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CHAIYI'ER ONE 

INTRODUCTION 

This chapter lays the ground work for this research paper. The 

problem is posed immediately , enabling the reader to gain a better 

appreciation of the material that follows. The next article explains 

the thought process that motivated this problem. This is followed by 

reviewing the available. literature in the field and on which the 

author has relied quite extensively. The chapter concludes by ex­

plaining the more common terminology which will be used frequently 

throughout the dissertation. 

1-1. The Problem: 

Given a configuration of linear, passive network elements, 

termed filter, how faithful a reproduction of the input process is 

the process at the output of a first order transducer? Or, in other 

words, how much information is lost in a filter? This problem arises 

due to the necessity of using a filter in a system --- either for 

reasons of convenience or by force of circumstances. The paper at-

tempts to model a transducer mathematically and to express the input 

and output processes statistically . In order to-do so, a meaningful 

measure of error should be chosen and defined. The error measure 

chosen is the Mean-Integral. Square Error (MISER). In other words, 

the average integral value of the square of the difference between 
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the signal and the pattern@ is considered to be the important charac-

teristic measuring the quality of the filter, viz. , 

2 € E{J [ w(t) - x(t) ] 
_ 

2}dt (1.1-1) 

The signal is assumed to be present since antiquity. A very good 

approximation of the situation is the existence of the signal for a 

long period of time with respect to the time constants of the filter. 

The problem then lends itself to what is known as steady state 

analysis. 

This work is restricted to analyzing the pattern given a 

random Stationary Gaussian Markoff (SGM) process. An expression to 

calculate the MISER will be developed and a method to computerize 

the same will be indicated. However, actual numerical computations 

will be deferred. The expression for MISER will establish a relation-

ship between the location of a pole and/or zero and the magnitude of 

MISER. The use of the SGM process as the input, enables one to 

describe output process in a concise manner. It also enables the 

results of this study to be compared with the results of others in 

related fields who have used the SGM process as a signal source. 

@ Signal is defined as the input process to a transducer and is, 
usually, inconvenient to measure. Pattern is the output of a 
transducer conveniently observed and measured. · 



1-2. Motivation� 
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The problem stated in the preceding section was primarily 

motivated by the thought of giving the design engineer and the systems 

engineer a more gainful insight into systems using transducers and 

having a random signal source. The··analysis of the pattern, given the 

statistics of the signal, enables one to compute the MISER --- a 

'goodness' measuring criterion, and should be welcome tools at one's 

disposal. 

One could conceive a mechanical device excited by several 

sources. During actual tests one would like to read various measuring 

instruments, measuring the continuously varying temperature, pressure, 

power output etc. This could be done by sampling various transducers 

in the individual circuits at any desired time. Under such conditions, 

when the input process is on for a considerable length of time before 

readings are taken, one essentially has a random process approximating 

the assumptions made in section 1-1. The device could be a major sub­

assembly ?f a  space craft, a large ship, an aircraft etc. Admittedly, 

the signal which has been assumed for this study, namely the SGM pro-

Ce$s, is hypothetical in nature. Nevertheless, the techniques used 

in this study could readily be adapted to a case where a random signal 

with known statistics is used. 

There has been littl� or no direct work done in this area. It 

is considered important that the design or systems engineer be aware 
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of the error introduced by a transducer in a system. The ready ac­

cessibility of a high speed digital computer allows for using good 

approximating methods for solving integral equations which would, 

otherwise, be rather laborious to solve·. These reasons provided 

added impetus to undertake this study. 

1-3. Review of Literature: 

There are several·books which treat linear networks in varying 

depths from the statistical viewpoint. An excellent, though elemen­

tary, treatment may be found in Cooper and McGillem's Methods of 

Signal and System Analysis [1] This book deals with statistical 

principles and gives a precise treatment of random signals in linear 

systems. References [2] and [3] give a more sophisticated 

approach to linear networks and are thoroughly readable. However, 

none of these books have dealt directly with the problem of obtaining 

the MISER for a linear, passive network. 

In the paper, "Homogeneous Wiener - Hopf Integral Function", 

D. C. Youla [4] solves the integral equation which inevitably has 

to be dealt with in approaching problems of this nature. J. Capon 

[;] in. his paper, approximates the time domain solution of the 

homogeneous integral equation .dealt with in [4] 



1-4. Basic Definitions� 

The following terms are used freely in this work and are de-

fined here to avoid possible ambiguities. 
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(1) Correlation Function: It is defined as the expected value 

of the product of two random variables obtained by time sampling two 

random functions. This time sampling of two random functions, either 

periodically or otherwise, generates a set of points in space de­

fining a function. When the two random functions come from the same 

random process it is called the Autocorrelation function. 

Rxx<t , u) E {x(t) x(u)} (1.4-4) 

The suffixes indicate, in order, the time at which the random pro-

cess is sampled. In the case of a stationary process, the auto­

correlation function is only a function of the time difference [3] 

or 

Rxx ( t , t + T' ) = E { x ( t ) x ( t + T")} 

E{x(t) x(t+n} Cl. 4-2) 

It is possible to consider the joint statistics of two different 

random processes {x<t}# and {y(t)} . The cross-correlation function 

is then defined as 

8xy<t, u) = E { x(t) y(u)} (L4-3) 

# A random process ·will be denoted by { }· 
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Again, if the processes are jointly stationary, the cross-correlation 

function is a function of only a single variable, T . 

(1.4-4) 

The order of the suffixes is importan�, indicating the time of 

sampling of the processes in that orderc 

(2) Completeness: It can be shown that a continuous function 

x(t) can be approximated by a discrete set of random functions [6] 
by 

L xi fi/i(t) 

i=l 

·· 0 S t � T, 

in which the N coefficients, xi, depend only on the function x(t) 

to be represented but not on time and the N functions of  time, �i(t), 

are specified independently of x(t). The error term is 
N 

II x(t) - L II 
2 @ 

i=l 

(1.4-5) 

@ II x II , is ref erred to as the norm or ' length' of the function x. 

It is a short hand notation for 

llxll
2 f lx(t) I 2 dt 

0 

Observe that if x(t) is regarded as the voJtage across a l�Ohm resistor 
then llxf12 , the square of the norm, is the energy dissipated in the 
resistor in the ti�e interval [o, TJ 



If the set of 0.(t) is such that 
1 
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lim EN 
N ..... GO 

0 ( 1. 4-6) 

for any function x(t) such that 

x<t) I 
2 dt < GO (1.4-7)· 

0 

we say that the set of 0i(t) is complete on [o, TJ Eq. 0. 4-6) 

implies that any function of finite energy can be represented without 

error in terms of 0i's. Note that when the 0i's are a complete set 

we have ''equality" between x( t) and 

Q) 

i=l 

in the sense that there is no energy in the error signal x(t) - xa(t) .  

(3) Linearity: Assume that the responses to two different 

c2 denote two. constants. A system is linear if the response to 

(4) Nonanticipative: A system is nonanticipative (causal) if 

the present output does not depend upon future values of the input. 

(5) Periodic and Non-Periodic Processes� A wide�sen�e 

stationary random process with sample functions x(t) is said to be 
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periodic with period T if its correlation function R(T) is periodic 

with period T, i.e., if 

R(T +T ) R( T), -¥ -' (1.4-8) 

If all the sample functions of a random process are periodic, 

or even if all except a set which occurs with probability zero are 

periodic, the process i� periodic in the sense defined above [3] 

It can be shown that if x(t) is periodic as defined above, then it 

can be expanded into a Fourier series [2] 

x(t) = I xn ejnWot, 

-<X> 
where Wo 27'/ T 

and the coefficients xn given by 

T 
1 

T 
f x(t) e -jnWJ; dt, 

0 
n 

(1.4-9) 

1,2, 3, .. . .. , ... (1.4-10) 

are uncorrelated (and orthogonal) random variables such that, 

E { x(t)} n=O 

0 n -# 0 0.4-11) 

and m t n 

m = n o. 4-12) 

@ The asterisk sign, *, when used as a supirscript, will denote a 
conjugate of a function. For example, xm =· (-xm). 
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T 
where 1 

T 
f R( T) e-jnWo"'t" dT (1.4-13) 

If the time functions of the nth and mth terms , n t- m in (1. 4-10) 

are orthogonal and also if (1-.4-12) is true , then the series 

possesses a double orthogonality. 

If R( T) is not periodic , then the random variables (x
n ; 

n 1,2 , . . .. .  ) defined by Eq. (1. 4-10) where T is a given constant , 

are no longer orthogonal and the series expansion (1. 4-9) is not 

true for all t. However , it can be shown that (1.4-9) holds for 

A non-periodic random process cannot be written as 

a Fourier series with uncorrelated random coefficients. The Karhunen-

Loeve theorem, elaborated in article 2-3 ,  enables one to give an 

approximate expansion of x(t) into a generalized Fourier series 

with uncorrelated coefficients. 

(6) Stationarity: 

(i) Strict Sense: A random process is stationary in 

the strict sense if its statistics are not affected by a shift in 

the time origin. This means that the two processes x(t) and 

x(t + E) have the same statistics for any -€. 

Two random processes { x(t)} and {y<t}are jointly stationary 

if the joint statistics of x(t) , y(t) are the same as the joint 

statistics of x(t + £), y(t +E) for any E [2] 



(ii) Wide Sense� A random process {x(t) } is stationary 

in the wide sense, if its expected value is a constant and its 

autocorrelation function depends only on the time difference,, 

constan.t 

10 

E { X ( t) X ( t+ T')} R( T) ( 1. 4-14) 

Two processes are jointly stationary in the wide sense if 

each satisfies (1.4-14) and their cross-correlation depends only on 

the time difference, T 

E { x(t+ T) y(t )} Cl. 4-15) 

1-5. Summary: 

This chapter has laid down the ground work for further study 

of the problem. The problem----- what is the nature of the 

pattern, given the signal? how is it affected by circuit configura-

tion? how much information is lost in the transducer? ----- was 

initially posed. A 'goodness' measuring criterion was chosen. 

This was the mean-integral square error (MISER). It was followed 

by the motivating thoughts. Next, the literature was reviewed. 

Finally, common terminology, to be used frequently in this work, were 

defined and explained. 
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The following chapter will attempt to analyze the signal 

and pattern statistically. A general representation of the trans-

ducer will be used to achieve the goal. An expression for MISER 

·will be developed in general terms. 



CHAPTER TWO 

GENERAL PRINCIPLES 

12 

This chapter deals with the anal�sis of the input, output 

processes in general terms and deveJops the concepts necessary to 

appreciate this study. Starting with a discussion of the assumptions 

made and their reasons, it proceeds to attempt a statistical analysis 

of the output process. The general transducer is assumed to have a 

simple pole and a simple zero. The homogeneous Fredholm equation, 

which arises when the Karhunen-Loeve theorem is used to express a 

non-periodic random process as a trigonometric Fourier series with 

uncorrelated random coefficients; is solved and the properties of 

the resultant eigenvalues and eigenfunctions are enumerated. Lastly, 

an expression for the MISER is developed. 

2-1: Underlying and Simplifying Assumptions: 

The first order transducer under consideration is studied by 

analyzing four resistance and capacitance configurations. In order 

to achieve the objective, namely to become aware of the nature of the 

output processes, the following assumptions have been made: 

(a) The circuit configurations are linear, deterministic, 

non-anti�ipatory and physically realizable. Consequently, the 

following two conditions suggest themselves: 



(i) The impulse response of the network, h(t), is zero for 

t less than zero, and 

( ii) 

(X) 

/th(t) I dt 

- (X) 

< Cl) 

so that the system is stable. 

Alternative criteria for a physically realizable system are 

expounded upon in [1] 

(b) The input process is a random Stationary Gaussian 

Markoff (SGM) process . . This implies , among other things, that: 

13 

i) The output of 1he linear system is also a Gaussian process; 

ii) If a process is stationary in the wide sense, it is also 

stationary in the strict sense; 

iii) As a consequence of the Markoff process, the auto-

correlation function of the input process must be an exponential 

function [ 2] The autocorrelation function of the input process 

used in this study is R < T) = e-1 Tl 
WW 

iv) For stationary processes, the autocorrelation function and 

the power spectral density form a Fourier transform pair. 

A concise treatment of the Gaussian process may be found in 

243649 Y LIBJi 



2-2. Modelling of a General First Order Transducer� 
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Consider a first order transducer represented in figure 2-1. 

Let the input be a SGM process. Therefore, its autocorrelation 

.function and power spectral density are given by [1] 

(2. 2-1) 

(2. 2-2) 

Let the transfer function of the system be represented, in 

general, by 

H(s) = A 
c1s + e1 (2. 2-3) 
c2s + e2 

Replacing s by jW [s] ' we have 

c1jW + e1 
H(jW) = A 

c2jW + e2 
(2. 2-4) 

The output power spectral density is related to the input 

spectral density and the transfer function [6] 

IH(jW) 1 2 = H(jW) H*(jw) 



SGM Process 
w(t) 

J c1s + e1 
x(t) 

c2s + e2 

Signal I Pattern 

L [ h(t)) = H(s) 

Figure 2-1: Block diagram of a general transducer 

I-' 
C]l 



In the Laplace domain, 

S ( s) X 

2 a e1
2 - c1

2s2 

A2 B·--

16 

By the technique of partial fractions and a few elementary algebraic 

manipulations, the following equation is arrived at 

Sx(s) A2.QB 

+
t:2 ( 

+�( 

[fj 
e1

2 
- c1

2 a2 

)� e2
2 - c2 2 a 2 

C 2 e 2 
2 1 

C 2 a2 
2 

- cl 2e22 )} 1 

e2
2 s + e2/c2 

e12 - ci2 a2 

)} 
1 

2 2 a2 - s + a e2 c2 

Once again using s=jW to our advantage and recognizing the fact 

that the correlation function is the inverse Fourier transform 

of· the spectral density t it can be shown by rather straight forward 

manlpulations that 
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1 

A2 a B 

[ R (0) (el 
2 2 a 2) - cl X 

(e 
2 

-
C 2 a 2) a 

2 2 

1 

c
2

e
2 

(c 2
e 

2 
2 1 

2 2] - c1 e2 ) (2.2-8) 

Equations (2. 2-7) and (2.2-8) give the autocorrelation 

function of the output process. Notice that for the assumed 

stationary input, (2.�-7) is only a function of the time interval, 

T. There is no simple physical interpretation of the significance 

of-the autocorrelation function in the sense that a given value 

means a particular thing. 

Among the propertie s of an autocorrelation function ar e 1 

(i) The mean square value of the random process can always 

be obtained by setting T = 0. 

(ii) The autocorrelation function is an e�en function of T . 

(iii) . The largest value of the autocorrela_tion function 

always occurs at T = O. There may be other values of T for 

which it is just as large, but it cannot be larger. 



The cross-correlation function is obtained for each case 

individually. However, it is worth noting the properties which 

follow [1] 

(i) The quantities Rxw(O) and R
wx

(O) have no particular 
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physical significance and do not represent mean square values. How-

(ii) Cross- correlation functions are not generally even 

functions of T . 

(iii) A type of symmetry exists as indicated by 

(iv) The cross-correlation function does not necessarily have 

its maximum value at T' = 0. It can be shown, however, that [3] 

.l 
2 V T  

2-3. Solution of a Homogeneous Integral Equation: 

A non-periodic random process cannot be written as a 

trigonometric Fourier series with uncorrelated random coefficients 

[3] However, it turns out that if the term, Fourier series, is 

extended --as it often is -- -to include any series of orthogonal 

functions 0i(t) with coefficients properly determined, then 
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non-periodic processes do have a Fourier series expansion with 

uncorrelated coefficients. 

An expansion for x(t) on an interval a to b of the form 

(X) 

x(t ) = L 
i=l 

X1, 0 · ( t) (T. 
1 1 (2.3-1 ) 

where 0i ( t ) 0 . ( t ) d t 
J 

1 

0 

0 

if i j 

if i -/- j (2. 3-2a ) 

if i j 

ifi-/-J (2.3-2b) 

and the (Ti are real or complex numbers will be called an ortho-

normal expansion of the random process on the given interval. The 

equality in (2. 3-1) is to mean precisely that for every t, a St� b 
N 

xt l.i.�. \ 0'"1x1¢1 (t) 
N-CX) L 

i=l 

@ l.i. m. denotes limit in the mean� Suppose that E(lxn1 2) < 00for all 
n and t·ha t E( Ix 1 2 ) < CIJ. The sequence of random variables xn is said 
to converge in the mean to the random variable x if 

lim E(l xn - xl 2 ) 0 
n- CIJ 

in which case the abbreviation 

is used 

l.i. m. xn = x 

[3J
n ..... 

CX) 
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To obtain the functions 0i(t) and the numbers l�I , one needs 
l. 

to solve [3] 

b 

f R(t, u) 0i(u) du 
a 

(2. 3-3) 

In the language of integral equation, the numbers IO-i l 2 must be 

the eigenvalues and the functions 0i(t) must be the eigenfunctions 

of the homogeneous Fredholm equation 

b 

f R(_t, u) 0i(u) du = 

a 
for a� t :Sb; i = 1, 2, 3, ......... , n. 

Conversely, one can construct an orthogonal expansion valid over any 

given interval a-� t :Sb for a random process with a continuous corre­

lation function by using the CT i 's and 0i(t)'s of Eq. (2. 3-1), the 

positive square roots of eigenvalues and eigenfunctions of (2.3-�). 

The preceding paragraphs form the essence of the Karhunen­

Loeve theorem. The expansion given by (2.3-1) is very useful in 

certain theoretical problems; practically, its usefulness is severely 

limited by two facts� procedures for finding solutions of integral 

equations of the form of (2. 3-4) are no·t known in general, and the 

decomposition of the signal or its power with respect to a set of 

orthonormal functions (the 0i(t) ) which are not sines. and cosines 

has no simple engineering interpretation. 
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A sufficient condition that the eigenvalues µi be discrete 

and that the 0i(t) 's form a complete set is that the (real) kernel 

R(t, u) be symmetric and positive definite on(aSt, u Sb ) .  Usually, 

R(t, u) is positive semi-definite and su·ch that at most there may be 

only a finite number of negative (real} eigenvalues; all other 

eigenvalues are real and positive. If the µ i's remain distinct 

(as well as discrete), Eq. (2.3-4) holds as well for non-symmetric 

kernels. It may be noted that symmetry is a sufficient condition, 

not a necessary one; there are non-symmetric kernels where the 0i(t)'s 

form a complete orthonormal set [e] Another useful, sufficient 

condition that the 0i(t) 's form a complete set is that the kernel 

R(t, u) be the Fourier transform of a spectral density, i. e. , that 

Having made general remarks about the eigenvalues, the 

following observations can be made for the particular cases covered 

by this study. The input process is assumed to be a SGM process 

having a correlation function, 

R (u-

T

) 
WW 

e -I u- ,I 

This is a symmetric non-degenerate kernel. 

As will be shown in the following chapter, the correlation function 

of the_ output process is also stationary, being a function of the time 

difference, (t-u). Specifically, the following will hold [9] 



(i) The kernel of the output process, Rxx<t, u) , is a non-

degenerate symmetric kernel. 

(ii) The homogeneous equation, 

f R(t, u) 0i(u) du 
a 

u. 0. (t) ,1 1 
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possesses a finite positive number, r, of linearly independent solu-

(iii) Every continuous symmetric kernel that does not vanish 

identically, possesses eigenvalues and eigenfunctions; their number 

is denumerably infinite if and only if the kernel is nondegenerate. 

All eigenvalues of a real symmetric kernel are real. 

(iv). The sum of the reciprocals of the squares of the 

eigenvalues converges. 

A brief discussion of the properties of eigenvalues of the 

homogeneous integral equation may also be found in [3] 

As already shown in section 2-2� the spectral density of the 

output process is 

2a 

Sx(s), a function of s, can be represented as a ratio of N(s2) to 

D(s2) ;  N(s2) and D(s2 ) being polynomials of degrees m and n in s2 

respectively, viz., 



N(s2) = [ a 5 2k 
2k 

k=O 

n 

D(s2) = [ b s2k 
2k bo t- 0 

k=O 

Using the notations as defined by D. C. Youla in 

N(s2) -2 a A2Bc 2 2 
+ 2 a A2B 2 = s el 1 

D(s2) = c2
2s4 - s2(e2

2 + c22 a2) + e2
2 a

2 

Let K = 2 QA2B, therefore, 

Solving (2. 3-5) for s2 gives: 

s2 
= 1 [ -(e2

2 + c2
2 

a
2 ) + K Xic12] 

2 3  

his paper t4] 

(2. 3-5) 

(2 .3-6) 



and f (  A - ) = 
1 

C 2 
2 

reduces (2. 3-6 ) to : 

[ a 2 e 2 
. 2  

2 4 

s2 = g( xi) ± [ g
2 < Ai) + f ( �i ) ] 

2 (2.3-7) 

The solutions to which are 

+ { g < A i ) + [ g2 < X i
) + £ < A i ) ] 

.l. 

} ½  s1 = 2 

- { g( xi) + [ g2 < xi) + f < Ai) ] 
1. 

} ½ s2 = 2 

+ { g( x i
) .- [ g2 < Ai) + f <  Ai ) ] 1. 

} ½ s3 = 2 

- { g c X i ) - [ g2 c X. i ) + f c A i ) ] 
.l 

} ½ s4 = 2 (2 . 3-8) 

The set of Eqs. (2.3-8 ) along with the ones preceding it have 

been computerized. The search technique used to determine the 

eigenvalues is shown in Appendix D .  The program is flexible enough 

t� enable one to determine the eigenvalues for all the cases under 

stu�y .  This point will be elaborated in Chapter Four . The fifty 

eigenvalues obtained by using the program are arranged in ascending . 

order . The eigenvalues definitely depend upon the location of the 

zero ;  taking on larger values as the zero moves away from the 
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origin. A i , as used here, is the inverse of the }L i introduced 

earlier in this article. The eigenvalues , A i ' obtained by solving 

(2. 3-4) are seen to increase in value rather rapidly --- the rate of 

rise definitely being linke� to the position of the zero, e1. It 

may be pointed out that the eigenvalues obtained from solving Eq. 

(2 . 3-5) are the same as those from Eq. (2.3-4) solved in [4] The 

increase in the values of the eigenvalues are consistent with Capon' s  

solution [s] of the homogeneous Fredholm equation (2.3-4). It is 

also observed that the s um of the reciprocals of the squares of the 

eigenvalues converges. 

The solution to Eq . (2 . 3-4) has two distinct parts eigen-

values and eigenfunctions. The method used to determine the eigen­

values has been indicated in the preceding paragraphs. Youla [4] 

and Capon [5] have solved the Fredholm homogeneous equation in the 

Laplace and time domain , respectively . However, Capon' s  method has 

a major drawback, viz. j the eigenfunctions are grossly in error for 

the first few values of the index, i ,  which , incidentally, are rather 

important and substantial in value. Consequently , they cannot be 

used in computing MISER since their usage leads to completely 

erroneous results . Youla gives the eigenfunctions in the Laplace 

domain , reproduced below as : 



D(s2 ) - A . N ( s2 ) 
l. 
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( 2. 3-9 ) 

where 

D- ( s )  

P(s ) 

The Pk ' s being 

n-1 

[1 
-+ 

k=O 

+ 
D ( -s )  

n-1 

L 
k=O 

Pk sk 

determined from 

< -1 l  ] W k 
X r r ( A i

) pk = ( 2. 3-10 ) 

with the xr defined as 

- W T e r 

r 1 , 2 , 3 ,  . . . . . . . . .  , n .  

i 1 , 2 , 3 , . . . . . .  , . . . . . .  , . . .  . 

Note that the 0i(x ) defined by (2. 3-9 )  are orthogonal but 

not orthonormal over O � x � T .  An expression for the normalizing 

constant can be derived [10] , but its complexity increases as the 

@ The notation � will be used to deno te t he Laplace and Fourier 
transform, as the case may be. The pertinent domain will ·be 
explicit from the context . 
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order of D(s2 ) in s2 increases beyond one . Eq. (2 . 3-9) will be used 

to compute MISER in the following chapters. The correctness of 

(2 . 3-9) was tested by analyzing a short circuited filter . This 

-short circuited filter was also analyzed by using Capon's method . 

The two are tabulated in Table C . l , Appendix C .  

A possible objection to the use of Youla ' s  expression may be 

that the determination of the inverse Laplace transform, in certain 

cases, could be exceedingly difficult . Numerical techniques may 

overrule this objection to a certain extent . However, it must be 

emphasized that analytical solution is to be preferred, as then the 

normalizing constant could be calculated to a great degree of 

accuracy . Numerical techniques employed to obtain the inverse of 

Laplace transforms \\Ould be adequate enough to give an approximate 

value of the normalizing constant . This aspect will be dealt with 

in greater detail in article 4-2 . 

2-4 . A General Expression for MISER: 

Consider the block diagram illustrated in Figure 2-2. Let 

w(t) be the signal source to the first order transducer, and let 

x(t) be the pattern process at the output of the transducer. The 

signal source is assumed to be present since antiquity. Recall that 

a very good approximation to this situation is the presence of the 

signal for a considerable length of time compared to the time constant 



V V 

w ( t)  
First Order ... 

Transducer 

V V 

x( t) 
....._ Scanner ... Sampler 
,r ,-

Figure 2-2 :  Block diagram of the system under study 

Xa ( t) 

,,. 

� 
00 
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of the transducer. Thus, a random process present since  antiquity 

will be available  at the output of the transducer. The transducer 

pattern, x(t) , is then fed into a scanner which  continual ly scans 

·the input during the time interval [o : TJ The output of the 

scanner is then sampled by a sampler , The scanner may be a step 

switch which wil l  reproduce the input to the scanner during the 

interval [o, T] The sampler could be an analog-to-digital con-

verter or just an ordinary commutator with the arm rotating at a 

constant speed. The system i l lustrated in Figure 2-2 is represen-

tative of a part of the data transmission process. The signal 

process could be an electro-cardiogram (ECG), for example, or the 

weather conditions during a certain time of a year etc. In this  

case x(t) wi l l  differ from w(t) by the amount of information lost 

in the transducer. The scanner wi l l  reproduce x(t) within a desired 

interval [o, T] Thi s  continuous process is sampled and its 

approximations, xa(t) ,  will be transmitted . 

The set of discrete coeffi cients, x(t) , would represent to an 

observer the output of the transducers. One can then approximate 

x (t) by a set of discrete coeffic ients over the interval [o, TJ as 

L xil'li (t) 

i=l 

(2 . 4- 1) 

in whi ch the n coeffi c ients of xi depend only on the function x(t) 

to be represented but not on time and the n functions of time, S1(t) , 
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are specified independently  of x(t) , [6] The ¢i(t) ' s  are picked 

such that they are orthonormal over the interval [o , TJ Under 

these conditions , it may be noted , that the best approximation in 

�he least squares sense i s  obtained when xi is taken as the proj ection 

of x(t) on 0i ( t) in the interval [d , T] · [11] 

E' 2 = 

= 

The MISER is 

T 

E { f [w(t) - xa ( t ) ] 2 d t} (2.4-2) 

0 

T 
E f [ w(t) - x(t) + x(t) - xa(t) ] 2 dt 

0 
T 

E f [w(t) - x(t)] 

0 

2 
d t + 2E J [ w ( t ) - x ( t ) ] [ x ( t ) - xa ( t � d t 

0 

T 

+ E f [ x ( t) - xa ( t) ] 2 d t 
0 

(2.4-3) 

Taking the expectation within the integral sign (See Appendix A) , 

expanding the terms and performing some rather simple  integrations , 

we obtain : 

T 

E f [w e t) x(t) ] 2 dt 

0 
T 

E J [ w(t) - x(t) ] [ x(t) 

0 

T 

E J [x(t) - xa C t) ] 2 dt 

0 

R (0) - 2R (0) + R (0) 
WW WX XX 

- xa (t) ] dt = Rwx(0) - Rxx(0) 

n n 
-E { L �iwi} + E { � xi2 } 

i=l i=l 

n 
= Rxx(0) - E { I  x . 2 

1 } 
. i=l 
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To obtain these one is required to interchange the integral and 

the summation signs [12] Also , the property of orthonormality 

of the 0i ( t ) 's was invoked . 

Adding the preceding three equatiops we have, after simpli-

fication; 

( 2. 4-4 ) 

It can readily be shown that 

T T  

E { x / } = j f Rxx ( t, u )  0i ( t ) 0i ( u )  dt du 

0 0 
T T 

and E { xi
wJ = J f Rxw ( t, u )  0i ( t ) 0i ( u )  dt du 

0 0 

by using advantageously the f�ct that the output process is related 

to the input process through a convolution integral. In other words, 

or 

t 

x ( t ) = f w (T ) h ( t- T ) dT 
- CX) T 

= J h ( t- T ) w ( T ) dT 

- co 
t 

x ( t) = f w ( t- , )  h ( , )  dT 

0 t 

= / w ( t- T ) h ( T )  dT 

t-T 

t E [- co , TJ 

t > T  

t E [-a:> , T] 

t > T 

The 0 . ( t ) 's expressed by the Eqs.· ( 2 . 3-9 ) are valid over the 1 

range O � t � T only. Also, al though the signal is assumed present 

since antiquity, it is being sampled in real time; the limits of 



integration are [o , TJ Consequently , (2.4-4 ) reduces to 
n 

+ 

i=l 

n T T 

r f f 
0 0 

i=l 

T T 

f J R (t , u) 0 . (t ) 0 .(u) dt du 
xw 1 1 

0 0 

R (t , u )  0. (t ) 0.(u ) dt du 
xx 1 1 

(2.4-5) 

· Being able to calculate each term in the above equation 
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enables one to calculate the MISER a positive number less than 

unity. Observe that the signal source wil� be sensed in voltage 

units and the sampled output will also be identified in the same 

units. 

2-5. Summary : 

This chapter dealt with the basic principles of the techniques 

to be used later in this study. It was pointed out that the study is 

restricted to physically realizable , linear, deterministic , non-

anticipatory systems. As a consequence of this , it was shown that 

the impulse response of the network must be finite. The signal is 

· an assumed SGM process. The pattern was then statistically analyzed 

and certain properties of the correlation functions, considered 

important, were emphasized . The Fredholm homogeneous integral 

equation was then solved and the nature of the resultant eigenvalues 

and eigenfunctions was studied. Finally , a general formula · for the 
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MISER was developed. The use of the Karhunen- Loeve theorem implied 

that the error obtained would be minimal . 
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CHAPTER THREE 

STATISTICAL ANALYSIS 

Thi s  chapter analyzes four different configurations of 

resistances and capacitances. The input in each case is the same, 

namely, the Stationary Gaussian - Markoff process. The output pro-

cess, in each case is statistically analyzed ; the correlation functions 

are determined and carefully studied. Salient features are noted 

and commented upon. The chapter concludes with a comparison of the 

results in each case. 

Consider a s  an i nput the SGM process with the autocorrelation 

function as 

I u - t i  (3 . 1-1) 

t ,  u E ( - co ' T ) . 

The cross-correlation function is defined as the expected value of 

the product of the random variables obtained by time sampling the 

inp�t and output random processes. Noting that the pattern is related 

to the signal through the impulsive response of the filter, it may 

readily be shown that 

= f Rxx ( u ...!T) h( t-T) d T 

-co 
( 3 . 1-2) 
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The auto-correlation function of the pattern, defined as the expected 

value of the product of  two random variables obtained by time 

sampling the pattern at dif ferent instants, is 

E{ J 
- (X) 

w c ci  ) h c t  - a ) ct a J w cf3 ) h c u  - f3> ct,B } 
-CO 

t u 
= r J -Q'.) -co 

a € ( - CO , t); ,B E ( - co  , u) (3. 1-3) 

These equations will be used in the analysis of the cases which 

fol low and, therefore , are derived before we can begin the analysis. 

3-la. Analysis of Case(A) : 

Consider a first order transducer represented by the R - C 

filter illustrated in figure 3.l(a).  The impulse response of this 

low-pass filter is 

h(t) =1 
1 

RC 

-t/RC 
e 

CT e 
-

(T
t ( 3 • 1-4 ) 

where er is the pole of the transfer function. Note that in the 

practical circuit under consideration, no pole can exist at origin. 

@ See Appendices A and B 
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(With r efer ence to F ig . 2-1; A = 
e2 = 1/RC . ·) 

1/RC, C2 = 1 ,  

C l  , 0 ,  Rxx ( 1 ) ) 

1
( 1 , 0 , 0 ) 

t 

( 1 , 0 , Rxx ( 1 ) ) 

( 0 , 1 , 0 )  

( 1 , 1 , 0 )  

Figure 3-1 . Case (A ) : a) Low pass fi lter and b)  Pa t tern auto­
correlat ion func t ion . 
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The cross-correlation function is found by using Eq . (3. 1-2 ) . 

Therefore, 

t 

Rxw<t, u ) = J e - l u - Tl · (j e -0-(t - T) 

-CX) 
0 

= J e - l u - rl a- e-CT(t - T ) 

-CD 
t 

+ f e - l u - , I 0- e-0-(t - T' )  

0 

Let u > t > 0, then 

rr f  e- ( u - T) e- CT(t - T) d'T"' 
R (t, u ) = v • 

xw 
- CO  

t 

+u J e-<u - T) e- 0-(t - T) ctr  
0 

Evaluation of the integrals gives 

= ( ,T9 (j+ l \ Rxw ( t, u )  
"" / 

Let t > u > 0 ;  then 

0 

(t - u )  e 

J e-(u - T) CF e- CF(t - T) d ?" 

-co u 

+ f e-(u - L ) CT e- CT ( t  .: r i  

t 

f (u - T) - O"(t - T) 
+ e O- e  

u 

dT 

dT' 

d T'  

d T 

d T' ' (u, t > 

( 3. 1-5) 

0 )  
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Upon solving these integrals , one obtains · 

(3.1-6) 

The auto-correlation function of the pattern is calculated 

by using Eq. (3.1-3). Substituting appropriate values of the im-

pulse responses, o_ne gets 

t u 

Rxx<t, u) =elf J e - l a  -/31 e -
(T( t - a ) 

-(0 -CX) 

- <Y ( u- /3 ) /3 e da d  

Let u > t > 0 , Q E ( - CO , t ) , /3 E ( - CO , u) , then 

u 

+ 
J e ( a -/3> e - CT ( u -/3 ) ct/3 } 

Evaluation of these integrals by recognizing that t , u  are parameters 

as far as Q and /3 are concerned, yields 

�
) [ e ( t -u ) _ 1 

e (T ( t -u

� 
8xx ( t, u) = (3. 1-7) 

Let t > u > O, a E ( - co ' t) ' and /3 E ( - CX) , u) ,  then 



Rxx ( t , u ) = ; u- 2 e- U-( u-/3 )  ${ . f�< a -/3 )  
- co - ro 

+ 1 e- ( Q -/3 )  e- CTH - Q ) d Q }  . 

/3 
Proceeding . on similar lines , we have 

- CT( t - a ) e da 
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(3 . 1 -8) 

Eqs. ( 3.1-7) and (3.1-8) may be rewritten in a concise manner as 

2 
CT 

CT - 1 

1 

(j 

t , u > 0  

(3.1-9) 

A superficial study of Eqs. ( 3.1-5) , ( 3.1-6) and (3. 1-9) 

indicates what may have been aDticipated --- that the output process 

is also stationary in the wide sense , being solely dependent upon the 

time difference , (t-u). Furthermore , the cross-correlation function 

is not an even function consistent with the general properties 

stated in article 2-2. 

Representing (t-u) by /::,. , Eq. ( 3. 1-9) becomes 

having a maximum value of 

R (0) = xx 
er 

CF +  1 

(3.l-9a) 

( 3 . 1-10) 
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at the origin. An interesting case is when a- - 1. Under this 

condition , 

1 
2 

and for any other fl �  O ,  (3.l -9a) becomes a so-called indeterminate 

expression [13] This may be solved by taking the derivatives· of 

the numerator and denominator an equal number of times with r espect 

to 0- , till a finite or an infinite answer , in the limit as 0- -1 , 

is obtained. This appr oach leads to 

(3. 1-11) 

The value of the auto-correlation function at other locations of 

the pole , (j ,  . may be obtained by direct substitution in (3.1-9). 

The general nature of Rxx(t , u) is shown in figure 3.l(b) . The 

figure illustrates the general var iation of Rxx(t , u) for an assumed 

CF .  The peak is Rxx(O) . The profile on the [Rxx(t , u); tJ plane is 

obtained by evaluating Rxx( O , u) .  Similarly , the pr ofile on the 

plane is obtained by evaluating Rxx(t , O) .  The nature 

of . the auto-correlation function in space and the pr ofiles on t = O ,  

u = .O planes are seen to decay exponentially. Notice also , that the 

auto-correlation function is symmetr ical  about a plane perpendicular_ 

to the (t , u) plane and equi-angular ( 45• � to the other two planes. 
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This is not surprising --- it is merely a confirmation of the 

properties stated in article 2-2. 

Eq. ( 3. l-9a) was analyzed for the variation of the auto-

correlation function with changes in the location of the pole, 

(j Figure 3-2 shows graphically thfs variation . Observe that th e 

autocorrelation function approaches a value of 0. 6 asymptotically. 

The time difference, l t-ul , was held constant at 0 . 5. 

3-2a. Analysis of Case ( B): 

The first order transducer represented by the C - R filter 

in figure 3-3 ( a) is a high pass filter having an impulse response of 

h ( t )  8 (t ) - RC 

( 3. 2-1) 

where (j is the pole of the transfer function . Once again, a pole 

at the origin is physically impossible . Observe that the location 

of the zero, y is at the origin and is independent of the location 

of the pole, (j . Therefore, the pole and the zero can never be 

coinciden.t. 

3-2b. Correlation Functions � 

Using Eq. ( 3. 1-2), the cross-correlation function is 



R,cx ( 0 . 5 )  

6 

4 

2 

----------..----------,,--------------.----------�---- (j 
( 0 ' 1 )  3 5 7 9 1 1  13  

Figure 3-2. Variation of the pattern autocorrelation function, 
case (A). 
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R 

h(t) = 8 ( t) - (1/RC) e-t/RC 

(With reference to Fig. 2-1 ; A =  1, c1 = 1, e1 = o, c2 = 1, and 
e2 = 1/RC.) 

(1, 0, �x (1) ) 

t 

Rxx<t, u) 

( 0 , 0 , Rxx ( 0 ) ) 

( 1 , 1 , Rxx ( 0 ) ) 

(0, 1 , Rxx (1) ) 

(0, 1 , 0) 

(1, 1, 0) 

Figure 3- 3 . Case(B) : a) High pass filter and b) Patt ern auto­
correlation function. 
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t 

R ( t ) f - I u- Tl ·-xw , u = e 

- CO  

44 

dT 

u ,  t > 0 

Let u > t > 0 , then 

0 

= J e-< u-T) 8< t-r) ctr + 
- co 

0 

0 

J e-< u-T) er e- er C t-,) dT 

- co 

Solution of the integrals gives 

Rxw(t , u )  = 

Let t > u > 0 ,  then 

(t-u )  e 

8 c t - r ) 

t 

- !  
0 

0 
Rxw ( t , u )  = J e - ( u -T) [ 8 ( t-T) - er e -CT ( t-T) ] d r 

u 

+ J 
0 

t 
+ ! . 

u 

- CO  

e-(u-T) 

e (u-T) 

[ 8 ( t-T )  - 0- e - CT ( t-n ] 

[ 8 (t-T) - er e -
er <t-n ] 

Evaluation of these integrals yields 

ctr  

dT 

�(t-u ) e 

d T 

(3 . 2 -2) 

(3 . 2 -3) 
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The auto-correlation function of the pattern is cal culated by 

using Eq. (3. 1-3). Substituting appropriate values of the impulse 

responses , one gets 

t u 

R (t, u) J J e- l a - /3 1 [ & t- _a) 
_ cr c t- a ) 

] = - (T e  xx 
�co -ex, 

X [ 8 <u-/3 )  - (T e- 0- ( u-/3) ] 
Letting u > t > O ,  a E (-CX) , t ) and /3E (-CO 1

u) ; we obtain 

t 

f ( 8 c t- a > - (Te- <T( t- a ) ] 
-co 
{ J e - ca - /3> 

-(0 
[ 8cu-/3 ) -<Te - <T(u - /3 > ] ct/3 

+ J  [ 8 (u-/3> -ue - <T(u- /3> ] ct/3 } cta 

Evaluation of these integrals yields 

Rxx(t , u) - ( 0- ) 
- (j

2 
- 1 

O-(t-u) e (t-u) e 

Let t > u > O ,  a E (- co ,  t) and /3 E (-CX) , u )  s then 

J
u { - O-(u-/3) } Rxx(t , u) = 8 (u-/3 ) -o- e 

-CX) 

[ 
_ J�ca - /3> { 8c t- a> - u e- <T C t- a> } cta 

(3. 2-4) 

t j e - ( a -/3> { 8 c t- a ) - (T e- (T ( t- a > } cta + 
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Proceeding on similar lines , we have 

(j
2 - l a- 2 - 1 

(3.2-5) 

_ Equations (3 . 2-4) and (3. 2-5) may be rewr itten in a concise manner 

as 

1 

(j 
(3.2-6) 

The general remarks made on page 39 , also hold here. Representing 

( t-u) by � ,  Eq . (3.2-6) becomes 

1 
(3. 2-6a) 

(j 

having a maximum value of 

1 (3. 2- 7) 
(j + l 

at the origin. As in the previous case consider the situation as 

(T - l .  Under this condition 

and for any other f!t. t o , ( 3.2�6a) becomes a so-called indeterminate 

expression [13] Using the technique advocated in case(A), we have 
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(3. 2-8) 

The auto-correlation function may be determined at any other location 

of a pole by direct substi tution in (3. 2-6) . The general nature of 

Rxx(t, u) is shown in figure 3 . 3(b). Observations made in connection 

with figure 3. l(b) are also valid for ' this case . 

Eq . (3 . 2-6a) was studied for the variation of the autocorrelation 

function with changes in the position of the pole, 0- < Figure 3-4 

illustrates this variation. Note that the auto-correlation function 

approaches zero value as the pole is moved away from origin. Ab-

solute value of (t-u) was held constant at 0. 5 .  

3-3a . Analysis of Case(C) : 

Consider the integrator circuit represented by the network 

in figure 3 . 5(a) . The impulse response of this integrator is 

where 

h(t) 

u 

y 1 

[ 8 ( t) + CT ke -CTt ] 

= 1 ---· Y 
1 + k 

k dimensionless ratio _ of R1 to R2 

CT , and y are, respectively, the pole and zer o of the transfer 

function .  Once again, note that neither the pol e  nor the zero ca·n be 
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correlation function . 

4 9  



50 

located at the origin. It is also interesting to note that k � O, and 

therefore the location of the pole would be determined completely by 

the value of k and the location of the zero, y .  In other words, the 

pole will lie within the zero ; both being coincident only when k = O. 

3-3b. Correlation Function ; 

Using Eq. (3 . 1-2 ) ,  the cross-correlation function is 

Let u > t > 0, then 

8xw<t , u) 

0 

= f 
- a)  

t 

+ f 
0 

+ U k  
y 

-(u-n e 

-(u-n 

[i 

U' 8 < t - T" ) d T'  
y 

a- 8<t- T' )  dT 
y 

-(u-T) 0- -0-(t- T ) dT e . .e 

+ J -(u- T) rr - 0- ( t - T )  
e • v  . e  

0 

Evaluation of these integrals gives 

e(t-u) + Q" k  

y y 

t, u > O. 

. (3.3-2) 



Let t > u > 0 , then 

+ CT 
y 

J e- ( u- T) [ 8 ct-T ) + k O"'e- CT ( t- T) ] dT 

- <X) 

f e-( u-T) [ 8 c t- T) + kO"'e-CT ( t- T) ] dT 

0 

J e+ ( u - T) [ 8 c t- T) + k CTe- 0- ( t- T)
] dT 

u 

Upon solving these integrals, one gets 

y 

l CT ( k  + 1 )  - 1 

\ (j - l 
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( 3. 3-3) 

The auto-correlation function of the pattern is calculated 

by using Eq . (3 . 1-3) . Substituting appropriate values of the impulse 

responses, one gets 

t u 

Rxx (t, u) = f f e- l a - ,8 1 [{:S <t- a > + kCTe- CT(t- Q )} f ]  
. - CX) -ct) 

x [ _£!_ { 8 ( u-/3 > + k CTe- CT( u-/3 > }] cta.ct,8 
y . . 

Letting u > t > O; a E (- CX) , t) p anct /3 € (- <X) , u )  we obtain 
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X 

[ / �- < a-/3 l (j { 8<u-/3. ) + k c,-e~ cr ( u-
/3

) } ct/3 y - co 
u 

{ 8 < u� /3) + kc,-e~ <F( u-/3 ) } ct/3 ] 
+ J e ( a -

/3
) 0-

d(J y 

Evaluation of these integrals yields 

J2, e  CT ( t -u )  
(3. 3-4) 

Letting t >  u >O; Q € ( - CX) , t) and /3 €(- CX) , u) we obtain 

u 

Rxx ( t , u ) = f [ ; 
- (0 

{ 8 ( u -/3 ) + k c,-e~ <T(u-/3 ) } ]  X 

CT { 8 < t- Q ) + kO"' e-0-(t- Q)
} da 

. (T { 8 ( t - a) + k(Te- O"(t- a) } cta] d/3 y 
Proceeding on similar lines we have 

(3. 3-5) 

where  .Q = (  ( 
2 <T 

(T2 - 1 
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and 
+ k2 

0- 2 - 1 

Equations (3. 3-4) and (3. 3-5 ) may be rewritten in  a concise manner 

as 

( C e-1 t-u l Rxx t ' u) = 
� n - CT lt-u t 

- J fl e (3.3-6) 

t , u > O 

The general comments made on page 39 � also hold here . Representing 

(t-u) by fl , Eq . (3. 3-6) becomes 

having a maximum value of 

a-2 2k(T 

= v2 { 1 
+ 

I (7 +1 

k CT 

+ - } 
(T +

l 

at the origin . As in the prev ious cases cons ider 

this condition 

(3. 3- 6a) 

(3. 3- 7) 

CT - 1. Under 

(3. 3-7a) 

Note that y and k can take on only non- zero , positive values. There­

fore , R:xx(O) depends upon the position o f  the zero, Y , of the 



network in fact, R (0 ) varies xx inversely as the square of y 

for a given k. For any o ther b i  O, (3. 3- 6a ) becomes a so-called 
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indeterminate expression [13] Using the technique advoca ted in 

case(A ),  we have 

- lt d  e 

[ 2 + 2 k  ( 1  + I� I ) + k2 ( 1  - I � I 1 ( 3 . 3-8 ) 

The auto-correlation function may be determined at any other location 

of the pole by direct substitution in ( 3. 3-6) . The general nature 

of Rxx < t, u) is shown in Figure 3 . 5(b). Observations made in con-

nection with Figure 3. l(b) are, once again, valid. 

Eq. (3. 3- 6a) was analyzed for the variation of the auto -

correlation function with changes in the location of the pole and the 

zero. The three dimensional variation is illustrated in Figure 3-6. 

Recall that in this case the pole is located within the zero and in 

the limit , the two may be coincident. As a result the plane described 

by Eq. (3. 3- 6a ) is of the nature shown in Figure 3- 6. Figure 3-7 

shows the variation of the variance of the - pattern with respect t o 

the changes in the location of the pole. A study of Eq. ( 3. 3- 7) 

results in Figure 3-7. Pole was held . at y = 2 5  for this study. 

3-4a. Analysis of Case(D ) :  

The first order transducer represented in Figure 3- g(a ) ,  is 

a differentiator circuit having an impulse response of 
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(With reference to Fig. 2-1 :  
e2 = (R1 + R2)/n1R2C) 

( l, O, R xx (1 ) ) 

I 
( l , O , O ) 

t: 

C 

Rz 

A =  1, c1 = 1 , e1 = 1/R C 1 ; c2 = l; 

8xx(t, u) 

( 0 , 0 , Rxx ( O ) ) 

( 1 , 1 ,  Rxx (0 )  ) 

( 0 , 1 , R_xx (1 ) ) 

( 0 , 1 , 0 ) 

Figure 3-8. Case(D) : a) Differentiator circuit and b) Pattern 
autocorrelation function. 
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h(t) = 

where <T = (  Rl+R
2 

R1 

y and 
R2C 

8 (t) 

) r  
y - O"' t - e 

58 

(3. 4-1) 

The parameters CF and y are, respectively, · the pole and the zero of 

the transfer function. Since no zero can ex ist at the origin, the 

location of the pole is not physically possible. In this case 

the equality holding only when R2 assumes zero value. The pole, 0-

will, consequently, lie outside the zero, y . The location of the 

pole and zero will coincide when the output is short circuited. 

3-4b . Correlation Function : 

Using Eq. (3. 1-2), the cross-correlation function is 

Rxw<t, u) = f e- lu- -rl{ 8 < t- T ) - y e-<T(t- T > } ct T ,  

-CX) 

Let u >t > O, then 

0 t 

Rxw < t, u) = f e -(u- T) 8 (t- T ) ctr + J 
-CX) 

0 

- y J 
- CX) 

-(u-T ) - 0-(t- T )  
e . e 

0 

t 

dT - y f 
0 

e -(u- T) 

e- ( u- T) 

t, u > O. 

8 (t- T) dT 

e-(T ( t- TJ dT 



Evaluation of these integrals gives 

R ( t u ) = e ( t-u) 
0XW ' 

Let t > u > 0, then 

0 

Rxw(t,u ) = J e-(u- T) ( 8 c t- T ) - y e-CT(t- T ) ] dT 
- co 

+ J  
0 

- C u- T ) · e [ 8 ( t - T) - y e -Ci ( t- T ) ] dT 

+ f e+ C u- T ) [ 8 < t- T) - y e- CT(t- T ) 
] dT 

u 

Upon solving these integrals, one obtains 
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( 3.4-2) 

(3. 4-3 ) 

The auto-correlation fun�tion of the pattern is calculated 

by using Eq. (3. 1-3) . Substituting appropriate values of the impulse 

responses, one gets 

t 
j e -la-/31 [ 8< t- a ) R

xx
(t , u ) = J - cr < t- a >  ] X -y e. 

- co - co 

[ 8c�-,B ) - ye- CT(u-,8 )  ] cta d,B 

Letting u > t  >0 , a E (-CO , t ) , and ,B E <- co , u ) , we have 



t 

Rxx ( t , u ) = J [ 8 ( t-a ) - ye - (]'"( t- a ) ] X 

-co 

f e -( a -/3 ) [ 8 ( u -/3 ) - ye - (T ( u - /3) ] d /3 

-<t) 
u + f e <a - /3) [ 8< u-/3 ) - y e- CT(u-/3) ] ct/3 ct a  

Solution of these integrals yields 

CT(t-u) + J- e(t-u) Rxx ( t, u) = 77e � 

Letting t > u > 0 ,  a E (- CX) , t) and /3 E (- CO , u) ,  we have 

= / [ 8 < u-/3 ) - y e - (T( u- /3 ) ] 
X 

-co 

-co 

6 0  

{ 3 . 4-4) 

{ f/3,, c a -/3 > [ 8 <  t- a ) - y e- CT< t - m ] cta 
+/

t e- < Cl -/3 )  [ Se t - a) - ye- CT< t- a ) ] cta } ct/3 
Proceeding on similar lines, we have 

Rxx < t, u) = 7/e - (]'"( t-u) + � e -(t-u) (3. 4-5) 

where � = ( 
2 y J ( 1 - :CT) o- 2 -

� 
( 

1 -
2 y  CT 

+ 
y 2 ) and = 

0- 2 - l CT - 1 
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Equations (3 . 4-4) and (3. 4-5) may be rewritten in a concise manner 

as 

(3. 4-6) 

The general comments made on page 39, also apply here. Representing 

(t-u) by � , Eq. (3.4-6) becomes 

(3. 4-6a) 

having a maximum value of 

(3. 4-7) 
CT ( CT +  1 ) 

at the origin. As in the previous cases, consider a- - 1. Under 

this condition 

Y2 
- 2 Y + 2 

2 
(3. 4-7a) 

Note that since y can only take on non-zero real , positive values; 

the auto-correlation function for t=u will always be positive. For 

any other � t o , (3. 4-6a) becomes a so-called indeterminate expression 

Using the technique advocated in case (A) ,  we have 

(3. 4 -'8) 
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The auto-corr e lat ion function may be determined at any other l oca t i on 

of the pole by direct substi tution in (3.4-6) . The general nature 

of Rxx < t, u) is shown in  Figure 3. 8(b). Observati ons made in  con-

-· . :  
nec t ion with Figure 3. l(b) ar e, once again , val i d. , . .  

Analysis of Eq. (3. 4-6a) by assuming 1 -6 1  = 0. 5; r esul t s  in 

Figure  3-9 which illustrates a plane descr ibed by moving the pole 

and the zero away from the origin. As alr eady noted the pole  should 

l ie outside the zero and, therefore, the plane occupies one-half 

of the <y , O-) plane . Variati on of the variance with respect to 

the changes in the location of the pole is illustrated i n Figure 

3-10 . It is a graphical representation of Eq. (3. 4 -7 ). Zer o was 

held at y .. 1 for the study. 

_3-5. Comments 

Four differ ent configurations of resistors and capa c i tor s have 

been analyzed in the preceding ar ticles. Studying the results close ly, 

the fol lowing general comments can be made: 

( i) With the signal an assumed SGM process, the pa ttern in each 

case is stationary in the wide sense. By virtue of the fact that the 

signal has Gaussian characteristics, the pattern is a lso stationar y 

in the stric t sense and will  have a Gaussian density func tion. Con-

s fully specifieq in the statistical sense . if  equently, the pattern is 

the mean and the variance ar e known. 
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case(D) . 
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. ( ii) Rxx ( O) is dependent upon the location of the pole in the 

cases (A)  and ( B);  and also upon the transfer function zero in the 

cases ( C) and (D).  Thus , the maximum value of the output auto-

correlation function is dependent upon the transfer function pole 

and zero. 

( iii) The auto-correlation function of the pattern, in each 

\ . : 

case, decays exponentially. Though they are similar in nature; the 

maximum value , rate of decay etc . depend upon the circuit configuration 

and values of the network parameters. 

( iv) (F - l ,  in each case , makes an interesting study. The 

cross-correlation functions become 'indeterminate ' in the limit, but 

may be evaluated by L' Hospital' s rule. The cross-correlation 

function has not been evaluated as CT - l, since it has no physical 

significance and does not add , substantially , to the knowledge of 

the pattern. The auto-correlation function has been evaluated in the 

limit as er - 1 ,  since it gives one an idea of the maximum value 

and also serves as a check on the calculations. 

Though it was noted in article 2-2 that the auto-correlation 

function is an even function , this property was ·not invoked in our 

analysis. This property of evenness was proved for each c�se separately 

and was used advantageously to verify the computations. 
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3-6 . Summary: 

We have analyzed the patterns for four different configurations 

of resistances and capacitanqes with the same assumed SGM signal. The 

auto-correlation function of the pattern was calculated and Rxx<O) _ 

computed in eac h  case. The general nature of the pattern auto-

·correlation function was studied and appropriate comments were made. 

A definite relation between the location of the transfer function 

poles and zeros on one hand; and the maximum value, nature of the 

auto-correlation function on the other, was established. · Table 3-6. 1 

summarizes the results. A graphical representation of the auto­

correlation functions derived in each case was iliustrated in 

Figures 3-2, 3-4, 3-6, 3-7, 3-9, and 3-10. Reasons for the type of 

curves obtained were briefly discussed. It was noted that in cases 

( C) and (D) the equations for the auto-correlation functions de� 

scribed planes with the movement in the location of a pole and a zero. 

The next chapter will deal with the actual calculations of the 

M ISER . The eigenfunctions will be determined in the Laplace domain. 

' As will be shown, the time domain solution may be approximated by 

numerical techniques. However, analytical techniques are to be 

· preferred. 
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CHAPTER FOUR 

COMPUTATIONS OF MISER 

With this chapter , we come to the crux of the problem , namely 

to determine how much information ·is lost in a filter. We start 

by calculating the power spectral density for each case. The method 

is explained , but actual calculations are left out as no difficulties 

are anticipated. The results and other relevant information are 

compiled in tabular form for ease of comparison . Youla ' s method [4] 

is used for finding the eigenfunctions in the Laplace domain. Time 

domai n  solution of the eigenfunctions , perhaps the most crucial single 

problem in this study , will be detailed. MISER calculations finally 

emerge, though actual numerical calculations will be deferred. 

4-1. Preliminary Calculations for MISER : 

The power spectral density of a stationary random process 

{ x(t)} is defined as the Fourier transform of the correlation 

function. Denoting this density function Sx(W ), we have 

Sx ( W ) f Rx ( ' ) e .;. j W T  d T' 

- co  
( 4.1-1) 

The spectral density of the transducer output process may be -

determined by [ 1] 

( H(j W )  I 
2 

s ( W ) ( 4.1-2) 
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where { w(t)} and { x(t)} are the signal and pattern processes 

respectively. Knowing the statistics of the input process and the 

impulse response of a trans�ucer, Eq. (4. 1-2) cari be used. By the 

substitution s = jW , Eq. (4. 1-2) may be expressed as a ratio of • . : . 

polynomials in s2 , viz., 

N(s2 ) and D(s2 ) are polynomials of degrees m and n in s2 , v iz . , 

m 

. N(s2 ) L a
2k s2 k 

( 4 . 1-3 ) 

k=O 

n 

D(s2 ) L b2k 
2k b0 #- 0. s 

k=O 

In order that the spectral density be finite, it is required that the 

degree of D(s2) must exceed that of N(s2) by at least two and D(s2) 

must have no roots on the imaginary s axis _ [4] 

Since the autocorrelation functions of the pattern have been 

found to be linear combinations of the form 

- N I T I  
Me ( 4 . 1 -4 ) 

it may be helpful to determine the spectral density of Rx ( , _ )  in· Eq. 

( 4. 1-4). By definition, we have 



J M e N T . e- j W T d. T  
- CD 

Solution of these integrals yields 

2 MN 

+ 
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dT 

(4 . 1 -5 ) 

Table 4. 1-1 gives the spectral density of the pattern for each 

case. The autocorrelation functions listed in Table 3. 6-1 have been 

used to obtain these results. Table 4. 1-1 also gives N(s2) ,  D(s2) 

and n+(s) in each case . These are required to determine the eigen-

functions. 

4-2a. Determination of Eigenfunctions : 

Recall that the eigenfunctions, in the Laplace domain , are 

given by Eq. (2.3-9) which is rewritten here as 

(4. 2-1) 
D(s2) -

n+(s) , D(s2) and N(s2) for each case have been tabulated in Table 

4. 1 -1. Observe that the polynomial P(s) is arbitrary and - of degree 

(n-1) . This arbitrary polynomial in s figures in the operational 



E I G E N FU NC T IONS  

- DESC R I PTI ON 

1,, r, 
SPECTR A L  DEN�  2 � L a- ) 

s - DO MA I N 

m 

n 

54 - ( a- 2  t I ) 52 t- a- 2 

a2 = - 2 r; a- - 2 �  

ao = 2 r; a- - 2 s o- 2  

2 

a- -----+------'--------➔> 

T H E  POLE , 

T H E  Z E RO,  

0 FOR E X PL A � 

7 1  



72 

bilateral Laplace transform involving 0i(t) of Eq. ( 2 . 3-4) ,  [4] _  

Notationwise , 

n-1 

P ( s )  
' . : ! < 4  . 2 �2 L· ·. 

k=O 

In the cases under study , P(s ) is a first order polynomial in 

s. It may be worth noting that P(s , A
i

) is an arbitrary polynomial 

in s ,  with the pk ' s being a function of A
i

. This concept is 

explained in sub-section 4-2 c .  

4-2b. Procedure for Determining the Eigenvalues : 

At the risk of being repetitious , some of the equations 

of Chapter Two are rewr itten below. With reference to Figure 2 -1 , 

the spectral density of the pattern is 

2 a e1
2 - c12 s2 

Sx(s ) = A2 B ( ) (  ) (4. 2-3 ) 

a 2 5 2 e2
2 - c2

2 s2 

It was also shown that 

' 
2 ) \ N( 2 ) - O were found to be · The solutions of D(s - /\ i  s -



+ 

± 

[ g < X i ) + { g2 < A i ) + f < X i ) } ½ ] ½ 

l. 
2 
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( 4 ., 2-5) 

Solutions of D(s2) - A i N( s2) = O, will be represented by ± W
1 

( A
i) 

and ± w2 ( A i) . Note that the roots are arranged so that O S Re wl , 

The set of Eqs. (4. 2-5) and 4. 2-6 ) have been used to locate 

the eigenvalues, A
i

. The search technique employed in the computer 

solution is shown in Appendix D, where the program is reproduced. A 

typical computer print-out is also incorporated. Table 4.2-1 gives 

the values of the various constants which would replace the constants 

in the program to study a particular case. 

Since the signal process is an assumed SGM process, the · 

kernel 8ww(t , u) is non-degenerate and hence should have an infinite 

number of eigenvalues. The eigenvalues are ordered in an ascending 

order and increase rather rapidly in vaiue. Consequently, inverse of 

the eigenvalues approach zero quickly enough to consider a finite 

nwnber of eigenvalues without- being in gross error , The program in 

Appendix D will calculate the first fifty eigenvalues. Once the eigen­

values, A . have been determined it will be a simple matter to 
1 '  

· 1 1 t W ( \ ·) Table 4 . 2-2 illustrates the changes that will -ca cu a e r A i
. 



Table 4 . 2-1 � Values of the constants required to  study a particular case. (This  has reference 
to program given in Appendix D.-) 

s 

n A B C D 

Replace these constants � 

( i ) Al 0 1 1 1 

( i i )  A2 1 1 · 1 1 

( i i i ) Bl 1/RC 0 l/R2C l/R1C 

( iv ) B2 1/RC 1/RC 
R2/( R1+R2) R2C (_R1 +R2) /R1 R2C 

( v )  Alpha · 1 1 

(vi) A 1 1 

(vii) B 1 1 

( vi i i ) K=2QA�B 2 2 

1 

R2/ ( R1+R2) 

1 

2R 2 
2 2 

= 
( Rl +R2 ) 2 

. ( l+ k) 2 ' . .  

1 

1 

1 

. _ 2 

. . 
' . 

--.J � 



Table 4 . 2 -2 � Solutions of D(s2 ) - A
1

N( s2 ) = 0 for all the cases 

A B C D 

( 2 f2 0- - 2 l ) s 2 ( -2 7] 0- -2 � ) s2 

N ( s2 ) 2 a- 2 -2s2 + ( 2 Ci <; - 2 flo- ) + ( 2 "] . 0- + � CT2 ) 

D ( s2 ) � s 4 - ( (j2 +l ) s2 
+ (j

2 

� 

In  eqs. (4. 2-5) and (4 � 2-6) 
r eplace 2 

( 

· · . 2 A ) g ( A 1 ) = 
(j + l ½ < C-2 + 1 - 2 A i ) ½ CT 2+1 - 2Y J . ½ < <T2+1 -2 A 1 ) 

2 . ( l+k )  

I n  eqs. (4 . 2-5) and (4. 2-6) 
r eplace 

2 � r_2 
(T

2 \ 2 ....::>. 
f < A . ) = 

· 
er 

2 
< 2 A -1 )  - a-2 � - < 2 /\ y - u - � 1 i 

•. ( l+ k)2 i 

The pole , (j = 1/RC 1/RC R2/ (R1+R2 ) ( R1+R2 ) /R1 

The zero, Y ::;:: - -- l/R2C 1/R2C 

. . . . .  

-..:, 
(11 

t 
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be required, for the different cases, in Eqs. (4.2 -5) and 4.2-6). 

With the help of Table 4.2-2, Wr( A
i
) may be calculated. 

4-2c. Determination of P(s, A il:  

Recall that 

where the Pk ' s  are given by 

n-1 

L} + (-l)k xJ 
k w r < 

and 

k=O 

X = r e 
_ Wr ( X i)T  

n-

D+ 

, . .  

( 4 . 2-7) 

A · .) Pk = 0 1 (4 . 2-8) 

W r< x i ) 
( 4.2 -9) 

W r( x i ) 

It is thus evident that P(s, A i) will be dependent upon the order of 

D(s2). Actual values of P(s, X
i
) are, of course, dependent upon the 

solutions of D(s2) - x
i 

N(s2) = o, viz., ±: W r( X i ) .  In the cases 

under study, the order of D(s2) in s2 is two. Eq. (4.2-8) then 

reduces to 

For a non-trivial 

P1 = 

solution we must 

{ 
1 + Xr 

1 + X - r H 

( 4 . 2 -10) 

have 

1 
) Po 

X i) W r c 
( 4.2-11) 



Substitution of 

P ( s, A i
) = 

This leads to 

and P(s, A i ) = 

this result into Eq. (4. 2-7) gives 

Po [1 · 1 + xr 1 s] 
1 ± xr Wr

( A i) 

r = 1 , 2 . ; i = 1 , 2 , 3 ,  . . . . . . , . . . . . .  , . .  . 

Po [ 1 - __ 
1 

_
-
_

x
_1_ 

. 1 + x1 

Po [ 1 
1 - X

2 

1 + x2 

s 

xJ W2 ( 
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(4.2-12) 

> , . .  

r = l . (4 . 2-13 ) 

r = 2 . (4 . 2-14 ) 

Po [ 1 -
1 + x2 

s 

xJ 1 - X
2 

W2 C  



Observe that all the terms can now be evaluated and hence 

P(s, A i) can be calculated. With this we are in a position to 

compute the eigenfunctions. Before proceeding, however, it may be 

,_.,, 
advisable to note a few interesting points : 

(i) The constant term, p0 , will be eliminated while 

normalizing the eigenfunctions . 

(ii) In the solution of P(s, A 1), the coefficient of s is a 

dimensionless number for a given r and i. 

(iii) As a consequence of this, P(s, A . ) D+(s) is a third 
l. 

degree polynomial in s and D(s2) - Ai N(s2) will be of the same 

nature for each case. It would, therefore, seem possible to obtain 

the inverse Ia.place transform analytically. 

4-2d . A General Time Domain Eigenfunction :  

I t  was indicated in subsection a of this article that 

Let the 

..!.. 
�i(t) . 

right hand side of 

P(s, A1) D+(s) 

D(s2) - - A i N(s2) 

this transform pair be represented 

A s3 + � s2 + Al S + Ac) 

s4 + <P2 + ,2) s2 +/32 , 2 

by 

, . . . 



A good table of Laplace transforms [1s] · gives the transform of 

this s - domain polynomial as 
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· . _. : :  
, . .  

( 4.2 -16) 

T </3 2 - T 
2 ) 

where '¥1 
-1 

/3<A1 - A3 /3 2) 
tan 

Ao - A2 /3 2 
( 4.2 -17) 

-1  
T (Al - · A3 T 

2
) 

and "' 2 
= tan 

2 A0 - A2 T 
( 4.2 -18) 

Observe that <{32 + , 2) is the coefficient of s2 and /3 2 T 2 

is a constant term. Knowing the actual values, {3 and T may be 

determined. Table 4. 2 -3 makes a comparative study of the component 

terms required, in each case , to obtain the eigenfunctions. As 

already pointed out in sub-section c of this article, P (  s, X . ) and 1 

2 D ( s ) have similar forms in all the four cases. Eq. ( 4. 2 -10) may, 

therefor·e, be rewritten as 

Pz representing the coefficient of s in Eq. (4. 2-12). Therefore, 



TA B L E  4 . 2 - 3 

� 

D ( s 2 ) - A  .. N ( s 2 ) 
I 

COE FF I C I ENT OF s 2-' 

C O N S TA N T  T ER M ; 

T H E  P O LE , CT -

T H E  Z E RO ,  y -

T H E  C O N S T A N T S  

t ) . [ R E F E R E N CE - E Q S . ( 4 . 2 - 1 6 ) A N D  (4 . 2 - 1 9}] 

► s 2 

� --

- --

D 

s 4 + { \  ( _2 77 0- + 2 s ) - ( o- 2 + I ) } s 2 

+ { a- 2 - \ ( 2 77 0- + 2 � 0- 2 ) } 

{ A j ( 2 77 0- + 2 s ) - (0- 2 + I ) } 

{ (T 2 - \ ( 2 r; o- +  2 � o- .2 ) }  

( R I + R 2 ) / R 1 R2 C 

I / R 2 C 

_ (�) ( 1 -LJ Tj - · o- 2 - I 2 0-

-� 
2 0- y = 1 - + . o- 2 - I 

,2 

a- 2 - 1  

' 
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P(s, A1) D+(s) = -Pzp
0

s3 
+ [p0 - P2p0( U + 1) ] s2 

+ [po< U + l) -PzPo ] s + ·Po 0-

8 1  

(4.2-19) 

In terms of the parameters defined in Eqs . (4 . 2-1 6), (4.2 -17) and 

(4. 2-18) ; we have 

A3 = - Pz Po 
(4.2-20) 

A2 = Po - Pz Po ( (j + 1 )  (4.2-2 1) 

A1 = Po < er + 1. )  - Pz Po 
(4.2-22) 

Ao = Po CT 
(4.2-23) 

where pz is rep lace·d by 

1 - Xl 
1 

pli 
1 + X2 

w1 c A i) 

(4 . 2-24) 

1 + x1 1 

pli 
1 - xl W1 ( A i

) 

1 - X
2 

1 

P2i = 
1 + X2 W2 < Ai) 

(4.2-25) 

1 + X2 
1 

P2i = 
W2 ( Ai) 1 - x

2 
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The Xr have already been defined in Eq. C 4. 2-1 5) . The other parameters 

viz. , /3 and T, may be identified with the help of Table 4. 2-3. 

Observe that in Eqs. ( 4.2-16), ( 4. 2-17) and ( 4. 2-18) the 

parameters are independent of time, t, and are constants for a 

given r and i. Rewriting Eq. (4. 2-16) as 

where yl 

Ao - A2/3
2 

= 

/3 c, 2 - 13 2 )  
( 4. 2-26) 

Ao - A2 T 2 

and Y2 = 

t' < /3 2_ 
T

2

) 
( 4. 2-27) 

Note that the 0i ( t) in Eq. ( 4.2-16) are orthogonal but not 

orthonormal. The next article proceeds to determine the normalizing 

constant . 

4-3. Determination of the Normalizing Constant � 

It can be shown [10] that the square of the normalizing 

constant is 

C 2 
i 

f _0/ Ct) dt 

0 

where, 0i(t) = Y1 sin (/3 t + V,1) + Y2 sin ( T'  t + 1/1 2 ) 

( 4. 3-1) 
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Therefore, 

c . 2 1 

c , 2 1 f [Yi. sin ( /3 t + 'Y i) + Y
2 

sin ( T t  + l/J2) ] 
2 dt 

0 

Expansion and direct substitution yields 

Y1Y2 
[ 2cos t/3 - T + 2 

"11 - 2 o/2
j s in (/3: • ) ] + /3 - T 

2 

Y1Y2 

[ 
(/3 + T + 2 

'P1 + 2 o/2
1 sin 

( /3: T 
u 

2cos 

- /3 + T" 2 

( 4. 3-2) 
2 T' 

, . : 

The c . 2 given by Eq. ( 4. 3-2) will be dependent upon r and � - as the 1 1 

Y' s are functions of X i . The other parameters may be computed with 

the help of Table 4. 2-3. 

· 4-4 .  MISER Calculations : 

One is now in a position to compute the Mean Integrai Square _ 

·Error . Eq. ( 2.4-5), which is the equation for the MISER, is re-

produced below as 



8ww( O) + 
1 

c. 2 
1 

84 

n 1 1 

. r f tR XX ( t ' U ) 

1=1 Jt� 
o :  · o  

( 4.4-1 ) 

The variance of the signal process. is obviously 1. The pattern auto...: · . 

correlation functions are detailed ·in Table 3. 6-1 .  The cross-

correlation functions have been derived in Chapter Three . Knowing 

the eigenfunctions derived in article 4-2 ;  all the component terms 

can be determined and the MISER computed with the help of a high 

speed digital computer . Appendix E gives a flow chart which may be 

of assistance in programming a problem of interest. 

4"."""5 , Summary : 

This chapter has given a definite direction to help cal culate . 

1 • . 

the MISER. All the seemingly uncorrelated articles of the pr eceding 

chapters were called upon to shape the final analytical solution . 

Though the express�ons which have been derived seem formidable they 

would lend themselves to computer solutions without much effort. It 

must be remembered that by the nature of the solution, a family of 

eigenfunctions will be generated. 



CHAPTER FIVE 

CONCLUSIONS 
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Four different· configurations of resistances and capacitances 

, . .  
representing a filter were analyzed using the mean-integral square 

error as the ' goodness' measuring criterion . With the signal process 

an assumed SGM process, the patterns were found to be stationary in 

the wide sense. The pattern autocorrelation functions were seen to 

be identical in nature --- decaying exponential ly for given pole and 

zero locations. 

In al l the four cases, it was shown that the location of a pole 

at the origin is a physical impossibility. Moreover, in case(C) the 

pole is always located within that of the zero or in the l imit may 

coincide ;  while in case(D ) ,  the pole must lie outside the location of 

the zero . The variation of the pattern autocorre lation function for 

a given time interval,  l t-u l , with respect to changes in location 

of the poles and zeros made an interesting study . Figures 3. 2 

through 3.10 illustrate the variations . Case(A ) has no finite zero, 

case(B )  has a zero at the origin with the pole location remaining 

indepen_d�nt ; cases (C ) and (D ) have poles and zeros with the location 

of the poles depending upon the position of the zero. The pattern 

autocorrelation ,functions, therefore, describe a plane with the 

movement of the poles and zeros. 
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Chapter Four dealt with the heart of the problem viz., 

giving an expression to determine loss of information in a filter. 

Eq. (4. 4-1) expresses the MISER valid for the cases under con-

sideration. Though actual numerical computations were avoided due 

to lack of facilities ; experience indicates that the MISER woul d  be 

very smal l  --- close to zero. The MISER would increase in value as 

the pole is moved away from the origin in all the cases . The use 

of the Karhunen-Loeve theorem to approximate the pattern process 

{x(t)} assured the minimal MISER achievable. 

The eigenfunctions were determined_ by Youla ' s  method [4] 

in the Laplace domain. Capon' s method [ s] was shown to be un-

suitable for our purposes. Analytical techniques were used to get 

the time domain eigenfunctions, though numerical techniques could 

probably be used. Numerical inversion of the Laplace transform, 

which is required to obtain the time domain  sol ution, is risky and 

unstable [i 6] Numerical methods, to be reasonably good, have to 

be developed for the particular case to be studied. 

The SGM process was considered as the signal process, mainly 

because results in a concise form could be expected . Admittedly , this 

hypothetical process does not exist in nature. _ However, as the pur­

pose of studies of this nature are to . analyze a problem without 



losing sight of the significance of the results, the signal used 

is not entirely without justification. 

It is hoped that this dissertation wil l  encourage others 

interested to do more work in this area. One could use a more 

87  

realistic signal process available in nature, for example , or could 

proceed to analyze a second order transducer with the SGM process as 

the signal. The use of an analog computer with an analog-to-digital 

converter may also be expl ored . 
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AP.PENDIX A 

On t he lnter changabil ity of the Expec tat ion and Integra tion 

Operat ions 

One often comes acros s the probl�m of f ind ing the expec ted 

val ue of t ime integrat ion . Though this can be done in mos t of t he 

cases met in prac tice, it may be adv isable to know t he cond i t ions 

whi c h  are prerequis ites to interchange the expec tat ion and t ime 

integra l opera t ions . 

Let x(t) be a samp le . func t ion from a random proces s  and f(t) 

a non-random time func t ion . Then, 

CX) CD 
E J x(t)  f(t) d t  = f E {x < t }  f(t) d t  ( A .  l ) 

- CO - CX) 

CX) 

i f  J E {lx(t )I } I t < t) I dt < (X) (A . 2 )  

- CX)  

Suffic ient condit ions that this  inequa lity be sat is fied are t hat, 

and t ha t  the sys tem be s table, 

J ' f ( t )  I d t  < CX) 

a, 

(A . 3) 

( A .  4 )  
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Fortunately, these conditions ar e met in all meaningful 

communications applications [1] and one does not have to verify 

that these conditions are satisfied in each case. 
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APPENDIX B 

On the Interchangability of the Order of Integration 

The requirement to interchange the order of integration is 
.. . : 

, . . 

common. It has been done several times in this paper . The following 

are the necessary and sufficient conditions, stated without proof, 

when it is possible to interchange the order of integration .  

If any one of the following three conditions 

CX) 

J I f < x, y) I dx dy < co 
- CX>  - CO 

co 
J dx J ff < x, y) I dy < co 

- a:>  - a:) 

(X) (X) 

dy { I f <x, y) I dx < a:) 

- a:) - Cl)  

is satisfied, then it is true that 

(X) co 
J J f(x, y) dx dy 

- CX) -CD 

a) 

= J 
-(() 

a) 

dx / f (x, y) dy 

-co  = I 
- a:)  

f(x, y) dx 

( B. l) 

( B. 2 ) 

(B.3) 

(B.4) 

This resu°I t is known as Fubini' s Theorem . Further reference to [ 6] 

and [14] may be helpful .  
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APPENDIX C 

Analysis o f  a Short Circuited Transducer 

During the study of  the main problem in hand, it was noted that . 

two possible solutions of  the Homogeneous Integral Equation 

/ R(t, u) 0i(u) du = fL i .0i(t) ( C-1 ) 

i i , 2 , 3 , · . . . . . . .  , n .  

were available . One o f  the solutions , used in this paper, was due 

to D. C. Youla [4] and the other by J. Capon [s] The solution 

in the Laplace domain by Youla was preferred over the solution in the 

time domain by Capon. This �ppendix attempts to justify the choice. 

Consider a short circuited transducer illustrated in Figure 

C.l. Let the signal be w(t) and the pattern x(t). The signal is an 

assumed SGM process. As a consequence of the short circuited filter, 

the pattern is an exact replica of the signal. Let the autocorrelation 

function of  the signal be 

e - ITI (C-2) 

Obviously, 

(C-3) 
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SGM Signal Pattern 

w ( t )  x (t )  

Figure C.l. A short circuited transducer 

Table C. l 

Eigenvalues of the integral equation and the approximations for 

� 

I ntegral Youla's Capon' s 

Equation Method Method 

1 0. 7388 0. 7392 0. 1522 
2 0. 1380 0 . 1493 0. 0558 
3 0. 0451 0. 052 1 0. 0369 
4 0. 0213 0. 0360 0.0206 
5 0. 0 123 0. 0201 0. 0235 
6 0. 0079  0. 0232 0. 0 139 
7 0. 0056 0. 0137 0. 0199 
8 0. 004 1  0. 0 197 O. Oll8 

- 9 0. 0031 0. 0117 0. 0 188  
10  0. 0025 0. 0186 0. 0 163 

, 
1. 0.835 0. 3697 Sum 0. 9787 



and 

Substitution of these in 

yields 

= 

1 1 

= f  f 
0 0 

1 1 

f f 
0 0 
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( C-4 ) 

e - I TI ( C-5) 

Using the technique advocated by Youla [4] , it can be 

shown that 

'11 { t ) = sin /3
i 

t + cos /3
i 

t} (C-6) 

where C. is the normalizing constant determined by [10] 
l. 

2 

+ �  1 /3i - 1 
sin2 {3

1 + /3i + Ci = 2 sin2 

· 13/ 4 /3 i 
2 /3! 

( C-7) 

The /31 are solutions of 

i is odd ( C-8 ) 

and i is even 
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Capon ' s method [s] leads to 

�i ( t) 2 cos 1T it , ( C-10 ) 

The other set of equations is obtained by replacing the dummy 

variable t by u. 

Table C.l gives a comparison of the results obtained by three 

different methods ---- Analytic solution , Youla' s  method and Capon ' s 

method. It will be observed that Capon ' s method leads to results 

grossly in error for small i .  As the first few eigenvalues are the 

major contributors, errors in these eigenvalues will make the MISER 

even more erroneous . The numerical approximation to both the tech-

niques described above were obtained by rectangular approximations 

fl u = fl t  = O .10. A smaller width of a rectangle would, undoubtedly, 

improve results obtained by Youla ' s  method . 

· . 
· • ,, 



APJ>ENDIX D 
COMPUTER PROGRAM TO CALCUIATE EIGENVALUES 

COMMON Al, A2, Bl, B2, ALPHA, CAY, DO, Dl, D2, T, W2S, Wl, X, TAN 
DIMENSI ON RLAMDA(50 ) , SLAMDA(50), ERROR(50) 

100 READ (1 1 , l ) Al , Bl, A2, B2, ALPHA, T, A, B 
1 FORMAT(8F9. 3) 

98  

, . .  

ROFZER= (A*A*ALPHA*B)/(B2*B2 -ALPHA*ALPHA*A2*A2) 
ROFZER=ROFZER*(((Bl*Bl-Al*Al*ALPHA*ALPHA) /ALPHA) -((A2*A2*Bl*Bl-

*Al*Ai*B2*B2) /(A2*B2 ) ) )  

DO=ALPHA*B2 
Dl=B2+ALPHA*A2 
D2=A2 
CAY=2*ALPHA*A**2*B 
WRITE (1 2 , 2) T, ALPHA, Al, A2, Bl, B2, DO, Dl, D2, CAY, ROFZER,A, B 

2 FORMAT(1 H l , 8X, 2HT=, Fl0 . 3/5X, 6HALPHA=, Fl0. 3/8X, 3HA1=, Fl0. 3/8X, 
*3HA2=, Fl0. 3/8X, 3HB1=, Fl0 . 3/8X, 3HB2=, Fl0. 3/8X, 3HDO=, Fl0. 3/8X, 
1 3HDl=, Fl0. 3, /8X, 3 HD2=, Fl0 . 3/7X, 4HCAY=Fl0. 3/4X, 7HROFZER=, Fl0. 3/ 
29X , 2HA=Fl0.3/9X, 2HB=Fl0. 3//) 

WRITE(l2 , 12) 
12 FORMAT(30X, 39HS(OMEGA ) =2. *ALPHA* B/(ALPHA**2+0MEGA**2) // 

130X, 70H(ABS(H(J*OMEGA) ) ) **2=A**2(Al**2*0MEGA* *2+B1 **2)/(A2**2+0MEG 
2A**2&B2* *2) //30X, 1 8HCAY=2*ALPHA*A**2*B) 

X=l . O  
DO 4 I=l , 50 

6 RLAMDA( I ) =X 
60 GLAMDA=(( B2*B2&A2*A2*ALPHA*ALPHA) -RLAMDA(I) *CAY*Al*Al ) /(2. *A2*A2) 

FLAMDA= (ALPHA*ALPHA*B2 *B2-RLAMDA(I) *CAY*Bl*Bl)/(A2*A2 ) *(-l. O) 
C WRITE (12 , 42) RLAMDA(I ), I 

C 

C 

42 FORMAT(lH , 7HRLAMDA=, 1 PE14.7, 3X, 2 H I =, I 3 ) 

IF (GLAMDA**2&FLAMDA) 3, 3, 1 1  

3 I F  (RLAMDA(I ) -100000. ) 5, 5, 10 
5 RLAMDA(I ) = RLAMDA(I ) &O. OOl*RLAMDA(I ) 

GO TO 60 
10 STOP 
11 Wl=SQRT(GLAMDA&SQRT(GLAMDA*GLAMDA&FLAMDA) ) 

W2S=GLAMDA-SQRT(GLAMDA*GLAMDA&FLA�IDA) 
WRITE (12, 43) W2S, Wl 

43 FORMAT(lH , 4HW2S=, 1 PE14. 7) 
WRITE (12, 41 ) 

41 FORMAT(lH , 9HINTO EQT2 ) 

CALL EQT2( RLAMDA(I)) 
I=I&l 



RLAlIDA(I)=RLAMDA(I-1) 
CALL INCR(RLAMDA(I) , W2S , Wl ) 

C WRITE (12 , 40 ) 

40 FORMAT(lH , 9HINTO EQTl) 
CALL EQTl(RLAMDA ( I) )  
X=X+.005 

4 CONTINUE 

WRITE 02 , 15) 
15 FORMAT( lHl , lOX , 23 HLA1vIDA FOR ZERO CROSSING , 5X ,  

*24HSLAMDA FOR ZERO CROSSING , 5X , 2 1HERROR FOR LAMDA TERMS/) 
S=O. 
DO 18 J=l , 50 
SIAMDA(J)= l. /(RLAMDA(J) *ROFZER) 
S=S&SIAMDA(J) 
ERROR(J)= l .-S 

18 WRITE (12 , 20) J , RIAMDA(J) , SLAMDA(J) , ERROR(J ) 

20 FORMAT(lH , 2X , 12 _, 12X , E l4. 7 ,  14X , El4. 7 , 14X , El4 . 7) . 

11 

4 

5 
6 

GO TO 100 
END 

SUBROUTINE EQTl(XX) 
COMMON Al , A2 , Bl , B2 , ALPHA , CAY , 00 , Dl , D2 , T , W2S , Wl , X , TAN 
X=XX 
CALL CALCl(W2S , Wl , Y) 
INDEX =  0 
CALL INCR(X2 , A , B ) 

INDEX =  INDEX&l 
CALL CALCl(A , B , Y2) 
IF (Y*Y2) 5 , 6 , 6 

IF (ABS(Y-Y2)-100.) 7 , 6 , 6 
Y=Y2 
X=X2 
GO TO 11  

7 CALL FALSEl(X , Y , X2 , Y2 , X3 ) 

C WRITE (12 , 20) X3 , INDEX 
20 FORMAT(lH , 2X , 3HX3= , 1PE14.7 , 20X , 6HI NDEX= , l 7 ) 

XX=X3 

RETURN 
END 

99 

. : ,. 



. SUBROUTINE EQT2(XX) 
COMMON Al, A2, Bl, B2, ALPHA, CAY, DO, Dl, D2, T, W2S, Wl, X, TAN 
X=XX 
CALL CALC2(W2S, Wl, Y) 
INDEX = 0 

11 CALL INCR(X2, A, B) 
INDEX = INDEX&l 

4 CALL CALC2(A, B, Y2) 
I_F { Y*Y2) 5, 6, 6 

5 IF { ABS(Y-Y2)-100.) 7, 6, 6  
6 Y=Y2 

X=X2 
GO TO 11 . 

7 CALL FALSE2(X, Y, X2, Y2, X3) 
C WRITE (1 2, 20) X3, INDEX 

20 FORMAT(lH , 2X, 3HX3=, 1 PE1 4.7, 20X, 6HINDEX=, I7) 
XX=X3 
RETURN 
END 

100 

- : ,. 



SUBROUTINE CALC1(W2, W , Y) 
COMMON Al, A2, Bl , B2 , ALPHA , CAY , DO , Dl , D2 , T, W2S, Wl , X, TAN 
IF ( W2 ) 1 , 1 , 2 

1 SQR = SQRT(-W2) 
SIGN = -1. 0 
TAN = SIN (SQR *T/2 . 0)/COS(SQR *T/2 . 0) 
GO TO 3 

2 SQR = SQRT(W2) 
SIGN = 1 . 0  
TAN = TANH(SQR *T/2. 0) 

3 SLEFT = ((DO&D2*W2) &SIGN*Dl *SQR *TAN) *SQR 
SLEFT = SLEFT/((DO&D2*W2 ) *TAN&Dl*SQR) 
SRIGHT=((DO&D2*W**2) &Dl *W*TANH((W*T)/2 . )) *W 
SRIGHT=SRIGHT/((DO&D2*W**2) *TANH((W*T)/2 . ) &Dl*W) 
Y=SLEFT- SRIGHT 
RETURN 
END 

SUBROUTINE CALC2(W2 , W , Y) 
COMMON Al , A2 , Bl , B2, ALPHA , CAY , OO , Dl , D2 , T , W2S , Wl, X , TAN 
IF (W2) 1, 1, 2  

l s·QR = SQRT(-W2) 
SIGN = -1 . 0  
TAN = SIN (SQR *T/2 . 0)/COS(SQR *T/2.0) 
GO TO 3 

2 SQR = SQRT(W2) 
SIGN = 1.0 
TAN = TANH(SQR *T/2 . 0) 

3 SLEFT = ((DO&D2*W2) *TAN&Dl *SQR ) *SIGN*SQR 
SLEFT = SLEFT/((DO&D2*W2) &SIGN*SQR *TAN*Dl) 
SRIGHT=( (DO&D2*W*W) *TANH( (W*T)/2 . ) &Dl*W) *.W 
SRIGHT=SRIGHT/((DO&D2*W**2)&Dl*W*TANH((W*T) /2 . l)) 
Y=SLEFT-SRIGHT 
RETURN 
END 
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SUBROUTINE FALSEl(Xl, Yl, X2, Y2, X3) 
COMMON Al, A2, Bl, B2, ALPHA, CAY, DO, Dl, D2, T, W2S, Wl, X, TAN 

40 FORMAT(lH , llHINTO FALSE!) 
C WRITE (12, 40) 

X=Xl 
2 X3=(Xl*Y2-X2*Yl)/(Y2-Yl) 

GLAMDA=((B2*B2&A2*A2*ALPHA*ALPHA)-X3*CAY*Al*Al) /(2. *A2*A2) 
FLAMDA=(ALPHA*ALPHA*B2*B2-X3*CAY*Bl*Bl)/(A2*A2) *(-l.O) 
Wll=SQRT(GLAMDA&SQRT(GLAMDA*GLAMDA&FLAMDA)) 
W2Sl=GLAMDA-SQRT(GIAMDA*GLA�IDA&FLAMDA) 
CALL CALC1(W2S1, Wll, Y3) 
DO 4 I=l, 100 
IF (Y3*Y2) 10, 20, 20 

20 Y2=Yl 
X2=Xl 

10 XNEW=(X2*X3-X3*Y2) /(Y3-Y2) 
Xl=X2 
X2=X3 
X3=XNEW 
Yl=Y2 
Y2=Y3 

· GLAMDA=((B2*B2&A2*A2*ALPHA*ALPHA) -X3*CAY*Al*Al)/(2 . *A2*A2) 
FLAMDA=(ALPHA*ALPHA*B2*B2-X3*CAY*Bl*Bl) /(A2*A2) *(-l. O) 
Wll=SQRT(GLAMDA&SQRT(GLAMDA*G LAMDA&FLAMDA)) 
W2Sl=GLAMDA-SQRT(GLAMDA*GLAMDA&FLAMDA) 
CALL CALCl(W2S1, Wll, Y3) 

6 IF (ABS(X3-X2)/X3-.000001)11 , 4, 4 

·4 CONTINUE 
STOP 

1 1  CONTINUE 
RETURN 
END 
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SUBROUTINE FALSE2 (Xl , Yl , X2 , Y2 , X3)  
COMMON Al,A2 , Bl , B2 , ALPHA , CAY , DO , Dl , D2 , T , W2S , Wl , X, TAN 

C WRITE (12 , 40 )  
40 FORMAT(lH ,llHINTO FALSE2 ) 

X=Xl 
2 X3=CXl*Y2*Yl ) /(Y2-Yl) 

GIAMDA=( (B2*B2&A2*A2*ALPHA*ALPHA ) -X3*CAY*Al*AJ)/( 2. *A2 *A2 ) 
FIA1IDA=(ALPHA*ALPHA*B2*B2-X3*CAY*Bl*Bl ) /(A2*A2 ) *(-l.O ) 
Wll=SQRT(GLAMDA&SQRT(GLAMDA*GLAMDA&FLAMDA ) )  
W2Sl=GLAMDA-SQRT(GLAMDA*GLAMDA&FLAMDA ) 
CALL CALC2(W2S1 , Wll , Y3 )  
DO 4 I=l , 100 
IF (Y3*Y2 ) 10 , 20 , 20 

20 Y2=Yl 
X2=Xl 

10 XNEW=(X2*Y3-X3*Y2 ) /(Y3-Y2 ) 
Xl=X2 

· X2=X3 
X3=XNEW 
Yl=Y2 
Y2=Y3 
GIAMDA=((B2*B2&A2*A2*ALPHA*ALPHA )-X3*CAY*Al*Al )/(2. *A2*A2 ) 
FLAMDA=(ALPHA*ALPHA*B2*B2-X3*CAY*Bl*Bl )/(A2*A2 ) *(-l. O )  
Wll=SQRT(GIAMDA&SQRT(GLAMDA*GLAMDA&FLAMDA ) 
W2Sl=GLAMDA-SQRT(GLAMDA*GLAMDA&FLAMDA ) 
CALL CALC2(W2S1 , Wll , Y3 )  

6 IF (ABS(X3-X2 )/X3-.000001 ) 11 , 4 , 4 

4 CONTINUE 
STOP 

1 1  CONTINUE 
RETURN 
END 
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SUBROUTINE INCR(�2, A, B) 
COMMON Al, A2 , Bl, B2, ALPHA, CAY, DO, Dl , D2, T, W2 S, Wl, X, TAN 
IF (X-l.OE7) 1 , 1 , 10 

10 STOP 
1 X2 = X&0.005*X 
6 G=((B2*B2&A2*A2*ALPHA*ALPHA)-X2*CAY*Al *Al)/(2.*A2*A2) 

F=(ALPHA*ALPHA*B2*B2-X2*CAY*Bl*Bl)/(A2*A2) *(-l.O) 
B=SQRT(G&SQRT(G*G&F) 
A=G-SQRT(G*G&F ) ) 
RETURN 
END 
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T= 1. 000 
ALPHA= 1. 000 

Al= 1. 000 
A2= 1. 000 
Bl= 0 . 500 
B2= 10 . 000 
DO= 10 . 000 
01= 11. 000 
02= 1.000 

CAY= 8 00. 000 
ROFZER= 37 . 273 

A= 20 . 000 
B= 1 . 000 

-, 
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IAMDA FOR SLAMDA FOR ERROR FOR 
ZERO CROSSING ZERO CROSSI NG LAMDA TERMS 

-· .! - ·· 
\ . .  

1 0 . 1411393E 01 0 . 1900908E-Ol 0 . 9809909E 00 
2 0 . 1 6 68593E 01 0 . 16078 98E-Ol 0 .  9 649119E 00 

· 3 0 . 1954645E 01 0 . 1372591E-Ol 0 . 95118 61E 00 
4 0 . 2261170E 01 0 . 1186522E-Ol 0. 9393209E 00 
5 0 . 259 6444E 01 0 . 1033309E-Ol 0. 928 9877E 00 
6 0 . 2952309E 01 0. 9087559E- 02 0. 9199002E 00 
7 0 . 3336850E 01 0. 8040302E-02 0. 9118 600E 00 
8 0 . 3742055E 01 0. 7169664E-02 0 . 9046903E 00 
9 0 . 41758 94E 01 0. 64248 00E-02 0 . 8 982655E 00 

10 0 . 4630448E 01 0. 5794100E-02 0 . 8 924715E 00 
1 1  0 . 5113602E 01 0. 5246650E-02 0 . 8872249E 00 
12 0 . 5617506E 01 0. 4776012E-02 0 . 882448 9E 00 
13 0 . 6149988E 01 0. 4362494E-02 0 . 878 08 64E 00 
1 4  0 . 6703234E 01 0 . 4002437E-02 0 . 8740840E 00 
15 0 . 7285048E 01 0.368�791E-02 0 . 8704013E 00 
16 0 . 7887643E 01 0. 3401434E-02 0 . 8 669999E 00 
17 0 . 8518782E 01 0. 3149429E-02 0 . 8 638505E 00 
1 8  0 . 9170735E 01 0. 2925534E-02 0. 8 609250E 00 
19 0 . 9851212E 01 0. 2723451E-02 0 . 8582016E 00 
2 0  0 . 1055253E 02 0 . 2542451E;...02 0. 8556591E 00 
2 1  0 . 1128236E 02 0 . 237798 6E-02 0.8532812E 00 
22 0 . 1203299E 02 0 . 2229 643E-02 0. 8510516E 00 
23 0 . 1281217E 02 0 . 2094047E-02 0. 848 9575E 00 
2 4  0 . 1361215E 02 0 . 1970980E-02 0. 8 4698 66E 00 
25 0 . 1444066E 02 0 . 1857899E-02 0 . 8451287E 00 
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APPENDIX E 

FWW DIAGRAM TO CALCULATE MISER 

The following pages indicate a method to compute the MISER 

for any case studied in this thesis. The flow diagram is adaptable 

to FORTRAN IV programming. To make use of the program in Appendix 

D, it must be modified to instruct the computer so that the output 

is obtained on punched cards. 

• . ! . 

\ . .  

It was stated in section 4-2d that <[3 2 
+ T

2) is the coefficient 

of s2 and /3 2 T 2 is the constant term in D( s2) - A i N( s2 ) .  In order 

to separate /3 and T, the coefficients of : s2 and the constant term 

are denoted by D2 and D0, respectively. So that _ 

and 

2 
+ T (E. l) 

( E. 2) 

Knowing Do, Dz; {3 and T may be determined. It is stressed that the 

flow �iagram is to be read with the main body of the dissertation. 

Using the rectangular approximation method of evaluating an 

integral Eq. (4.4-1) may be approximated as 

1 10 

1 + 

i=l 

(E . 3 ) 
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In  words, the two cases t > u and u > t are evaluated separately within 

the constraints. For an i ,  u is selected and t is allowed to take on 

various values. The value obtained after the iteration of t is 

This is repeated till u is iterated. 

The next value of i is chosen and the procedure repeated til l  all th e  

values of i are exhausted 



START 

D0 1 7  J=l 0 , 1 00 , 1 0 
POLE=FLOAT ( J )  

D01 5  I=l , 1 0  -

READ THE 5 0  E I GENVALUES , Ai , 
CALCULATED BY PROGRAM IN APP . D 

( REFER TABLE 4 . 2 -2 ) 

CALCULATE 
ASET = ± [g c  Ai ) +{g2 c � )  + f C  Ai ) } ½ ]½ 

BSET = ±[g <  .)..i ) -{g2 ( � )  + f ( A1 > p p  

Figur e  E . l .  Flow d iagram to compute the value of MI SER 

109 



ASET = + w1 < A . ) - 1 
BSET - + t,L ( A . ) 

- -� 1 

r 

BSET = ± w1 < A . ) 
---� ASET = ± W 

2 
( A � ) 

CALCU LATE x
1
, x

2 
_ 

( REFER EQ. 4. 2-15} 

= ± ,/fi; 
T 

CALCULATE Pz 
( REFER EQS . 4.2-24 ;  4.2-2 5) 

CALCULATE A1, A2, A3 & A4. 
( Eqs. 4.2-20 through 4.2 -2 3) 

llO 



cp 
CALCULATE o/1 AND o/ 2 

(Eqs. 4.2-17 AND 4.2-18) 

CALCUIATE Y1 ( Ai) AND 

Y2( Ai_ )  ( Eq . 4. 2-26) 

CALCULATE THE NORMALIZING 
CONSTANT, ci

2 

· · (Eq. 4. 3-2) 

CALCULATE EIGENFUNCTIONS, 0i ( t) 

( Eq .  4.2-16) 

1 5 1  

J 
CONTINUE 

j · 
PRINT MISER 

1 7 1  

� 
CONTINUE 

STOP 

11 1 
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