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ABSTRACT

Connecting the Dots for People with Autism: A Data-driven Approach to Designing

and Evaluating a Global Filter

by Viseth Sean

“Social communication is the use of language in social contexts. It encompasses social

interaction, social cognition, pragmatics, and language processing” [3]. One presumed

prerequisite of social communication is visual attention–the focus of this work. “Vi-

sual attention is a process that directs a tiny fraction of the information arriving at

primary visual cortex to high-level centers involved in visual working memory and

pattern recognition” [7]. This process involves the integration of two streams: the

global and local streams; the global stream rapidly processes the scene, and the local

stream processes details. This integration is important to social communication in

that attending to both the global and local features of a scene are necessary to grasp

the overall meaning. For people with autism spectrum disorder (ASD), the integra-

tion of these two streams can be disrupted by the tendency to privilege details (local

processing) over seeing the big picture (global processing) [66]. Consequently, people

with ASD may have challenges integrating visual attention, which may disrupt their

social communication. This doctoral work explores the hypothesis that visual atten-

tion can be redirected to the features of an image that contain holistic information

about a scene, which when highlighted might enable people with ASD to see the forest

as well as the trees (i.e., seeing a scene as a whole rather than parts). The focuses

are on 1) designing a global filter that can shift visual attention from local details

to global features, and 2) evaluating the performance of a global filter by leveraging

eye-tracking technology. This doctoral work manipulates visual stimuli in an effort
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to shift the visual attention of people with ASD.

This doctoral work includes two development life cycles (i.e., design, develop, evalu-

ate): 1) low-fidelity filter, and 2) high-fidelity filter. The low-fidelity filter life cycle

includes the design of four low-fidelity filters for an initial experiment which was tested

with an adult participant with ASD. The performance of each filter was evaluated

by using verbal responses and eye-tracking data in terms of visual analysis, fixation

analysis, and saccade analysis. The results from this cycle informed the decision

for designing a high-fidelity filter in the next development life cycle. In this second

cycle, ten children with ASD participated in the experiment. The performance of

the high-fidelity filter was evaluated by using both verbal responses and eye-tracking

data in terms of eye gaze behaviors. Results indicate that baseline conditions slightly

outperform global filters in terms of verbal response and the eye gaze behaviors.

To unpack the results in more details beyond group comparisons, three analyses (e.g.,

luminance, chroma, and spatial frequency) of image characteristics are performed to

ascertain relevant aspects that contribute to the filter performance. The results indi-

cate that there are no significant correlations between the image characteristics and

the filter performance. However, among the three characteristics, spatial frequency

is depicted as the most correlated factor with the filter performance. Additional

analyses using neural networks, specifically Multi-Layer Perceptron (MLP) and Con-

volutional Neural Network (CNN), are also explored. The result shows that CNN

is more predictive of the relationship between an image and visual attention than

MLP. This is a proof of concept that neural networks can be employed to identify im-

ages for future experiments, by avoiding any variance or bias in terms of unbalanced

characteristics of images across the experimental image pool.
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Chapter 1

Introduction

Over the past decade, Data Science has become a revolutionary technology in both

academic research and the technology industry. It has proven to be beneficial in many

fields such as supply chain optimization, finance, biomedicine, bioinformatics, natural

sciences, social networks, smart cities, education, energy, sustainability and climate,

health science, etc. The goal of Data Science is to extract, analyze, and visualize data

to create insights which help make powerful data-driven decisions. This dissertation

applies Data Science to human challenges, specifically in social communication in

individuals with autism spectrum disorder (ASD), to explore the insights from data

analysis to inform the design of innovative assistive technologies. As computing has

become ubiquitous in the age of mobile computing, personal and assistive devices have

turned to big data for solutions to problems that range not only from new factors

such as wearable devices, to new sensors such as IoT sensory devices, but also to new

insights from Data Science collected by these same devices.
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1.1 Innovation of Assistive Technologies

Data Science drives the design of assistive technologies. Historically, assistive technol-

ogy has addressed functional limitations beginning with rehabilitating soldiers after

war to functional skill training for the disabled [86]. In terms of skill development for

disabled people, functional goals have historically taken precedence over improving

life experiences [86]. Still today, more often than not, new technologies are designed

to diagnose or otherwise differentiate autistic from typical behavior as is the focus of

behavior intervention journals [74]. Novel technology for autism has focused primar-

ily on addressing medical symptoms that shape deficit behavior into more normative

behavior. In a recent meta analysis of Human-Computer Interaction (HCI) projects

for autism found that the majority of assistive technology projects in the field of HCI

are interested in mediating or re-mediating core symptoms [74]. A critical review of

the research reveals most technologies aimed to support users with ASD attempt to

change social behavior to be more normative [74]. Projects aim to have therapeutic

value at a behavioral or cognitive level to change specific social skill deficits to re-

semble normative behavior in skills such as emotion recognition, conversation skills,

and turn taking. In other words, assistive technology tends to focus on supporting

functional skills rather than improving life experiences.

Recent work calls for attention to be paid to supporting issues such as emotional

and sensory regulation, communication, motor coordination, executive functioning,

and sensory processing [85]. A few studies have addressed these areas. For exam-

ple, the design of wearable applications has been explored to support self-control

of behavior of children with Attention-Deficit/Hyperactivity Disorder (ADHD) [55].

Other projects have explored the use of multisensory interactive displays as a ther-

apeutic device to support the motor development and sensory processing of children

with ASD [55] and found that natural user interfaces in tandem with multisensory
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stimuli are easy to use and useful for children with severe autism. However, there

are less explored opportunities to use technology to help users with ASD in areas of

challenge such as visual attention. These emerging efforts in HCI address a broader

range of skills and experiences and aim to improve the quality of life. The evolution

of assistive technology has benefited from the Data Science revolution in that access

to information allows for new types of assistive technologies–smart technologies that

can respond in real time or with algorithmic decision-making capabilities. It is the

intersection of innovation and insight from which this work springs.

1.2 Characteristics Associated with Autism

The current clinical definition of autism in the Diagnostic and Statistical Manual 5th

edition (DSM-5) states that autism is a spectrum disorder, indicating that there are

three levels of severity across two axes of behavior [8]. The three diagnostic levels of

autism are: 1) severely impacted, 2) moderately impacted, and 3) mildly impacted.

The two axes of behavior are: restrictive, repetitive behavior and social communi-

cation impairments. Restrictive, repetitive behaviors are episodes during which a

person repeatedly engages in a motor movement such as lining up toy cars, with

no obvious purpose beyond meeting an unidentified, internal need of the person [8].

Some behavioral clinicians interpret these behaviors as problematic because they ap-

pear unusual and are often distressing for parents and teachers to witness. Engaging

in these self-stimulating behaviors, on the other hand, often provides relief to people

with ASD. Tension is created between the person needing to regulate themselves and

the people in the environment who are distressed by the autistic-looking behavior.

Many behavioral programs attempt to decrease the repetitive, non-functional behav-

iors as they are deemed to be disruptive. The assumption is if someone is engaged in
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self-stimulation, then they are not available to learn from the environment.

The second axis in the diagnostic criteria for autism are social communication im-

pairments. Social communication impairments refer to understanding as well as using

spoken and nonspoken (nonverbal) communication. An example of a social commu-

nication skill is joint attention–including “sharing attention (e.g., through the use of

alternating eye gaze), following the attention of another (e.g., following eye gaze or a

point), and directing the attention of another” [22]. Joint attention is a skill that at

3 to 4 years of age, has been used to distinguish children with ASD from those with

development delays [21]. Social communication differences have been described in

literature working with people who have challenges with empathizing. When a per-

son does not act in an expected way to demonstrate their understanding of others’

experiences, society assumes that the person lacks empathy [9, 38]. The challenge of

demonstrating expected social behaviors persists across a lifetime. The social percep-

tion of people with ASD has been characterized as: early in life “aloofness,” school

age years “socially avoidant,” and lastly adulthood as simply “odd” [31]. To adjust

to this broad range of social challenges over a lifetime, many researchers, educators,

and clinicians have focused on developing social skill interventions through a range

of delivery agents including parents, peers, highly trained therapists, and technology

(e.g., video modeling) [62]. This variation of delivery agents is desirable, because

the challenges with social communication manifest in a variety of ways across the

lifespan requiring varying support by stakeholders. Therefore, social communication

supports require flexibility over the course of a day and over a lifetime to be adaptive

to dynamic social contexts and an individual’s changing needs.

A dynamic part of social interactions is the nonverbal communication that consists

of both reading as well as using body language, gestures, facial expressions, and

tone of voice. Nonverbal deficits in autism have been described as difficulty with:
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making eye contact, entering a group, reading body language, using body language,

and understanding facial expressions [62]. This collection of ephemeral behaviors

could provide a context for intervention systems as some form of nonverbal behavior

is constantly present in face-to-face interactions. Intervention systems are capable of

constant monitoring while permitting the user to engage only when needed.

1.3 Nonverbal Behavior

Nonverbal skills are a critical point for communication and intervention [48]. Non-

verbal communication begins as soon as a person approaches another person, makes

eye contact, positions their body in relation to others, and continues as one speaks

and listens. Therefore, nonverbal behavior may occur as the first behavior in an in-

teraction and requires global local integration to make sense of the interaction. One’s

tone of voice and use of gestures and body language all convey messages about the

intentions of the people in the interaction. For example, an attempt to exert domi-

nance over a group might be apparent when someone remains standing while others

are sitting. These unspoken dynamics are difficult to understand and implement for

those with ASD. Emerging technologies need to support an understanding of the

dynamic nature of social interactions across the variety of stakeholders. Therefore,

the focus of assistive technology for nonverbal communication is concerned with the

“interplay between agents,” incorporated through multiple modes of interactions that

result in the quality of engagement and reciprocity [61]. Additionally, consideration

needs to be given to the temporal patterns of interaction [77], implicit in face-to-face

interaction.

Technologies that support nonverbal skills and support one’s interaction partner could

build a bridge between the normative and neurodiverse experiences. Nonverbal com-
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munication is the first point of contact in face-to-face interaction, thus an ideal place

to target supports. Successful interactions are the result of both parties, sometimes

with a greater degree of effort being made on one’s conversational partner; this work

may be hidden by computer mediated communication [13]. As we are living in “neuro-

shared spaces,” both on-line and off-line, supports for society are very much needed

because “(e)ngagement with the majority culture is often necessary to enable broad

cultural change and potentially acceptance” [68]. This work aims to support non-

verbal communication, which requires global processing, by leveraging findings in

ASD research, eye-tracking research, digital image processing technologies, and eye-

tracking technology.

1.4 Autism and Social Perception Challenges

Differences in eye-tracking patterns have been found in infancy between children who

are diagnosed with ASD and typically developing children. Researchers have iden-

tified genetic links to actively seeking social stimuli such as human faces [19] thus,

demonstrating the potential for biological causes for differences in the behavior of

eye contact. Whether biology plays a role or not, these differences are important in

that reduced attention to social stimuli has been linked to difficulties in developing

communication abilities [72]. In fact, current research is examining the correlations

between receptive language ability and attention to social stimuli. Researchers suggest

there is a “possibility of training social attention allocation to promote the develop-

ment of other abilities, including those related to understanding and using language”

[72]. Precedence for viewing autism through a cognitive, biological, behavioral, and

communication lens is well established. This work considers the sensory perception

differences–a more recent addition to the diagnostic label. Sensory challenges can sig-
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nificantly impact behavior and cognition [66]. Therefore, this work takes the stance

that sensory issues should be supported even before behavioral of cognitive issues are

addressed.

This doctoral works supports sensory perception in a way that is specific to visual

attention to local and global features of an image–with the assumption that cognitive

abilities are intact and can be utilized if/when the hurdle of visual attention is min-

imized. This charge is taken up in this current study. For example, researchers who

know where a person is looking when speaking about a television program can make

these aspects visually brighter, which improves the comprehension of the person who

is listening to the speaker [64]. So, the manipulation of the visual stimuli could have

an impact on the cognitive process [64]. Leveraging these insights, this work aims

to work around local interference (local features overwriting global features) that has

been reported in decades of psychology literature [39, 72, 66, 34, 14]. Ultimately, this

work aims to facilitate visual attention to the semantic (global) features to support

social communication at the onset of an interaction.

1.5 Visual Attention

Challenges with sensory integration have been linked to the social challenges in

autism. Social interactions are comprised of rich, dynamic exchanges of informa-

tion that command differential attention. Deciding what and who to attend to in a

scene is based on what aspects of the scene are relevant for that moment and over

time. What is relevant can change rapidly. Therefore, with each new task (e.g., social

exchange) most people quickly decide what is relevant to attend to and what can be

ignored. Attending to relevant features of a task requires an overall understanding

of the task, or a sense of the “big picture.” From there, one’s attention can focus on
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only the details that are required based on the nature of a task. This process occurs

automatically as sensory information is continually processed in both a top-down and

bottom-up manner [5]. The global meaning, or gist, of a scene occurs pre-attentively,

with relevant local details being processed if the task requires, and irrelevant details

being suppressed [73]. This distinction is important because it is a critical point that

can be leveraged for people with sensory processing challenges. Specifically, manip-

ulating parts of images that are processed in the pre-attentive stage opens up new

opportunities to support sensory integration through novel assistive technologies [66].

Characteristics of both the viewer and task (i.e., top-down) as well as features of

the stimulus (i.e., bottom-up) draw one’s initial eye gaze. These first few fixations

of a scene are believed to be involuntary. Once a gist is formed, attention shifts

between details and the big picture. Attentional gaze shifts have been found to also

be influenced by the emotional content of a scene and its visual structure–specifically,

spatial frequency which captures the scale of the contrast density [34]. This tendency

to attend to emotion and spatial frequency differentially has been found to not occur

in the case of ASD [23]. Although eye gaze in a live social interaction has recently been

found to be functional in a few autistic children, [41, 15], autistic eye gaze has been

repeatably reported as different. Previous research employing participants with ASD

revealed perceptual differences in attending to spatial frequency suggesting local (high

spatial frequency) over global features (low spatial frequency) are visually attended

to in both social and nonsocial stimuli [11]. This work aims to modify the stimulus

features as sensory processing occurs first and “(t)he bottom-up control of attention

by those [sensory] features is largely involuntary” [83]. Therefore, the environment

needs to be changed to shift visual attention towards global features. This work

aims to provide a sensory-perceptual “work-around” to guide the viewer to attend

visually to the pre-processed stimuli thereby augmenting bottom-up processing by

reducing the visual processing workload. This work differs from most eye-tracking
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interventions for ASD in that it does not target behavior change for the purpose of

shaping neurotypical (NT) behaviors. Rather, this work aims to manipulate visual

attention of static scenes to promote global processing (e.g., pre-process) in an effort to

promote learning and communication. The conceptualization, design, development,

and evaluation of a global filter is described here within.

1.6 Autism and Global-Local Processing

Global processing is the rapid processing of a scene to get a holistic understanding

of an object, event, or scene (i.e., seeing a forest before seeing the trees). Detecting

overall shape, proximity, and context provides a sense of the “holistic view” [54]. In

contrast, local processing allows for rapid processing of the details, and has been re-

ferred to as “analytic processing” [54]. The global and local streams of information

become integrated during cognitive processing to produce a complete mental repre-

sentation of the stimuli [20]. This guides visual attention, which is a set of cognitive

processes that filter relevant from the irrelevant information in a visual scene. Many

researchers claim that the average person first processes global information by taking

in the gist or holistic view, and then integrates the global view with the local details

within a fraction of a second [10, 16, 52, 51]. In artificial conditions, such as Navon’s

hierarchical letters [52] (see Figure 1.1), one’s default precedence can be determined

by contrasting local and global features. For example, Figure 1.1 top image depicts

a hierarchical letter that has a global feature (i.e., overall shape) that is the letter F,

and a local picture is the many small-sized letter Z’s. People are typically quicker at

detecting the F than Z [52]. The task in Navon’s test is to choose one of the bottom

images that matches to the top image (see Figure 1.1). The first image at the bottom

shares local features with the top image while the second image share global features
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with the top image. If a person is asked to find a match between the top and bottom

images and the answer is the first image at the bottom, they are focusing on local

features; and if they select the second, they are focusing on global features.

Figure 1.1: Sample items similar to items on the Navon’s test, 1977. The top item is
the target. The bottom items are the choices to choose from when a person is asked
to find the match. The bottom left shares local features with the top whereas the
bottom right figure shares the global feature.

However, research has shown that some people with ASD visually process the world

differently, and the global and local streams may not be integrated smoothly due to

a tendency to prioritize local details [66]. This has been verified repeatedly by using

the Navon’s test in research studies [28, 30, 34, 39]. The lack of attention to the

global features may result in missed social information. For example, interpreting

face to face social interactions requires rapid integration of global details (e.g., body
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language, emotion recognition) with the relevant local details (e.g., attending to a

bleeding scratch on someone’s face instead of number of freckles). As social interaction

contains multiple streams of information across multiple modalities, people with ASD

can miss key elements of social information. Missing global information can result in

challenges with a variety of social communication skill such as entering and leaving

conversations, responding on a topic, interpreting a speaker’s intent, making social

connections and friendships [66]. This work aims to filter out less socially-relevant

local details and highlight the global features of visual scenes to help people with

ASD understand the global information of an image (i.e., gist).

This work contributes both a low and high fidelity global filter that manipulates im-

ages to highlight global aspects. The design phases were completed in collaboration

with a field site. The prototypes were tested with autistic children who display de-

velopmental language delay. The children viewed and verbally responded to baseline

and filtered images. Findings reveal that this particular group of children performed

well in the baseline condition as well as in the filtered condition–particularly in the

high-fidelity user study. Additional analysis of image features was conducted and a

predictive model was created. Implications for future work is provided.

1.7 Hypothesis

By manipulating the stimuli using the eye-tracking findings of NT people as a tem-

plate for global features, a global filter can guide people with ASD to shift their visual

attention.
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1.8 Research Questions

1. How to design a global filter to shift visual attention?

(a) How to identify the global area of interest for a given image?

(b) How to create filter design (low fidelity)?

(c) How to automate/create a data-driven filter?

2. How to effectively evaluate the performance of visual attention of people with

ASD with the use of a global filter?

(a) Which methods and approaches identify visual attention of people with

ASD through eye-tracking technology?

(b) Which concepts connect eye fixations and/or saccades to global vs. local

processing?

(c) Which statistical methods and/or machine learning/deep learning approaches

best predict visual attention for a given image?

1.9 Contributions of the Dissertation

The contributions of this dissertation work include:

1. A proof of concept that demonstrates the feasibility of using a filter to shift

gaze path to global features. Since poor global and local integration can lead to

social challenges [21], filtering a scene could serve as an assistive technology that

augments the process thus empowering individuals with ASD through access to

visual information.
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2. To the best of my knowledge, this is the first work in designing a technology

to work around local interference (local features overwrite global features) for

individuals with ASD. Implications of this concept for filtering images could

inspire HCI researchers to consider new ways to support other neurodiverse

conditions like ADHD, dyslexia, etc.

3. An application of Data Science/AI applied to HCI by predicting the perfor-

mance of a given image.

1.10 Summary of the Following Chapters

In chapter 2, I provide the summary of related work including the details of eye-

tracking technology, eye-tracking data, the types of technology and data that are

used in this dissertation work, the Cluster Fix algorithm that is used to identify

important eye-tracking metrics including saccades and fixations, experimental image

dataset, atypical visual saliency in ASD, and the effect of spatial frequency on eye

gaze shifting.

In chapter 3, I discuss the preliminary work–low-fidelity design. It contains two

important tasks for designing and evaluating the proposed global filters. The first task

is about designing low-fidelity filters: how the filters were created and the rationale of

choosing each filter for experimentation. The second task focuses on the evaluation

of each filter by using verbal responses and leveraging eye-tracking technology; in

particular, eye-tracking data of an adult with ASD was captured while he viewed the

filters.

In chapter 4, I discuss the high-fidelity filter study including design methods, data

analyses, results, and discussion.
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In chapter 5, I discuss further analysis that is completed to unveil the characteris-

tics of images in the experimental image pool in terms of luminance, chroma, and

spatial frequency. Also, I provide additional analyses using Machine Learning tech-

niques, specifically two Deep Learning models namely Multi-Layer Perceptron and

Convolutional Neural Network.

In chapter 6, I provide the conclusion around all the studies collectively. And, I lay

out the future studies that can push this work forward.
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Chapter 2

Related Work on Eye-tracking

Technology

Eye-tracking technology is primarily used to detect and capture the activities of eye

movements such as eye gazes, fixations, and saccade (see section 2.2), that are an-

alyzed to understand human visual behaviors. Recent advances in technology have

made great strides for improving eye trackers in terms of precision and affordability,

and they have been used in different fields of research such as neuroscience, psychol-

ogy, industrial engineering and human factors, marketing/advertising, and computer

science [24]. The range of eye-tracking behaviors have been used for various purposes.

For example, eye gaze has been used in online information retrieval research to under-

stand the pattern of human behavior in navigating the information on the web [33],

whereas fixations provide information about which details were taken in, and sac-

cades show the movement from one area to another. Gaze path provides information

regarding the course of moving the eyes across a scene.
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2.1 Eye-tracking Hardware

Eye trackers are categorized into three main types: screen-based eye trackers, eye-

tracking glasses, and eye tracking-enabled Virtual Reality (VR) headsets. Each of

them is recommended to use in different settings. The following subsections provide

more information on the eye-tracking devices available on the market and specify

those that were used in the experiments.

2.1.1 Screen-based Eye Tracker

A screen-based eye tracker, also known as desktop eye tracker, detects visual at-

tention in controlled environments. It allows understanding of visual attention by

tracking where one looks on a screen such as images, videos, websites, games, soft-

ware interfaces, etc. This type of eye tracker is best used for observations of any

screen-based stimuli in a lab setting because the respondent has to be seated in front

of the eye trackers. Oftentimes, a chin rest is used with screen-based eye tracker to

minimize participant’s head movements while keeping the participant in focal range

of the eye tracker. Sometimes, additional equipment like a forehead rest is also used

in combination with a chin rest to stabilize participant’s head. Figure 2.1 shows some

screen-based eye trackers, and a participant is using a chin rest in the bottom image.

This screen-based eye tracker is used in the preliminary study.
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Figure 2.1: Examples of screen-based eye trackers. Top image is the EyeLink 1000
Plus device by SR Research. Bottom image is the EyeLink Portable Duo device by
SR Research [1].

2.1.2 Eye-tracking Glasses

Eye-tracking glasses, also known as a head-mounted eye tracker, are wearable de-

vices that allow us to understand how one views and interacts in the physical world.

Researchers use this type of eye tracker to measure visual attention outside of a labo-

ratory setting; respondents are able to walk around freely with the glasses. See Figure

2.2 for a sample of eye-tracking glasses. These eye-tracking glasses are used in the

high-fidelity study.
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Figure 2.2: A participant, during the experiment with high-fidelity filters, is wearing
the eye-tracking glasses by Positive Science. The participant’s face is blurred for
privacy concern.

2.1.3 Eye tracking-enabled VR Headsets

Eye tracking-enabled VR headsets are wearable devices that capture visual attention

in virtual environments. VR eye trackers offer the possibility of conducting experi-

ments in a world that is no longer bound by factors such as time, safety, and budget.

Researchers in [18] provide an introduction to eye tracking in VR and a guide to set

up experiments with eye tracking-enabled VR headsets. See Figure 2.3 for a sample

device of VR eye tracker currently on the market.
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Figure 2.3: An example of VR eye-tracking device by Pupil Labs.

2.2 Eye-tracking Data

Depending on the type of eye tracker, oftentimes, the eye-tracking data outputs in-

clude eye positions, also known as gaze points, that allow us to assess visual attention.

Instead of the raw gaze points (described in section 2.2.1), many researches have used

different eye-tracking data metrics in their analyses. A comprehensive guide to the

metrics can be found in this book [35]. The eye-tracking data metrics that are used

in this dissertation are described next.

2.2.1 Gaze Points

Gaze points are the positions of the eyes, that show where/what the eyes are looking

at. If an eye tracker captures data with a sampling rate of N (number) Hz, that

means N gaze points per second. Gaze points are then clustered into metrics such as

fixations and saccades (described in sections 2.2.2 and 2.2.3 respectively). Figure 2.4

show an example of gaze points.
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Figure 2.4: An example of gaze points. Green x’s denote gaze points of a participant
that were captured in the experiment for that particular image.

2.2.2 Fixations

A fixation is a cluster of a series of gaze points that is very close in time and/or space;

it denotes a period of time where the eyes are fixated towards a particular object. Fix-

ation is a popular eye-tracking metric because it shows what grabbed the attention of

a participant, or what is focused for a period of time when the eyes are relatively sta-

tionary because they are taking in information [60]. Also, fixations are considered the

most informative metric mainly because compared to other metrics like saccades (see

section 2.2.3), which happen too rapidly for the eyes to assimilate information [60].

As a result, the use of fixations minimizes the complexity in analyzing eye-tracking

data while maintaining its important characteristics for understanding cognitive and

visual behavior [69]. See Figure 2.5 for an example of eye fixations. As you can see,
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a cluster of eye gaze points (green x’s) makes up a fixation (blue x’s).

Figure 2.5: An example of fixations. Blue x’s denote fixations. Green x’s denote eye
gazes.

2.2.3 Saccade/Scanpath

Saccade, also known as a scanpath, refers to rapid eye movements between fixations.

A saccade is the fastest movement in human body; visual information is suppressed

during this movement, i.e., visual stimuli are not processed when the eyes are in rapid

motion. Figure 2.6 shows an example of saccade between each fixation. Saccades have

been used in research to indicate which areas of an image have been scanned. Scan

path is used to understand the sequence of scanning. These metrics have not been

frequently used in autism research but could yield insight into global-local processing

in this work (as described in section 3.2.3).
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Figure 2.6: An example of saccade. Green lines denote saccade between fixations,
which are denoted by blue x’s.

2.2.4 Area of Interest (AOI)

An area of interest (AOI), also called a “hotspot,” is a region of an image that is

identified before a study as a target for visual attention. These areas are then used as

a variable in the analysis. AOIs help researchers understand where people might be

looking at and therefore thinking about. The purpose is to gather insight specifically

for that region. In this work, the AOIs are where early NT fixations lay on a given

image. The bright yellowish/greenish areas in Figure 2.7 represent the AOIs in the

context (as no red areas are present).
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2.2.5 Heat Maps

Heat maps are visualizations of the general distribution of gaze points. Heat maps

are typically seen as a gradient overlay on a picture where color spectrum is used to

indicate amount. For the heat maps in this work, yellow is the most viewed area and

blue is the least. See Figure 2.7 for an example of a heat map.
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Figure 2.7: Top is a baseline condition of a living room image. Bottom is the cor-
responding heat map of the living room image where dark blue represents low to no
fixations.
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2.2.6 Video Logs

Video logs show visual behavior of viewers in video format. Figure 2.8 shows a video

log sample of two screenshots from the high-fidelity filter experiment.

Figure 2.8: Screenshots of an eye-tracking video log captured during high-fidelity
filter experiment.
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2.3 Cluster Fix Algorithm

Eye gaze behavior is commonly parsed into fixations and saccades by using differ-

ent algorithms. Traditional algorithms use eye acceleration, dispersion, or velocity

thresholds to separate and label visual behavior into saccades and fixations. Sulvucci

et al. classified algorithms for computing saccades and fixations into three categories:

velocity-based, dispersion-based, and area-based [69]. To identify the occurrences of

saccades, researchers have employed velocity and/or acceleration thresholds as eye

velocity and acceleration are much greater during a saccade compared to a fixation

[36, 53, 56]. Berg et al. and Liston et al. also employed a velocity-based algorithm

for identifying saccades, then applied a principal component analysis technique for

differentiating between saccades, smooth pursuit and noise [12, 45] (smooth pursuit

and noise are not in the scope of this dissertation work). Another eye gaze algorithm

identifies saccades and fixations of a viewer for a given image by employing dispersion

and projection clustering [79].

However, König and Buffalo pointed out the limitations of these algorithms [40].

First, using velocity and acceleration thresholds for detecting saccades and fixations

are not enough for complex oculomotor tasks including viewing of natural scenes and

dynamic stimuli without any constrain, i.e., more variables have to be included in

identifying saccades and fixations. Also, there is inconsistency in results due to the

use of arbitrary thresholds in previous algorithms. As a result, König and Buffalo

proposed a new algorithm called Cluster Fix, to address the limitations of previous

algorithms.

Cluster Fix was employed to build the Object and Semantic Images and Eye-tracking

(OSIE) dataset [87] that contains fixations of 15 NT people viewing 700 images. This

current work also utilized the Cluster Fix algorithm to generate saccades and fixations
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of the participants to be consistent with the OSIE dataset that was employed to build

global filters and evaluate them. The details of the procedural outline of Cluster Fix

algorithm can be found in the original paper [40], and the source code in MATLAB

can be found here [42].

The Cluster Fix algorithm employs k-means clustering techniques based on four eye

movement variables: distance, velocity, acceleration, and angular velocity, to identify

fixations. Distance is “Euclidian distance between the position of the scan path at a

time point to the position of the scan path two time points later” [40]. Velocity and

acceleration are calculated “as the first and second derivative of position, respectively”

[40]. Angular velocity is computed “as the difference in the angle of the scan path from

one time point to the next” [40]. Cluster Fix utilizes the average silhouette width (a

built-in MATLAB function SILHOUETTE) to automatically determine the number of

clusters (k). Similar to general k-means clustering intuition, Cluster Fix first globally

assesses the whole scan path, identifies saccades and fixations, and then locally re-

assesses each saccade and fixation pair in order to detect small, short saccades, and

the start and end of saccades.

2.4 Eye-tracking Technology and Autism

Visual attention has been tracked by using eye gaze patterns to predict where people

will look in natural scenes. Researchers have focused on attention to characteristics

of the images such as a pixel, object, and semantic levels (e.g. “features that relate

to humans: face, emotion, touch”; “objects with implied motion”; “relating to other

senses of humans: sound, taste, touch, smell”; “designed to attract attention or for

interaction with humans: text, watchability, operability”) [87]. For example, in [87],

researchers built a dataset of 700 images with eye-tracking data of 15 viewers and
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annotation of the image about object and semantic attributes. When researchers

evaluated the eye-tracking data, they found for NT viewers that object and semantic

information from scenes are the most important aspects and are seen first. For ex-

ample, in the image with a man and a bird (see Figures 3.1 and 3.2), the man’s face

and the bird are global features.

The database was then used again to speculate where people with ASD would look

in a scene [81]. Eye-tracking data for 20 people with ASD was compared to the eye-

tracking data from 19 NT people [81]. A stronger image center bias in people with

ASD was a new insight. Specifically people with ASD looked at the center of the

image longer–regardless of how many objects were in the scene [81]. Additionally,

the researchers found that there was a reduced saliency for faces and locations. They

deduced this finding from the social gaze of the people in the images. Overall, they

found that the tiny (pixel-sized) but drastic (high-contrast) changes drew the eyes of

people with ASD more than did the whole objects or the overall scene [81].

Previous research also investigated the link between the visual behavior of people

with ASD and their atypical visual processing of spatial frequencies (i.e., visual char-

acteristics that can be distilled from an image to reveal the varying degrees local

to global information) [23]. Additionally, spatial frequency has been explored as a

characteristic of stimuli that is processed across both streams: global stream–low fre-

quency, and local steam–high frequency. The experiment in this study involved 30

people with ASD and 30 NT people focusing on gaze shifts that cue the location of

targets in different spatial frequencies. The results revealed that people with ASD

were biased toward the use of high spatial frequencies (local information).

Even though these existing research projects leveraged eye-tracking metrics (e.g.,

fixations for [87], fixations for [81]) in studying the differences between people with

ASD and NT people, they do not aim to work around local interference for people with
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ASD. This dissertation work aims to work around local interference by shifting the

eye gaze of people with ASD to the global features in a given scene, by manipulating

the stimuli through the use of a global filter.
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Chapter 3

Preliminary Work: Designing

Low-fidelity Filters

3.1 Methods

To test the hypothesis that filtered images could help assist in shifting eye gaze from

local to global features, a variety of filters were created. For the initial study presented

first, basic tools such as PowerPoint and PhotoScape X were used to visually highlight

the global aspects of 40 images. The images were taken from the open-source dataset

previously described [87]. All images can be found at this github repository [2]. Four

filters to highlight global features in different ways were designed (for details, see

Design of Filters section).
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3.1.1 Design of Filters

The filters were designed to highlight global image features by altering high contrast

in brightness or color in four different ways. For example, the global information (or

main idea) of the image in Figure 3.1 is the man and the bird, which is illustrated

by the NT heat map overlaying on corresponding image in Figure 3.2. Each of the

filters was therefore used to bring attention to global concepts such as the man and

the bird.

Figure 3.1: A sample of image from the experiment in Baseline condition (raw image).
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Figure 3.2: This image shows the AOIs by overalying NT heat map on the corre-
sponding image in Figure 3.1. It shows the global features which are the man and
the bird.

1. Baseline (Raw Image): Ten raw images were used as a baseline condition.

The baseline images were not altered (e.g., see Figure 3.1).

2. Lined Edges Filter: The Lined Edges filter converts the entire image to a

black and white line drawing that emphasizes the shapes of and boundaries

between objects. By removing the shading and detail within the objects, the

spatial-frequency is reduced, with the intention of transforming the image to

be only global features (e.g., see Figure 3.3). This filter is inspired by and

similar to icons used in Augmentative and Alternative Communication (AAC)

systems. AAC devices provide a means of expressive communication for people

with complex communication needs in producing or understanding speech [29].

For example, Proloquo2Go is a popular AAC software that uses line drawing

32



icons commonly deployed on tablets [4]. Line drawings simplify and promote

global processing because all features that would be processed by sensory neu-

rons that process local details such as texture are removed, leaving just the

shape of objects. Some global features are removed as well such as color and

shading. This filter prototype enables examination of whether removal of sev-

eral features would support leaner [82], more efficient visual processing of global

information. To make images appear as line drawings, the spatial frequency was

set at a consistent level across the whole image, rather than varying for con-

tours or high-contrast areas. For this purpose, commercial filters that affected

the whole image rather than specific features were used. The intent was to

minimize details beyond those that provided an object’s edge. Because object

edges are perceived automatically to aid shape identification, the hypothesis is

that this filter would support object recognition [63].

Figure 3.3: An example of Lined Edges filter.

3. White Background Filter: The White Background filter highlights the im-

age’s assumed primary object, which is presented with original color and shad-
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ing. This object was determined by the researchers. The background is pre-

sented as white space. The hypothesis is that a primary object with no back-

ground would promote global processing, as the less-relevant local information

that could distract the observer has been removed. This approach assumes that

primary objects are sufficient for an observer to produce a main idea, gestalt, or

holistic comprehension of an image. The idea of removing all the images that

are not primary images as determined by the design team creates a condition

similar to the “errorless learning” method of ensuring a student gets a response

correct by only providing a correct response over the course of prompts or when

a task is particularly difficult. Of course, many of the main objects still contain

details that could distract participants who display local interference [78]. See

Figure 3.4 for an example of White Background filter.

Figure 3.4: An example of White Background filter.

4. Grey Blurred Filter: Unlike the White Background filter that whitens the

background in an image, the Grey Blurred filter highlights the primary object by

presenting it with its original color and shading, against a greyed-out, blurred
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background that reveals a hint of context. The hypothesis is that this filter

would elicit visual attention to the raw main objects as they are richest areas

in terms of intensity while still providing partial information about the context.

Also, some of the background would be preserved as the image is altered by

removing the color and distorting the pixels of the background, the goal is to

remove pixel-level contrasts (e.g., a high contrast in hue intensity where a re-

flection appeared) in the background that would not contribute to identifying

the main object. See Figure 3.5.

Figure 3.5: An example of Grey Blurred filter.

5. Animation: The animation consists of a sequential presentation of sequencing

of the four filters, using a graphical interchange format (GIF). The GIF cycles

through each filter over three seconds. All baseline and filtered images were

also presented for three seconds each, as were the images in the eye-gaze studies

referenced earlier. The hypothesis is that the animation can simulate the global

to local progression. Specifically, by showing the global object with no back-

ground first to support errorless learning which is having only the correct choice
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available (only the main object(s)), followed by the other filters that added in

background and details over time, the global-to-local progression described in

the visual processing literature [5] would be created in the environment. The

visual processing literature claims that neurons are specialized and geographi-

cally localized to process certain features (e.g., movement, color) [59]. In other

words, different sensory neurons specialize in detecting edges (visual cortex),

color (cones), luminance (rods). As the neuronal activity in the visual cortex

disperses through the neural network to cognitive processing, global and local

streams of visual information are integrated. In the case of autistic visual at-

tention, the global processing neurons are thought to be intact but overridden

by local processing. The goal of the filters in this work is to activate global

neurons first (e.g., give global processes a “head start”). In the first filter, the

details are removed to attempt to eliminate local interference. Then by adding

details back into the image progressively through animation, the filter is inte-

grating details and eventually a complete picture is presented. This preliminary

low-fidelity work did not exhaust ways to create a low-fidelity prototype anima-

tion, but simply used the filters already created to suffice as the global-to-local

progression. See Figure 3.6 for the screenshots of the Animation filter.
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Figure 3.6: An example of Animation filter, starting with Lined Edges, White Back-
ground, Grey Blurred, and finally Baseline.
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Table 3.1: Navon’s test result for P1.

Condition Reaction time per exper-
imental condition

Error count per experi-
mental condition

Global level 1,656 ms 4 errors

Local level 1,991 ms 1 error

No target at all 2,126 ms 2 errors

3.1.2 Participants

In this preliminary experiment, a 40-year old man with ASD, P1, completed the

user test. To provide an objective understanding of visual attention, his eye-tracking

data was collected as well as verbal responses to identify the impact of the global

filter. As an inclusion criterion, P1 took the Navon’s test (www.psytool.org). The

test revealed that P1 made 4 errors in identifying global level while he made only 1

error for local level. The detailed Navon’s test result for P1 can been found in Table

3.1. As a result, P1 demonstrated local precedence, as there are no cut off scores to

verify local interference, it is speculation that he struggles to some degree with global

processing. P1 also reported having difficulty with social communication, mainly

nonverbal communication. The Navon’s test was used to screen the participant for

local precedence or interference because researchers in [39, 47, 57, 65, 80] also used

Navon-type stimuli to explore atypical visual behaviors (global/local processing) in

people with ASD.

3.1.3 Low-fidelity Prototype

The images were taken from the first 50 of 700 images of real-world scenes in the

OSIE dataset [87], i.e., images 1-10 are baseline images, images 11-20 are White
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Background filters, images 21-30 are Grey Blurred filters, images 31-40 are Animation

filters, and images 41-50 are Line Edged filters. Low-fidelity prototypes were created

in a PowerPoint slideshow consisting of the 50 images, which were separated by a

transition slide. The auto-advance was set for 10 seconds. After each image was

presented for 3 seconds, there was a slide with the prompt, “What was the picture

about?” followed by a blank screen.

3.1.4 Procedure

Using a chin rest for stability, the lab technician conducted a calibration test using

the Eyelink 1000 system. Next, the study began where P1 viewed the low-fidelity

prototype that was comprised the 50 images that automatically advanced over the 10

minute session. His eye-tracking data were recorded at a rate of 500 Hz, yielding 500

gaze points per second.

3.2 Evaluating Filters with Eye-tracking Data

The performance of the 4 low-fidelity filters were compared to each other and the

baseline images. The aim of using eye-tracking data, which is presumed to be objective

data, is to validate the subjective verbal responses. The evaluation was done by using

3 different techniques: visual analysis, fixation analysis, and saccade analysis.

3.2.1 Visual Analysis

A cursory visual analysis of the eye-tracking data is presented here. This preliminary

evaluation is based on the 50 pictures containing the heat maps of eye tracking from
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an aggregate of 15 NT people from [87] and the eye fixations from the participant

with ASD (P1) that take into account the number of eye’s fixations that falls in and

out of the AOIs.

In this visual analysis, an example of the AOIs can be seen as the yellow regions with

a green boundary, shown in Figure 3.7. An example of a fixation can be visually seen

as any dense cluster of eye gazes (blue x’s), also shown in Figure 3.7. The accuracy

score was calculated by counting the overlaps between the AOI and P1’s fixations.

A penalty score was calculated by counting the number of fixations that falls out of

the AOIs. The preliminary proposed formulas for a given set of P1’s fixations are

shown in formula 3.1 and 3.2. Formula 3.1 calculated accuracy score by counting the

overlaps between the AOIs and P1’s fixations. The penalty score takes into account

the non-overlaps between the AOIs and P1’s fixations, and the number of fixations

that falls out of the AOIs. The purpose of having these two scoring metrics is to take

into consideration both correct and incorrect fixations as each image has a variable

amount of hotspots.

accuracy score =
overlapped AOI count

total AOI count
(3.1)

penalty score =
non overlapped AOI count

total AOI count
× incorrect fixation count

(3.2)
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Figure 3.7: A heat map (of Figure 3.1) represents the AOIs (yellow regions with a
green boundary) that are aggregated from 15 NT people from [87], overlaid by eye
gazes (blue x’s) of the man with ASD (P1).

Findings and Limitations

The AOI is defined for this analysis as any yellow regions with a green boundary,

which corresponds to where the fixations of NT people are. The fixations of P1

are defined as those blue points that are densely overlaid on top of each other. For

example, Figure 3.7 shows the heat map of the picture from Figure 3.1, and there are 2

AOIs and 9 fixations. Two researchers viewed the images independently to determine

overlaps or non-overlaps and compared results. Disagreements were discussed until

criteria for each image were agreed upon. One of the fixations fell into 1 AOI. As

a result, P1’s score is 50% accuracy and eight times 50% penalty for this particular
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Table 3.2: Performance score of different filters in visual analysis.

Filter Average Accuracy (%) Average Penalty (%)

Baseline (Raw Image) 56.6 39.4

Lined Edges 48.3 48.6

White Background 60.0 38.2

Grey Blurred 47.5 49.5

Animation 48.3 47.4

image. Among the five experimental filters, the White Background filter yielded

average result marginally better than the baseline and significantly better than the

other filters in term of both accuracy percentage (60%) and also penalty percentage

(38.2%) as shown in Table 3.2. This initial analysis was to provide an initial indication

of how the filters performed [70].

There are some limitations in the preliminary visual analysis. First, the approach

does not use the numerical data which can be more precise when determining a

fixation as well as the boundaries for an AOI. Second, equal scores were given for

each AOI regardless of their sizes. Third, the number of fixations that falls into the

same AOI was not considered. Fourth, the penalty score is not applied when all AOIs

are already covered by fixations. That is, no matter how many fixations are outside

the AOIs, as long as there are fixations inside all the AOIs, then the penalty score

will be zero. These limitations are addressed in the analysis on the numerical data

in the next section: 3.2.2–Fixation Analysis.
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3.2.2 Fixation Analysis

In this subsection, performance of the filters was measured based on fixations that

are computed from raw gaze points of P1, using Cluster Fix algorithm 1 in MATLAB

[40]. The number of overlap/non-overlap between P1’s fixations and the AOIs was

counted.

The AOIs from the NT heat maps have been expanded by increasing the degrees of

visual angle to explore if or when there is the most overlap. Results show that there

was no specific degree of visual angle that aligns with the AOI in any conditions.

Figure 3.8 shows the animation of overlap/non-overlap between P1’s fixations and

the NT heat maps.

1Used with permission.
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Figure 3.8: An animation of evaluating P1’s fixations compared to NT fixations. Red
dots represent fixations of NT people. Blue dots represent fixations of the man with
ASD, P1. Blue dots turn to green when they are in the areas of the incremental visual
angle of NT people.
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Even if increasing the visual angles (i.e., the angle a viewed object is displayed on

the retina) to the maximum possible angle, there is no significant overlap between

P1’s fixations (13 fixations) and the AOIs. The purpose of increasing the angle is to

consider viewing the image by using peripheral vision. See Table 3.3 for an example

of the number of overlaps while increasing the visual angles that corresponds to the

Figure 3.8. Even though this result does not provide evidence of effectiveness for the

filters, this procedure could be useful in determining emerging shifts in eye gaze in

future work as a metric for peripheral vision (i.e., vision beyond the fixation point)

that anecdotally seems relevant yet has not been discussed or designed by the research

community. This leads us to the next measurement using saccade in the next section:

Saccade Analysis.

3.2.3 Saccade Analysis

It is thought that the global processing of visual attention occurs in the first few

fixations and saccades [76]. Given that this work is focused on global visual attention,

further analysis of the early saccades of P1 was conducted.

A center bias in the gaze occurs as viewers tend to look at the center before a new

image appears [81]. To address this bias, the first fixation was not counted but rather

the second and third fixations were analyzed for the global aspects. After viewers

get the global meaning, then they tend to look at details; thus, the saccade between

the second and third fixations, called the “second saccade,” is considered to be the

representative of global processing. With the existing fixation data, a vector was

created to indicate the second saccade (i.e., a segment of scan path with direction;

see Figure 3.9).
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Table 3.3: Fixation analysis–the number of overlaps between P1’s fixations and the
areas of increasing visual angles from NT fixations as seen in Figure 3.8.

Degree of visual angle Overlap count Degree of visual angle Overlap count

1 0 21 6

2 0 22 6

3 0 23 6

4 0 24 6

5 0 25 6

6 0 26 7

7 0 27 7

8 0 28 7

9 0 29 7

10 1 30 7

11 2 31 7

12 2 32 7

13 2 33 7

14 2 34 7

15 2 35 7

16 2 36 7

17 3 37 7

18 4 38 7

19 5 39 7

20 5 40 7
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Figure 3.9: A White Background image (top), a raw image (middle), and a Grey
Blurred image (bottom), overlapping with the hotspots (in green/yellow) and red
arrows showing the second saccade of P1.
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A “hit” is when the second saccade of P1 cuts through any hotspots in a given image.

Three evaluation metrics were used to identify the filter performance.

1. Comparing the number of overlaps between the vectors of early saccades and

hotspots–the overlap demonstrates a shift in attention to global features [44, 83].

The purpose of this method is to figure out if saccade vectors are oriented toward

and traveled through the AOIs (hotspots).

2. Classifying the length of the vector below or above the median saccade length, as

it has been associated with global processing [84]. The purpose of this method

is to figure out if global saccades occur by classifying saccades as long (global)

or short (local) [44].

3. Computing the combination of the parameters of length and overlap, which is

called “multiplicative parameters.”

The second saccade of each image ranged from 23 pixels to 465 pixels with a median

of 222 pixels. Each image was classified as 0 if it was smaller than the median saccade

length and 1 otherwise. Once each vector was labeled, a χ2 test was conducted for

each image viewed in baseline compared to each filter’s 10 images (see example in

Figure 3.9). The Animation filter begins with a Lined Edges filter, which resulted in

only the presentation of the Lined Edges filter. Therefore, there is no analysis of the

Animation filter.

Results

The White Background images demonstrated more overlaps between the second sac-

cades and the hotspots than the baseline images (9 out of 10 vectors overlapping the

hotspots compared to 2 out of 10 in baseline; χ2(3, N = 40) = 12, p = 0.007; Figure
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3.9). Saccade vectors appear to be oriented toward as well as traveled through the

global areas (hotspots). This pattern occurred remarkably more often with the White

Background filter than the baseline condition.

More global saccades (longer) were found in the White Background filter (7 out of

10 images) compared to the baseline (1 out of 10 images), χ2(3, N = 40) = 9.92, p =

0.019. The Grey Blurred filter also had the same performance as the White Back-

ground filter (7 of 10 images had long saccades). These combined results show that

when the global objects are emphasized, more global saccades occurred (saccades

tend to be longer).

Taking both metrics of saccade length and overlap of hotspots together, the White

Background filter continues to perform better than the baseline (7 of 10 images with

global saccades and overlaps, compared with 1 out of 10 images), χ2(3, N = 40) =

9.71, p = 0.02. This analysis revealed that the White Background filter yielded the

best results [17], which also conforms to the preliminary visual analysis above [70]. P1

provided more global responses with the White Background filters, thus suggesting

that he shifted his eye gaze to important areas of the image. Overall, this preliminary

study produced a proof of concept and a rich data set of eye-tracking–thus enabling

us to view global processing from different perspectives. The study revealed that

the White background filter was the best performer for producing global behavior.

However, the White Background filter is not a sufficient filter as the global meaning

may require the context of the image. This consideration leads to the iteration,

discussed in the next chapter: High-fidelity Filter.
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Chapter 4

High-fidelity Filter

In the low-fidelity phase, the filters were manually implemented to highlight global

image features by altering high contrast in brightness or color in four different ways.

Also, the design team worked closely alongside Speech-Language Pathologists (SLPs)

who work with children with ASD having significant speech and language disorders.

The same team continued design for the high-fidelity filter using the results of low-

fidelity study. This high-fidelity filter aimed to meet the requirements laid out in the

low-fidelity prototype, proof of concept study. The result was a filter that was desat-

urated and blurred. This filter is an automatically rendered filter that is comprised

of the following inputs: the original image, the heat map, the amount of blur, and

desaturation. The resulting output is the modified image used as the global filter in

this high-fidelity phase.
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4.1 Design Methods

Heat Maps

In the digital image processing research, algorithms have been developed to differ-

entiate three levels of visual processing in humans [81] which are: semantic (i.e.,

pertaining to the context), object, and pixel (a very small picture element of color

on a screen). The authors found that NT’s focused more on the socially-relevant or

semantic-level features while participants with ASD focused more on areas of shape

and contrast at the pixel level. For this current work, the global filter was created

using the NT heat maps to identify AOIs at a semantic level. By doing so, the aim

is to direct visual attention to semantic features; thus the NT’s heat maps serve as

global level, see Figure 4.1. As the point of focus in the visual system can sense ap-

proximately 1◦ of visual angle which equates to an object’s height of 0.4 inches when

at a distance of 23 inches from the monitor [26, 25], the hotspot is intended to guide

the eye to that spot as a focal point and minimize the background.

Blurring

On a per-pixel basis, for every point on the OSIE image, blurring was created using

the Gaussian blur algorithm. Specifically, a corresponding point was taken from the

image’s heat map and its level of luminance was used to blur the image’s point.

In other words, a darker point on the heat map means that the Gaussian blur will

be applied with a higher value up the maximum blur level (which is an arbitrary

number). For example, all white is blurred at 0% of maximum blur level, 50% gray

is blurred 50%, 75% gray is blurred 75% and black is blurred 100%.
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Figure 4.1: Top image is the raw or original version of two boys sitting on the beach.
Middle image is the heat map based on eye fixations of NT people. Bottom image is
the filtered image that is desaturated and blurred. This technique was applied to the
semantic heat map.
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Desaturation

For the desaturation process, the same process was employed where every point on

the OSIE image, the corresponding point from the image’s heat map was referenced.

Once referenced, the level of luminance was used to implement the same degree of

desaturation. In other words, a dark point on the heat map means that the filter

will desaturate more until the image is fully grayscale. For example, all white is the

image’s original color (saturation), 50% gray is half of the original saturation, and

black is fully grayscale.

4.1.1 Providing Filter Options to SLPs

To determine how to filter the images for the high-fidelity study, the findings from

the low-fidelity probe were reviewed with the school site team. The design team

explained to the SLPs that the white background and blurred gray background were

most effective for the group of children at the school as well as for the one adult lab

participant. Then, the design team showed them options for the automated filter

including a blurred background with mild, moderate, and severe blur, as shown in

Figure 4.2. Mild and moderate blurs were selected for further design with desaturated

backgrounds, and lastly one filter that was desaturated but not blurred; see Figure

4.3. After brainstorming, the whole group agreed to use the filter that was moderately

desaturated and blurred as the intervention.
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Figure 4.2: Samples of the automated filters with a blurred background: a) mild
blur, b) moderate blur, and c) severe blur. Mild and moderate blurs were chosen for
further automation.
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Figure 4.3: Samples of the automated filters: a) desaturated without blur, b) desatu-
rated with mild blur, and c) desaturated with moderate blur. The desaturated with
moderate blur filter was selected for the high-fidelity filter experiment.
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4.1.2 Participants

Ten male students participated in this study. They each have a diagnosis of ASD and

represented a wide range of speech and language issues described in Table 4.1. They

were not screened for local precedence or local interference using the Navon’s test as

the time was not afforded to the research team nor was it clear if the participants could

complete the screening. However, understanding if the participants demonstrate local

precedence before the onset of the experiment would be helpful in the future. This

work was approved by Chapman IRB 19-167.

4.1.3 Study Procedure

Over the course of four days (two rounds of 2-day sessions), this study was conducted

at a non-public school that specializes in speech and language disorders. Children

who receive highly specialized speech and language services were recruited. All chil-

dren who attend the school automatically participate in intervention programs that

support appropriate language and social interactions. All participant children receive

a full range of speech and language, counseling, and behavioral services that focus

on everyday uses of language, including listening, understanding, and responding ap-

propriately to others. Parents returned a signed consent form prior to the study, and

children were asked to provide assent at the onset of the first session. Two sessions

were conducted across consecutive days except for P9 who completed one session in

the morning and the other one in the afternoon as he was otherwise offsite for the

duration of the study. One assumption made by the team was that children with ASD

in a specialized school for speech and language would demonstrate local interference

but did not directly screen for this. The team recruited children whom the team

believed would tolerate wearing the eye gaze headset and be able to work with their
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Figure 4.4: Top: Screenshot of P2’s eye-tracking video in baseline with cross hairs
outside the image at the top left of the screen. Bottom: Screenshot of P2’s eye-
tracking video in the filtered condition with cross hairs in the center and within the
AOIs indicated by the heat map.
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Table 4.1: Participant demographics in the high-fidelity filter study as described by
their SLPs.

P# Age Specific speech related challenges

P1 18 Social referencing difficulties, Perspective-taking difficulties

P2 18 Speech articulation difficulties, Phonological challenges, Grammar and
syntax difficulties

P3 12 Delayed receptive and expressive language, Perspective-taking diffi-
culties

P4 16 Cognitive rigidity, Perspective-taking difficulties, Expressive language
formulation difficulties, Vocab difficulties: understanding and use

P5 12 Expressive formulation difficulties, Word finding difficulty,
Perspective-taking difficulty

P6 12 Delayed response for language, Expressive narrative language diffi-
culty, Language processing difficulties, Perspective-taking difficulties
– genuine in what he says but cannot provide rationale

P7 11 Cognitive rigidity, Word finding difficulty, Narrative language diffi-
culty

P8 15 Delayed response time due in part to dysfluency, Expressive semantic
challenges

P9 9 Cognitive rigidity, (difficulty with transition – would not put on eye
tracker), Early sequencing difficulties, Delayed response for language

P10 19 Delayed response time, Language processing difficulties, Pragmatic
difficulties (difficulties with holding conversations, turn taking)
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SLPs for two 10-15 minutes test sessions. Another assumption made by the team was

that eye gaze, a measure of one’s overt attention (observable through eye-tracking

technology), reflects the participant’s covert attention (unobservable) [44].

The experimental design of the study was a 2 X 2 factorial design (baseline X filter,

session one X session two) where 50 images were presented in their original form and

the same 50 images in the filtered condition, in a randomized fashion across 2 sessions

where the same image was presented in the opposite session in a counterbalanced way

to control for order effects. Two session were required to provide time between image

presentation for the participants to forget the image as members of the research team

were concerned about a confound. Specifically, the concern was that showing the

same (or filtered in our case) image close in time would result in familiarity of the

image and hence lead to a different gaze path because they have had an opportunity

to get familiar with the image. Therefore, each image was only shown once per day to

minimize the impact of memory. Verbal responses and video logs of eye gaze behavior

were collected.

4.1.4 Study Design

A simple randomization method [6] was employed to determine the order of images,

whether it was baseline or filter in the first presentation. The hypothesis is that: 1)

eye gaze fixations will shift from locally salient areas (high pixel contrast) to globally

salient areas (hotspots in heat maps) in the filtered condition, and that 2) this will

lead to a shift in communication via a verbal response to the prompt, “What was the

picture about?” to more global responses in the filtered condition as well.
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Table 4.2: Verbal responses to the prompt: “What was the picture about?” for the
baseline/original picture in Figure 4.4 Top. For this trial, baseline was seen first.

P# Verbal response Score

P1 Living room 2

P2 Fan 1

P3 It’s a couch in the living room 2

P4 Living room 2

P5 A door 1

P6 Living room 2

P7 Living room with fan and foot sofas 2

P8 Chairs 1

P9 It’s a room 2

P10 Bed is couching 1

4.1.5 Running the Sessions

The treating SLP for each child was the person who conducted the child’s session.

The SLP sat next to the child, provided the introductory explanation at the start of

the session, and any redirection to look at the fixation point throughout the session–a

possibly confounding issue to address in future work. Calibration to align aspects of

the screen with the eye tracker occurred at the onset of every session (except for P8

who did not choose to wear the eye tracker in session 1). The calibration included

gazing at 5 points on a calibration screen and took approximately 2 minutes per

participant. Video from a head-mounted device of the user’s view was captured.

Each session lasted approximately 9 minutes.
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Table 4.3: Verbal responses for the filtered picture in Figure 4.4 Bottom.

P# Verbal response Score

P1 Living room 2

P2 Living room 2

P3 It’s a sleeping bag in the living room 1

P4 Living room 2

P5 Couch 1

P6 Living room 2

P7 Living room with a fan, a blanket, and a sofa 2

P8 A chair 1

P9 A room 2

P10 Sitting on the couch 1
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4.1.6 Study Setup

The room was set up with a table, chairs, and a monitor. Participants sat approx-

imately 23 inches from the 27-inch screen. A set of practice slides were introduced

at the beginning of the PowerPoint presentation of images. Additionally, a repeated

transition slide was presented between each image. The transition slide only con-

tained a small plus sign in the center to draw the participants gaze to the center

before the next image was presented. This procedure is used to attempt to control

for the location of the first fixation. The presentation of images auto-advanced so

that images were presented for 3 seconds followed by a 7-second repeated textual

prompt slide that read “What was this picture about?” See Figure 4.5. The par-

ticipants were asked to verbalize their response during the 7-second “What was this

picture about?” slide. This time frame was determined by the SLP’s who worked

with the participants on a regular basis and were their instructors during the study.

The participants’ responses were transcribed by a SLP live and were deemed reliable

via review of video recordings by a team member for 20% of trials.

4.2 Data Analyses

An analysis on the verbal responses to the prompt “What was the picture about?”

as well as video logs of eye gaze behavior was conducted. To determine a score for

the global or local nature of the verbal responses in relation to a specific image, an

SLP was hired as an independent contractor to develop a rubric. The first version of

scoring rubric for verbal responses was made by an independent SLP with the score

range from 0 to 4 at the onset of this study. The rubric was presented to a group of

scorers that consisted of 2 senior authors (research faculty), the independent SLP, and

three speech-language pathology students. The group met for a total of seven hours
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Figure 4.5: Flowchart of global filter experiment paradigm where Part A and B occur
in different sittings. The 50 images shown in Part A are the same images as Part
B but are counterbalanced to be in the other condition they appear in Part A. The
order is randomized for both Part A and B.
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over two days to refine the rubric and obtain inter-rater reliability. The resulting

rubric was used by the 2 faculty and 2 speech-language pathology graduate students

to score verbal responses independently; one outside rater was given the rubric to score

independently. However, achieving sufficient reliability data with this rubric proved

difficult (i.e., inter-rater reliability of 27% ) so the rubric was revised. It was reasoned

that the complex scoring requirements, combined with the wide range of responses,

had resulted in too many possible interpretations of the data. As a result, a new,

simpler scoring rubric with three possible scores was proposed: 0 (incorrect/unrelated

responses); 1 (irrelevant or local details); and 2 (plausible global description).

The revised version of rubric was given to two independent speech-language pathology

students. They first took the test themselves and their responses were transcribed.

Then they scored the study responses. A third speech-language pathology student

scored independently to provide inter-rater reliability which was found to be 87%. In

every session, responses were presented without indicating who said what and which

condition the responses were from. During the processing of the data, from the 550

possible response pairs, 75 were deleted for no responses resulting in a total of 848

(475 pairs) verbal responses for both conditions.

Next, six undergraduate research assistants viewed 848 three-second video clips at

0.25 playback speed that captured the gaze path that was recorded by the eye tracker.

They scored each video as “hit” or “miss” based on the eye gaze path passing through

any hotspots in a given image, with an inter-observer agreement (IOA) score of 82%.
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Table 4.4: Results of verbal responses across conditions and sessions in the high-
fidelity study.

Condition Session 1 average score Session 2 average score

Baseline 1.49 1.53

Filtered 1.45 1.36

4.3 Results

4.3.1 Verbal Responses (Subjective Data)

The results for the verbal analysis reveal a significant difference in baseline and filter

conditions (p = 0.001)–but in an unexpected direction such that participants scored

slightly higher in the baseline condition than the filtered, as shown in Table 4.4. Com-

paring the difference between baseline and filter is greater than the total difference

between session 1 to session 2–which indicates an effect of the filter in the wrong

direction.

An example of the types of utterances recorded shows most children used similar if

not exactly the same words in each condition, (see Tables 4.2 and 4.3).

4.3.2 Eye Gaze Behaviors (Presumed Objective Data)

No significant difference (p=.07) was found in the “paired t-test comparing the scores

of the baseline hits to the filtered hits. Further investigation revealed that for 41%

of the images, participants did not look at the hotspots in either condition; whereas,

they looked towards at least one hotspot in a given image for both conditions 6% of

the time. Impressively, for 25% of the total images, their gaze passed through the
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hotspots in the filtered condition. Only 28% of the baseline images resulted in hits

to the hotspots, so it is feasible that the filter potentially worked in some cases” [71].

4.4 Discussion

Because participants were asked to verbalize “What was the picture about?” they

were therefore prompted to employ global processing. This may be why the results

showed high rates of global responding in baseline as well as in the filtered condition.

Additionally, only the overall gaze path was analyzed, it was not broken down into

local and global paths as described by [44], wherein the authors say that local and

global gaze paths are represented by different eye-tracking behavior such as fixations

and saccades respectively. This provides an additional potential way to analyze eye-

tracking data when saccade data is available as done in section 3.2.3.

Instead of a screen-based eye tracker, a head-mounted eye-tracking device (i.e., glasses

shown in Figure 2.2) was used in the high-fidelity filter study. This device was used

because it was a portable alternative to conduct experiment offsite (i.e., outside of

laboratory). Additionally, it is difficult to arrange for the participants with ASD just

to put on the glasses, let alone having them use a chin rest. Due to the inherent

limitations of this portable device, fixations and saccades are not available; only the

video logs were obtained.

The results from this high-fidelity filter study do not support the hypothesis that

manipulating the stimuli will guide visual attention to the global features. Given

the positive results from the low-fidelity study and the potential negative impact of

requiring verbal behavior along with eye-tracking behavior, further investigation of

the stimuli was warranted. Some sensory aspects of visual processing and hence visual
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attention were considered and further analyses on the characteristics of images in the

experimental pool were conducted, specifically for luminance, chroma, and spatial

frequency (see Chapter 5).
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Chapter 5

Analysis on Characteristics of

Experimental Images

The characteristics of images that are discussed here include: luminance, chroma,

and spatial frequency. Luminance, chroma, and spatial frequency are attributes that

are sensed early in human visual-processing. Therefore, these attributes are parts of

the early global impression of an image, hence, areas to target for an intervention

aimed to highlight global processing. Specifically, each characteristic could play an

important role in forming a global filter because of their effects: the intensity of light,

color, and the distribution of content inside the image. First, how to quantify each

characteristic for a given image is discussed. Then, each feature is consolidated into a

regression analysis to study the effects and correlation between each characteristic and

the performance score (i.e., hit count). The 50 baseline/raw images from OSIE dataset

[87] and the corresponding 50 filtered images can be found in appendix Supplemental

Materials A.1–Baseline Images and A.2–High-fidelity Filtered Images, respectively.

The sorted order of baseline images and high-fidelity filters from highest to lowest

hit count can be found in appendix Supplemental Materials A.3–Baseline and High-
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fidelity Filtered Images Sorted Based on Highest to Lowest Hit Count.

5.1 Luminance

One of the image characteristics used in the high-fidelity filter is the intensity of light,

also known as luminance. The filter desaturates the images so that the brightness

of non-global features are lowered down because researchers found people with ASD

tend to focus on bright contrast at the pixel level in a given image [81]. Therefore,

by dimming the areas of non-relevant content, the focus should be diverted to the

targeted areas that maintain their original luminance.

To quantify the luminance of a given image, the images were first converted from RGB

(Red, Green, Blue) to HLS (Hue, Lightness, Saturation) by utilizing a python function

called cvtColor(image, cv2.COLOR RGB2HLS) from a python library called OpenCV

[46]. This step focused on the lightness so the lightness value was extracted from the

HLS. Sample code can be found in the appendix Sample Code B.1–Luminance.

Among the experimental image pool, the top 3 images with the highest average

luminance are shown in Figure 5.1, and the top 3 lowest average luminance are shown

in Figure 5.2. Overall, each filtered image has a level of luminance higher than its

corresponding baseline image, which is expected as the high-fidelity filter grey out

most areas on the image, making them close to white color which corresponds to a

high degree of lightness. The luminance frequency histogram for each image can be

found in the appendix Supplemental Materials A.4–Luminance Frequency Histogram.
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Figure 5.1: The top 3 highest average luminance images: a) filtered image of two
boys sitting on the beach, b) baseline image of the two boys sitting on the beach, and
c) filtered image of two men playing baseball in the field. These images also have the
highest average chroma value. 70



Figure 5.2: The top 3 lowest average luminance images: a) baseline image of a dog
sitting at a table, b) baseline image of two people walking on the beach with two
sailboats, and c) baseline image of a puppy with his toys. These images also have the
lowest average chroma value. 71



5.2 Chroma

Another characteristic of an image is color, also known as chroma. For the experi-

ment, colorful images which contain three channels were used : blue, green, and red.

To extract chroma value of each channel for each image, a python function called

imread(image) from the same OpenCV library as for luminance was used. Sample

code can be found in the appendix Sample Code B.2–Chroma.

Among the experimental image pool, the top 3 images with the highest average

chroma values are the same as the images with the highest average luminance, shown

in Figure 5.1, and the top 3 images with the lowest average chroma are also the same

as the images with the lowest average luminance, shown in Figure 5.2. Luminance and

chroma are highly positively correlated (correlation coefficient=0.99, shown in Table

5.1). However, the other images do not follow this same trend. Besides, because the

images contain 3 channels, extra analysis was conducted, based on separate channel:

1) blue channel, 2) green channel, and 3) red channel. However, no significant findings

were noted to indicate a contributing role of one color over another, that was related

to the hit rate of an image. Image histogram for each image can be found in the

appendix Supplemental Materials A.5–Image Histogram and A.6–Image Histogram

in Separate Channels: Blue, Green, Red.

5.3 Spatial Frequency

For a given image, the overall activity level is measured by the spatial frequency of

the image [27]. Spatial frequency describes the periodic distributions of light and

dark in an image [49]. High spatial frequency refers to features such as sharp edges

and fine details, whereas low spatial frequency refers to features such as global shape.
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See Figures 5.3 and 5.4 for simple examples of a high spatial frequency image and a

low spatial frequency image.

Figure 5.3: An example of low spatial frequency image with five exact same bars in
horizontal space.

Figure 5.4: An example of high spatial frequency. The image contains twice as many
bars as in the low spatial frequency image in Figure 5.3.

To quantify spatial frequency in each image, the formula from [27, 43] was employed.

Spatial frequency is calculated by the following equations. For a given image F (M x

N) with F(m,n) value at the position (m,n), the spatial frequency is define as
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SF =
√

(RF )2 + (CF )2, (5.1)

where RF is the row spatial frequency

RF =

√√√√ 1

MN

M∑
m=1

N∑
n=2

[F (m,n)− F (m,n− 1)]2 (5.2)

and CF is the column spatial frequency

CF =

√√√√ 1

MN

N∑
n=1

M∑
m=2

[F (m,n)− F (m− 1, n)]2 (5.3)

Among the experimental image pool, the top 3 images with the highest mean spatial

frequency are shown in Figure 5.5; these images are in baseline condition. The top

3 images with lowest mean spatial frequency are shown in Figure 5.6; as expected,

these images are in the filtered condition using the high-fidelity filter.
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Figure 5.5: The top 3 highest mean spatial-frequency images: a) five puppies with
vertical stripes in the background, b) a man is walking by a brick wall of a grocery
store, and c) a man and a dog are running on the beach. These images are all baseline
images. 75



Figure 5.6: The top 3 lowest mean spatial-frequency images: a) a bathroom with a
toilet, b) a boy with a goat , and c) a puppy standing on a barrel. These images are
all filtered images.
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Overall, the spatial frequency in filtered images are considerably lower than the base-

line images. Because the experimental images are in RGB, the spatial frequency in

separate channels were also calculated in: 1) blue channel, 2) green channel, and 3)

red channel. The result shows the same trend such that each filtered image has lower

spatial frequency in terms of any channel, compared to its corresponding baseline

image. Table of mean spatial frequency for each image can be found in the appendix

Supplemental Materials A.7–Spatial Frequency. Sample code for calculating the spa-

tial frequency can be found in the appendix Sample Code B.3–Spatial Frequency.

5.4 Regression Analysis

After quantifying the characteristics of each image, characteristics were assessed to see

if they affected the number of hits (participants’ gaze path cut through the hotspots).

To conduct this analysis, a multiple linear regression model with the variables of

luminance, chroma, and spatial frequency was built.

The equation of multiple linear regression is defined as

ŷ = β0 + β1x1 + β2x2 + ...+ βnxn (5.4)

where ŷ is the dependent variable, x1, x2, ..., xn are independent variables with their

corresponding coefficient β1, β2, ..., βn, and β0 is the constant or interception.

For the analysis, hit count is the ŷ, and the independent variables xi, i ∈ [1, 2, 3, ..., n],

are mean luminance and mean spatial frequency. Mean chroma is dropped out of this

analysis because mean luminance and mean chroma are highly positively correlated

as shown in Table 5.1; i.e., including both variables is not necessary. Following the
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equation (5.4), the multiple linear regression is defined as

hit count = β0 + β1mean luminance+ β2mean spatial frequency (5.5)

Because each characteristic of the images represents different ranges of values, they

were standardized before running the regression analysis in equation 5.5. Standard-

ization is a data pre-processing technique used to transform data to standard normally

distributed data, (i.e., zero mean and a standard deviation of one (unit variance)).

If any characteristic of the images has a variance that is substantially larger than

the others, it could make the feature unable to learn from the others correctly when

performing regression analysis.

To see the correlation between each variable and the hit count, a correlation matrix

needs to be computed. None of the image characteristics are highly correlated with

the hit count. But, spatial frequency has the highest correlation with the hit count,

compared to luminance and chroma (see Table 5.1 for the correlation matrix). Sample

code for performing regression analysis can be found in appendix Sample Code B.4–

Regression Analysis.

Table 5.1: The correlation matrix between hit count and the characteristics of the
images: luminance, chroma, and spatial frequency.

Hit count Luminance Chroma (RGB) Spatial frequency

Hit count 1.000000 0.043295 0.039833 0.173309

Luminance 0.043295 1.000000 0.999053 -0.154905

Chroma (RGB) 0.039833 0.999053 1.000000 -0.157920

Spatial frequency 0.173309 -0.154905 -0.157920 1.000000
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Table 5.2: The summary result of multiple linear regression with hit count as the
output variable, and the estimator variables are the standardized values of luminance
and spatial frequency (R-squared=0.035).

Coefficients Standard error p-values 95% CI

constant 5.2347 0.175 0.000 [4.887, 5.582]

mean luminance 0.1248 0.177 0.483 [-0.227, 0.477]

mean spatial frequency 0.3203 0.177 0.074 [-0.031, 0.672]

Table 5.3: The performance comparison between multiple linear regression and Pois-
son regression. Lower AIC and BIC values are preferred.

Model AIC BIC

Multiple linear regression 388.81 396.56

Poisson regression 402.98 410.73

Table 5.2 shows the result of the multiple linear regression. For one unit change

(standard deviation) in mean luminance and mean spatial frequency, the hit count is

changed by 0.12 and 0.32 respectively. We can see that none of the p-values of each

variable shows significance; i.e., each characteristic of the image is not significantly

predictive of hit count. However, spatial frequency is marginally significant (p=0.074).

Specifically, higher spatial frequency is more likely to have a hit. Also, the upper and

lower confidence limits (95% confidence interval) cover a wide range of values (and

include 0 for each variable), which is why their effects are not significant. Note:

A Poisson regression analysis was also conducted because the hit count is discrete

data. However, the linear regression outperforms the Poisson regression based on the

metrics AIC and BIC, see Table 5.3. A model with a lower AIC and BIC is preferred

because then the model is likely to be closest to the true pattern of the data.
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5.5 Machine Learning/Deep Learning Analysis

In regression analysis, the 3 characteristics (i.e., luminance, chroma, and spatial fre-

quency) are extracted from individual image as variables to explore the relationship

between the images and the hit count. However, none is found to have significant

relationship. As a result, additional analysis using modern algorithms is conducted.

Machine Learning (ML) has become popular at the present time because it has proven

to outperform conventional methods like regression model because of the ability to

learn non-linear/complex relationships (which cannot be discerned by linear separa-

tion approaches) generally occurring in real-world problems. A sub-field of ML is

Artificial Neural Network (ANN). ANN has a sub-field called Deep Learning (DL)

that has grabbed attention from almost every field with remarkable success in both

academic and industry sectors even though DL/ANN is generally considered as a

blackbox approach in terms of interpretability. To explore if a given image is predic-

tive of the hit count, two DL analyses are used, particularly Multi-Layer Perceptron

(MLP) and Convolutional Neural Network (CNN).

Before moving onto MLP and CNN, it is important to understand the basic com-

ponent of ANNs. ANNs are biologically inspired by the brain neural architecture

[32]; as a result, the basic component of ANN is also named a neuron, as the one

in the brain. A neuron, also known as a node, receives inputs and fires an output.

Conceptually, a neuron is like a placeholder with a mathematical function, used to

apply on the provided inputs for generating an output, see Figure 5.7. The function

used in a neuron is generally called an activation function. There are a number of

activation functions and each of them is used for different purposes. The activation

function that is used in the following analyses is called Rectified Linear Unit (ReLU)

[50]. ReLU is a non-linear activation function and currently the most widely-used in
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DL models [58]. See Equation 5.6 for the ReLU activation function; if the input x is

positive, the function returns that value back, otherwise, it returns 0.

Figure 5.7: An example of a neuron of ANN. Variables x1, x2, and x3 are the inputs
into the neuron; y is the output from the neuron.

f(x) = max(0, x) (5.6)

A more thorough introduction of DL can be found in a popular textbook called “Deep

Learning” [32] by Goodfellow et al. Both MLP and CNN analyses are implemented

in Python with Keras library. An easy-to-follow tutorial can be found at [67].
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5.5.1 Multi-Layer Perceptron (MLP)

MLP Architecture

Intuitively, an MLP is “a mathematical function mapping some set of input values

to output values” [32]. MLP is a typical feed-forward ANN because there are no

connections in which the outputs from the MLP model are fed back into itself. MLP

comprises at least three layers of neurons: an input layer, a hidden layer and an

output layer. A layer is a group of neurons that take in inputs and provide outputs.

The neurons apply the activation function assigned to them on the inputs to produce

the outputs. Figure 5.8 shows an example of the MLP that is used in this analysis.

The MLP architecture consists of 4 layers: a) the input layer comprises the three

characteristics/variables of each image (using all three variables instead of two vari-

ables yields better result here), b) the first hidden layer consists of 8 neurons and

each neuron employs ReLU activation function, c) the second hidden layer consists of

4 neurons and also use ReLU activation functions, d) the output layer has one neu-

ron which employs linear activation function (i.e., a simple one-degree polynomial) in

order to output a number for the hit count. The number of hidden layers and nodes

in each layer are randomly chosen.
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Figure 5.8: The architecture of MLP used in this analysis. It consists of input layer, 2
hidden layers, and output layer. The input layer takes in inputs: luminance, chroma,
and spatial frequency. The first hidden layer consists of 8 neurons and the second
hidden layer consists of 4 neurons. The output layer takes in outputs from the previous
layer (i.e., second hidden layer) and outputs the final result which is the hit count.

It would be good practice to apply a regularization technique like “dropout,” a tech-

nique in which some randomly selected neurons are ignored during training to avoid

overfitting [75]. However, dropout is not employed in this MLP model, considering

the size of the current available dataset. Instead, a light-weight MLP (i.e., 2 hid-

den layers) is employed in this analysis to avoid overfitting. An overfitting model

(e.g., MLP in this section) is a model that fits the quirks and/or random noises in

a given sample of a dataset rather than reflecting the overall population. In other

words, overfitting can be seen when a model performs well with a training dataset

but poorly with a testing dataset. The training dataset is the data that is used to

build/train a model. The testing dataset is the unseen dataset that is used to test

83



the performance of a model.

There are a few good practices for training a model. First, both input variables (i.e.,

luminance, chroma, and spatial frequency) and output variable (i.e., hit count) are

scaled to range [0, 1] before training the MLP model. Scaling these variables allows

the MLP model to more easily train and converge. Second, an important objective

in training a model is to minimize the error, i.e., the difference between the predicted

value and the actual value. So, an objective function, also known as loss function/cost

function, has to be employed in training a model. Mean Absolute Percentage Error

(MAPE) is utilized as the loss function in the MLP model; i.e., MAPE minimizes the

mean percentage difference between the predicted hit count and the actual hit count.

Third, minimizing the loss function is completed by updating the parameters (i.e.,

weights of each input) of the MLP model. To accomplish this, an optimizer is needed

to decide how to update the parameters, i.e., by how much, and when. Adam [37] is

currently the most popular optimizer because of its superior performance compared

to others. It is employed in training the MLP model for this work. Last but not least,

it is important to limit the number of iterations through the entire training dataset

for the MLP model because otherwise it can either take an unnecessarily long time

to train the model or affect the performance of the model. A common practice to

identify the number of epochs is by plotting the number of epochs along the x-axis

and the error (i.e., loss function) of the model on the y-axis. This plot, also known

as learning curves, can help to identify the number of epochs.

Methods

The dataset is divided into 75% train set and 25% test set. Two MLP models are

built on all 3 variables (i.e., luminance, chroma, and spatial frequency) and 2 variables

(luminance and spatial frequency) respectively; each MLP model is trained for 200
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epochs. MAPE is a metric used for the loss function.

Results

The average hit count is 5.23 and the standard deviation is 1.75. The three-variable

MLP model results in a mean and a standard deviation of absolute percentage dif-

ference between predicted and actual hit count of 32.89% and 23.03% respectively.

The two-variable MLP model results in a mean and a standard deviation of abso-

lute percentage difference between predicted and an actual hit count of 31.31% and

22.02% respectively. So, there is a slight difference between the two models and the

simpler one (i.e., with 2 variables) should be the chosen model. Also, Figure 5.9 shows

the two-variable MLP model learning curves of training and testing loss versus the

number of epochs. Both loss curves start off by dropping over the number of epochs

significantly; it can be seen that between 40 to 50 epochs are likely to be enough

number of epochs for training the two-variable MLP model.
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Figure 5.9: The learning curves of training and testing loss versus the number of
epochs for the two-variable MLP model. The x-axis represents the number of epochs,
and the y-axis represents the loss (i.e., MAPE).

Overall, the MLP model obtains a mean absolute percentage error of 31.31%, implying

that, on average, the hit count predictions will be off by 31.31%. Remember that the

dataset that is used in training the MLP models are originally extracted from images.

Thus, the next analysis is to leverage the raw/original dataset (i.e., images) to see if

there is any improvement over the MLP models.

5.5.2 Convolutional Neural Network (CNN)

The original format of the data, which is in the form of an image, contains rich

information that requires sophisticated algorithms for revealing the hidden insight.

To address this problem, further investigation was conducted using a DL model,
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particularly, CNN.

CNN Architecture

CNN is currently the most popular class of DL that is used heavily in Computer

Vision, a scientific field that seeks to understand digital images/videos. The name

CNN is derived from the type of hidden layers that are used in the architecture.

The hidden layers can contain multiple types of convolutional layers, normalization

layers, pooling layers, and fully connected layers. Simply put, instead of using the

normal activation functions described above in section 5.5, convolution and pooling

functions, for example, are employed as activation functions. In a convolutional layer,

convolution takes in two inputs (i.e., an image and a filter, also known as a kernel,

for the input image), and outputs a third image which is the result of applying the

filter on the input image, specifically multiplies the input image with the filter to get

the modified image. A normalization layer is utilized to normalize the input (i.e.,

the mean close to 0 and the standard deviation close to 1) to reduce the training

time. A pooling layer is employed to reduce dimensionality of the input, by applying

pooling functions such as max-pooling (i.e., selecting the maximum value in a filter

region), or average pooling (i.e., selecting the average value in a filter region). The

fully connected layers are basically like MLP layers. Figure 5.10 shows an example

of CNN architecture that is used in this analysis. Note that the normalization layers

and pooling layers are not shown in Figure 5.10 due to limited space. For the detailed

architecture of CNN that is implemented, see appendix Supplemental Materials A.8–

CNN Architecture. Because this CNN is a more complex model (i.e., consists of

more input variables from the images), a regularization of 50% rate dropout is put

into place in the first fully connected layer (see Figure A.1 in appendix Supplemental

Materials A.8–CNN Architecture).
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Figure 5.10: The architecture of CNN used in this analysis. It consists of an input
layer, three convolutional layers, three fully connected layers, and an output layer.
Note that the normalization layers and pooling layers are not shown due to limited
space.

Methods

Like the MLP analysis, the dataset (i.e., images for CNN analysis) is also divided into

75% train set and 25% test set. Two analyses are conducted: a) individual image,

and b) combining the corresponding baseline and filtered images into a single image.

The images were combined to determine if the added features would yield a better

result.

Results

For individual-image model, the mean and standard deviation of absolute percentage

difference between prediction and hit count are 31.64% and 32.52% respectively. For

the combined-images model, the mean and standard deviation of absolute percentage

difference between prediction and hit count are 22.22% and 10.14% respectively. So,

the combined-images model yields better results. Table 5.4 shows the results of the
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two analyses. Note: for combined-images analysis, the dataset decreases compared

to individual image analysis, from 98 images to 48 images. Also, from the learning

curves of the combined-images CNN model in Figure 5.11, it can be seen that 150

epochs are likely to be enough for training because the test loss stays similar (i.e.,

no improvement) throughout 200 epochs. As expected, the test loss curve starts off

with a smaller dip because each combined image share a majority of desaturated and

blurred areas. Then the curve increases significantly when the CNN model really

starts to learn the differences between images and drops to a lower level after it

accumulates the learning of differences.

Table 5.4: The performance comparison between individual-image CNN model and
combined-images CNN model in terms of the mean and standard deviation (std.) of
absolute percentage difference between predicted and actual hit count.

Model Mean difference Std. difference

Individual-image CNN 31.64% 32.52%

Combined-images CNN 22.22% 10.14%

It would be a good idea to explore the analysis using a combination of all the available

datasets that are not redundant. However, because the three characteristics are

extracted from images, analysis on a combination of these variables and the original

images would be redundant and unnecessary.

5.6 Summary

From the regression analysis, none of the image characteristics shows any significant

effect on the hit count. Also, for additional exploration on seeing if the hit count can

be predicted for a given image, ML approaches were employed. To do so, we chose DL
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Figure 5.11: The learning curves of train and test loss versus the number of epochs
for the combined-images CNN model. The x-axis represents the number of epochs,
and the y-axis represents the loss (i.e., MAPE).
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approaches: a) MLP, and b) CNN (particularly because the extracted characteristics

of experimental stimuli were not as informative as the original data that is in the

form of images). These DL experiments are a proof of concept that it is possible to

identify the performance (hit count) for a given image. When it comes to images,

CNN tends to perform better than typical MLP, and it did perform better in this

work. Therefore, the CNN model can be used to avoid any variance or bias in terms

of unbalanced characteristics of images across the experimental image pool.
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Chapter 6

Conclusion and Future Work

In this preliminary work, four low-fidelity filters were designed and the performance of

each filter was evaluated through three analyses: visual analysis, fixation analysis, and

saccade analysis. The results from these analyses follow the same trend that the White

Background filter outperforms the other filters. However, the White Background

filter does not work all the time, especially when understanding the global meaning

requires the context of the image. As a result, a high-fidelity filter was designed to

systematically desaturate the images while blurring the background with the heat

maps from the OSIE dataset to improve upon the White Background. The new

design was a result from the success of the preliminary study as well as discussions

with SLPs including what would be the best global filter to help shift eye gaze to the

global features for people with ASD .

In the high-fidelity filter evaluation, the filter performance is based on two analyses:

verbal responses and eye gaze behavior. The results from both analyses inform that

the participants scored slightly higher in baseline than the filtered images, which

does not conform with the hypothesis. The way that the participants were prompted
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to respond verbally provided them a cue to respond globally (i.e., “What was the

picture about?”). Additionally, participants may have been confused by the filtered

images as no explanation as to the purpose of the filter was provided. This led to

the analysis of image characteristics to see if there is any contributing factors to this

result. Analyses of luminance, chroma, and spatial frequency for each image were

conducted. The findings reveal that there is no significant correlation between each

characteristic to the hit rate (performance). However, spatial frequency depicts higher

correlation with the performance compared to the other characteristics. Therefore,

suggesting that filtering low level characteristics of images outside of the AOIs at first

blush does not appear to change eye gaze.

Additional analyses using ML algorithms were completed to understand the relation-

ship between each image and hit count. CNN outperforms MLP because the nature

of our data is in image format. This work demonstrates a proof of concept that we

can build a predictive model for identifying images in the future experimental image

pool.

There are a number of ways to improve this work. First, future experiments could be

improved by separating verbal behavior from eye tracking–specifically by collecting

eye-tracking data for the first session and the verbal behavior in a subsequent session.

This method will allow the participants to view the images freely without being

primed to think of global answers. The eye-tracking data will be a cleaner version of

the current work. Then in a second session, verbal responses to the question “What

was the picture about?” could be collected. If circumstances allow, collecting eye-

tracking data during the second session could provide additional insight as to the

impact of the verbal prompt on eye gaze.

Second, images could be screened rather than simply selected from the first 50 of

700 available images in this work. Because there is a stronger correlation between
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spatial frequency and the hit count, compared to other characteristics of images in

the analysis, images should be selected based on similar spatial frequency to avoid

any variance or bias in terms of unbalanced spatial frequency across the experimental

image pool.

Third, because of the wide variety of participants’ language abilities, the verbal scor-

ing was extremely difficult for the SLPs to reach consensus; future work with SLPs

could continue to refine the definitions of global and local in the verbal rubric and add

additional examples of specific language for each image. The aim is to improve the

confidence of raters that these concepts are distinct and measurable. Also, additional

scorers who do not identify as Caucasian or as women should be added to expand the

voices that are reflected in the scoring.

Fourth, re-running the study with new participants using a screen-based eye tracker

(instead of a head-mounted eye-tracking device) would allow for automatic data col-

lection of eye gaze behavior from which more extensive data analyses could be con-

ducted. For example, the eye gaze coordinates allow for numerically evaluating the

performance of the global filter; this includes the analysis of fixations, gaze path

(saccades), and a wide visual angle to accommodate peripheral viewing.

Fifth, as part of the re-run, the study will include typically developing children as

additional participants. This group will allow for comparisons between the groups

that could reveal the range of change and patterns across both groups of children,

rather than comparing autistic children to NT young adults.

Sixth, adding typically developing children will also allow us to re-define the AOIs

from the perspective of a child. Additionally, participants should be screened for their

precedence–global or local.

Last, as the tools and methods are refined based on the additional data provided from
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the improvements, efficacy studies to support a work-around for local interference will

be conducted.

Alternatively, it is possible that filtering images does not redirect the eye gaze of

viewers with local precedence. Given the amount of changes to be made to the current

work, it is possible that significant change could occur given the extensive groundwork

laid out here–spurring on the promise of Data Science as an encouraging tool to

design, develop, and evaluate assistive technology. Future data-driven technology will

allow for the deployment of real-time work-arounds providing assistance for people

with ASD. With these real-time work-arounds, there is an opportunity to also build

reciprocal, real-time systems that highlight local details for the NT and/or those with

global precedence–thus opening up a new avenue for “neuro-shared spaces” [68].
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APPENDICES

A Supplemental Materials

A.1 Baseline Images

We used the first 50 images from OSIE dataset [87]. The name of images are shown

as in Table A.1.

Table A.1: The name of each image that is shown below this table.

1001 1002

1003 1004

......

1049 1050
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A.2 High-fidelity Filtered Images

Below are the 50 filtered images using the high-fidelity filter. The name of each image

are also shown in Table A.1.
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A.3 Baseline and High-fidelity Filtered Images Sorted Based

on Highest to Lowest Hit Count

The hit count range from 0 to 10, which is the number of participants; i.e., 0 for

a given image/filter means no hit count from any participant, and 10 means all

participants have at least one hit for the given image. The name of images and their

corresponding conditions and hit counts are shown as in Table A.2. The images from

the experimental image pool are shown below, in a sorted order from the highest to

the lowest hit count.
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Table A.2: The sorted order of baseline and filtered images from the highest to the
lowest hit count.

Image Condition Hit count Image Condition Hit count

1002 Baseline 10 1030 Baseline 7

1043 Baseline 9 1007 Baseline 7

1001 Baseline 8 1032 Filtered 6

1047 Filtered 8 1017 Filtered 6

1031 Filtered 8 1033 Filtered 6

1020 Filtered 8 1002 Filtered 6

1038 Baseline 8 1030 Filtered 6

1040 Baseline 8 1026 Filtered 6

1041 Filtered 8 1021 Filtered 6

1042 Baseline 8 1003 Baseline 6

1029 Baseline 7 1027 Baseline 6

1044 Filtered 7 1019 Filtered 6

1036 Baseline 7 1018 Filtered 6

1020 Baseline 7 1003 Filtered 6

1028 Baseline 7 1012 Baseline 6

1050 Baseline 7 1048 Baseline 6

1034 Baseline 7 1039 Baseline 6

1044 Baseline 7 1004 Baseline 6

1023 Baseline 7 1049 Filtered 6

1046 Baseline 7 1008 Baseline 6
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Image Condition Hit count Image Condition Hit count

1004 Filtered 6 1016 Baseline 5

1009 Baseline 6 1008 Filtered 5

1011 Filtered 6 1007 Filtered 5

1045 Filtered 6 1013 Baseline 5

1046 Filtered 6 1050 Filtered 4

1031 Baseline 5 1010 Filtered 4

1047 Baseline 5 1009 Filtered 4

1036 Filtered 5 1038 Filtered 4

1037 Filtered 5 1016 Filtered 4

1043 Filtered 5 1017 Baseline 4

1035 Filtered 5 1019 Baseline 4

1041 Baseline 5 1035 Baseline 4

1049 Baseline 5 1006 Filtered 4

1026 Baseline 5 1006 Baseline 4

1018 Baseline 5 1033 Baseline 4

1014 Filtered 5 1023 Filtered 4

1005 Baseline 5 1032 Baseline 4

1010 Baseline 5 1005 Filtered 4

1024 Baseline 5 1025 Filtered 4

1015 Filtered 5 1029 Filtered 4
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Image Condition Hit count Image Condition Hit count

1013 Filtered 4 1022 Baseline 3

1048 Filtered 3 1022 Filtered 3

1011 Baseline 3 1039 Filtered 3

1012 Filtered 3 1015 Baseline 2

1028 Filtered 3 1027 Filtered 2

1042 Filtered 3 1021 Baseline 2

1014 Baseline 3 1024 Filtered 2

1040 Filtered 3 1001 Filtered 1

1037 Baseline 3 1025 Baseline 0

1034 Filtered 3 1045 Baseline 0
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A.4 Luminance Frequency Histogram

Luminance frequency histograms also follows the same order in Table A.1. The green

histograms represent the baseline images from OSIE dataset. The blue histograms

represent the high-fidelity filtered images. The range for luminance is between 0 and

1.
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A.5 Image Histogram

The image histograms below also follow the same order as in Table A.1. The green

lines represent baseline images from OSIE dataset, and the blue lines represent the

high-fidelity filtered images. The chroma value is between 0 and 255.
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A.6 Image Histogram in Separate Channels: Blue, Green,

Red

There are two groups of image histograms which is separated into the three channels:

blue, green, and red. The first group is for baseline/raw image. The second group is

for high-fidelity filtered images. The images in each group follow the same order in

Table A.1.
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Baseline/Raw Images
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Filtered Images
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A.7 Spatial Frequency

Below is the table of spatial frequency values for the 50 baseline images and 50 high-

fidelity filtered images. The table contains columns: image, condition (baseline or

filtered), and spatial frequency.

152



Table A.3: The values of spatial frequency for each image.

Image Condition Spatial Frequency Condition Spatial Frequency

1001 Baseline 15.09762885 Filtered 5.085821272

1002 Baseline 24.39110785 Filtered 5.899361077

1003 Baseline 29.67346451 Filtered 8.840743197

1004 Baseline 20.85045588 Filtered 3.984710449

1005 Baseline 13.03251901 Filtered 4.356590102

1006 Baseline 26.46944582 Filtered 4.113808809

1007 Baseline 13.63919072 Filtered 6.184703596

1008 Baseline 11.50597016 Filtered 4.843984433

1009 Baseline 10.49489791 Filtered 2.923714224

1010 Baseline 30.97627048 Filtered 9.208264806

1011 Baseline 16.12293383 Filtered 6.603932856

1012 Baseline 13.37566004 Filtered 3.348118495

1013 Baseline 26.96556543 Filtered 6.54594264

1014 Baseline 11.23184952 Filtered 1.995500668

1015 Baseline 17.26870406 Filtered 7.204234432

1016 Baseline 13.58215804 Filtered 7.577510707

1017 Baseline 27.31088402 Filtered 5.724526848

1018 Baseline 20.75551771 Filtered 8.289646027

1019 Baseline 10.77108162 Filtered 3.20242985

1020 Baseline 9.805154576 Filtered 5.711363713
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Image Condition Spatial Frequency Condition Spatial Frequency

1021 Baseline 13.66635117 Filtered 6.171241096

1022 Baseline 18.98557517 Filtered 6.437865829

1023 Baseline 15.65297568 Filtered 6.551064128

1024 Baseline 21.2404229 Filtered 6.431888061

1025 Baseline 11.07376624 Filtered 2.593826761

1026 Baseline 15.32367968 Filtered 5.7923719

1027 Baseline 15.78562532 Filtered 5.352051138

1028 Baseline 14.18594414 Filtered 3.705187836

1029 Baseline 18.63805984 Filtered 7.992023092

1030 Baseline 7.716034681 Filtered 3.745354468

1031 Baseline 45.07277978 Filtered 7.786516197

1032 Baseline 13.19376508 Filtered 4.846766868

1033 Baseline 28.11616871 Filtered 5.411309723

1034 Baseline 16.49264236 Filtered 4.257440736

1035 Baseline 13.32981774 Filtered 5.96700228

1036 Baseline 22.30018383 Filtered 10.44835698

1037 Baseline 9.92770815 Filtered 2.941110035

1038 Baseline 18.91220276 Filtered 6.377872755

1039 Baseline 13.58875619 Filtered 5.6492571

1040 Baseline 15.50628651 Filtered 4.993070545
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Image Condition Spatial Frequency Condition Spatial Frequency

1041 Baseline 7.039302726 Filtered 3.6670906

1042 Baseline 18.76036648 Filtered 3.467272617

1043 Baseline 6.784134644 Filtered 3.387211755

1044 Baseline 19.85873144 Filtered 8.549660988

1045 Baseline 21.57023676 Filtered 7.997155339

1046 Baseline 23.79882037 Filtered 4.712705418

1047 Baseline 10.13458024 Filtered 4.979187703

1048 Baseline 14.10800957 Filtered 4.087902347

1049 Baseline 13.92318574 Filtered 5.770539644

1050 Baseline 15.84927733 Filtered 7.388253753
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A.8 CNN Architecture

Below is the architecture of CNN model employed in this work. The visualization

shows the details of each layer, and input and output sizes in each layer. This figure

can be generated using Keras library.

Figure A.1: The detailed CNN architecture that is employed in section 5.5.2.
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B Sample Code

B.1 Luminance

import matplotlib.pyplot as plt

import cv2

def read_image_as_float32_hls(image_path):

image = cv2.imread(image_path)

hls_uint8 = cv2.cvtColor(image, cv2.COLOR_RGB2HLS)

return ( hls_uint8 / 255.0 ).astype(np.float32)

def luminance_img_hist(image_path, output_file, color):

h, l, s = cv2.split(read_image_as_float32_hls(image_path))

plt.hist(l.flatten(), bins=’auto’, color=color)

plt.title(output_file)

plt.savefig(output_file)

plt.show()

def luminance_two_img_hist_line(img, filtered_img, output_file, \

color, filtered_color):

h, l, s = cv2.split(read_image_as_float32_hls(img))

h_filtered, l_filtered, s_filtered = \

cv2.split(read_image_as_float32_hls(filtered_img))

plt.hist(l.flatten(), bins=’auto’, color=’white’, edgecolor=color)

plt.hist(l_filtered.flatten(), bins=’auto’, color=’white’, \

edgecolor=filtered_color)
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plt.title(output_file)

plt.legend([’osie’, ’filtered’])

plt.savefig(output_file)

plt.show()

B.2 Chroma

def avg_two_img_hist_line(img, filtered_img, output_file, \

color, filtered_color):

im = cv2.imread(img)

# calculate mean value from RGB channels and flatten to 1D array

vals = im.mean(axis=2).flatten()

counts, bins = np.histogram(vals, range(257))

# plot histogram centered on values 0..255

plt.plot(bins[:-1] - 0.5, counts, color=color)

filtered_im = cv2.imread(filtered_img)

# calculate mean value from RGB channels and flatten to 1D array

vals = filtered_im.mean(axis=2).flatten()

counts, bins = np.histogram(vals, range(257))

# plot histogram centered on values 0..255

plt.plot(bins[:-1] - 0.5, counts, color=filtered_color)

plt.xlim([-0.5, 255.5])

plt.title(output_file[output_file.rfind(’/’)+1:])

plt.legend([’osie’, ’filtered’])

plt.savefig(output_file)
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plt.show()

def img_hist_line_channel_rgb(img, output_file):

im = cv2.imread(img)

colors = {0:’b’, 1:’g’, 2:’r’}

for channel in range(3):

vals = im[:,:,channel]

counts, bins = np.histogram(vals, range(257))

plt.plot(bins[:-1] - 0.5, counts, color=colors[channel])

plt.xlim([-0.5, 255.5])

plt.title(output_file[output_file.rfind(’/’)+1:])

plt.legend(colors.values())

plt.savefig(output_file)

plt.show()

B.3 Spatial Frequency

def row_frequency(image):

im = cv2.imread(image)

M = im.shape[0]

N = im.shape[1]

rf_mean = 0.0

rf_blue = 0.0

rf_green = 0.0

rf_red = 0.0

for m in range(M):
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for n in range(1,N):

rf_mean = rf_mean + (im[m,n,:].mean() - im[m,n-1,:].mean())**2

rf_blue = rf_blue + (float(im[m,n,0]) - float(im[m,n-1,0]))**2

rf_green = rf_green + (float(im[m,n,1]) - float(im[m,n-1,1]))**2

rf_red = rf_red + (float(im[m,n,2]) - float(im[m,n-1,2]))**2

rf_mean = math.sqrt(rf_mean/(M*N))

rf_blue = math.sqrt(rf_blue/(M*N))

rf_green = math.sqrt(rf_green/(M*N))

rf_red = math.sqrt(rf_red/(M*N))

return [rf_mean, rf_blue, rf_green, rf_red]

def column_frequency(image):

im = cv2.imread(image)

M = im.shape[0]

N = im.shape[1]

cf_mean = 0.0

cf_blue = 0.0

cf_green = 0.0

cf_red = 0.0

for n in range(N):

for m in range(1,M):

cf_mean = cf_mean + (im[m,n,:].mean() - im[m-1,n,:].mean())**2

cf_blue = cf_blue + (float(im[m,n,0]) - float(im[m-1,n,0]))**2

cf_green = cf_green + (float(im[m,n,1]) - float(im[m-1,n,1]))**2

cf_red = cf_red + (float(im[m,n,2]) - float(im[m-1,n,2]))**2

cf_mean = math.sqrt(cf_mean/(M*N))
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cf_blue = math.sqrt(cf_blue/(M*N))

cf_green = math.sqrt(cf_green/(M*N))

cf_red = math.sqrt(cf_red/(M*N))

return [cf_mean, cf_blue, cf_green, cf_red]

def spatial_frequency(row_frequency, column_frequency):

return math.sqrt(row_frequency**2 + col_frequency**2)

B.4 Regression Analysis

import statsmodels.api as sm

import pandas as pd

from sklearn import preprocessing

file = ’../study_b/hit_count_luminance_rgb_r_g_b_spatial_frequency_extra.csv’

df = pd.read_csv(file)

cols = [’mean_luminance’, ’mean_spatial_frequency’]

X = df[cols]

standardized_X = preprocessing.scale(X)

standardized_X = pd.DataFrame.from_records(standardized_X, columns=cols)

y = df[’hit_count’]

X2 = sm.add_constant(standardized_X)

est = sm.OLS(y, X2)

est2 = est.fit()

print(est2.summary())
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