:

(i) M is superpositive;

(ii) M is self-adjoint and MB is positive;

(iii) M = LDU , where D is a superpositive diagonal matrix, L is a lower triangular matrix

with main diagonal composed by ones, and U = L∗;

(iv) M = LL∗ = UU∗, where L,U ∈ Λ
p×p
(1) , and L and U are, respectively, lower and

upper-triangular matrices and their main diagonals are composed by ones.

To prove this statement, start by observing that (ii) follows directly from the definition of

superpositivity. Then, (i) implies (ii). Also, it follows from the discussion of Eq. (6.32) that

(ii) implies (iii).

To show that (iii) implies (iv), observe that the matrix D in M = LDU is composed of

positive supernumbers, which admit a positive square root. Then, D also has a superpositive

diagonal square root. Denoting it by S, it holds that D = S2 and

M = LDU = LS2D = (LS) (LS)∗ = L′L′∗. (6.40)
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In a similar way, one can start from a decomposition M = UDL, which is also valid, and

conclude that M = U ′U ′∗.

Finally, the proof that (iv) implies (i) follows from the fact that, for every c ∈ Λ
p×1
(1) such

that cB is not the null element,

c∗Mc = c∗LL∗c = (L∗c)∗ (L∗c) � 0 (6.41)

or, similarly, c∗UU∗c � 0.

The extension of Toeplitz matrices can be now studied. The problem can be stated as: given

a superpositive Toeplitz matrix

TN =



r0 r1 . . . rN

r
†
1 r0 . . . rN−1

...
...

. . .
...

r
†
N r

†
N−1 . . . r0


, (6.42)

where r0, · · · , rN ∈ Λ(1) and r
†
0 = r0, what are the conditions for a superpositive Toeplitz

extension TN+1 be created from it? More specifically, what are the conditions that must be

satisfied by a supernumber rN+1 ∈ Λ(1) to assure that

TN+1 =

 TN bN+1

b∗N+1 r0

 , (6.43)

where bN+1 is a column matrix with coordinate bN+1 = (rN+1, rN , · · · , r1) ≡ (rN+1, bN ),

is superpositive?
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To start solving this problem, observe that TN+1 can be written as

TN+1 =

 1 b∗N+1T
−1
N

0 I


 r0 − b∗N+1T

−1
N bN+1 0

0 TN


 1 0

T−1
N bN+1 I

 . (6.44)

Then, as already studied, TN+1 is a superpositive matrix if r0− b∗N+1T
−1
N bN+1 is a positive

supernumber. Moreover, writing

TN =

 r0 aN

a∗N TN−1


=

 1 aNT
−1
N−1

0 I


 r0 − aNT−1

N−1a
∗
N 0

0 TN−1


 1 0

T−1
N−1a

∗
N I

 ,

(6.45)

it can be concluded that

r0 − b∗N+1T
−1
N bN+1 � 0⇔ (rN+1 − cN )† α (rN+1 − cN ) ≺ r0 − b∗NT

−1
N bN , (6.46)

where α =
(
r0 − aNT−1

N−1a
∗
N

)−1
and cN = aNT

−1
N−1bN . Furthermore, defining real super-

numbers ξ such ξ†ξ ≡ r0 − b∗NT
−1
N bN , Eq. (6.46) can be rewritten as

(rN+1 − cN )† α (rN+1 − cN ) ≺ ξ†ξ. (6.47)

This is, then, the solution to the problem of extension of Toeplitz matrices.

Obserce that

α1/2 (rN+1 − cN ) ≺ ξ ⇒ rN+1 = cN + α−1/2ηξ, (6.48)

where η is a supernumber such that η ≺ 1. Eq. (6.48) can be seen as a natural definition

of a disk with center in cN , left radius α−1/2, and right radius ξ. Such object is called a
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superdisk.

Note that the “geometry” induced by the definition of positivity in the GA is different from

the one induced by the 1-norm. In fact, elements in the superdisk, in general, do not have

a bounded norm. For instance, consider

a =
1

2
(1 + λi1) λ ∈ C. (6.49)

Even though it is clearly inside the superdisk zz† ≺ 1, its norm is ‖a‖1 = (1 + |λ|)/2, which

can be arbitrarily large.

6.4 Realization Theory and Rational Functions

Denote by Γp×q(Ω) the space of power series whose coefficients take value in Λ
p×q
(1) that

converge on a neighborhood Ω of the origin in Λ(1). Then, the main goal of this section is

to define and study realization theory and RFs of power series F ∈ Γp×q(Ω), i.e.,

F (z) =
∞∑
n=0

znfn, (6.50)

where the variable z varies in Ω. The approach followed here is similar to the one used in

the quaternionic setting (see, e.g., [86, 208–210]) and, also, to the Fueter variables on BAs

presented in Section 5.7. An important distinction is the fact that, here, the focus is on

functions that are also invertible at the origin.

To start, the Cauchy-Kovalevskaya (CK) product is introduced in this setting. For that, let

F and G be two power series of the type given by Eq. (6.50). Then, the CK product is

defined as

F ? G(z) ≡
∑
n∈Z

zn

∑
u∈Z

fugn−u

 . (6.51)
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The product is denoted by ?, and not by �, so it can be differentiate from the CK product

defined in the previous chapter.

Note that such a product reduces to the pointwise product in the case of z = λ ∈ C.

Moreover, for F (z) invertible, the star and the regular products are related by

F ? G(z) =
∑
n∈Z

znF (z)gn

= F (z)
∑
n∈Z

F (z)−1znF (z)gn

= F (z)G
(
F (z)−1zF (z)

)
.

(6.52)

Now, F ∈ Γp×q(Ω) is said to admit a realization if it can be represented in the form

F (z) = D + zC ? (IN − zA)−?B, (6.53)

where D ≡ F (0), A,B,C are supermatrices of appropriate sizes, and (IN − zA)−? ≡∑∞
n=0 z

nAn.

If the matrix D in Eq. (6.53) is invertible, it can be verified by direct computation that

F (z)−? = D−1 − zD−1C ? (I − zA×)−?BD−1 (6.54)

is a realization of F−?, with

A× = A−BD−1C. (6.55)

Moreover, it can checked that, if

Fj(z) = Dj + zCj ? (INj − zAj)
−?Bj , (6.56)
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j = 1, 2, correspond to two realizations of compatible sizes, a realization of F1(z) ? F2(z) is

given by

A =

A1 B1C2

0 A2

 , B =

B1D2

B2

 ,

C

(
C1 D1C2

)
, D = D1D2

(6.57)

and a realization of F1 + F2 is given by

A =

A1 0

0 A2

 , B =

B1

B2

 ,

C =

(
C1 C2

)
, D = D1 +D2.

(6.58)

Now, defining a k-th order polynomial in Γp×q(Ω) as a finite sum of the form

M(z) = M0 + zM1 + · · ·+ zkMk, (6.59)

where M0, . . . ,Mk ∈ Λ
p×q
(1) , it is clear that any polynomial in z admits a realization.

It is also of interest to define a pair (C,A) as an observable pair of matrices if

∩∞u=0 kerCAu = {0} . (6.60)

Moreover, a pair (A,B) is said to be controllable if

ξ(I − λA)−1B ≡ 0 ⇒ ξ = 0, (6.61)

where λ ∈ R. Furthermore, a realization is called minimal if the pair (C,A) is observable

and the pair (A,B) is controllable.
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With that, it can be shown that two minimal realizations

F (z) = Dj + zCj ? (INj − zAj)
−?Bj , j = 1, 2, (6.62)

of a function F are similar. To do so, first observe that D1 = D2. Then, it is possible to

write
F (x)− F (y)

x− y
= C1(IN1

− xA1)−1(IN1
− yA1)−1B1

= C2(IN2
− xA2)−1(IN2

− yA2)−1B2,

(6.63)

where x, y ∈ R and the understanding that the left-hand side is equal to F ′(x) if x = y.

Moreover, define the operators

U
(

(IN1
− yA1)−1B1ξ

)
≡ (IN2

− yA2)−1B2ξ, (6.64)

and

V
(

(IN2
− yA2)−1B2ξ

)
≡ (IN1

− yA1)−1B1ξ, (6.65)

where ξ ∈ Λ
q
(1). The fact that the pairs (Cj , Aj) are observable assures that such operators

are well defined. From the above definitions, and because the pairs (Aj , Bj) are controllable,

it holds that

UV = IN2
, (6.66)

and

V U = IN1
, (6.67)

where IN denotes the N ×N identity operator.

Now, defining elements ej , j = 1, . . . , N , of modules Λ
N
(1) with components given by

(
ej
)
k = δjk, (6.68)
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it can be written that

(IN1
− yA1)−1B1ξ =

N1∑
j=1

ejαj , (6.69)

where αj ∈ Λ(1), and

U

N1∑
j=1

ejαj

 =

N1∑
j=1

U
(
ej
)
αj =

N1∑
j=1

 N2∑
k=1

ukjej

αj . (6.70)

Hence, U can be represented by a N2×N1 matrix Ũ =
(
ukj
)
. Similarly, V can be represented

by a N1 ×N2 matrix Ṽ . To conclude the proof, because (A1, B1) is controllable, N2 ≤ N1.

However, because (A2, B2) is also controllable, N1 ≤ N2. Therefore, N1 = N2 and two

minimal representations are similar.

Presented some definitions and results on realizations, RFs can be discussed. As mentioned

in Section 5.7, a RF F ∈ Γp×q(Ω) is a quotient of polynomials. In particular, a RF F ∈ Γp×r

can be written as a finite product of the type

F (z) = M1(z) ? M2(z)−? ? M3(z), (6.71)

where M1 ∈ Γp×q, M2 ∈ Γq×q, and M3 ∈ Γq×r are polynomials. Then, it is clear that every

realization is a RF. Therefore, because every polynomial admits a realization and the inverse

of a realization also admits a realization, the concepts of RFs and realizations are equivalent.

Finally, it can be checked by direct computation that, because every RF admits a realization,

and vice versa, they are characterized by the Taylor expansion

F (z) = D +
∞∑
n=1

znCAn−1B, (6.72)

where the matrices A, B, C, and D are the ones defined in Eq. (6.53).
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6.5 Rational Schur-Grassmann functions

The purpose of this section is to start the study of Schur analysis and related topics in

Λ(1), a subject that will continue to be explored until Section 6.9. To put the study into

perspective, a brief review of it in the complex setting is presented.

Schur analysis is a part of function theory in the open unit disk D or a half-plane. It is a rich

and vastly developed field with numerous applications, which include, but are not limited

to, signal processing [211], fast algorithms [212], and linear systems [213]. It originated with

Schur in 1979 [214, 215], although this area can be traced back to Stieltjes’s work in 1894

[216]. A collection of original papers on the topic can be found in Ref. [217]. The Hardy

space and Blaschke factors are important players in this domain [218, 219], as well as the

Wiener algebra and RFs.

The Hardy space of the unit disk H2 is the Hilbert space (HS) of power series f(λ) =∑∞
n=0 anλ

n, λ ∈ C, such that ‖f‖2H2
≡
∑∞
n=0 |an|2 < ∞. From the signal processing

point of view, it can be interpreted as the space of frequencies (z-transforms) of finite energy

discrete signals. Such an interpretation motivates various interpolation problems in the

Hardy space and related spaces. The Nevanlinna-Pick and the Carathéodory-Fejér problems

are two examples of it. The former consists on, given λ1, . . . , λN in D and complex numbers

ω1, . . . , ωN , describing the set of all Hardy functions f such that f(λj) = ωj for j = 1, . . . N .

The latter, on the other hand, refers to the problem of fixing the first N derivatives of a

function at a given point. Moreover, for λ = 0, the Carathéodory-Fejér problem becomes

trivial for Hardy functions — since the coefficients an of f are known. Nevertheless, this

is a problem of central importance in the class of functions with a positive real part in the

open unit disk, which is related to the theory of extension of Toeplitz matrices and has

applications on the prediction theory of second-order stationary processes.

For both the Nevanlinna-Pick and the Carathéodory-Fejér problems, however, additional
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metric constraints are imposed to f , such as requiring that it should take contractive values

in the open unit disk. Functions satisfying such conditions are called Schur functions, and

they are the transfer functions of dissipative systems [187, 220–224].

Schur functions can be characterized in a number of equivalent ways, including the just

mentioned contractivity in the Hardy space. In the rational setting, which is our starting

point here, a Schur function S can be defined as a matrix-valued RF which is analytic at

infinity and has minimal realization given by

S(λ) = D + C(λI − A)−1B (6.73)

such that  A B

C D


∗ H 0

0 I


 A B

C D

 ≤
 H 0

0 I

 (6.74)

for some (not uniquely defined) H < 0. This characterization results from the positive real

lemma, also known as Kalman-Yakubovich-Popov theorem [225–227], and its generalization

[228]. For the description of all H satisfying Eq. (6.74), see Ref. [226, 227].

It should be noticed that Eq. (6.73) presents a different expression for a realization than the

one studied in the previous section, which can be written as

S(λ) = H + λG(I − λT )−1F, (6.75)

which, in general, is not analytic at infinity. However, both expressions are equivalent if the

matrix A is invertible. In fact, let H = D − CA−1B, G = −CA−1, T = A, and F = AB.
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Then, Eq. (6.75) can be rewritten as

S(λ) = D − CA−1B − λCA−1(I − λA)−1AB

= D − CA−1B + CA−1(λA− I)−1(I + λA− I)B

= D + CA−1(λA− I)−1B

= D + C(λI − A)−1B.

(6.76)

With that, Eq. (6.73) with matrices conditioned to Eq. (6.74) is taken as the primary

definition of a rational Schur-Grassmann (SG) function. To be precise, a Λ
p×q
(1) -valued RF

with realization given by

S(z) = D + C ? (zIN − A)−?B (6.77)

will be called a SG function if there exists a Hermitian strictly negative matrix H ∈ Λ
N×N
(1) ,

i.e., H ≺ 0, such that

 A B

C D


∗ H 0

0 I


 A B

C D

 �
 H 0

0 I

 . (6.78)

Now, let S be a Λ
p×q
(1) -valued RF of the type given by Eq. (6.77). Then, it can be verified

that S is a SG function if and only if its body part SB is a Schur function. This allows

the direct translation to SG functions of a number of properties of Schur functions. Two

examples of that can be given:

� Complex rational Schur functions S(λ) can be characterized by S(λ)S(λ)∗ ≤ I for

|λ| ≤ 1. Then, it can be checked that rational SG functions S(z) are such that

S(z)S(z)∗ � I for zz† � 1.
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� Complex rational Schur functions S(λ) can characterized by the fact that the kernel

∞∑
n=0

λn (I − S(λ)S(ω)∗)ωn (6.79)

is positive definite. Also, rational SG functions S(z) are such that the kernel

∞∑
n=0

zn (I − S(z)S(w)∗) (w†)n (6.80)

is superpositive.

However, not every result from complex analysis holds in the present setting by a simple

“reduction to the body” study of SG functions. As it will be seen in more details later,

interpolation problems are an example of that.

Now, consider the Hermitian form

[F,G] ≡
∞∑
n=0

g∗nfn, (6.81)

where

F =
∞∑
n=1

znfn (6.82)

and

G =
∞∑
n=1

zngn (6.83)

are such that [F, F ] and [G,G] converge in Λ
q×q
(1) . Note that the restriction of Eq. (6.81) to

its body corresponds to the matrix-valued Hermitian form associated to the Hardy space of

Cp×q-valued functions analytic in the open unit disk.

With this definition, another result that follows from the analysis of complex Schur functions
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states that a RF S is a SG function if and only if

[MSF,MSF ] � [F, F ] , (6.84)

where MS is the CK multiplication operator, defined by MSF ≡ S ? F .

Finally, let S be a Λ
p×q
(1) -valued RF given by

S(z) = s0 + zs1 + · · · , (6.85)

where s0, s1, . . . ∈ Λ
p×q
(1) . Moreover, let LN denote the lower triangular matrix

LN =



s0 0 · · · 0 0

s1 s0 · · · 0 0

...
...

. . .
...

...

sN sN−1 · · · s1 s0


. (6.86)

Then, it follows from complex analysis that S is a SG function if and only if L∗NLN � I for

every N ∈ N.

6.6 Wiener-Grassmann algebra

In this section, it is introduced the Wiener algebra associated with the GA Λ(1), or simply

the Wiener-Grassmann (WG) algebra. In the complex case, the characterization of boundary

values of Hardy functions can be a quite challenging problem. Then, it is often desirable to

consider functions in Wp
+, which is a subset of the Wiener algebra

Wp =

f(eit) =
∑
n∈Z

eintfn

∣∣∣∣∣∣ t ∈ R, fn ∈ Cp×p,
∑
n∈Z
‖fn‖ <∞

 , (6.87)
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where ‖ · ‖ is a complex matrix norm. Wp is endowed with the pointwise multiplication of

functions.

Some facts aboutWp are relevant for the present discussion. For instance, a function f ∈ Wp

is said to be strictly positive if f(eit) > 0 for every real t. Moreover, the Wiener-Lévy theorem

assures that f has an inverse inWp if and only if f(eit) 6= 0 for every real t, i.e., invertibility

in the algebra is equivalent to pointwise invertibility.

Two important subalgebras of Wp are the aforementioned Wp
+, composed by functions f of

the type

f(eit) =
∞∑
n=0

eintfn, (6.88)

and Wp
−, which contains functions of the type

f(eit) =
0∑

n=−∞
eintfn. (6.89)

There are elements in Wp
+ (resp. Wp

−) that have inverse in Wp
+ (resp. Wp

−). They are

denoted by f+ (resp. f−). Furthermore, some functions in Wp can be factorized as f =

f+f−. An important theorem states that f ∈ Wp is strictly positive if and only if it has

such a factorization and it is characterized by f− = f∗+, where f∗+ denotes the adjoint of f+.

Now, some of these results and definitions are introduced in the present setting. To start,

the WG algebra is defined as

Wp
G =

f(z) =
∑
n∈Z

znfn

∣∣∣∣∣∣ z ∈ Λ(1), fn ∈ Λ
p×p
(1) , ‖ [f, f ] ‖1 <∞

 , (6.90)

where, the Hermitian form [·, ·] is defined as

[f, g] =
∑
n∈Z

g∗nfn. (6.91)
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This algebra is endowed with the CK product introduced in Eq. (6.51), i.e.,

f ? g(z) ≡
∑
n∈Z

zn

∑
u∈Z

fugn−u

 , (6.92)

for any two functions f and g in Wp
G.

An import subalgebra ofWp
G for this work is the setWp

BP , which will be called the Wiener-

Bochner-Phillips algebra and is defined by

Wp
BP =

f(t) =
∑
n∈Z

eintfn

∣∣∣∣∣∣ t ∈ R, fn ∈ Λ
p×p
(1) ,

∑
n∈Z
‖fn‖1 <∞

 , (6.93)

where i ∈ C is the imaginary unit. Note that the CK product is reduced to the pointwise

product in Wp
BP .

With this definition, it can be shown that a function f ∈ Wp
BP has an inverse in Wp

BP if

and only if f(t) has an inverse in Λ(1), for every t. First, it is clear that f(t) is invertible for

every t if f is invertible in Wp
BP . Moreover, the converse is just an adapted version of the

original result presented by Bochner and Phillips in Ref. [229, Theorem 1] to the case where

the coefficients are elements of Λ
p×p
(1) instead of a generic noncommutative ring.

Now, let f ∈ Wp
G and fBP ≡ f(eit) ∈ Wp

BP , where t ∈ R. Then, the following statements

are equivalent:

(i) f is invertible in Wp
G;

(ii) fBP is invertible in Wp
BP ;

(iii) the body of fBP is invertible in the classical Wiener algebra Wp;

(iv) (fBP )B (t) 6= 0 for every t.
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To see that (i) is equivalent to (ii), observe that, if (i) holds, there exists a function g ∈

Wp
G such that f ? g(z) = 1 for every z. In particular, this holds for points z = eit, i.e.,

fBP gBP (t) = 1 for every t, where gBP ≡ g(eit). Conversely, if (ii) is true, there exists

gBP =
∑
n∈Z

eintgn ∈ Wp
BP (6.94)

such that fBP gBP = 1. Then, it holds that

∑
u∈Z

fugn−u =

 0, n 6= 0

1, n = 0
. (6.95)

Finally, consider the “extension” of gBP to WG

g =
∑
n∈Z

zngn, (6.96)

where z ∈ Λ(1) such that zB 6= 0. It follows that f ? g = 1.

Moreover, to prove that (ii) is equivalent to (iii), observe that fBP gBP = 1⇒ (fBP )B (gBP )B =

1 and (fBP )B , (gBP )B ∈ Wp. For the converse, assume that (iii) holds, which implies that

fBP has an inverse in Λ(1). In this case, as already discussed, fBP is invertible in Wp
BP .

Finally, (iii) being equivalent to (iv) is just a restatement of the classical Wiener-Lévy the-

orem.

Before concluding this section, in a similar way done in the complex setting, the subsets

Wp
G+

=
{
f ∈ Wp

G

∣∣ fn = 0, n < 0
}

(6.97)

and

Wp
G− =

{
f ∈ Wp

G

∣∣ fn = 0, n > 0
}

(6.98)
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are introduced.

With that, a weak condition for the invertibility of a function in Wp
G+

is presented: a

function f ∈ Wp
G+

has an inverse in Wp
G+

if and only if [f(z)]B 6= 0 for every z such that

‖z‖1 ≤ 1.

To show that, assume that f is invertible in Wp
G+

. Then, there exists g ∈ Wp
G+

such that

( ∞∑
m=0

zmfm

)
?

( ∞∑
n=0

zngn

)
= 1 (6.99)

for every z ∈ Λ(1). In particular, restricting this equation to its body,

( ∞∑
m=0

zmB (fm)B

)( ∞∑
n=0

znB (gn)B

)
= 1, (6.100)

i.e., [f(z)]B 6= 0. Conversely, let f ∈ Wp
G+

and [f(z)]B 6= 0 for every z such that ‖z‖1 ≤ 1.

In particular, for z = ξ ∈ C with |ξ| ≤ 1, fB(ξ) is an invertible element of Wp
+. Hence, as

already proved, f is invertible in Wp
G. Therefore, if g ∈ Wp

G is its inverse,

( ∞∑
m=0

zmfm

)
?

∑
n∈Z

zngn

 = 1. (6.101)

Furthermore, using, again, the fact that fB(ξ) is invertible in Wp
+, it can be concluded that

(gn)B = 0 for every n < 0.

It should be noticed that a similar result to the one just presented holds for the invertibility in

Wp
G−. Moreover, a strong version of it, if it exists in the present setting, should characterize

functions in Wp
G+

that have inverse in Wp
G+

, as it is done in complex analysis.
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6.7 Reproducing Kernel Banach Modules and Interpolation

A module is said to admit a reproducing kernel if there exists a positive definite function

K(z, w) and a Hermitian form [·, ·] such that every function in such a set can be pointwise

evaluated as

f(z) = [f(·), K(·, z)] . (6.102)

In the complex case, this Hermitian form on a space of power series f =
∑∞
n=0 z

nan, with

an ∈ C and
∑∞
n=0 |an|2 <∞, is a map into C and coincides with the usual inner product

[f, g] =
∞∑
n=0

bnan, (6.103)

where g =
∑∞
n=0 z

nbn, with bn ∈ C. Note that, with respect to this product, such a space of

power series is a complex BA. Moreover, a similar definition could be given for matrix-valued

coefficient an of f .

Now, when replacing the complex coefficients in Eq. (6.102) by elements of Λ(1), it becomes

clear that one type of power series of interest is the one defined by the Wiener algebraWp
G+

studied in the previous section.

Since a Hermitian form of the type given by Eq. (6.103) is necessary, besides the CK product,

this set is also endowed with the form defined in Eq. (6.81). Observe that, if

K(z, w) =
∞∑
n=0

zn(w†)n, (6.104)

the point evaluation of a function f ∈ WG+ is

f(z) = [f(·), K(·, z)] . (6.105)
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Moreover, the notion of orthogonality in Wp
G+

is defined according to the Hermitian form

in Eq. (6.81), i.e., f ∈ Wp
G+

is said to be perpendicular to g ∈ Wp
G+

if [f, g] = 0.

Solutions to interpolation problems are the main concern of this section. For that, the

introduction of the notion of linear independence is necessary. Since Wp
G+

is a module

(and not a linear space) such a notion is, in general, delicate. However, consider the set

G = {f1, . . . , fN} ⊂ W
p
G+

such that (f1)B , . . . , (fN )B are linearly independent. Then, it is

possible to show that G is a basis for span(G). Indeed, it is only needed to prove that, given

coefficients cj ∈ Λ(1), if

f1c1 + . . .+ fN cN = 0, (6.106)

then c1 = c2 = . . . = cN = 0. For this purpose, assume that f1, . . . , fN are such that their

body are linearly independent, and Eq. (6.106) is satisfied by coefficients cj 6= 0. Then,

observe that the restriction of Eq. (6.106) to its body implies that the body of every cj must

be null. Moreover, writing

cj =
∑
α∈I

cjαiα, (6.107)

letmj be the minimum value of τ(α) for which cjα 6= 0. Also, letm = min{m1,m2, . . . ,mN}.

As a result, for every α such that τ(α) = m, Eq. (6.106) implies that

f1c1α + . . .+ fN cNα = 0. (6.108)

Since at least one cjα is not null, Eq. (6.108) contradicts the fact that f1, . . . , fN are linearly

independent. Therefore, Eq. (6.106) can only be satisfied if c1 = c2 = . . . = cN = 0.

Now, it is introduced the function

Θ(z) ≡ Ip − (1− z)C ? (Iq − zA)−?P−1(Iq − A)−∗C∗J, (6.109)
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where (C,A) ∈ Λ
p×q
(1) × Λ

q×q
(1) is an observable pair, J ∈ Λ

p×p
(1) is a signature matrix, and

P ∈ Λ
q×q
(1) is an invertible self-adjoint matrix. This function is a fundamental object for the

results presented here.

Furthermore, the CK product can be also defined for power series with the variable z placed

on the right-hand side of the coefficients as

( ∞∑
n=0

fnz
n

)
?r

( ∞∑
n=0

gnz
n

)
≡
∞∑
n=0

(
n∑
u=0

fugn−u

)
zn. (6.110)

As a result, the expression

∞∑
n=0

zn (J −Θ(z)JΘ(w)∗)
(
w†
)n

= C ? (Iq − zA)−?P−1 [(Iq − wA)∗
]−?r ?r C∗ (6.111)

holds if and only if the Stein equation

P − A∗PA = C∗JC (6.112)

holds. To verify it, consider z = λ and w = ω in C. Writing α(λ) = C(Im−λA)−1P−1(Im−

A)−∗ and β = (Iq − A)∗P (Iq − A), observe that

J −Θ(λ)JΘ(ω)∗ = J −
[
Ip − (1− λ)C(Iq − λA)−1P−1(Iq − A)−∗C∗J

]
J×

×
[
Ip − (1− ω)JC(Iq − A)−1P−1 [(Iq − ωA)∗

]−1
C∗
]

= α(λ) [β − λβω + (1− λ)(1− ω)(P − A∗PA− C∗JC)]α(ω)∗,

(6.113)

which proves the result for z = λ. For an arbitrary z ∈ Λ(1), the above calculation follows in

a similar way. Because of this result and for reasons that will become clear later, the Stein

equation is assumed to hold hereby.

The goal of the remaining of this section is the solution to the following interpolation problem:
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Given an observable pair (C,A) ∈ Λ
p×q
(1) × Λ

q×q
(1) such that C∗C = P − A∗PA, find every f

that satisfies

(C∗ ? F )(A∗) = X. (6.114)

First, it can be checked by direct computation that the function

Fmin = C ? (Iq − zA)−?P−1X =
∞∑
n=0

znCAnP−1X (6.115)

is a particular solution to Eq. (6.114). As a result, if F is another solution, thenG = F−Fmin

satisfies the homogeneous problem, i.e.,

(C∗ ? G)(A∗) = 0. (6.116)

Now, writing G =
∑∞
n=0 z

ngn, Eq. (6.116) is equivalent to

∞∑
n=0

(A∗)nC∗gn = 0, (6.117)

which, in turn, is equivalent to

[
G,C ? (I − zA)−?ξ

]
= 0, (6.118)

for every ξ in WG
p
+. In other words, G is orthogonal to C ? (I − zA)−?ξ.

Continuing, let H(Θ) be the set of functions F of the type

F = C ? (I − zA)−?ξ. (6.119)
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Such a space is associated with the reproducing kernel

KH(Θ)(z, w) = C ? (Iq − zA)−?P−1 [(Iq − wA)∗
]−?r ?r C∗, (6.120)

with P − A∗PA = C∗C. Then, using Eq. (6.111),

KH(Θ)(z, w) =
∞∑
n=0

zn [I −Θ(z)Θ(w)∗] (w†)nξ. (6.121)

Finally, observe that Wp
G+

can be decomposed as the direct sum

Wp
G+

= ΘWp
G+
⊕H(Θ). (6.122)

In fact, using Eq. (6.121), the kernel K defined in Eq. (6.104) satisfies

K(z, w)ξ =
∞∑
n=0

znI(w†)nξ =
∞∑
n=0

zn [Θ(z)Θ(w)∗] (w†)nξ +KH(Θ)(z, w)ξ (6.123)

for every ξ ∈ Λ
p×1
(1) . The two terms on the right-hand side are orthogonal to each other. The

term
∑∞
n=0 z

n [Θ(z)Θ(w)∗] (w†)nξ belongs to ΘWp
G+

and the term KH(Θ)(z, w)ξ belongs

to H(Θ). By Eq. (6.118), the two sets are orthogonal to each other. Therefore, Eq. (6.122)

holds.

As a result, all solutions to Eq. (6.114) can be written as

F = Fmin + Θ ? H, (6.124)

where H is an arbitrary element of WG+.
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6.8 Nevanlinna-Pick Interpolation

In Section 6.5, the original version of the Nevanlinna-Pick (NP) interpolation was briefly

introduced in the complex setting. Now, a version of it in Λ(1) is studied. Given N points zk

in the open unit superdisk and N values sk in Λ(1), the NP problem consists of characterizing

all SG functions S satisfying

S(zk) = sk (6.125)

and such that the Pick matrix P is superpositive, i.e.,

P =
(
pjk
)
≡
(
pk(zj ; sj)

)
� 0, (6.126)

where pk(z; s) is defined as

pk(z; s) ≡ (1− ss†k) ? (1− zz†k)−? (6.127)

for every k ∈ {1, . . . , N}.

Following the solution to the complex case [187, 230], consider the function Θ defined in Eq.

(6.109) with

A ≡


z
†
1

. . .

z
†
N

 , C ≡

 1 · · · 1

s
†
1 · · · s

†
N

 , and J ≡

 1 0

0 −1

 . (6.128)

Note that P − A∗PA = C∗JC.
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As a result,

(
1 −sk

)
?Θ(z)

∣∣∣∣
z=zk

equals

(
1 −sk

)
− (1− z)

(
1 −sk

)
C ? (IN − zA)−?P−1(IN − A)−∗C∗J

∣∣∣∣
z=zk

. (6.129)

Moreover, because

(
1 −sk

)
C =

(
1− sks

†
1 · · · 1− sks

†
N

)
, (6.130)

it holds that (
1 −sk

)
C ? (IN − zA)−?

∣∣∣∣
z=zk

= P [k], (6.131)

where P [k] denotes the k-th row of P . Hence, if I
[k]
N denotes the k-th row of IN ,

(
1 −sk

)
?Θ(z)

∣∣∣∣
z=zk

=

(
1 −sk

)
− (1− zk)I

[k]
N (IN − A)−∗C∗J

=

(
1 −sk

)
− (1− zk)(1− zk)−1I

[k]
N C∗J

= 0

(6.132)

since I
[k]
N C∗J =

(
1 −sk

)
. Therefore,

(
1 −sk

)
?Θ(z)

∣∣∣∣
z=zk

= 0 (6.133)

for every k ∈ {1, . . . , N}.

Now, let σ be any SG function and consider the term

(
1 −S(z)

)
?Θ(z) ?

 σ(z)

1

 . (6.134)
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Note that such a product is null at z = zk. Also, writing

Θ(z) =

 a(z) b(z)

c(z) d(z)

 , (6.135)

it holds that

sk = (a ? σ(z) + b(z)) ? (c ? σ(z) + d(z))−?
∣∣∣∣
z=zk

, (6.136)

provided that the factor c ?σ(zk) +d(zk) is CK invertible. In fact, that is the case since only

the body of the factor needs to be invertible, and a theorem from complex analysis assures

that it is. Observe that Eq. (6.136) allows to write the function S as

S ≡ TΘ(σ). (6.137)

Then, for S to be a solution to the NP problem, it just needs to be shown that, if σ in Eq.

(6.137) is a SG function, S is also a SG function. But this is, in fact, the case because, since

Θ∗JΘ � J ⇒
(
σ† 1

)
?Θ∗JΘ ?

 σ

1

 � σ†σ − 1, (6.138)

it holds that

(
(a ? σ + b)† −(c ? σ + d)†

) a ? σ + b

c ? σ + d

 � 0

(a ? σ + b)†(a ? σ + b) � (c ? σ + d)†(c ? σ + d)[
(a ? σ + b) ? (c ? σ + d)−?

]† [
(a ? σ + b) ? (c ? σ + d)−?

]
� 1

S†S � 1,

(6.139)

which characterizes a SG function.
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Finally, to conclude the solution, it just needs to be shown that all solutions are of the type

given by Eq. (6.137), i.e., if a SG function S is a solution to the NP problem, then there

exists a SG function σ such that S is given by Eq. (6.137). To see that this is the case,

observe that there always exists a function σ given by

σ = T−1
Θ (S), (6.140)

even if it, in principle, does not belong to the set of SG functions. However, because the

restriction to the body corresponds to the NP interpolation problem in the complex setting

(with Pick matrix PB > 0), it can be stated that σB is a Schur function. Therefore, σ is a

SG function, and all solutions to the NP problem in Λ(1) are given by Eq. (6.137).

6.9 Schur Algorithm

In Ref. [214], using Schwarz’ lemma, Schur associated to a Schur function s(λ) a sequence,

finite or infinite, of Schur functions s0, s1 . . . with the recursion

s0(λ) = s(λ)

sn+1(λ) =
sn(λ)− sn(0)

λ(1− sn(λ)sn(0))
,

(6.141)

for n = 0, 1, . . .. Such a recursion ends at a rank N if |sN (0)| = 1, and this happens if and

only if s is a finite Blaschke product. The numbers ρn = sn(0), n = 0, 1, . . . are called the

Schur coefficients of s. They lead to a continued fraction expansion of s, and prove more

appropriate than the Taylor series of s to solve various approximation problems [187, 212].

Now, for ρ ∈ D, let

Θρ(λ) ≡ 1√
1− |ρ|2

1 ρ

ρ 1


λ 0

0 1

 . (6.142)
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Then, expressing sn in terms of sn+1, Eq. (6.141) can be rewritten as

sn(λ) = TΘρn(λ)(sn+1(λ)), (6.143)

with ρn = sn(0). The matrix-function Θρn(λ) is, then, J-inner in the open unit disk. By

the latter, it is meant that Θρn(λ) is J-contractive in the open unit disk, i.e.,

Θρn(λ)JΘρn(1/λ)∗ ≤ J (6.144)

for λ ∈ D, and Θρn(λ) is J-unitary (or symplectic) at the boundary of the unit disk, i.e.,

Θρn(λ)JΘρn(1/λ)∗ = J (6.145)

for λ ∈ ∂D.

Observe that Θρn(λ) remains J-inner if it is multiplied by a J-unitary constant, say Xn, on

the right. Thus, Eq. (6.143) can be rewritten as

sn(λ) = TΘρn(λ)Xn(T
X−1n

(sn+1(λ))). (6.146)

Since Xn is J-unitary, the function T
X−1n

(sn+1(λ)) is still a Schur function. This fact was

used in Ref. [231, §3] to develop the Schur algorithm in the matrix-valued case — see, in

particular, Eq. (4.13) in that paper.

A particular choice of Xn leads to

Mn ≡ Θρn(λ)Xn = I2 − (1− λ)

 1

ρn

(1 −ρn

)
1− |ρn|2

, (6.147)
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which allows the Schur algorithm to be rewritten as

σ0(λ) = s(λ)

σn+1(λ) = TMn(λ)−1(σn(λ))

(6.148)

for n = 0, 1, . . . This recursion with the counterpart of Eq. (6.147) is how the Schur algorithm

is defined in Λ(1). More precisely, using Eq. (6.109) with

A = 0, C =

 1

ρ
†
n

 and J =

 1 0

0 −1

 , (6.149)

the Stein equation becomes

P = 1− ρnρ†n. (6.150)

Moreover, if 

a(z) ≡ 1− (1− z)(1− ρnρ†n)−1,

b(z) ≡ (1− z)(1− ρnρ†n)−1ρn,

c(z) ≡ −(1− z)ρ
†
n(1− ρnρ†n)−1,

d(z) ≡ 1 + (1− z)ρ
†
n(1− ρnρ†n)−1ρn,

(6.151)

a version of Mn in Λ(1) can be written as

Mn(z) = I − (1− z)

 1

ρ
†
n

 (1− ρnρ†n)−1
(

1 −ρn

)
=

a(z) b(z)

c(z) d(z)

 . (6.152)

Finally, the Schur algorithm for SG functions can be stated: If S is a SG function. Then,

the recursion

σ0(z) = S(z)

σn+1(z) = TMn(z)−1(σn(z)), with ρn = σn(0)

(6.153)
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defines a family of SG functions, provided that P = 1− ρnρ†n � 0.

6.10 Fock-Bargmann-Segal Space

The complex Fock-Bargmann-Segal (FBS) space associated with `2, i.e., the HS with repro-

ducing kernel [232]

e〈z,w〉`2 =
∑
α∈`

zαwα

α!
(6.154)

corresponds to function theory in a (countably) infinite number of commuting complex

variables. In Eq. (6.154), the several complex variables notation was used and, then,

z = (z1, z2, . . .) ∈ `2(N), where ` is the family of sequences

α = (α1, α2, . . .), αj ∈ N0 (6.155)

for which at most a finite number of αj ’s are different from 0. Also, zα = zα11 zα22 . . . and

α! = α1!α2! . . ..

In the noncommutative setting, the commuting variables are replace by noncommuting ones

and, then, a different set of indexes ˜̀ is needed. An element α ∈ ˜̀ is given by

α = ((α1, n1), (α2, n2), . . . , (αm, nm)), (6.156)

where αu ∈ N for every u ∈ {1, . . . ,m} and nv 6= nv+1 for every v ∈ {1, . . . ,m − 1}.

Moreover, the new kernel is written as

∑
α∈˜̀z

αwα, (6.157)

where zα = zα1n1 z
α2
n2 . . . and wα = . . . wn2

α2wn1
α1 .
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Note that the left concatenation gives ˜̀a monoid structure. Furthermore, it defines a partial

order as follows: for α, β ∈ ˜̀, it is said that β ≤ α if there is γ ∈ ˜̀ such that α = βγ. There

exists, then, a parallel between the indexes in ˜̀ and the ones in I0. Motivated by it and

envisioning the construction of the counterpart of the FBS space in the GA, the inner product

〈z, w〉 =
∑
α∈I0

zαwα (6.158)

is defined for elements of Λ. Observe that

〈w, z〉 = 〈z†, w†〉. (6.159)

Also, the inner product defined in Eq. (6.158) induces the 2-norm. Then, it can be extended

from Λ to Λ(2). Moreover, Λ(2) endowed with the inner product defined in Eq. (6.158)

and the 2-norm is a HS. For simplicity of notation, such a HS is simply denoted by Λ(2).

By analogy with the noncommutative setting, as already discussed, and also noting the

definition in Ref. [233], Λ(2) is called the FBS space.

This section, then, starts a study, which will last until Section 6.12, of Λ(2). This study

considers functions f : I → Λ(2), where I is the domain of f , usually C or R. Whenever it

is written that f ∈ Λ(2), it is meant that f(x) ∈ Λ(2) for every x ∈ I.

As in the examples of FBS spaces in different settings, it is possible to define the left multipli-

cation operation Mf in Λ(2). However, the multiplication might not be a law of composition

in Λ(2). If that is the case, Mf is unbounded for an arbitrary f ∈ Λ(2). One can, then, use

two different approaches. In one of them, which will be considered in the next section, such

operators can be studied in the space of stochastic distributions S−1, where the product

between two functions defines a new element of the space. In the other approach, Mf is

restricted to functions f ∈ Λ(1) ⊂ Λ(2) Eq. (6.191) assures that Mf is bounded in this case,
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i.e., if f ∈ Λ(1) ⊂ Λ(2) and g ∈ Λ(2),

Mfg = fg ∈ Λ(2). (6.160)

For now, to avoid convergence problems, restrict Mf to f ∈ Λ(1). Thus, if f =
∑
α∈I0 fαiα,

Mf =
∑
α∈I0

fαMiα . (6.161)

Therefore, the analysis can be focused on multiplication by elements of I0.

First, observe that M1 is just the identity operator. Then, to get an expression for a general

Miα for α ∈ I, observe that Eq. (6.8) and

〈iα, iβ〉 = δα,β (6.162)

lead to

〈Miαiβ , iγ〉 = (−1)σ(α,β)
∑
η∈I

δα∨β,η〈iη, iγ〉 = (−1)σ(α,β)δα∨β,γ . (6.163)

It can be also noted that the adjoint M∗iα of Miα , which, by analogy with the complex case,

can be taken to be the left derivative with respect to iα, is given by

〈M∗iαiβ , iγ〉 = 〈iβ ,Miαiγ〉 = (−1)σ(α,γ)δβ,α∨γ . (6.164)

Also, because

Miα = Mia1
Mia2

. . .Miaτα (6.165)

and, as a consequence,

M∗iα = M∗iaταM
∗
iat−1

. . .M∗ia1
, (6.166)
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close attention can be paid to left derivatives with respect to single generators. Thus,

M∗iniα =

 0, if ak 6= n,∀ak ∈ {1, · · · , |α|}

(−1)k−1ia1ia2 · · · iak−1iak+1 · · · ia|α| , if ∃k; ak = n
(6.167)

Hence, the left derivative constructed here corresponds to the one that is defined in super-

analysis [194, 195, 198, 200].

Also, the Berezin integral is a concept widely used in superanalysis and supersymmetry

[194, 195, 198, 200]. It coincides with the left derivative and, then, can be defined in terms

of M∗in : ∫
dinf ≡M∗inf. (6.168)

More generally, if |α| <∞,

∫
diαf ≡

∫
dia|α| · · ·

∫
ia1f = M∗ia|α|

· · ·M∗ia1f. (6.169)

Furthermore, if f is generated by ia1 , . . . , iaN and iα = ia1 . . . iaN , the Berezin integral

∫
diαf = f1,2,...,N (6.170)

reduces to ∫
diαf = 〈Mf1, iα〉, (6.171)

which has some resemblance to a residue.

Finally, it is also worth considering the self-adjoint operator

Tf = Mf +M∗f . (6.172)
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Then, if f, g ∈ Λ(2) with fB = gB = 0, M∗f 1 = fB and M∗g 1 = gB . As a result, it holds that

〈Tf1, Tg1〉 = 〈f + fB , g + gB〉 = 〈f, g〉. (6.173)

The operator Tf is used later when stochastic processes associated with the FBS space are

defined.

6.11 Topological Algebra Associated with Λ(2)

Let S denote the space of Schwartz functions, also known as the space of test functions.

Also, let S ′ be its dual, known as the space of tempered distributions. The Gel′fand triple

(S ,L2(R, dx),S ′) plays an important role in analysis [234].

Moreover, Gel′fand triples are also defined in Hida’s white noise space theory [235, 236] and

in its noncommutative counterpart [237, 238]. They are used in the solutions of stochastic

differential equations and the study of stochastic processes and their derivatives. In this

section, Gel′fand triples are defined in Λ(2) to solve similar problems. Most of the results

presented here find a parallel to the ones presented in Refs. [239, 240].

One of the common reasons for the introduction of Gel′fand triples in the first place is the

fact that, in a HS, products that are not a law of composition are often considered. As an

example, in the white noise space, the Wick product is not a law of composition. Because

of that, one embeds the white noise space into a space of stochastic distributions, where the

product is a law of composition. This embedding can be made in different ways.

Furthermore, even if the convergence of the product is not a problem, the introduction of the

space of stochastic distributions might still be necessary. In fact, in the study of stochastic

processes, such spaces are necessary for the analysis of their derivatives.
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Figure 6.2: Schematic representation of a decreasing family of Hilbert spaces with increasing
norm, where n is a positive integer.

In this section, the analogous of the space of stochastic distributions is introduced. Before

that, a few facts from the complex case as well as from the theory of perfect spaces and

strong algebras are briefly reviewed. More information on those spaces can be found in Ref.

[241, 242].

Consider a decreasing family of HSs (Hp, ‖ · ‖Hp)p∈Z with increasing norms, as represented

in Fig. 6.2. The intersection F = ∩∞p=0Hp is a Fréchet space, which is a perfect space,

meaning that compactness is equivalent to being bounded and compact. This is the fact, in

particular, when, for every p, there exists q > p such that the injection map from Hq into

Hp is compact. An important instance is when this injection is nuclear and, then, H′p is

identified with H−p. The dual F ′ = ∪∞p=0H−p, the space F and H0 form a Gel′fand triple.

The space F ′ is endowed with the strong topology, which is defined in terms of the bounded

sets of F . Then, F ′ is locally convex, and the strong topology coincides with the inductive

limit topology — see Ref. [239, Section 3] for a discussion on the subject.

As a consequence, the analysis is, a priori, done in a larger space of distributions, i.e.,

continuous functionals on the space F ′, which is a (non-metrizable) inductive limit of HSs.

However, it is in fact done locally in a HS. There are two reasons why this is the case. The
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first one is the fact that the space of distributions, as already mentioned, is the dual of a

perfect space. The second reason is the algebraic structure of S−1 and, in particular, the

V̊age inequality, which is presented in Eq. (6.191).

Two of the main results related to such spaces that are relevant here and that illustrate why

the analysis is locally done in a HS are:

� A set is (weakly or strongly) compact in F ′ if and only if it is compact in one of the

spaces H−p in the corresponding norm.

� Weak and strong convergence of sequences in a perfect space F ′ are equivalent. More-

over, a sequence converges (weakly or strongly) if and only if it converges in one of the

spaces H−p in the corresponding norm.

Before introducing definitions and results in the GA, it should be mentioned that a topolog-

ical algebra is defined to be an algebra where the product is separately continuous in each

variable. It is not a trivial fact, but it can be shown that a strong algebra is a topological

algebra — see Ref. [243, IV.26, Theorem 2] and the discussion in Ref. [240, pp. 215-216].

Now, let {cα} be a sequence of positive real numbers such that

∑
α∈I0

c−2d
α <∞, (6.174)

where d ∈ N, and

cαcβ ≤ cγ (6.175)

if α∨β = γ. Then, for every p ∈ Z, a HS H−p(cα), often simply denoted by H−p, is defined

as

H−p(cα) =

f =
∑
α∈I0

fαiα ∈ Λ(2)

∣∣∣∣∣∣
∑
α∈I0

|fα|2c−2p
α <∞

 . (6.176)
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It should be noticed that H−q(cα) ⊆ H−p(cα) if p ≥ q, as illustrated in Fig. 6.2.

The norm ‖f‖H−p of f ∈ H−p is defined as

‖f‖H−p ≡
∑
α∈I0

|fα|2c−2p
α . (6.177)

For simplicity, hereby, it will be assumed that

cα∨β ≡ cαcβ . (6.178)

In this case, c0 = 1. In fact, if c0 > 1, the inequality in Eq. (6.175) does not hold in general

since c0cα > cα = c0∨α. Moreover, if c0 < 1, the condition in Eq. (6.174) is not satisfied, as

can be observed from the fact that c−2d
0 < c−2d

α for every α ∈ I, which implies that the sum

in Eq. (6.174) diverges.

Now, let f ∈ H−p with cα > 1 if α 6= 0 and c0 = 1. Then, because limp→∞ c
−2p
α = 0 for

every α 6= 0,

lim
p→∞

‖f‖H−p = lim
p→∞

∑
α∈I0

|fα|2c−2p
α

=
∑
α∈I0

|fα|2 lim
p→∞

c
−2p
α

= |f0|2.

(6.179)

The next result introduces a V̊age-like inequality, which is the analogous of a result due to

V̊age [244] and allows the analysis of stochastic processes to be done locally in a HS. For
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that, let f ∈ H−q and g ∈ H−p. Hence, using the Cauchy-Schwarz inequality,

‖fg‖2H−p=
∑
γ∈I0

|(fg)γ |2c−2p
γ

=
∑
γ∈I0

∣∣∣∣∣∣
∑

α∨β=γ

(−1)σ(α,β)fαgβ

∣∣∣∣∣∣
2

c
−2p
γ

≤
∑
γ∈I0

 ∑
α∨β=γ
α′∨β′=γ

|fα||gβ ||fα′||gβ′|

 c
−2p
γ

≤
∑
γ∈I0

 ∑
α∨β=γ
α′∨β′=γ

|fα|c−pα |gβ |c
−p
β |fα′ |c

−p
α′ |gβ′|c

−p
β′



≤
∑

α,α′∈I0

|fα|c−pα |fα′|c
−p
α′


∑

γ∈I0;∃β,β′
α∨β=γ
α′∨β′=γ

|gβ |c
−p
β |gβ′ |c

−p
β′



≤
∑

α,α′∈I0

|fα|c−pα |fα′|c
−p
α′

 ∑
γ∈I0;∃β
α∨β=γ

|gβ |2c
−2p
β


1/2 ∑

γ∈I0;∃β′
α′∨β′=γ

|gβ′|2c
−2p
β′


1/2

≤
∑

α,α′∈I0

|fα|c−pα |fα′|c
−p
α′

∑
β∈I0

|gβ |2c
−2p
β

1/2 ∑
β′∈I0

|gβ′|2c
−2p
β′

1/2

≤

∑
α∈I0

|fα|c−pα

2

‖g‖2H−p

≤

∑
α∈I0

|fα|c−qα c
q−p
α

2

‖g‖2H−p

≤

∑
α∈I0

c
−2(p−q)
α

 ‖f‖2H−q ‖g‖2H−p .

(6.180)
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Now, it only remains to be shown that there exist coefficients cα such that

∑
α∈I0

c
−2(p−q)
α <∞. (6.181)

For that, let

cα = e
∑n
k=1 ϕ(ak) (6.182)

for every α ∈ I0, where ϕ is such that ϕ(n) form a monotonically increasing sequence for

n ∈ N and ϕ(0) = 0. Then, Eqs. (6.174), (6.175) and (6.178) hold. Moreover, if d = p−q > 0,

∑
α∈I0

c
2(q−p)
α = 1 +

∞∑
n=1

∑
α∈I;
|α|=n

e−2d
∑n
k=1 ϕ(ak). (6.183)

Finally, for Eq. (6.181) to hold, choose ϕ such that, for every k ∈ N,

ϕ(ak) ≤ ξak, (6.184)

where ξ is a positive real number that will be appropriately chosen. Then,

∑
α∈I;
τ(α)=1

e−2dϕ(a1) =
∞∑
a1=1

e−2dϕ(a1) ≤
∞∑
a1=1

e−2dξa1 =
1

e2dξ − 1
. (6.185)

if it converges. Then, choosing

ξ > ln 21/2d, (6.186)

it holds that ∑
α∈I;
τ(α)=1

e−2dϕ(a1) < 1. (6.187)
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Also,

∑
α∈I;
τ(α)=2

e−2d(ϕ(a1)+ϕ(a2)) ≤

 ∞∑
a1=1

e−2dϕ(a1)

 ∞∑
a2=1

e−2dϕ(a2)

 ≤ ( 1

e2dξ − 1

)2

(6.188)

and, in general,

∑
α∈I;
τ(α)=n

e−2d(ϕ(a1)+···+ϕ(an)) ≤

 ∞∑
a1=1

e−2dϕ(a1)

 · · ·
 ∞∑
an=1

e−2dϕ(an)


≤
(

1

e2dξ − 1

)n
.

(6.189)

Therefore, ∑
α∈I0

c−2d
α ≤ 1 +

∞∑
n=1

(
1

e2dξ − 1

)n
= 1 +

1

e2dξ − 2
. (6.190)

The V̊age-like inequality can, then, be written as

‖fg‖H−p ≤ Cp−q ‖f‖H−q ‖g‖H−p , (6.191)

where Cp−q is a positive constant.

With that, it can be also shown that, if f ∈ H−p and g ∈ H−q, with p > q, then

‖fg‖H−p ≤ Cp−q ‖f‖H−p ‖g‖H−q . (6.192)

Now, it is introduced the space

S1 = ∩p∈ZHp (6.193)

and its topological dual

S−1 = ∪p∈Z,H−p, (6.194)
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which are respectively the analogous of the space of test functions and the space of tempered

distributions in the complex case.

It is possible to show that the space S−1 endowed with the pointwise product is a strong

algebra. To see that, start by endowing S−1 with the inductive topology. Eq. (6.191) implies

that the product is separately continuous in each H−p, which is equivalent to continuity in

the inductive topology. Furthermore, S−1 inherits the associativity of the pointwise product

from Λ. This space has, then, a BA structure. Therefore, S−1 can be seen as the inductive

limit of Banach spaces, which makes it a strong algebra [240]. Observe that the inductive

topology is equivalent to the strong topology.

It should be noticed that, if the strong convolution algebra associated to I0 endowed with

the convolution ∨ si considered, a strong algebra that is closely related to S−1 is obtained.

Although those two algebras are not isomorphic as a ring, they are isomorphic as locally

convex topological vector spaces. As a consequence, it follows from Theorem 3.7 of Ref.

[239] that S−1 is nuclear and, hence, perfect.

Now, let n ∈ N and f ∈ H−p ⊆ H−p−2. Then, it follows that

‖f‖H−p−2 ≤ ‖f‖H−p . (6.195)

Then, using Eq. (6.191),

‖fn‖H−p−2 ≤ C2 ‖f‖H−p
∥∥∥fn−1

∥∥∥
H−p−2

≤ C2
2 ‖f‖

2
H−p

∥∥∥fn−2
∥∥∥
H−p−2

≤ Cn−1
2 ‖f‖nH−p .

(6.196)
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With that, consider the power series

F (λ) =
∑
n∈N0

αnλ
n, (6.197)

where αn, λ ∈ C, and assume it is convergent absolutely in an open disk with radius R, i.e.,

∑
n∈N0

|αnλn| =
∑
n∈N0

|αn| |λn| <∞. (6.198)

Now, observe that Eq. (6.196) allows the study of the convergence of F (f) in H−p. Specifi-

cally, ∑
n∈N0

‖αnfn‖H−p−2 =
∑
n∈N0

|αn|2 ‖fn‖H−p−2

≤ α0 + C−1
2

∑
n∈N
|αn|2

(
C2 ‖f‖H−p

)n
.

(6.199)

Thus, F (f) converges absolutely in H−p−2 if

C2 ‖f‖H−p < R⇒ ‖f‖H−p <
R

C2
. (6.200)

In conclusion F (f) converges in H−p−2 if

A corollary of this result is that, F (λ) given by Eq. (6.197) converges in S−1 for f ∈ S−1

if the body of f satisfies Eq. (6.200). In fact, if f ∈ S−1, there exists an integer q0 such

that f ∈ H−q for every q ≥ q0. By the result just presented, the converge of F (f) requires

that ‖f‖H−q < R/C2, what does not hold in general. However, because of Eq. (6.179), this

condition can be rewritten as

|f0|2 <
R

C2
. (6.201)

Finally, it can be shown that f ∈ S−1 is invertible if and only if its body f0 is invertible.
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To prove it, observe that, if g is the inverse of f and its body is given by g0, then

fg = 1⇒ f0g0 = 1⇒ f0 6= 0. (6.202)

Conversely, if f0 6= 0, it can be assumed, without loss of generality, that f0 = 1. Then, as

just studied,

F (f) =
∑
n∈N0

(1− f)n (6.203)

converges if the body of 1 − f is smaller than C−1
2 . However, (1 − f)B = 0. Therefore,

g = F (f) ∈ S−1. Furthermore, remembering that F (x) = x−1 in the complex case, g is the

inverse of f .

6.12 Stochastic Processes and Their Derivatives

In this section, a close counterpart of the noncommutative white noise space theory [237, 238]

is presented for the study of stochastic processes in Λ(2) as well as their derivatives.

First, a brief review of some aspects of stochastic processes is presented. More details can

be found in Refs. [233, 237, 245]. The study of Gaussian stochastic processes can be made

through the analysis of positive-definite kernels since there is a one-to-one correspondence

between the two notions [246, 247]. In fact, the kernel coincides with the covariance of the

stochastic process.

In the framework that is the basis for the model presented here, the processes are associated

with positive-definite kernels of the form

Kσ(t, s) =

∫
R

(eiut − 1)(e−ius − 1)

u2
dσ(u), (6.204)

where σ is absolutely increasing continuous with respect to the Lebesgue measure, dσ(u) =
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m(u)du, such that the Stieltjes integral converges, i.e.,

∫
R

m(u)du

u2 + 1
<∞. (6.205)

The reason for such choice is the fact that integrals of the type given by Eq. (6.204) corre-

spond to correlation functions of zero-mean Gaussian processes with stationary increments

[248, 249]. An important example of such processes is the fractional Brownian motion, for

which dσ(u) = |u|1−2Hdu, where 1 < H < 2. In this case, the correlation function Kσ(t, s)

becomes

K(t, s) = γH

(
|t|2H + |s|2H − |t− s|2H

)
, (6.206)

where γH depends only on H. If H 6= 1/2,

γH =
cos(πH)Γ(2− 2H)

(1− 2H)H
, (6.207)

where Γ is the Euler’s Gamma function. Moreover, by continuity, γ1/2 = π.

Also, it is introduced the following operator Sm in L2(R):

Ŝmf(u) =
√
m(u)f̂(u), (6.208)

where f̂ is the Fourier transform of f . Note that Sm is, in general, unbounded. Its domain

is

domSm =

{
f ∈ L2(R)

∣∣∣∣ ∫Rm(u)|f̂(u)|2du <∞
}
, (6.209)

which contains 1[0,t]. Defining

fm(t) = Sm1[0,t] (6.210)
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and using Plancherel’s equality, which assures that

〈fm(t), fm(s)〉L2(R) =
1

2π

〈
f̂m(t), f̂m(s)

〉
L2(R)

, (6.211)

it holds that

〈fm(t), fm(s)〉L2(R) =
1

2π

〈√
m(u)1̂[0,t],

√
m(u)1̂[0,s]

〉
L2(R)

=
1

2π

〈
m(u)

e−iut − 1

u
,
e−ius − 1

u

〉
L2(R)

=
1

2π

∫
R

(eiut − 1)(e−ius − 1)

u2
m(u)du.

(6.212)

For the stochastic processes of interest here, a random variable is associated with the func-

tions fm(t). This is done with the introduction of the creation operator `h, with h ∈ L2(R),

defined by

`h(f) ≡ h⊗ f, f ∈ Γ(L2(R)), (6.213)

where Γ(L2(R)) denotes the FBS space associated with L2(R). Finally, letting Th = `h+ `∗h,

a random variable Xm(t) is defined as

Xm(t) ≡ Tfm(t). (6.214)

Observe that the expected value of a random variable Xm(t) can be defined by

E(Xm(t)) =
〈

Ω, Tfm(t)(Ω)
〉

Γ
, (6.215)

where Ω is the vacuum state of Γ. Moreover, as expected,

E(Xm(t)Xm(s)) =
〈
Tfm(t)(Ω), Tfm(s)(Ω)

〉
Γ

= 〈fm(t), fm(s)〉L2(R) = Kσ(t, s), (6.216)
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where Kσ(t, s) is given by Eq. (6.204) with dσ(u) = m(u)du, as already discussed.

Finally, for the processes of interest here, it is assumed that m satisfies

m(u) ≤

 K|u|−b |u| ≤ 1,

K|u|2N |u| > 1,
(6.217)

where b < 2, N ∈ N0, and K is a positive real constant. Then, letting ξn denote the Hermite

functions,

|Smξn(t)| ≤ D1n
N+1
2 +D2, (6.218)

and

|Smξn(t)− Smξn(s)| ≤ |t− s|
(
D3n

N+2
2 +D4

)
, (6.219)

where D1, D2, D3, and D4 are non-negative functions independent of n. The proof for this

result are the Proposition 3.7 and the Lemma 3.8 of Ref. [250].

Now, in the GA, the operator Tf in Eq. (6.214) is replaced by the operator defined in Eq.

(6.172) with

fm(t) =
∑
n∈N

〈
Sm1[0,t], ξn

〉
L2(R)

in

=
∑
n∈N

〈
1[0,t], Smξn

〉
L2(R)

in

=
∑
n∈N

(∫ t

0
(Smξn)(u)du

)
in.

(6.220)

where ξn denotes the Hermite functions. Hence,

Xm(t) =
∑
n∈N

(∫ t

0
(Smξn)(u)du

)
Tin . (6.221)

Moreover, the expected value function E can be defined in a similar manner as defined in

167



the well-known cases, i.e.,

E(Xm(t)) = 〈1, Xm(t)1〉Λ(2)
, (6.222)

where 1 is the vacuum state in the FBS space introduced in Section 6.10. Note that

E(Xm(t)) = 0.

Furthermore, using Eq. (6.173), it can be observed that the covariance, which gives the

kernel K(t, s), satisfies

E(Xm(t)Xm(s)) = K(t, s) = 〈Xm(t)1, Xm(s)1〉Λ(2)
= 〈fm(t), fm(s)〉Λ(2)

. (6.223)

Hence,

K(t, s) =
∑
n∈N

(∫ t

0
(Smξn)(u)du

)(∫ s

0
(Smξn)(u′)du′

)
, (6.224)

which is equivalent to the kernel defined in Eq. (6.204).

The goal here is to show that the framework just introduced allows the study of the deriva-

tives of stochastic variables as continuous functions. However, a series a results has to be

presented before that. To start, observe that the operator Mf is bounded from Hp into H−p

for every f ∈ S−1 with ‖f‖H−p < ∞. In fact, if g ∈ Hp, then, using Eq. (6.192), it holds

that ∥∥Mfg
∥∥
H−p = ‖fg‖H−p ≤ C2p ‖f‖H−p ‖g‖Hp . (6.225)

Also, for every f ∈ H−q, the operator M∗f is bounded from Hp into H−p, where q < p.
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Again, letting g ∈ Hp, this result can be seen from

∥∥∥M∗f g∥∥∥2

H−p
≤
∥∥∥M∗f g∥∥∥2

Hp
=
∑
γ∈I0

∣∣∣∣∣∣
∑

α∨γ=β

(−1)σ(α,γ)fαgβ

∣∣∣∣∣∣
2

c
2p
γ

≤
∑
γ∈I0

 ∑
α∨γ=β

|fα||gβ |

2

c
2p
γ

≤
∑

α,α′∈I0

|fα|c−pα |f ′α|c
−p
α′

∑
γ∈I0;∃β,β′
α∨γ=β
α′∨γ=β′

|gβ |c
p
β |g
′
β |c

p
β′

≤
∑

α,α′∈I0

|fα|c−pα |f ′α|c
−p
α′ ‖g‖

2
Hp

≤

∑
α∈I0

|fα|c−qα c
−(p−q)
α

2

‖g‖2Hp

≤ C2
p−q ‖f‖2H−q ‖g‖

2
Hp .

(6.226)

It should be also noted that, for every f ∈ S−1, it is a consequence of the last two results

presented that the operator Tf = Mf +M∗f is bounded from S1 into S−1. Moreover, there

exist p > q such that

‖Tfg‖−p ≤ 2C1‖f‖−q‖g‖p. (6.227)

In fact, observe that, if f ∈ H−q and g∈Hp, it holds that

‖Tfg‖−p ≤ ‖Mfg‖−p + ‖M∗f g‖−p

≤ Cp−q‖f‖−q‖g‖−p + Cp−q‖f‖−q‖g‖p

≤ 2Cp−q‖f‖−q‖g‖p

≤ 2C1‖f‖−q‖g‖p,

(6.228)

where Eq. (6.191) was used.
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Now, it can be finally shown that the derivatives of the stochastic variables considered here

are constant in S−1. This fact is stated as follows: Let m be a positive measurable function

that satisfies Eqs. (6.217) and (6.205) with dσ(t) = m(t)dt. Then, for every g ∈ S1, the

function t 7→ Xm(t)f is strongly continuous in S−1 and there exists a continuous operator

Wm(t) from S1 into S−1 such that

d

dt
Xm(t)g = Wm(t)g. (6.229)

Finally, the function t 7→ Wm(t)g is continuous from [a, b] into S−1.

To prove this result, observe that, since

fm(t) =
∑
n∈N

fmn (t)in, (6.230)

with

fmn =

∫ t

0
Smξn(u)du, (6.231)

Eq. (6.218) leads to

∥∥∥∥ ddtfm(t)

∥∥∥∥2

H−p
=
∑
n∈N
|Smξn(t)|2 c−2p

n ≤
∑
n∈N

(D1n
N+1
2 +D2)2c

−2p
n . (6.232)

Then, for every suitable choice of coefficients cn, there exists a positive integer p0 such that,

for every p ≥ p0, dfm(t)/dt ∈ H−p. Moreover, for s = t + h, where h 6= 0 is a real number,

there exists p1 such that,

Kp =
∑
n∈N

(D3n
N+2
2 +D4)2c

−2p
n <∞, ∀p ≥ p1 (6.233)
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and, using Eq. (6.219), the H−p norm of the difference of derivatives satisfies

∑
n∈N
|Smξn(s)− Smξn(t)|2 c−2p

n ≤ Kp1|h|
2. (6.234)

Therefore, Wm = Tdfm/dt is a continuous operator from S1 into S−1. To see that Eq.

(6.229) holds, observe that, for a real number h 6= 0 and g ∈ Hp,

(
Xm(t+ h)−Xm(t)

h
−Wm(t)

)
g =

∑
n∈N

∫ t+h
t (Smξ(u)− Smξ(t))du

h
Ming = X∆(t,h)g,

(6.235)

with

∆(t, h) =
∑
n∈N

∫ t+h
t (Smξ(u)− Smξ(t))du

h
in. (6.236)

Thus, there exists p > q ≥ p1 such that, using Eq. (6.227),

∥∥∥X∆(t,h)g
∥∥∥
H−p
≤ 2C1 ‖∆(t, h)‖H−q ‖g‖Hp ≤

(
2C1Kp1 ‖g‖Hp

)
|h|2. (6.237)

This shows that Wm(t) = Tdfm/dt(t) ≡ dXm(t)/dt is a continuous operator from S1 into

S−1. Finally, since a sequence converges in S−1, i.e., a perfect space, if and only if it

converges in one of the spaces H−p (as stated earlier in the section), it can be said that the

function t 7→ Wm(t)g is continuous.

Now that the treatment of derivatives is formalized, the next step concerns, for instance, the

development of the counterpart of Ito or Malliavin stochastic calculus. The first step in this

direction is the introduction of stochastic integrals. This is done in the final result of this

dissertation. The stochastic calculus itself will be developed in future works.

Let t 7→ Y (t), with t ∈ [a, b], be a continuous S−1-valued function in the strong topology of

S−1. If g ∈ S1, there exists a positive integer p, which depends on g, such that the Pettis
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integral ∫ b

a
Y (t)Wm(t)g dt (6.238)

can be computed as a limit of Riemann sums and converges in H−p.

The proof is similar to the one presented in Ref. [250]. Since the function t 7→ Wm(t)g

is continuous from [a, b] to S−1 and the product is jointly continuous in S−1, the map

t 7→ Y (t)Wm(t)g is also continuous and its image is, therefore, compact in S−1. Now, recall

that a set is (weakly or strongly) compact in S−1, i.e., a perfect space, if and only if it is

compact in one of the spaces H−p (as stated earlier in the section). Then, there exists p

such that the image of t 7→ Y (t)Wm(t)g is in H−p. This function is also continuous with

respect to the topology of H−p. Then the integral in Eq. (6.238) can be computed in H−p

as a Riemann sum.

To conclude, it should be noticed that, as already discussed, the random variables introduced

here have the same expected value and the same covariance of the variables associated with

free stochastic processes [233]. Despite that, observe that the product in the integral in

Eq. (6.238) is, ultimately, the product of iα’s, which contrasts with the product of Hermite

functions in free stochastic processes. This shows that the processes induced by them are

drastically different and should be further explored.

6.13 Discussion

In this chapter, analysis on two different closures of the GA were studied, namely the closure

with respect to the 1-norm, Λ(1), and the closure with respect to the 2-norm, Λ(2).

In the study of Λ(1), the notion of positivity and the CK product for power series of a variable

in Λ(1) were introduced. Such ideas were used to study the counterpart of classical problems,

such as the one-step extension problem for Toeplitz matrices and the Wiener algebra, and
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to begin the development of Schur analysis in this setting.

The extension of these notions from a single complex variable to more general settings, like

several complex variables, upper-triangular operators, quaternionic analysis, and bi-complex

numbers, has been a source of new problems and methods [86–91]. Each of these settings has

some interpretation in terms of signal processing theory and linear systems. For example,

time-varying systems correspond to upper-triangular operators, and systems indexed by

several indices correspond to function theory in the unit ball of CN , also known as the unit

polydisk. Furthermore, in all those settings, there exists a natural counterpart of the Hardy

space. In the case of the upper-triangular operators, it is the space of Hilbert-Schmidt

upper-triangular operators. As to the case of function theory in the unit ball, it is the

Drury-Arveson space [84], which differs from the classical Hardy space when the dimension

N is greater than 1. In the setting introduced here, the counterpart of the Hardy space is a

Wiener-type algebra.

Multiple research directions emerge from the results that were presented in this chapter. For

instance, the problem of the one-step extension of Toeplitz matrices in complex analysis, as

mentioned in Section 6.3, is associated with stochastic processes and, in particular, with the

Yule-Walker equations. Then, it can be questioned if there is a version of those equations

in Λ(1). If there is, are their solution also connected in the same way to the problem of

extension of Toeplitz matrices? Moreover, what are the stochastic processes that arise from

this problem? Do they have any similarity with the class of processes introduced in Section

6.12?

Furthermore, only a few foundational tools from functional analysis were presented here.

There is still a lot to be uncovered — from results that can be translated from other settings

to results that fail to hold in Λ(1).

In the last sections of the chapter, counterparts of notions from the theory of complex analysis
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and stochastic processes were developed in Λ(2). In particular, given the definitions already

presented, the Gel′fand triple

S1 ⊂ Λ(2) ⊂ S−1 (6.239)

was considered. It should be mentioned that the space S−1 has an algebra structure of the

type that was first introduced by Kondratiev in the setting of Hida’s white noise space theory

[235], and studied in a more generalized framework in Ref. [240]. There are many parallels

(and differences) between the results presented here and other works where the complex

numbers were replaced by the commutative algebra of Kondratiev stochastic distributions

[235, 251–254]. Here, the main objective was the development of a framework that allows

the introduction and analysis of stochastic processes and their derivatives.

The stochastic processes that were used as a basis for the one presented here have the

concept of freeness — in opposition to independence — associated with their random vari-

ables. Also, the distributions associated with them are semi-circles — in opposition to

Gaussians. A possible research direction is, then, the investigation of the questions: What

is the independence-like concept associated with the random variables defined in this chap-

ter? What are the distributions associated with the stochastic processes generated by them?

Moreover, as already mentioned in the previous section, the counterpart of Ito and Malliavin

stochastic calculus in the present setting has still to be developed.

Furthermore, another interesting direction is to look into generalizations of the class of

processes that was considered here. In Section 6.12, the special cases for which dσ(t) =

m(t)dt were considered. For a general σ, the operator Sm defined by Eq. (6.208) cannot be

introduced. However, it is possible to prove that there exists a continuous positive operator

A from the Schwartz space S into its dual S ′ such that

∫
R
|f̂(u)|2dσ(u) = 〈Af, f〉S ′,S . (6.240)
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Since S is nuclear, the operator A can be factorized via a HS [255]. An explicit construction

of A in the form A = Q∗σQσ, where Qσ is continuous from S into L2(R), is given in Ref.

[256]. It can, then, be investigated whether these results lead to a generalization of the

processes presented here.

Finally, due to the importance of Grassmann numbers in quantum field theory and the

physical motivation of the complex counterpart of what was introduced here, it can be asked

what the applications (if there is any) in real-life problems of the work displayed in this

chapter are.
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[236] H.-H. Kuo, White Noise Distribution Theory (CRC, Boca Raton, FL, 2018).

[237] D. Alpay, P. Jorgensen, and G. Salomon, On free stochastic processes and their deriva-
tives, Stoch. Proc. Appl. 124, 3392 (2014).

[238] D. Alpay and G. Salomon, Non-commutative stochastic distributions and applications
to linear systems theory, Stoch. Proc. Appl. 123, 2303 (2013).

[239] D. Alpay and G. Salomon, Topological convolution algebras, J. Funct. Anal. 264, 2224
(2013).

[240] D. Alpay and G. Salomon, On algebras which are inductive limits of Banach spaces,
Integr. Equ. Op. Th. 83, 211 (2015).
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