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ABSTRACT 

Novel Statistical and Machine Learning Methods for the Forecasting and Analysis of Major 

League Baseball Player Performance 

by Christopher Watkins 

 

Baseball has quickly become one of the most analyzed sports with significant growth in the last 

20 years [1] with an enormous amount of data collected every game that requires professional 

teams to have a state-of the-art analytics team in order to compete in today's game. Statcast, 

introduced in 2015, "allows for the collection and analysis of a massive amount of baseball data, 

in ways that were never possible in the past" [2]. Using this new Statcast data that is updated every 

pitch, a novel metric was developed, Pitcher Effectiveness, that is updated dynamically throughout 

a game. It was shown to be predictive of runs in combination with rate of change of the metric as 

well as effective in evaluating a starting pitcher on the game level and overall. Baseball can be 

broken down into a Markov Chain with 24 different states based on the combination of outs and 

baserunners where throughout the game teams will transition from one base/out state to another 

when events such as hits, outs, walks, and others occur [3]. Using this idea, pitch sequencing was 

explored on the micro level of each state individually. Looking at the last three pitches in a 

sequence, certain sequences in particular states were shown to have some predictive power in 

predicting outs, hits, and strikeouts. In addition, proportion tests showed significant differences in 

the proportion of outs and strikeouts of sequences depending on the baseball state. From fantasy 

baseball Wo Major LeagXe Baseball (MLB) fronW offices, projecWions of pla\ers¶ fXWXre performance 

are important and are explored quite often. Several machine learning methods were explored for 
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projecting future weighted on base average (wOBA) [3]. These methods were evaluated and the 

best were compared to 2020 projections from the reputable Steamer [4].  
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 1 Pitcher Effectiveness: A Step 
Towards in Game Analytics and 
Pitcher Evaluation 

1.1 Introduction 

1.1.1 Evolution of Statistics in Baseball 

Baseball has quickly become one of the most analyzed sports with significant growth in the last 

20 years [1] with an enormous amount of data collected every game that requires professional 

teams to have a state-of the-art analytics team in order to compete in today's game. As an 

example, the Houston Astros lost over 100 games each season from 2011-2013. In 2014, sports 

writer Ben Reiter predicted the Astros to win a World Series sooner rather than later, in 2017, 

because of the advanced analytics team they built [5].The Houston Astros ended up winning the 

2017 World Series, as predicted by Mr. Ritter. In 2019 the Tampa Bay Rays brought Jonathan 

Erlichman, who has not played baseball past T-ball, into the dugout as "the first full-time 

analytics coach ever to join a major-league staff. In his new role, he will use his knowledge of 

data to assist manager Kevin Cash with in-game decisions and provide real-time information to 

players" [6]. These examples highlight the role of data analytics within this sport. 

The analysis of baseball has evolved over the years, with three major categories being 

sequentially developed. First, there are the traditional statistics such as homeruns, batting 

average, and earned run average. Next, baseball statisticians created new statistics called 

Sabermetrics which further improved the analyses of player performance. This concept was 
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pioneered by Bill James in the 1980's and defined sabermetrics as "the search for objective 

knowledge about baseball" [7]. Some examples of Sabermetric statistics include on-base 

percentage (OBP), slugging percentage (SLG), and wins above replacement (WAR). This started 

the Moneyball movement, where teams analyzed players differently than in the past with general 

manager Billy Beane of the Oakland Athletics leading the charge [8]. 

The final category of statistics was made possible by the introduction of Statcast in 2015, which 

revolutionized Major League Baseball [2]. Statcast tracks every single play on the MLB field 

and "allows for the collection and analysis of a massive amount of baseball data, in ways that 

were never possible in the past" [2]. The technology that makes this possible "is a combination 

of two different tracking systems -- Trackman Doppler radar and high definition Chyron Hego 

cameras. The radar, installed in each ballpark in an elevated position behind home plate, is 

responsible for tracking everything related to the baseball at 20,000 frames per second. This 

radar captures pitch speed, spin rate, pitch movement, exit velocity, launch angle, batted ball 

distance, arm strength, and more. Separately, each ballpark also has a Chyron Hego camera 

system, where six stereoscopic cameras are installed in two banks of three cameras apiece down 

the foul line. The camera system tracks the movement of the people on the field, which allows 

for the measurement of player speed, distance, direction, and more on every play" [2].This new 

data from Statcast is easily accessible through BaseballSavant [9]. Proper analyses of these high 

precision, multidimensional data should be able to provide in game analytics to coaches that 

would enable them to better evaluate player performance in real-time. 
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1.1.2 Decision to Remove a Starting Pitcher 

One of the most difficult decisions a MLB manager has to make is when to remove a starting 

pitcher. Remove a starting pitcher too early, you do not maximize his use and risk overworking 

relief pitchers. Remove a starting pitcher too late when he is fatigued, and he will likely give up 

many runs and/or place your relief pitchers in difficult situations. A real-time predictive model 

could help the manager make the optimal decision during the game. One method that was 

proposed in 2017 [10] considered pitches as time series data and used dynamic time warping and 

1-nearest neighbor to classify the outing on an ongoing basis. Using the linear weights for all 

possible pla\s and coXnW, Whe meWric Linear RXn PiWcher¶s Performance (LRPP) Zas bXilW as a 

rolling sum to classify the performance as High Performance (HP) or Low performance (LP). 

When the result of 10 pitches were unknown, precision, recall and F1 values had means 0.9, 0.8, 

and 0.89 and with 30 pitches unknown the F1 value was 0.78 [10]. The models did better as 

more piWches Zere WhroZn and Whe aXWhors ³belieYe WhaW Whe model shoXld perform Zell when 

starting pitchers exceed [50 pitches], given that the average number of throws per game of the 20 

sWXdied piWchers is eqXal Wo 101´ [10]. 

Another approach that has been taken was building a regression model that uses past inning at 

baWs, game siWXaWion, and hisWorical daWa Wo predicW PiWcher¶s ToWal Bases (PTB) for Whe folloZing 

inning; a cut-off value was then used to determine if the pitcher should be taken out [11]. After 

the PTB model makes a prediction, it was compared to a manager model, which was built from 

actual manager decisions [11], which predicted Whe manager¶s decision correcWl\ for 95% of Whe 

innings. The manager model correctly predicted a run being scored for 75% of evaluated innings 

and the PTB model correctly predicted a run being scored 81% of the innings [11]. Considering 

Whe 5Wh inning on, Zhich Zas 21,538 innings, Whe PTB model disagreed ZiWh Whe manager¶s 
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decision 48% of the time [11]. Results suggested that the PTB model performed well; when the 

manager decided to leave the pitcher in and the PTB model agreed, 17.7% of the innings the 

pitcher gave up at least one run. In contrast, when the manager left a starting pitcher in and the 

PTB model disagreed, 31.5% of the innings the pitcher gave up at least one run [11]. 

In 2017 Harrison and Salmon also addressed the question of when to remove a pitcher from the 

game by using a system that uses pitch counts and strike-to-ball ratio (STB) [12]. Using 700,000 

pitches from the 2015 season, linear regressions were built regressing balls and strikes with 

respect to pitch count for a particular pitcher for the season [12]. This regression line ³represenWs 

an expected strike-to-ball raWio´ for a pitcher, which means for a game that a pitcher was doing 

better than the expected STB the pitcher was pitching above average and pitching below the 

trend line indicates a pitcher was faltering [12]. Looking at the number of games a pitcher 

reaches a certain pitch count and the STB at different pitch counts, the authors found that at high 

pitch counts there was a drop in the mean STB line with a unique number of pitches where this 

occurs for each pitcher [12]. The authors sXggesW ³Whese changes in performance can be Xsed as 

trigger points to evaluate if a pitcher is tired or reaching his limit in other ways and perhaps 

needs Wo be pXlled´ [12]. They propose that a pitcher is removed at this trigger point and 

managers using knowledge of the mental and physiological state of the pitcher could improve the 

decision making [12]. 

In 2010 Piette, Braunstein, McShane and Jensen developed a point mass Bayesian random 

effects model to evaluate the effectiveness of a pitcher [13]. They found that the metrics with the 

highest signal were ground ball percentage (GB%), fly ball percentage (FB%), and strikeouts per 

nine innings (K/9) for relief pitchers and fielding independent pitching (FIP), homeruns per nine 
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innings (HR/9), pitchers, earned run average (ERA), and walks per nine innings (BB/9) for 

starting pitchers [13]. The aXWhors argXe WhaW ³high signal meWrics haYe a large fracWion of pla\ers 

which are different from league average and give high confidence about which players are not 

leagXe aYerage´ [13]. The paper noted that the metrics used were not park, team, or league 

adjusted [13].   

The above-discussed models to aid with the decision to remove a starting pitcher do not use the 

rich Statcast data that is now available. In this work we design a novel metric, Pitcher 

Effectiveness, that can be used to evaluate a starting pitcher on both an in-game and overall 

outing basis. Although it would be exciting to apply this in real time, MLB has restricted the use 

of technology in the dugout. This newly constructed metric, Pitcher Effectiveness, is unique in 

comparison to other metrics because it does not take runs into account but is designed as a 

predictor of runs. The goal of Pitcher Effectiveness is to measure how effective a pitcher is by 

only taking into account the variables that the pitcher can control. For example, a pitcher cannot 

control the defense so they should not be evaluated on runs caused by errors, but they do control 

working ahead of the count. Also, a pitcher who made a great pitch, with soft contact, but 

resulting in a hit should not be penalized because of a defensive shift or the hit falling between 

two fielders. Of course, baseball is a game where events are dependent on more than just the 

starting pitcher, but the starting pitcher has the biggest influence on the game. Using Statcast 

data, Pitcher Effectiveness is continuously calculated after each pitch to generate a rolling sum 

throughout the game. This chapter discusses the data used, methods, results, and future work 

involved with Pitcher Effectiveness. 
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1.2 Data 

The analyzed data was obtained from BaseballSavant and included pitchers that threw 2000 or 

more pitches in 2018 MLB season. This data set included mostly traditional starting pitchers, but 

there were also swing pitchers who make multiple spot starts and the opener was used by several 

teams in 2018. We considered every pitch that these pitchers threw and examined variables such 

as pitch speed, post-pitch score, fielding alignment, launch angle and exit velocity among others. 

This resulted in 115 pitchers, 305,633 pitches, and 89 variables. We removed 1,150 pitches 

because of missing values produced by an error with Statcast, which left 304,483 total pitches. The 

analysis was restricted to 7 relevant variables, developed through domain knowledge, plus 5 new 

variables were created using transformations of the original ones. These new variables that were 

created included Pitcher Effectiveness, pitches against, runs, on base, pitches, hit, slope, and run 

prediction. A detailed description of these variables is shown in Table 1-1. 
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Table 1-1: Description of Variables 
Variable Description 

Player Name Pitchers name 
Events Ball in play event (Single, double, strikeout, 

etc. Null if not in play) 
Description Result of pitch (Hit into play, ball, strike, etc.) 

Balls Number of balls in at bat 
Strikes Number of strikes in at bat 

Launch Speed Exit velocity of batted ball 
Post Bat Score Opposing team score 

Picher Effectiveness New metric created 
Runs Resulting number of runs from pitch  

Pitches Cumulative number of pitches thrown by 
pitcher 

Slope Fitted slope of Pitcher Effectiveness over the 
previous 5 or 10 pitches 

Run Prediction Binary variable for x or more runs given up 5 
or 10 after the pitches used in the slope (x = 

1,2, or 3) 

1.3 Methods 

A model was designed to predict the number of runs given up by a pitcher using the Pitcher 

Effectiveness score and the change in this score over a certain number of pitches as covariates. 

Using 2018 Statcast data, the metric Pitcher Effectiveness was calculated as a time series 

comprised of each pitch per game. A pitcher starts with a Pitcher Effectiveness of zero and the 

value was continuously updated with each pitch throughout the game, until the pitcher was taken 

out of the game. The three variables used to calculate the Pitcher Effectiveness were event, ball 

and strike count and exit velocity. Each outcome for these three variables has a weight, and the 

sXm of Whese ZeighWs for each piWch deWermine WhaW piWch¶s conWribXWion to Pitcher Effectiveness. 

The weights used for a single, double, triple, homerun, walk, and hit by pitch are linear weights 

for calculating weighted on base average (wOBA) for the 2018 season [14]. The linear weights are 
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found by calculating the run expectancy for each event using the data from the 2018 season [14]. 

All other weights (count, out, swinging strike, and exit velocity) were a carefully chosen and can 

be found in Table 1-2. An extensive grid search of values between 0.1 to 1.5 by 0.2 (8 values, 4096 

combinations) was done to find the optimal weights. The computation took over 72 hours to 

complete on a 32-core computer. These values were compared to weights built with domain 

expertise, which ultimately performed better. For example, if the pitcher was ahead of the count, 

and gave up a single with an exit velocity of 95 mph then the Pitcher Effectiveness score for that 

pitch would be 0.5-0.88-0.5 = -0.88. The higher the Pitcher Effectiveness, the better the pitcher 

was doing overall. Negative values for Pitcher Effectiveness indicate that a pitcher was ineffective. 

SXmmar\ sWaWisWics of final PiWcher EffecWiYeness scores for piWchers¶ enWire games can be found in 

Table 1-3. \ 

Table 1-2: Pitcher Effectiveness Weights 
Event Weight 
Single -0.88 
Double -1.25 
Triple -1.58 

Homerun -2.03 
Walk -0.69 

Hit by pitch -0.72 
Out (except sacrifice fly) +0.5 

Other plays +0 
Swinging Strike +0.5 

Count Weight 
Ahead of count +0.5 
Behind count -0.5 
Even count +0 

Exit Velocity Weight 
95+ mph exit velocity -0.5 

80 mph or less exit velocity +0.5 
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Table 1-3: Summary Statistics for Pitcher Effectiveness 
Statistic Value 

Minimum -16.38 
Quantile 2 6.93 

Mean 15.01 
Quantile 3 22.77 
Maximum 55.18 

We hypothesized that trends in Pitcher Effectiveness would be a more useful predictive metric 

than the value associated with a single pitch. Therefore, for each pitch a linear regression model 

was used to estimate the trend (i.e. slope) over the previous 5 pitches; this was repeated for the 

previous 10 pitches as well. As a result of this procedure, the first 4 or 9 pitches from each game 

were not considered. The data set used was sufficiently large so that the predictive power of Pitcher 

Effectiveness was not compromised. 

For the run prediction variable, we examined several run-based outcomes including any number 

of runs, more than 1 run, more than 2 runs, and more than 3 runs given up in the next 5 or 10 

pitches. This procedure means that the last 5 or 10 pitches were ignored for each game respectively 

because there is nothing to predict when the pitcher is taken out of the game. Again, due to the 

large daWa, Ze don¶W e[pecW Whese omissions Wo maWeriall\ affecW predicWiYe abiliW\.  

We used the presence and absence of runs as the outcome variable and Pitcher Effectiveness and 

slope of the recent performance trend as predictor variables in a logistic regression model 

combined with 5-fold cross validation. We identified the best predictive model by comparing a 

range of potential models built using different combinations of the number of pitches used to 

calculate slope, the number of pitches used for run prediction, and the number of runs to predict. 
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In addition, Pitcher Effectiveness by itself was compared to other metrics that are used to evaluate 

a piWcher¶s performance. The grid search WesWed for Whe highesW cross YalidaWed area Xnder Whe ROC 

curve for the particular pitch and run prediction combination of 4+ runs, 10 pitches for slope 

calculation, and 5 pitches for run prediction. The logistic regression model used can be found in 

Equation 1-1. 

𝑔݋݈ െ ൅ ݏݏ𝑒݊𝑒ݒ݅ݐ𝐸𝑓𝑓𝑒𝑐 ݎ𝑐݄𝑒ݐሻ ~ 𝑃݅݊݋݅ݐ𝑒𝑑݅𝑐ݎ𝑃 ݊ݑሺ𝑅ݏ𝑑𝑑݋  𝑆݈݌݋𝑒 

Equation 1-1: Run Prediction Logistic Regression Model 

1.4 Results 

The models did very well to predict a big inning, 3+ or 4+ runs scored, within the next 5 or 10 

pitches. The best combinations can be found in with the 5-fold cross validated area under the 

curve (CV AUC). Both the Pitcher Effectiveness and slope variables were statistically significant 

(p-values of) in the models as seen in Table 1-4. 

Table 1-4: Logistic Regression Model Results 
CV AUC Slope 

Coefficient 
Pitcher 

Effectiveness 
Coefficient 

Number of 
pitches for 

slope 

Number of 
pitches for 
prediction 

Number of 
runs 

0.716 -1.522 -0.0369 5 5 3+ 
0.751 -1.901 -0.0304 5 5 4+ 
0.723 -1.578 -0.0306 5 10 4+ 
0.778 -2.968 -0.0185 10 5 4+ 
0.743 -2.407 -0.0254 10 5 3+ 
0.711 -2.074 -0.0214 10  10 3+ 
0.744 -2.551 -0.0183 10  10 4+ 

The models did not do well in predicting 1+ or 2+ runs scored in the next 5 or 10 pitches. All CV 

AUC values were less than 0.7 for these combinations. There are a few likely reasons why this 
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was the case. First, it takes much less to score 1-2 runs even if a pitcher was effective. For example, 

a pitcher could be doing well all game but miss location once and give up a homerun. Another 

example could be a pitcher giving off a leadoff double and a run scoring without another hit (i.e. 

Combination of moving the running via groundout or flyout and scoring on a groundout or sacrifice 

fly, etc.). Next, errors can cause runs to be giving up by a pitcher, although unearned. Both Pitcher 

Effectiveness and the slope do not take errors into account, which means a pitcher can still be 

effective, but the defense causes a run to be scored. It is also rare that there are more than 1-2 runs 

scored from an error. After the initial error, even though runs may be unearned, that pitcher must 

continue to pitch effectively to prevent runs and has a large effect on more runs being scored. Thus, 

predicting a larger number of runs was more successful. 

To test if Pitcher Effectiveness was a good metric to evaluate average starting pitching 

performance over a season, it was compared to already-esWablished meWrics. Each piWcher¶s 

average Pitcher Effectiveness for the 2018 season was calculated and compared to earned run 

average (ERA) and earned run average minus (ERA-). ERA is the average number of earned 

runs (not a result of an error) per 9 innings for a piWcher. The loZer a piWcher¶s ERA, Whe beWWer 

they have performed overall. When plotting ERA and Pitcher Effectiveness there was a 

significant, strong negative correlation, which is evidence that Pitcher Effectiveness is a good 

metric. ERA- is a Sabermetric statistic that is park and league adjusted [15]. This allows pitchers 

to be compared more accurately regardless of their home ballpark and whether they pitch in the 

American or National league. For example, a pitcher whose home ballpark is Angels Stadium is 

at an advantage because it is a pitcher friendly park where less homeruns are hit but at Coors 

Field a pitcher is at a disadvantage because it is a hitter friendly park where more homeruns are 

hit. Just like ERA, lower ERA- indicates better performance of the pitcher. The adjustment 
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makes 100 average, where the amount less than 100 is the percentage they performed better than 

average while the amount above 100 is the percentage the performed worse than average. For 

example, a pitcher with an ERA- of 80 performed 20% better than average and an ERA- of 110 

indicates the pitcher performed 10% worse than average. Again, there was a statistically 

significant, strong negative correlation between ERA- and Pitcher Effectiveness which would 

seem to indicate that Pitcher Effectiveness is a good metric for evaluating pitching performance. 

Both plots with their associated correlation can be found in Figure 1-1 and Figure 1-2.  

To eYalXaWe a piWcher¶s performance for a game, man\ look aW Whe WradiWional piWching line Wo see 

the innings pitched, strikeouts, number of hits, runs, walks, and homeruns given up by a pitcher. 

In a search for one nXmber Wo describe a piWcher¶s performance, Bill James developed the metric 

Game Score in Whe 1980¶s [16]. Each pitcher began with a score of 50, then their score would 

change depending on the play and associated weight from Table 1-5.  

Table 1-5: Game Score Weights (Bill James) 
Event Weight 

Start of Game +50 
Out +1  

Inning completed after 4th  +2 
Strikeout +1 

Hit -2 
Earned Run -4 

Unearned Run -2 
Walk -1 
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Figure 1-1: Pitcher Effectiveness versus ERA 

 
Figure 1-2: Pitcher Effectiveness versus ERA- 
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In 2014 Tom Tango XpdaWed Whese ZeighWs Wo correlaWe more ZiWh a piWcher¶s WalenW leYel [16]. 

The major difference from Bill James¶ formXlaWion is sWarWing from a score of 40, insWead of 50, 

and Waking homerXns inWo accoXnW. AssociaWed ZeighWs for Tom Tango¶s formXla are in Table 

1-6. A Game Score of 50 is an average performance for a pitcher and a Game Score of 40 

indicates a replacement level outing [16]. 

Table 1-6: Game Score Weights (Tom Tango) 
Event Weight 

Start of game +40 
Out +2 

Strikeout +1 
Walk -2 
Hit -2 

Any Run -3 
Homerun -6 

To eYalXaWe PiWcher EffecWiYeness as a meWric Wo eYalXaWe a sWarWing piWcher¶s game performance, 

it was compared to both the traditional pitching line and Game Score. For both the traditional 

line score and Game Score, data was used from Baseball Reference Zhere Whe\ Xse Bill James¶ 

formula for Game Score [17]. The worst and best pitched games according to Pitcher 

Effectiveness were more closely examined. For example, Dylan Bundy, on May 8th, 2018, had 

the lowest Pitcher Effectiveness for a game at -16.38 and the trend during the game can be seen 

in Figure 1-3. In this game Bundy did not record an out, while giving up 7 runs and a low Game 

Score of 10 with the pitching line in Table 1-7. BXnd\¶s PiWcher EffecWiYeness in Whis oXWing 

agreed with Game Score, being the lowest of the season for him. 
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Figure 1-3: Dylan Bundy Pitcher Effectiveness (5-8-18) 

Table 1-7: Dylan Bundy 5-8-18 [18] 
Innings 
Pitched 

Hits Earned 
Runs 

Walks Strikeouts Homeruns Game 
Score 

0+ 5 7 2 0 4 10 

The best Pitcher Effectiveness for the season was an outing by multiple Cy Young award winner 

Max Scherzer on May 30th. He pitched 8 innings giving up no runs, striking out 12, and a Game 

Score of 89. A small dip in Pitcher Effectiveness, in Figure 1-4: Max Scherzer Pitcher 

Effectiveness (5-30-18), for Scherzer at around 94 pitches was due to a double by Manny Machado 

and walk to Mark Trumbo in the 7th inning of the game. According to Game Score, this was not 

quite the best pitched game by Scherzer but rather the April 9th game with a slightly better Game 

Score of 93. The pitching lines were similar, as seen in Table 1-8, but Scherzer pitched a shutout 

and did not walk anyone. However, the difference comes from Game Score valuing innings pitched 

after the 4th and Pitcher Effectiveness valuing pitchers missing bats with swing a miss strikes. In 



 

16 

the May 30th game Scherzer had 11 of 12 strikeouts swinging while in the April 9th game he had 

8 out of 10 strikeouts swinging. In addition, Game Score uses at-bat based data while Pitchers 

Effectiveness uses pitch level data.  

 
Figure 1-4: Max Scherzer Pitcher Effectiveness (5-30-18) 

Table 1-8: Max Scherzer [19] 
Date Innings 

Pitched 
Hits Earned 

Runs 
Walks Strikeouts Homeruns Game 

Score 
 

5-30-18 8 2 0 1 12 0 89 
4-9-18 9 2 0 0 10 0 93 

Overall for the 2018 season the top 5 in Pitcher Effectiveness were Jacob DeGrom (the 2018 NL 

Cy Young Award Winner), Max Scherzer, Justin Verlander, Chris Sale, and Aaron Nola in Table 

1-9. All five of these pitchers are seen as elite, and their spot in the top 5 is consistent with that. 

It is not surprising the 2018 NL Cy Young award winner was the best, however, the 2018 AL Cy 
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Young award winner Blake Snell was ranked 34th with an Average Pitcher Effectiveness of 

17.4. This could be due to the fact that Snell, although incredibly effective, did not pitch deep 

into games. Since you need pitches to accumulate Pitcher Effectiveness, the metric favored 

pitchers that pitched deep into the game. Most metrics indicated that Snell performed at a high 

level, but Pitcher Effectiveness did not put him at an elite level for the season.  

Table 1-9: Average Pitcher Effectiveness per Game Top 5 
Player Name Average Pitcher Effectiveness 
Jacob deGrom 29.95 
Max Scherzer 29.66 

Justin Verlander 28.27 
Chris Sale 26.94 

Aaron Nola 25.7 

1.5 Conclusion 

In this paper Pitcher Effectiveness has been shown to be able to predict a pitcher giving up many 

rXns, and a Yiable meWric for eYalXaWing a sWarWing piWcher¶s performance for a game or across a 

whole season. Utilizing Statcast data, the metric gives a better evaluation of pitchers using data we 

never had before. Coaches could look back at the game pitch by pitch to find times the Pitcher 

Effectiveness dropped. This is a step forward for in game analytics, that already involves scouting 

reports available in the dugout, and the evaluation of how effective a pitcher is. 

1.6 Future Work 

There are many areas of future work involving Pitcher Effectiveness. First, the weights and 

variables can be better optimized for better predictive power and evaluation of pitchers. A wider 

grid search could be done to find more optimal values. Blake Snell being ranked 34th was odd and 

could mean some weights are too high. Or it could be the case that some are actually too low. 
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Instead of looking at Pitcher Effectiveness per game, it could be adjusted per 9 innings like ERA. 

In addition, choosing the weights as whole numbers rather than some as fractional may be better 

for simplifying the metric. Statcast data is very new and the weights need further exploration. Also, 

both slope and number of pitchers for run prediction could be better optimized. There may be a 

better number of pitches to look at for both variables that would make the prediction better. From 

a front office perspective Pitcher Effectiveness could also be used to find pitchers that may be 

undervalued. This would help teams with a limited budget to build a more competitive team. 

The most exciting possibility for future work is improving the utilization of Pitcher Effectiveness 

for use by managers. The model could be compared Wo a manager¶s decision b\ looking aW ZhaW 

the model is predicting versus what the manager did, similar to the Gartheeban and Guttag analysis 

[11]. For example, the model could predict many runs given up in the next 10 pitches, the manager 

leaves the pitcher in, and the pitcher gives up runs. Pitcher Effectiveness could extend the work of 

Harrison and Salmon [12]  by building a trend line of the average Pitcher Effectiveness per pitch 

for particular pitchers. Pitcher Effectiveness above the trend line could indicate good performance 

while under the trend line would indicate bad performance.  

Next, exploring Pitcher Effectiveness for use with relief pitchers is an area of future research. The 

data set that was taken for this paper involved mainly traditional starting pitchers, with a few 

exceptions. However, getting ahead of the count, missing bats, and getting outs are important for 

a relief pitcher as well. One may argue that it is more important, especially in tight ballgames. A 

relief pitcher will pitch one to two innings maximum, in general, in a game. For in game analytics 

for relief pitchers the goal is to avoid giving up any runs, or few runs depending on the score of 

the game. With this in mind and less inning pitched by relief pitchers, a coach would want to know 

very quickly if they are at risk of giving up runs. This means the slope variable would have to use 
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less pitches since a relief pitcher may go 20-25 pitches in a game. Also, evaluating relief pitchers 

on their outing using Pitcher Effectiveness would be different than starting pitchers. Their ceiling 

for Pitcher Effectiveness is much lower than a starting pitcher who are in the game longer. Either 

an adjustment of giving each relief pitcher an initial Pitcher Effectiveness or separating the 

evaluation of a starting and relief pitcher could be solutions to this problem. Looking at how a 

relief piWcher¶s PiWcher EffecWiYeness is affecWed b\ Whe nXmber of da\s off ZoXld also be inWeresWing 

to explore.  

Finally, Pitcher Effectiveness can be adapted to incorporate additional efficiency metrics such as 

quality of contact. For example, less pitches and more outs indicate the pitchers is efficient (i.e. 

qXick oXWs). This coXld be capWXred Xsing SWaWcasWs¶ piWch nXmber for aW baW Yariable. In Whe lasW 

couple years pitchers have been told to elevate the fastball as hitters are adapting their launch angle 

for the best contact. Pitchers that have been traditionally effective lower in the strikezone must 

adapt to this new trend. Rewarding pitchers who induce non-quality contact could be added to 

Pitcher Effectiveness.  
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 2 A Comprehensive Analysis of Pitch 
Sequence Effectiveness and 
Predictability for the 24 Baseball 
States 

2.1 Introduction 

Pitchers are involved in every single moment of a baseball game. They initiate action with every 

pitch that they throw. Batters are tasked with trying to hit one of thirteen types of pitches that are 

now thrown in Major League Baseball (MLB) [20]. With all the data now available it is easy to 

find what is the most used pitch by a pitcher, which can be broken down by each ball-strike 

count, location of pitches, and motion of each pitch  [20]. Batters are trying to predict what pitch 

will be thrown while pitchers want to throw something a batter would not expect. This chess 

match between batters and pitchers involves pitch sequencing, which is the theory that pitches 

earlier in Whe aW baW inflXence a baWWer¶s behaYior laWer in Whe aW baW [21].  

Two important components of pitch sequencing are perceived velocity (PV) and effective 

YelociW\ (EV). PV is defined as ³an aWWempW Wo qXanWif\ hoZ fasW a pitch appears to a hitter, by 

facWoring Whe YelociW\ of Whe piWch and Whe release poinW of Whe piWcher´ [22]. For example, if two 

pitchers throw a 93-mph fastball but one pitcher releases the ball closer to home plate, the 

perceived velocity would be higher for the pitcher who released the ball closer to home plate 

[22]. EV Zas bXilW on Whe idea WhaW ³hiWWers sZing naWXrall\ laWe againsW Whe fasWball Xp-and-in, and 

naturally early against the off-speed pitch down-and-away, due to the bat path required to make 
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quality barrel contact against pitches in these locaWions´ [21]. Knowing this, the hitters will try to 

adjust their swing based on the previous pitch location and speed [21], as well as the current ball-

strike count. Pitchers utilize these ideas to their advantage and must become less predictable to 

be successful.  

A paper by Joel Bock in 2015 explored the predictability of MLB pitchers and the impact of 

predictability on predicting performance metrics earned run average (ERA) and fielding 

independent pitching (FIP) [23]. Using data of MLB pitchers from 2011-2013, excluding 

pitchers who did not accumulate 1000 pitches, the top four most used pitches for each pitcher 

were identified [23]. Then, multinomial logistic regression and support vector machine (SVM) 

were used to predict which of those four pitches would be thrown next [23]. They obtained an 

overall predictability of the next pitch of 74.5% [23], which was an improvement on another 

paper predicting a fastball or not a fastball at 70% [24]. Further analysis was done showing the 

top ten most and least predictable pitchers overall, based on if the hitter was ahead, behind, or 

even in the count, and handedness matchups [24]. Interesting findings were Joel Hanrahan being 

highly predictable (95.1%) when the batter is ahead of the count and less predictable (56.1%) 

when the batter is behind in the count while Luke Gregorson was the opposite, being predictable 

when the batter is behind in the count (86.2%) and less predictable (66.6%) when the batter is 

ahead of the count [24]. The author did not expand on other occurrences similar to those two. In 

predicting ERA and FIP using the predictability of the pitcher using their model, they obtained a 

significant p-value at the 0.05 level but the R-Squared were very low at 0.0175 and 0.021 

respectively [24]. They concluded that high predictability of the pitch sequence did not imply a 
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higher ERA or FIP, with many examples in the data where highly predictive pitchers has a low 

ERA and/or FIP or highly unpredictive pitchers that had a high ERA and/or FIP [11].  

In 2013 Jon Roegele explored pitch sequences that led to strikeouts [25]. First, using data up to 

the All-Star Break in 2013, Roegele looked at the most common final two pitches to strike out 

hitters [25]. The most common final two pitches were two four-seam fastballs (2859) with two 

sliders as the second most common (1792) but two changeups (693) and two curveballs (609) 

were significantly less than sliders [25]. When Roegele explored the most common final two 

pitches for a strikeout on the pitcher level only four of the top fifteen did not use the same pitch 

back-to-back [25]. Extended to 3-pitch sequences, three four seam fastballs (1656) were the most 

common and three sliders (625) were the third most common. Interestingly, on the individual 

pitcher level, only three of the top seventeen sequences used different pitches [25]. In the article 

it was noted that a pitcher using their best three pitches makes sense, but pitch locations were not 

considered, which is a vital part of pitch sequencing [25].  

In 2014 Roegele considered Whe effecW of ³back-to-back pitches from a pitcher to a hitter where 

each pitch is in a similar location at the swing decision point, but where the two pitches end up 

crossing Whe plane of home plaWe in qXiWe differenW spoWs´ [26]. By decision point Roegele 

e[plains ³A 90 mph fasWball Wakes roXghl\ 400 milliseconds Wo WraYel beWZeen Whe piWcher¶s 

release point and the front of home plate. Estimates of the point where a batter must commit to 

start swinging range from 150-225 milliseconds before the time the pitch crosses the plate. Once 

a swing has started, only elite hitters are able to make further swing adjustments to the path 

initially started at the go/no-go decision poinW´ [26]. Using data from 2013 and 2014 heat map 

matrices of swinging strike percentage (SwStr%) were built for each season where the rows were 



 

23 

the distance between the two consecutive pitches at the decision point and the columns were the 

distance between the two consecutive pitches when they crossed home plate [26]. A band of 

pitches from the matrix were found where SwStr% was higher based on the decision point 

disWance and disWance Zhen crossing home plaWe, Zhich led Wo Whe conclXsion WhaW ³Whe closer 

consecutive pitches are to one another at the swing decision point, the less distance apart they 

need Wo arriYe aW home plaWe Wo generaWe higher Whan normal sZing and miss raWes´ [26]. This 

would mean that the two pitches would have to be different types for the trajectory to be so 

different [26]. For example, the first pitch being a four-seam fastball and the second pitch being a 

slider, which was the most common pitch sequence in that band of pitches [26]. For all pitch 

types, when the pitch was in the band on the second pitch there was a higher SwgStr% [26]. It 

was also shown that elite starters such as Cole Hamels and Johnny Cueto pitched a lot in this 

band and pitchers overall saw an increase in SwStr% [26]. Thus, it was concluded that using 

these two pitch sequences would lead to a higher SwStr%.  

In baseball there are a total of 24 combinations of base/out states that are possible [3]. For 

example, bases loaded with two outs. Throughout the game teams will transition from one 

base/out state to another when events such as hits, outs, walks, and others occur [3]. Using this 

idea, a run expectancy matrix can be built where for each of the 24 states there is a run 

expectancy attached to it [3]. The 2019 run expectancy matrix with all states is below in Table 

2-1. Going further, we are able to assign run values per event, such as a homerun or strikeout [3]. 

The player that has to navigate all of these states is the pitcher, who must make the correct 

pitches to get three outs to reset to the starting state of no runners and no outs for the next inning. 

Based on what state the game is in, a pitcher may approach the batter in a different way. Unlike 

other papers that do not consider these states when looking at pitch sequencing, the goal of this 
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chapter is to explore differences of sequences per state and predictability of hits, runs, and 

strikeouts based on the pitch sequence and state the game is in.  

Table 2-1: Run Expectancy Matrix (2019) [27] 
Bases 0 Outs 1 Out 2 Outs 
_/_/_ 0.544 0.298 0.115 

1B/_/_ 0.935 0.564 0.242 
_/2B/_ 1.147 0.713 0.339 
_/_/3B 1.369 0.953 0.391 

1B/2B/_ 1.537 0.979 0.467 
1B/_/3B 1.759 1.219 0.518 
_/2B/3B 1.971 1.368 0.615 

1B/2B/3B 2.362 1.634 0.742 

 

2.2 Data  

All data for this analysis was pulled from BaseballSavant [20]. Twenty-four data sets were 

produced representing each baseballs state, which included every pitch thrown in a particular 

baseball state in 2019. Position players that pitched in 2019 were removed from the data sets. 

This resulted in a total of 731,083 pitches across the 24 data sets with 89 variables each. 

Variables that were used from the original 89 variables were pitch number, which was the 

number of pitches in the at bat, and zone, which is the zone the pitch was in. Zone comes from 

the definition on BaseballSavant which can be found in Figure 2-1. There were several variables 

that were created for the analysis. First, a pitch type variable was created where FB represented a 

fastball type pitch (Four-Seam Fastball, Two-Seam Fastball, Sinker, Cut-Fastball), OS 

represented an off-speed type pitch (Changeup, Splitfinger, Forkball, Screwball), BR represented 

a breaking ball type pitch (Slider, Curveball, Knuckle-Curve, Knuckleball, Eeephus), and Other 

represented all other types of pitches. From this, a variable was built that contained the entire 
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sequence of pitches where the most recent pitches were listed last. For example, FB, BR, OS is 

the three-pitch sequence fastball, breaking ball, off-speed (pitch 1, pitch 2, pitch 3). Then the 

variable Last3 was manufactured from the sequence variable where Last3 represented the last 

three pitches thrown in the sequence for a sequence that was three or more pitches and the whole 

sequences if it was only a one or two pitch sequence. For example, for the sequence FB, FB, BR, 

OS, BR, FB the Last3 variable would be OS, BR, FB. Then logical variables hit, out, and runs 

were built. These variables were used as outcome variables. All explanations of variables are in 

Table 2-2. In addition, the data sets were cleaned to only contain pitches that were the final pitch 

of an at bat, where an event occurred (i.e. Hit, walk, strikeout, etc.) resulting in 189,078 pitches.  

Table 2-2: Variable Explanations 
Variable Explanation 

Pitch Number Number of pitches in the at bat 
Zone Zone pitch was in 

Pitch Type Type of pitch (FB, BR, OS, Other) 
Sequence Sequence of pitches in at bat 

Last3 Last three pitches in sequence 
Hit Logical variable for hit 
Out Logical variable for out 
Run Logical variable for run 
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Figure 2-1: Zones [9] 

An additional data set was also created for each baseball state. These data sets were frequencies of 

the variable Last3 for each baseball state in addition to the number of hits, outs, strikeouts, and 

runs for the different combinations of last three pitches. An example of these data sets is in Table 

2-3, which were the top five last three pitch combinations for the state of no runners on base with 

no outs. 

Table 2-3: Frequency Table Example 
No runners on with no outs 

Last3 Total Hits Outs Strikeouts Runs 
FB, FB, FB 8190 1641 5096 2018 291 

FB 3222 1125 2003 0 249 
FB, FB, BR 3091 556 2316 1154 74 
FB, BR, FB 2902 600 1970 759 97 
BR, FB, FB 2814 524 1849 757 93 
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2.3 Methods 

To test for differences between sequences per state proportion tests were performed between the 

top 10 Last3 variables, relative to the state of no runners with no outs, that intersected between 

data sets. The list of the top 10 can be found in Table 2-4 below. Proportion tests for outs and 

strikeouts between sequences per state were performed. However, it did not make sense to 

compare proportions of strikeouts for the sequences FB, and FB, FB since a strikeout cannot 

occur in these at bats. Therefore, they were omitted in the results. 

Table 2-4: Top 10 Last3 Sequences 
Top 10 Last3 

FB, 
FB,  
FB 

FB FB, 
FB,  
BR 

FB, 
BR, 
FB 

BR, 
FB,  
FB 

FB,  
FB 

FB, 
BR, 
BR 

BR, 
BR, 
FB 

BR, 
FB, 
BR 

FB, 
OS, 
FB 

For each of the 24 baseball states three logistic regression models were built to predict a hit, out, 

strikeout, and run. Each model had the same predictor variables, Last3, Pitch Number, and Zone. 

For each model, only Last3 variables that occurred more than 20 times were considered in the 

analysis. For hit, out, and run prediction at bats of any number of pitches, three pitch at bats, and 

at bats with three or more pitches were considered. Strikeouts do not occur for at bats with one or 

two pitches, thus only three pitch at bats and at bats with three or more pitches were considered. 

To evaluate these models a 5-fold cross validated area under the ROC curve (AUC) was calculated 

for each. The models are summarized in Equation 1-1. 
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𝑔݋݈ െ ൅ 3ݐݏሻ ~ 𝐿𝑎ݐݑ݋𝑒݇݅ݎݐ𝑆/݊ݑ𝑅/ݐݑ𝑂/ݐሺ𝐻݅ݏ𝑑𝑑݋  𝑃݅ݐ𝑐݄ 𝑁݉ݑ𝑏𝑒ݎ ൅ 𝑍݊݋𝑒 

Equation 2-1: Pitch Sequence Outcomes Logistic Regression Model 

2.4 Results 

2.4.1 Proportion Tests 

The results of the proportion test for outs are found below in Table 2-5. 

Table 2-5: Proportions of Outs 
 State FB, 

FB,  
FB 

FB FB, 
FB,  
BR 

FB, 
BR, 
FB 

BR, 
FB,  
FB 

FB,  
FB 

FB, 
BR, 
BR 

BR, 
BR, 
FB 

BR, 
FB, 
BR 

FB, 
OS, 
FB 

1 _/_/_ 0 
outs 0.622 0.622 0.749 0.679 0.657 0.636 0.786 0.689 0.748 0.648 

2 
 

_/_/_ 1 
out 0.634 0.624 0.757 0.692 0.654 0.636 0.793 0.663 0.746 0.654 

3 _/_/_ 2 
outs 0.627 0.609 0.753 0.669 0.645 0.635 0.782 0.684 0.719 0.653 

4 1B/_/_ 0 
outs 0.61 0.594 0.69 0.615 0.6 0.573 0.709 0.621 0.69 0.613 

5 1B/_/_ 1 
out 0.616 0.531 0.683 0.635 0.603 0.561 0.724 0.623 0.679 0.608 

6 1B/_/_ 2 
outs 0.618 0.543 0.682 0.629 0.599 0.534 0.708 0.592 0.645 0.583 

7 _/2B/_ 0 
outs 0.622 0.577 0.688 0.665 0.645 0.588 0.647 0.689 0.675 0.692 

8 _/2B/_ 1 
out 0.595 0.55 0.645 0.634 0.579 0.594 0.676 0.578 0.678 0.577 

9 _/2B/_ 2 
outs 0.591 0.63 0.701 0.629 0.593 0.571 0.709 0.674 0.655 0.554 

10 _/_/3B 0 
outs 0.573 0.556 0.724 0.593 0.636 0.684 0.619 0.562 0.765 0.889 

11 _/_/3B 1 
out 0.586 0.652 0.683 0.535 0.716 0.6 0.792 0.551 0.691 0.471 
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12 _/_/3B 2 
outs 0.632 0.651 0.767 0.696 0.577 0.596 0.726 0.565 0.718 0.5 

13 1B/2B/_ 
0 outs 0.644 0.646 0.777 0.659 0.592 0.625 0.702 0.694 0.758 0.606 

14 1B/2B/_ 
1 out 0.585 0.575 0.726 0.7 0.569 0.726 0.755 0.63 0.69 0.631 

15 1B/2B/_ 
2 outs 0.634 0.614 0.714 0.667 0.575 0.617 0.737 0.686 0.769 0.689 

16 1B/_/3B 
0 outs 0.575 0.561 0.706 0.623 0.6 0.621 0.722 0.567 0.71 0.478 

17 1B/_/3B 
1 out 0.662 0.556 0.58 0.563 0.53 0.578 0.75 0.614 0.688 0.615 

18 1B/_/3B 
2 outs 0.609 0.44 0.636 0.539 0.532 0.487 0.667 0.613 0.61 0.617 

19 _/2B/3B 
0 outs 0.5 0.8 0.656 0.628 0.556 0.739 0.667 0.517 0.737 0.562 

20 _/2B/3B 
1 out 0.617 0.527 0.565 0.565 0.563 0.576 0.645 0.612 0.567 0.548 

21 _/2B/3B 
2 outs 0.617 0.566 0.68 0.673 0.634 0.621 0.66 0.678 0.6 0.565 

22 1B/2B/3B 
0 outs 0.573 0.654 0.784 0.639 0.553 0.585 0.75 0.731 0.714 0.571 

23 1B/2B/3B 
1 out 0.67 0.57 0.763 0.679 0.567 0.612 0.776 0.627 0.797 0.867 

24 1B/2B/3B 
2 outs 0.629 0.544 0.778 0.643 0.61 0.644 0.893 0.722 0.745 0.653 

 P-Value 0.08 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 

All of the p-values were significant at the 0.05 level, with the exception of the Last3 of FB, FB, 

FB, meaning we rejected the null hypothesis that the proportion of outs for these Last3 pitch 

sequences are the same across states. This would suggest that for these Last3 there was a difference 

in the proportion of outs for at least one state compared to another. Taking a closer look at these 

values, line plots were built in Figure 2-2 to show the profiles of the different Last3 variables 

across the 24 different states. 
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Figure 2-2: Profiles for Proportion of Outs 

A few observations that were interesting were the differences in the proportion of outs for certain 

states. First, looking at FB there was a large difference between state 18 (1B/_3B 2 outs) and state 

19 (_/2B/3B 0 outs). The proportion of outs were 0.44 (n = 257) and (n=35) 0.8, respectively. The 

proportion test between the two resulted in a p-value of 0.00013, which rejected the null hypothesis 

that the proportions were the same. The other Last3, FB, OS, FB, showed a large difference 

between state 10 (_/_/3B 0 outs) and state 11 (_/_/_3B 1 out). The proportion of outs were 0.889 

(n =9) and 0.471 (n =34) which suggest high variance because the sample sizes were small. The 

proportion test between the two resulted in a p-value of 0.06, which failed to reject the null 

hypothesis that the proportions were the same. State 10 is the least populated since it occurs the 

least in games. Lastly, a Last3 of FB, FB, BR and FB, BR, BR had a proportion of outs of 0.726 

and 0.757 respectively across states compared to a proportion of 0.652 of all ten Last3 sequences 

across sWaWes. These WZo seqXences¶ proporWion of oXWs achieYed p-values well below 0.05 (< 2.2e-
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16), when compared to the overall proportion of outs which means there is a significant difference 

between proportions. This means that setting up with a fastball then finishing with a breaking ball 

was more effective. 

Next, the results of the proportion test for strikeouts are found below in Table 2-6. 

Table 2-6: Proportions of Strikeouts 
 State FB, 

FB,  
FB 

FB, 
FB,  
BR 

FB, 
BR, 
FB 

BR, 
FB, 
FB 

FB, 
BR, 
BR 

BR, 
BR, 
FB 

BR, 
FB, 
BR 

FB, 
OS, 
FB 

1 _/_/_ 0 
outs 0.246 0.373 0.262 0.269 0.427 0.296 0.362 0.229 

2 
 

_/_/_ 1 
out 0.271 0.408 0.289 0.294 0.451 0.282 0.384 0.235 

3 _/_/_ 2 
outs 0.262 0.42 0.29 0.293 0.455 0.291 0.378 0.264 

4 1B/_/_ 0 
outs 0.224 0.337 0.237 0.247 0.366 0.297 0.338 0.199 

5 1B/_/_ 1 
out 0.229 0.365 0.258 0.245 0.389 0.252 0.312 0.199 

6 1B/_/_ 2 
outs 0.249 0.386 0.248 0.257 0.401 0.282 0.354 0.188 

7 _/2B/_ 0 
outs 0.256 0.335 0.225 0.244 0.36 0.295 0.292 0.231 

8 _/2B/_ 1 
out 0.266 0.34 0.283 0.209 0.426 0.291 0.36 0.201 

9 _/2B/_ 2 
outs 0.28 0.363 0.281 0.244 0.425 0.295 0.333 0.211 

10 _/_/3B 0 
outs 0.253 0.345 0.259 0.227 0.286 0.125 0.412 0.333 

11 _/_/3B 1 
out 0.234 0.337 0.221 0.275 0.403 0.217 0.272 0.118 

12 _/_/3B 2 
outs 0.278 0.455 0.338 0.289 0.41 0.226 0.382 0.172 
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13 1B/2B/_ 
0 outs 0.245 0.44 0.222 0.2 0.375 0.241 0.363 0.197 

14 1B/2B/_ 
1 out 0.227 0.389 0.233 0.252 0.408 0.261 0.329 0.246 

15 1B/2B/_ 
2 outs 0.283 0.402 0.299 0.256 0.441 0.302 0.366 0.262 

16 1B/_/3B 
0 outs 0.244 0.471 0.151 0.2 0.25 0.3 0.355 0.174 

17 1B/_/3B 
1 out 0.262 0.277 0.23 0.252 0.382 0.205 0.312 0.192 

18 1B/_/3B 
2 outs 0.278 0.359 0.227 0.248 0.301 0.301 0.288 0.3 

19 _/2B/3B 
0 outs 0.227 0.344 0.163 0.194 0.333 0.241 0.395 0.25 

20 _/2B/3B 
1 out 0.184 0.341 0.271 0.241 0.329 0.239 0.328 0.258 

21 _/2B/3B 
2 outs 0.31 0.424 0.347 0.28 0.43 0.311 0.291 0.217 

22 1B/2B/3B 
0 outs 0.226 0.486 0.278 0.237 0.25 0.308 0.4 0.214 

23 1B/2B/3B 
1 out 0.275 0.392 0.202 0.24 0.403 0.237 0.459 0.2 

24 1B/2B/3B 
2 outs 0.263 0.484 0.252 0.247 0.507 0.344 0.351 0.204 

 P-Value <0.05 <0.05 <0.05 0.117 <0.05 0.734 0.214 0.480 

Contrary to the proportion of outs, only four Last3 were significant at the 0.05 level. This would 

suggest that for these Last3 there was a difference in the proportion of strikeouts for at least one 

state compared to another. Similar to outs, plots were built, in Figure 2-3, to show the profiles of 

the proportion of strikeouts of the different Last3 across the 24 different states. 
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Figure 2-3: Profiles for Proportion of Strikeouts 

Three Last3 sequences stood out, FB, FB, BR; FB, BR, BR; and BR, FB, BR as their profiles 

seemed higher than the others. They had proportions of strikeouts of 0.387, 0.422, and 0.358 

respectively across states for the proportion of strikeouts compared to a proportion of strikeouts 

0.3 of all eighW LasW3 seqXences across sWaWes. These Whree seqXences¶ proporWion of sWrikeoXWs 

achieved p-values well below 0.05 (< 2.2e-16), when compared to the overall proportion of outs 

which means there is a significant difference between proportions. This suggested that finishing 

with a breaking ball yielded more strikeouts after being set up by a fastball. 

2.4.2 Logistic Regression Models 

The AUC for each model was calculated with at bats of any number of pitches (Table 2-7), at 

bats with three pitches (Table 2-8), and at bats with three or more pitches (Table 2-9) are shown 

below. 
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Table 2-7: Logistic Regression Results for Any Number of Pitches for At Bat 
State Hit AUC Out AUC Run AUC 

_/_/_ 0 outs 0.707 0.605 0.656 
_/_/_ 1 out 0.696 0.605 0.664 
_/_/_ 2 outs 0.683 0.603 0.664 

1B/_/_ 0 outs 0.684 0.595 0.645 
1B/_/_ 1 out 0.682 0.610 0.664 
1B/_/_ 2 outs 0.684 0.621 0.655 
_/2B/_ 0 outs 0.646 0.603 0.651 
_/2B/_ 1 out 0.671 0.618 0.649 
_/2B/_ 2 outs 0.666 0.615 0.667 
_/_/3B 0 outs 0.666 0.470 0.513 
_/_/3B 1 out 0.709 0.545 0.653 
_/_/3B 2 outs 0.683 0.622 0.674 

1B/2B/_ 0 outs 0.643 0.607 0.644 
1B/2B/_ 1 out 0.656 0.615 0.661 
1B/2B/_ 2 outs 0.664 0.607 0.666 
1B/_/3B 0 outs 0.731 0.490 0.588 
1B/_/3B 1 out 0.675 0.599 0.643 
1B/_/3B 2 outs 0.682 0.658 0.685 
_/2B/3B 0 outs 0.676 0.525 0.566 
_/2B/3B 1 out 0.733 0.595 0.671 
_/2B/3B 2 outs 0.675 0.592 0.681 

1B/2B/3B 0 outs 0.628 0.564 0.607 
1B/2B/3B 1 out 0.614 0.617 0.657 
1B/2B/3B 2 outs 0.596 0.607 0.685 

 

Table 2-8: Logistic Regression Results for Three Pitch At Bats 
State Hit AUC Out AUC Run AUC Strikeout 

AUC 
_/_/_ 0 outs 0.635 0.571 0.593 0.724 
_/_/_ 1 out 0.649 0.572 0.598 0.726 
_/_/_ 2 outs 0.599 0.571 0.598 0.732 

1B/_/_ 0 outs 0.626 0.520 0.606 0.668 
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1B/_/_ 1 out 0.628 0.525 0.618 0.674 
1B/_/_ 2 outs 0.644 0.523 0.644 0.668 
_/2B/_ 0 outs 0.487 0.522 0.563 0.603 
_/2B/_ 1 out 0.589 0.521 0.576 0.697 
_/2B/_ 2 outs 0.631 0.525 0.632 0.665 
_/_/3B 0 outs 0.637 0.700 0.693 0.614 
_/_/3B 1 out 0.648 0.468 0.500 0.522 
_/_/3B 2 outs 0.585 0.486 0.529 0.639 

1B/2B/_ 0 outs 0.593 0.641 0.648 0.727 
1B/2B/_ 1 out 0.522 0.514 0.599 0.656 
1B/2B/_ 2 outs 0.581 0.522 0.568 0.674 
1B/_/3B 0 outs 0.631 0.493 0.468 0.576 
1B/_/3B 1 out 0.603 0.558 0.624 0.473 
1B/_/3B 2 outs 0.667 0.576 0.663 0.677 
_/2B/3B 0 outs 0.736 0.503 0.607 0.667 
_/2B/3B 1 out 0.651 0.419 0.612 0.600 
_/2B/3B 2 outs 0.498 0.549 0.527 0.608 

1B/2B/3B 0 outs 0.494 0.398 0.457 0.606 
1B/2B/3B 1 out 0.639 0.613 0.564 0.725 
1B/2B/3B 2 outs 0.623 0.570 0.5904 0.731 

 

Table 2-9: Logistic Regression Results for Three or More Pitch At Bats 
State Hit AUC Out AUC Run AUC Strikeout 

AUC 
_/_/_ 0 outs 0.712 0.615 0.654 0.648 
_/_/_ 1 out 0.705 0.613 0.659 0.634 
_/_/_ 2 outs 0.684 0.614 0.665 0.636 

1B/_/_ 0 outs 0.694 0.583 0.640 0.617 
1B/_/_ 1 out 0.699 0.596 0.671 0.634 
1B/_/_ 2 outs 0.697 0.605 0.662 0.626 
_/2B/_ 0 outs 0.625 0.611 0.625 0.612 
_/2B/_ 1 out 0.657 0.624 0.652 0.623 
_/2B/_ 2 outs 0.684 0.624 0.676 0.607 
_/_/3B 0 outs 0.600 0.452 0.482 0.537 
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_/_/3B 1 out 0.712 0.590 0.654 0.591 
_/_/3B 2 outs 0.678 0.633 0.679 0.626 

1B/2B/_ 0 outs 0.662 0.605 0.649 0.639 
1B/2B/_ 1 out 0.663 0.602 0.665 0.633 
1B/2B/_ 2 outs 0.664 0.607 0.665 0.612 
1B/_/3B 0 outs 0.735 0.510 0.580 0.673 
1B/_/3B 1 out 0.670 0.593 0.649 0.556 
1B/_/3B 2 outs 0.665 0.644 0.677 0.600 
_/2B/3B 0 outs 0.688 0.575 0.672 0.579 
_/2B/3B 1 out 0.705 0.571 0.649 0.593 
_/2B/3B 2 outs 0.634 0.615 0.630 0.580 

1B/2B/3B 0 outs 0.554 0.544 0.559 0.655 
1B/2B/3B 1 out 0.599 0.623 0.679 0.644 
1B/2B/3B 2 outs 0.624 0.631 0.701 0.655 

Overall, logistic regression models for out and run did not perform well with an AUC less than 0.7 

except for when looking at a runner on 3rd base no outs for three pitch at bats and bases loaded two 

outs for at bats with three or more pitches for out and run models respectively. There were better 

results with the logistic models for hit and strikeout. The best performing models for strikeout 

occurred when looking at just three pitch sequences with several AUC values above 0.7. For hit, 

there were several states in all three tables where the AUC was over 0.7. Interestingly, the AUC 

for at bats with three or more pitches were above 0.7 for the same states as at bats with any number 

of pitches and outperforming most of them. 

2.5 Conclusion 

Predictability of a hit, run, out, and strikeout did not perform well but showed some promise for 

certain number of pitches in an at bat. Proportion tests showed that there are differences for certain 

Last3 sequences in the proportion of outs and strikeouts for certain states. In addition, there could 
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be more differences in effectiveness between Last3 sequences of certain states that resulted in 

more outs and strikeouts. Further profile analyses are needed to explore this idea. 

2.6 Future Work 

The biggest area of future work would be a profile analysis of these sequences in two different 

ways. First, looking closer at these profiles as in this paper but adding more sequences to see 

where there is an actual difference. Determining the exact sequences with significant differences 

could impact which sequence is preferable for getting an out. Second, looking at profiles of 

sequences in each state individually. In key states, such as those that involve the bases loaded, it 

is important to get an out, with a strikeout being preferable. Thus, determining the best 

performing sequence for particular states may be the difference of giving up a run or getting out 

of an inning with a strikeout. These profile analyses could yield information on which sequences 

are really making a difference in getting outs and strikeouts. 

Another area of future work is performing a similar predictive analysis of these sequences as a 

whole, rather than separated into particular states. This would fix the problem of sparse data for 

certain states. Models could instead use the particular state as a predictor variable for a hit, out, 

run, or strikeout and may lead to better predictability. This would be a more holistic analysis, to 

get an overall sense of which sequences are working for pitches and which sequences are 

ineffective but a broader analysis than the one done in this paper.  

Separating relief pitchers and starting pitchers is another area that could be explored. Many relief 

pitchers are summoned into the game in a non-favorable state, one with runners on base, that 

they must navigate. This makes the strikeout much more important for a relief pitcher. Looking 

at the profiles for relief pitchers alone in key states would help to identify what is more effective 
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for them. A starting pitcher throws many more pitches than a relief pitcher, which means that the 

hitters are able to observe the common sequences being used. It would make sense to use number 

of pitches thrown for a model with starting pitchers. This difference between the relief pitchers 

and starting pitchers may paint a different picture than this analysis. 

Finally, looking at profiles of just at bats that were two or three pitches could be helpful. Instead 

of just looking at Last3, restricting to just two or three pitch sequences are easier to analyze and 

compare but this may cause problems for the amount of data per state. In particular, analyzing 

three pitch sequences for strikeouts, which are rare, would lead to sparseness in the data sets. 

However, when looking at outs it would be helpful to see which sequences lead to quicker outs. 

The lower the number of pitchers per at bat for a pitcher the longer the pitcher can stay in a 

game, which has a significant repercussion on a team. The health and effectiveness of pitchers is 

determined by the amount they are used over the course of the season. For a starting pitcher, 

pitching more innings will help the bullpen avoid being overused. For a relief pitcher, quick outs 

lead them to be available to pitch again earlier and the team could avoid using another relief 

pitcher right away.  
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 3 Forecasting wOBA Using High 
Accuracy Statistical and Machine 
Learning Algorithms 

3.1 Introduction 

From fanWas\ baseball Wo Major LeagXe Baseball (MLB) fronW offices, projecWions of pla\ers¶ 

future performance are important and are explored quite often. Projections of future performance 

have gotten better over the years as more data has become easily accessible through websites 

such as Fangraphs [4], Baseball-Reference [17], Retrosheet [28], and Baseball Savant [20]. 

Fangraphs [4] and Baseball-Reference [17] both offer traditional and Sabermetric [7] statistics 

for all players and teams while Retrosheet [28] offers play-by-play information for every game. 

In 2015 Statcast was introdXced and described as ³a sWaWe-of-the-art tracking technology that 

allows for the collection and analysis of a massive amount of baseball data, in ways that were 

never possible in the past. Statcast can be considered the next step in the evolution of how we 

consume and think about the sport of baseball that began over a decade ago, when Major League 

Baseball Advanced Media installed pitch tracking hardware in each Major League stadium. That 

was a step that unlocked a new age of baseball fandom, and Statcast builds upon that innovation 

b\ measXring eYer\Whing Whe preYioXs s\sWem did, along ZiWh a greaW deal more´ [29]. This new 

data became easily accessible via Baseball Savant [20], which allows for more accurate 

projections. There has been an abundance of research on the projection of future player 

performance using a variety of different methodologies.  
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Player Empirical Comparison and Test Algorithm, known as PECOTA, has the reputation of 

being the most accurate at predicting player performance [30]. PECOTA XniqXel\ Xses a pla\er¶s 

past performance and fits it to a comparable MLB player using nearest neighbor analysis [31]. 

From this, PECOTA develops a probability distribution for several metrics such as homeruns, 

strike outs, walks, batting aYerage, among oWhers, for Whe pla\er¶s performance in Whe ne[W seYeral 

years [31]. This gives a level of confidence PECOTA has in their projection rather than just a 

point estimate [31]. Another well-known and highly regarded projection system is Steamer, 

which is updated on Fangraphs [4]. Steamer uses both past performance and age curves to make 

their projections [4]. For pitchers, Steamer uses pitch-tracking data to make their projections for 

future seasons [4]. 

In 2007 Arlo Lyle combined multiple machine learning techniques to improve the accuracy of 

future performance of MLB players [32]. Lyle used the machine learning techniques of model 

trees, artificially neural networks (NN), and support vector machines (SVM) with three ensemble 

learning techniques that included bagging, boosting, and stacking [32]. At bats, runs, hits, 

doubles, triples, homeruns, on base percentage (OBP), age, and season were used as inputs to 

predict runs, hits, doubles, triples, homeruns, and runs batted in (RBI) using the various 

techniques [32]. The data that was used for training included 2,151 player-seasons from 1973-

2005 and the testing data was 330 observation from the 2006 season [32]. The best results from 

methods employed by Lyle only outperformed PECOTA in predicting triples, but outperformed 

other projection systems Marcels and ZiPS (as cited in Lyle) for MAE, RMSE, and R-Squared 

for nearly every metric predicted [32]. Looking closer aW Wriples, Zhere L\le¶s meWhod beaW 

PECOTA, Lyle¶s MAE Zas 1.27 compared Wo 1.39 for PECOTA, RMSE Zas 1.86 compared Wo 

1.97 for PECOTA, and finally R-Squared was 0.706 compared to 0.695 for PECOTA. Although 
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PECOTA Zas sXperior oYerall, resXlWs shoZed WhaW L\le¶s meWhods Zere close Wo PECOTA¶s 

[32]. 

In 2009 Jensen, McShance and Wyner, used Hierarchical Bayesian Models to project a MLB 

pla\er¶s hiWWing performance [33]. Their outcome variable was homerun total while their 

predictor variables were at bats, age, home ballpark, and position (not including pitchers) and the 

data used for analysis were 10,280 player-season totals from 1990 to 2005 [33]. A hierarchical 

model was built to predict homeruns with the homeruns outcome variable being binomially 

distributed with the number of at bats as opportunities and year specific homerun rate as the 

probability [33]. Then, Whe log odds of a pla\er¶s XnobserYed homerXn raWe for Whe \ear Zas 

modeled as a function of home ballpark, position, age and elite status as defined by the authors 

[33]. The authors full model was tested on 559 players from the 2006 season which resulted in a 

root mean square error (RMSE) of 5.3 of the predicted means and their 80% confident intervals 

contained 85.5% of their predicted data [33]. In comparing their model to PECOTA [31] for the 

Wop 118 homerXn hiWWers in 2006, Whe aXWhors¶ model resXlWed in a RMSE of 7.33, and mean 

absolute error (MAE) of 4.4 for all of those players compared to a RMSE of 7.11 and MAE of 

4.68 for PECOTA [33]. For young players, players 26 years or younger, in the data set the 

aXWhor¶s model oXWperformed PECOTA ZiWh a 2.62 RMSE and 1.93 MAE compared to a 4.62 

RMSE and 3.44 MAE from PECOTA [33]. However, for older players, those older than 36, 

PECOTA projections resulted in a RMSE of 7.26 and MAE of 4.79 compared to the aXWhor¶s 

model that resulted in a RMSE of 7.56 and MAE of 4.48 [33]. The authors noted that the larger 

RMSE ³sXggesW WhaW oXr model mighW be making large errors on a small nXmber of pla\ers´ [33]. 
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In 2014 Mushimie Lona Panda used penalized linear regression models, which included Lasso, 

Elastic Net, and Smoothly Clipped Absolute Deviation (SCAD) to predict which metrics are best 

for measXring a pla\er¶s WalenW [34]. In this paper, Panda explores five defensive metrics with 

5,585 player-seasons spanning the 1973 to 2012 seasons and forty-five offensive metrics with 

7,429 player-seasons for the 2002 to 2012 seasons, since fourteen of the forty-five offensive 

metrics were unavailable until 2002 [34]. The goal was to determine which metrics are high or 

low signal to determine which metrics were more informative and had a higher predictive power 

[34]. The results showed that seven offensive metrics stood out, which were hits, runs, walks, 

runs batted in, singles, strikeouts, and weighted runs created with a high mean and high signal 

[34]. Panda notes that this set of metrics ³proYides a sXbsWanWial redXcWion in Whe dimensionaliW\ 

for hiWWing meWrics´ [34]. For defensive metrics two out of the five were identified, which were 

assists and putouts that had a high signal and mean as well [34]. 

In 2015 Daniel Herrlin used a Bayesian approach to forecast MLB performance for optimizing a 

fantasy baseball draft [35]. Herrlin did this for both hitters and pitchers, where outcomes of at 

bats from the respective point of views [35]. Outcomes of at bats that were modeled by Herrlin 

were outs, walks, singles, doubles, triples, homeruns, and stolen bases [35]. The Bayesian model 

for hitters utilized a Dirichlet prior with multinomial data with a quadratic age curve used for 

accounting for the change over time [35]. After a posterior distribution for the next season was 

bXilW based on a pla\er¶s skill, seasons Zere simXlaWed [35]. Distributions were developed for 

runs scores, homeruns, RBI, slugging percentage (SLG), batting average, and stolen bases [35]. 

A z-score was built for each category and the average determined the rankings for players [35]. 

WiWh Whis, Whe model¶s ranking Zas compared Wo Whe acWXal ranking, Zhich Zas Whe rank based on 

the actual average of the players performance in the categories, Roto World rankings, and Athlon 
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Sports rankings [35]. Then, based on all of these rankings and actual performance Herrlin was 

able to value each player [35]. For pitchers, it was a similar process but the categories used to 

rank pitchers was wins, strikeouts, earned run average (ERA), and walks and hits per inning 

pitcher (WHIP) [35]. Herrlin then went on to develop algorithm based on the results of the 

Bayesian models that were developed for rankings [35]. 

The purpose of this chapter was to explore and contrast different methods for projecting future 

weighted on base average (wOBA) [3] with the new Statcast [29] data. wOBA is a better way of 

evaluating a hitter because it weights outcome based on run value [3]. For example, homeruns 

are weighted more than a single because the expected runs are higher after a homerun is hit 

rather than a single [3]. Although it is possible to have a wOBA above 1, across a whole season 

with sufficient at bats the range of wOBA is between 0 and 1. Several methods were explored for 

predicting a hiWWer¶s ne[W season¶s numerical wOBA and manufactured factor wOBA. 

3.2 Data 

The data that was used was hitter data from 2013-2019 for player-seasons where a player 

accumulated 200 or more plate appearances. This resulted in 2474 observations of player-

seasons. Data sets were combined from Fangraphs [4] and Baseball Savant [20] where 45 

variables were taken from Fangraphs and 4 variables were taken from Baseball Savant. The four 

variables from Baseball Savant [20] were expected weighted on base average (xwOBA), 

expected batting average (xBA),  average exit velocity (launch_speed), and average launch angle 

(launch_angle). Expected values are based on the quality of contact of a baseball that is hit rather 

Whan Whe acWXal oXWcome WhaW is inflXenced b\ Whe qXaliW\ of Whe opponenW¶s defense and defensiYe 

alignment [20]. Since Statcast [29] Zas XnaYailable XnWil 2015, ³NA´ YalXes Zere placeholders 
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for data from the 2013 and 2014 seasons. The average wOBA varies from season to season but 

has stayed around 0.320. The wOBA.factor variable was manufactured as a factor variable where 

a ZOBA of 0.320 and aboYe Zas groXped as ³AboYe AYerage´ and beloZ 0.320 Zas groXped as 

³BeloZ AYerage´. Since the group of exactly average players was scarce, it was decided to 

combine these players into a group with above average players. In addition, splitting players into 

more groups made data scarcer, leading to less training data per group. The variables 

wOBA.next and wOBA.next.factor represented the wOBA and wOBA.factor for the next season. 

For example, if an observation was for the 2013 season, these variables would be 2014 season 

values. If a player did not get over 200 plate appearances the following year, ³NA´ YalXes 

represented these variables. The description of these variables, as well as the others, can be found 

in Table 3-1. 

Table 3-1: Forecasting wOBA Variable Descriptions 
Variable Description 

Name Player Name 
Season Season 

HR Number of Homeruns 
R Number of Runs Scored 

RBI Run Batted In 
BB% Walk Percentage 
K% Strikeout Percentage 
ISO Isolated Power 

BABIP Batting Average on Balls In Play 
AVG Batting Average 
OBP On Base Percentage 
SLG Slugging Percentage 

wOBA Weighted On Base Average 
wRC+ Weighted Runs Created Plus 

Off Offensive Runs Above Average 
WAR Wins Above Replacement 



 

45 

Age Pla\er¶s Age 
GB% Ground Ball Percentage 
FB% Flyball Percentage 

HR/FB Homeruns per Flyball 
WPA Win Probability Added 
RE24 Run Expectancy based on 24 base-out state 

O.Swing% Swing Percentage Outside of Strikezone 
Z.Swing% Swing Percentage in Strikezone 
Swing% Swing Percentage 

O.Contact% Contact Percentage Outside of Strikezone 
Z.Contact% Contact Percentage Inside Strikezone 
Contact% Contact Percentage 

Zone% Percentage of Pitches seen in Strikezone 
SwStr% Swinging Strike 
Pull% Pull Percentage 
Cent% Center Percentage 
Oppo% Opposite Field Percentage 
Soft% Soft Contact Percentage 
Med% Medium Contact Percentage 
Hard% Hard Contact Percentage 

Bat Batting Runs Above Average 
RAR Runs Above Average  

AVG+ Batting Average Adjusted for park factors 
with 100 as average  

BB%+ Walk Percentage Adjusted for park factors 
with 100 as average 

K%+ Strikeout Percentage Adjusted for park factors 
with 100 as average 

OBP%+ On Base Percentage Adjusted for park factors 
with 100 as average 

SLG+ Slugging Percentage Adjusted for park factors 
with 100 as average 

ISO+ Isolated Power Adjusted for park factors with 
100 as average 

BABIP+ Batting Average on Balls In Play Adjusted for 
park factors with 100 as average 
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xwOBA Expected Weighted On Base Average 
xBA Expected Batting Average 

launch_speed Exit Velocity 
launch_angle Launch Angle 
wOBA.factor wOBA as factor (Split at 0.320) 
wOBA.next wOBA for next season 

wOBA.next.factor wOBA factor for next season 

After the data was combined the numeric variables were weighted averages per season, with the 

observation of a particular season weighted with the previous two seasons. For example, for an 

obserYaWion of a pla\er from 2016, Whe nXmeric Yariables Zere ZeighWed ZiWh Whe pla\er¶s 2015 

and 2014 seasons. The weighted averages were explored though a grid search optimizing 

predictability, where the weighting for each season was explored for integer values between 1 and 

5. This resulted in the current season being weighted by 5 and the previous seasons not being 

weighted at all (i.e. weighted by 1). If one, or both of the previous two seasons did not exist in the 

data set, which could be due to injuries or a rookie season for a player, the weighted average would 

be calculated from the existing seasons.  

Once the weighting was complete, the data was subset to included just the 2015-2018 seasons 

ZiWhoXW obserYaWions ZiWh ³NA´ YalXes. This Zas done Wo inclXde just seasons that included 

Statcast [29] data. The 2019 season was not used to build predictive models as the 2020 season 

had not happened to have truth data for outcome variables but was used to project 2020 wOBA for 

players. This resulted in 1071 observations of player-seasons for 424 different players for the 52 

variables. Also, the 2019 data was separated from the other seasons. In the 2019 data set there 

were 359 players. 
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3.3 Methods 

The data was first split into an 80/20 train/test split which led to 857 training observations and 

214 observations in the testing set. Methods that were explored for numerically predicting 

wOBA were linear regression, ridge regression, elastic net regression, extreme gradient boosting, 

and a neural network. For predicting wOBA as a manufactured factor variable the methods used 

were logistic regression, stochastic gradient boosting, extreme gradient boosting, and a neural 

network. Several models and neural network structures were explored to obtain the best 

accuracy. For the models, all variables, except Name and Season and outcome variables, were in 

the model with the addition of a quadratic age variable and four interaction terms as shown in 

Equation 3-1. Performance trends tend to follow a quadratic path [4] with age and the interaction 

terms were explored with domain knowledge to increase accuracy. All models were built using 

the training data with repeated (five times) 5-fold cross-validation and scored on the testing set. 

                      w𝑂𝐵𝐴. ݊𝑒ݓ/ݐݔ𝑂𝐵𝐴. ݊𝑒ݐݔ. 𝑓𝑎𝑐ݎ݋ݐ ~. ൅𝐴𝑔𝑒ଶ  ൅  ݈𝑎݊ݑ𝑐݄_݌ݏ𝑒𝑒𝑑 ∗ ݈𝑎݊ݑ𝑐݄_𝑎݊𝑔݈𝑒
∗ 𝐾% ∗ 𝑂. 𝑆݊݅ݓ𝑔% ൅ 𝑂𝐵𝐴ݓ  ∗ ሺݓ𝑅𝐶൅ሻ ∗ ሺ𝐼𝑆𝑂൅ሻ ൅ 𝐺𝐵% ∗ 𝐹𝐵% ∗ 𝐻𝑅/𝐹𝐵
൅ 𝑃݈݈ݑ% ∗ 𝐻𝑎ݎ𝑑% 

Equation 3-1: Projecting wOBA and wOBA factor 

For the neural networks, a grid search was performed for the best one-layer neural network from 

1 to 48 nodes, the best two-layer neural network with 1 to 48 nodes in the first layer and 1 to 30 in 

the second layer, and the best three-layer neural network with 1 to 20 nodes in the first layer, 1 to 

10 in the second layer, and 1 to 5 in the third layer. The best neural network for predicting wOBA 

was a one-layer neural network with 42 nodes with a rectified linear (relu) activation with dropout 

(0.5 rate) and a 1 node output layer with linear activation. The best neural network for predicting 

the wOBA factor variable was a two-layer neural network with 6 and 10 nodes respectively with 
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relu activation and dropout (0.5) and a 2 nodes output layer with softmax. Neural networks were 

fit on the training data with 100 epochs and a batch size of 25 using the Adam Optimizer. Without 

the amount of training observations needed, more epochs and changing batch size did not have a 

positive effect on the accuracy. Both neural networks were scored on the testing set. Due to 

computation time, deeper architectures and more nodes for the two-layer and three-layer network 

were not explored. Drastic improvements were not expected with a deeper architecture due to the 

amount of data.   

After the best methods were identified, they were retrained on all of the 2015-2018 data. Then, 

projections for the 2020 season using 2019 data were compiled and compared to projections from 

Steamer, a system used by Fangraphs [4].  

3.4 Result 

The results of projecting wOBA numerically for the next season can be found below in Table 

3-2. 

Table 3-2: wOBA Results 
Method MAE 

Linear Regression 0.0240 
Ridge Regression 0.0241 

Elastic Net Regression 0.0242 
Extreme Gradient Boosting 0.0265 

Neural Network 0.0243 

The metric used to evaluate the results was MAE rather than RMSE, since wOBA ranges 

between 0 and 1 as previously mentioned. Linear regression was the best performing metric, 

edging out ridge and elastic net regression. Both extreme gradient boosting and the neural 

network did not perform as well as the others with the neural network close behind. Although 
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linear regression performed the best, we would want a MAE better than 0.0240 in projecting 

wOBA. This error would mean a player projected to be exactly average (0.320), could actually 

be above average or poor [36]. This shows the fickle nature of sports, in particular baseball, 

which leads to difficulty in projecting future performance. The results of projecting wOBA as a 

factor for the next season can be found below in Table 3-3. 

Table 3-3: wOBA Factor Results 
Method Accuracy 

Logistic Regression 70.09% 
Stochastic Gradient Boosting 69.16% 
Extreme Gradient Boosting 65.89% 

Neural Network 75.23% 

Accuracy was the metric used to evaluate the results of the wOBA factor projections. The neural 

network outperformed the other three methods the next closest being logistic regression, both 

achieving an accuracy of 70%. An accuracy of over 70% in the context of sports bodes well for 

predictability with the variability in performance from year to year. This type of projection was 

superior to the numeric projection since a player could be average, above average, or poor with 

the MAE that was found as noted before. The MAE between the linear regression model and 

Steamer projections for wOBA and the similarity between the neural network and Steamer 

projections for wOBA as a factor for the 2020 season is below in  

Table 3-4: MAE Difference and Similarity with Steamer 
Metric Value 
MAE 0.0128 

Similarity 82.78% 

The MAE of 0.0128 and only about 17% of results differing with Steamer projections showed 

there was some agreement between them but still quite apart. One reason for this was the 
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methods described in this paper having problems with top players that are outliers. In addition, in 

2019 several elite young players have come into the league. Error! Reference source not f

ound. below illustrates this, by comparing projections of the top 5 wOBA projections for the 

2020 season Wo SWeamer¶s projecWions for 2020. 

Table 3-5: Top 5 wOBA Projections Compared to Steamer 
Name 2020 wOBA  2020 Steamer 

wOBA  
2020 wOBA 

factor  
2020 Steamer 
wOBA factor 

Christian Yelich 0.383 0.398 Above Average Above Average 
Juan Soto 0.383 0.400 Above Average Above Average 

Mike Trout 0.380 0.427 Above Average Above Average 
Anthony Rendon 0.380 0.367 Above Average Above Average 
Freddie Freeman 0.379 0.382 Above Average Above Average 

Surprisingly, Mike Trout, regarded as the best player in MLB, was ranked 3rd in projected 

wOBA for 2020 at 0.380 with Steamer projecting 0.427. Trout never had a 0.380 wOBA or less 

in his eight full seasons [4][17]. Juan Soto, in his second season at age 20, was ranked higher 

than Trout. He was very young, and not many players at their age succeed right away at the 

major league level. The average age of players from 2015-2019 was 28, minimum 19 (Juan 

Soto), maximum 43, and quantile one 25. With the data used, wOBA projections were pulled 

closer to the mean. In addition, age was significant at the 0.05 level for the linear regression and 

logistic regression models. With few young players in the data set, and those that were 

performing at a high level, age may have been overvalued in the model. Age was not a 

differentiating factor between Christian Yelich and Trout as they were the same age. TroXW¶s 

WPA has been loZer Whan Yelich¶s Whe lasW WZo seasons (5.17 and 4.14 compared Wo 7.34 and 

6.02). WPA was a significant variable in the linear model at the 0.05 level. In almost every other 

metric Trout outperformed Yelich the last three season, which made this result surprising. With a 
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MAE of 0.0240, that could push Trout above the rest but at 0.404 on the higher end it still falls 

shorW of SWeamer¶s. Also, a difference of 0.003 in ZOBA is miniscXle. BoWh Whe logisWic 

regression model and Steamer projections agreed on the top 5 wOBA as a factor variable. 

3.5 Conclusion 

Results showed that linear regression and a neural network were the best methods for projecting 

wOBA numerically and as a manufactured factor variable respectively. Although in terms of 

MAE and accuracy the results were not earth shattering, in the context of projecting future 

performance in baseball, these were not terrible results. Year to year variability in baseball lead 

to less accurate results but manufacturing variables into factors led to more useful and accurate 

information. However, the models may have overvalued age and did not perform well for players 

that are outliers. A big problem was the amount of data used for analysis. Although Statcast data 

was helpful in projecting future performance, using only data from 2015-2018 for training limits 

the amount of training observations for the models, leading to higher variability in projections. 

As more seasons are played, the incorporation of Statcast data in projecting future performance 

should lead to higher accuracy in models. However, using more data rather than Statcast data 

may lead to better results. 

3.6 Future Work 

There are several areas for future work in this area. First, the weighting of the data could be 

changed. More seasons could be used in the weighted average and a wider grid search could be 

explored for better predictability. In addition, a grid search for the best combination of seasons and 

weighting schemes could be explored as well. Also, regressing the data of players that have played 

less than three seasons towards the mean as weighting could be explored. In The Book [3] iW¶s been 
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shoZn WhaW pla\ers¶ ZOBA Zill regress WoZards Whe mean on aYerage [3]. Using this fact, average 

performance data could be added to weight the performance of players that have not played many 

seasons.  

Neural networks could also be explored more. Different architectures could be explored with more 

layers and a different number of nodes per layer. Although a wider grid search could be performed, 

it is limited by computational power. As we add more layers and number of nodes to search, the 

computations will take exponentially longer to complete. Deeper architectures could me more 

effective but with the limited amount of data and 48 inputs, the improvements may be modest. 

Next, fitting more Fangraphs player-season data rather than limiting to 2015-2018 could improve 

the models. There is still the issue of baseball changing year to year and a limited amount of player 

data for players younger than 25, but more data may assuage the issue. Also, imputing the Statcast 

data for seasons prior to 2015 could be possible but with limited data it may prove unhelpful. 

Another approach to the limited data issues is to limit the number of plate appearances to 100 and 

also have the number of plate appearances as a predictor variable in the models. Lowering the 

number of plate appearances too much could lead to problems of unusually high wOBA. 

Simulating data is another way to add more data that can be used in the models. 

Another approach for better accuracy could be using the projections from other sources, such as 

PECOTA, Steamer, and others. One way of doing this is using those projections for the next season 

as predictor variables in the models. With the accuracy of those other projection systems, they 

could add predictability by being added to the models. A different way of incorporating other 

projections is to take a weighted average after the models have predicted wOBA for the next 

season. A grid search could be explored for the optimal weighting of these projections as well.   



 

53 

Finally, approaching age in a different way may lead to better results. Instead of using the raw 

pla\er¶s age, clXsWering pla\ers based on age and Whe oWher Yariables and When Xsing WhaW clXsWer 

assignment as a predictor variable. This would combat against young players who are outliers. 

Using an aging curve to build a variable for the predicted drop or increase in wOBA based on age 

could also be used. In addition, instead of just looking at the predicted drop or increase in wOBA, 

one could look at the predicted drop or increase in wOBA by cluster assignment. 
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